The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/linux/linux_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Marcel Moolenaar
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer
   10  *    in this position and unchanged.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. The name of the author may not be used to endorse or promote products
   15  *    derived from this software without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/8.2/sys/i386/linux/linux_machdep.c 209304 2010-06-18 15:25:57Z kan $");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/file.h>
   35 #include <sys/fcntl.h>
   36 #include <sys/imgact.h>
   37 #include <sys/lock.h>
   38 #include <sys/malloc.h>
   39 #include <sys/mman.h>
   40 #include <sys/mutex.h>
   41 #include <sys/sx.h>
   42 #include <sys/priv.h>
   43 #include <sys/proc.h>
   44 #include <sys/queue.h>
   45 #include <sys/resource.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/sysproto.h>
   50 #include <sys/unistd.h>
   51 #include <sys/wait.h>
   52 #include <sys/sched.h>
   53 
   54 #include <machine/frame.h>
   55 #include <machine/psl.h>
   56 #include <machine/segments.h>
   57 #include <machine/sysarch.h>
   58 
   59 #include <vm/vm.h>
   60 #include <vm/pmap.h>
   61 #include <vm/vm_map.h>
   62 
   63 #include <i386/linux/linux.h>
   64 #include <i386/linux/linux_proto.h>
   65 #include <compat/linux/linux_ipc.h>
   66 #include <compat/linux/linux_signal.h>
   67 #include <compat/linux/linux_util.h>
   68 #include <compat/linux/linux_emul.h>
   69 
   70 #include <i386/include/pcb.h>                   /* needed for pcb definition in linux_set_thread_area */
   71 
   72 #include "opt_posix.h"
   73 
   74 extern struct sysentvec elf32_freebsd_sysvec;   /* defined in i386/i386/elf_machdep.c */
   75 
   76 struct l_descriptor {
   77         l_uint          entry_number;
   78         l_ulong         base_addr;
   79         l_uint          limit;
   80         l_uint          seg_32bit:1;
   81         l_uint          contents:2;
   82         l_uint          read_exec_only:1;
   83         l_uint          limit_in_pages:1;
   84         l_uint          seg_not_present:1;
   85         l_uint          useable:1;
   86 };
   87 
   88 struct l_old_select_argv {
   89         l_int           nfds;
   90         l_fd_set        *readfds;
   91         l_fd_set        *writefds;
   92         l_fd_set        *exceptfds;
   93         struct l_timeval        *timeout;
   94 };
   95 
   96 static int      linux_mmap_common(struct thread *td, l_uintptr_t addr,
   97                     l_size_t len, l_int prot, l_int flags, l_int fd,
   98                     l_loff_t pos);
   99 
  100 int
  101 linux_to_bsd_sigaltstack(int lsa)
  102 {
  103         int bsa = 0;
  104 
  105         if (lsa & LINUX_SS_DISABLE)
  106                 bsa |= SS_DISABLE;
  107         if (lsa & LINUX_SS_ONSTACK)
  108                 bsa |= SS_ONSTACK;
  109         return (bsa);
  110 }
  111 
  112 int
  113 bsd_to_linux_sigaltstack(int bsa)
  114 {
  115         int lsa = 0;
  116 
  117         if (bsa & SS_DISABLE)
  118                 lsa |= LINUX_SS_DISABLE;
  119         if (bsa & SS_ONSTACK)
  120                 lsa |= LINUX_SS_ONSTACK;
  121         return (lsa);
  122 }
  123 
  124 int
  125 linux_execve(struct thread *td, struct linux_execve_args *args)
  126 {
  127         int error;
  128         char *newpath;
  129         struct image_args eargs;
  130 
  131         LCONVPATHEXIST(td, args->path, &newpath);
  132 
  133 #ifdef DEBUG
  134         if (ldebug(execve))
  135                 printf(ARGS(execve, "%s"), newpath);
  136 #endif
  137 
  138         error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE,
  139             args->argp, args->envp);
  140         free(newpath, M_TEMP);
  141         if (error == 0)
  142                 error = kern_execve(td, &eargs, NULL);
  143         if (error == 0)
  144                 /* linux process can exec fbsd one, dont attempt
  145                  * to create emuldata for such process using
  146                  * linux_proc_init, this leads to a panic on KASSERT
  147                  * because such process has p->p_emuldata == NULL
  148                  */
  149                 if (td->td_proc->p_sysent == &elf_linux_sysvec)
  150                         error = linux_proc_init(td, 0, 0);
  151         return (error);
  152 }
  153 
  154 struct l_ipc_kludge {
  155         struct l_msgbuf *msgp;
  156         l_long msgtyp;
  157 };
  158 
  159 int
  160 linux_ipc(struct thread *td, struct linux_ipc_args *args)
  161 {
  162 
  163         switch (args->what & 0xFFFF) {
  164         case LINUX_SEMOP: {
  165                 struct linux_semop_args a;
  166 
  167                 a.semid = args->arg1;
  168                 a.tsops = args->ptr;
  169                 a.nsops = args->arg2;
  170                 return (linux_semop(td, &a));
  171         }
  172         case LINUX_SEMGET: {
  173                 struct linux_semget_args a;
  174 
  175                 a.key = args->arg1;
  176                 a.nsems = args->arg2;
  177                 a.semflg = args->arg3;
  178                 return (linux_semget(td, &a));
  179         }
  180         case LINUX_SEMCTL: {
  181                 struct linux_semctl_args a;
  182                 int error;
  183 
  184                 a.semid = args->arg1;
  185                 a.semnum = args->arg2;
  186                 a.cmd = args->arg3;
  187                 error = copyin(args->ptr, &a.arg, sizeof(a.arg));
  188                 if (error)
  189                         return (error);
  190                 return (linux_semctl(td, &a));
  191         }
  192         case LINUX_MSGSND: {
  193                 struct linux_msgsnd_args a;
  194 
  195                 a.msqid = args->arg1;
  196                 a.msgp = args->ptr;
  197                 a.msgsz = args->arg2;
  198                 a.msgflg = args->arg3;
  199                 return (linux_msgsnd(td, &a));
  200         }
  201         case LINUX_MSGRCV: {
  202                 struct linux_msgrcv_args a;
  203 
  204                 a.msqid = args->arg1;
  205                 a.msgsz = args->arg2;
  206                 a.msgflg = args->arg3;
  207                 if ((args->what >> 16) == 0) {
  208                         struct l_ipc_kludge tmp;
  209                         int error;
  210 
  211                         if (args->ptr == NULL)
  212                                 return (EINVAL);
  213                         error = copyin(args->ptr, &tmp, sizeof(tmp));
  214                         if (error)
  215                                 return (error);
  216                         a.msgp = tmp.msgp;
  217                         a.msgtyp = tmp.msgtyp;
  218                 } else {
  219                         a.msgp = args->ptr;
  220                         a.msgtyp = args->arg5;
  221                 }
  222                 return (linux_msgrcv(td, &a));
  223         }
  224         case LINUX_MSGGET: {
  225                 struct linux_msgget_args a;
  226 
  227                 a.key = args->arg1;
  228                 a.msgflg = args->arg2;
  229                 return (linux_msgget(td, &a));
  230         }
  231         case LINUX_MSGCTL: {
  232                 struct linux_msgctl_args a;
  233 
  234                 a.msqid = args->arg1;
  235                 a.cmd = args->arg2;
  236                 a.buf = args->ptr;
  237                 return (linux_msgctl(td, &a));
  238         }
  239         case LINUX_SHMAT: {
  240                 struct linux_shmat_args a;
  241 
  242                 a.shmid = args->arg1;
  243                 a.shmaddr = args->ptr;
  244                 a.shmflg = args->arg2;
  245                 a.raddr = (l_ulong *)args->arg3;
  246                 return (linux_shmat(td, &a));
  247         }
  248         case LINUX_SHMDT: {
  249                 struct linux_shmdt_args a;
  250 
  251                 a.shmaddr = args->ptr;
  252                 return (linux_shmdt(td, &a));
  253         }
  254         case LINUX_SHMGET: {
  255                 struct linux_shmget_args a;
  256 
  257                 a.key = args->arg1;
  258                 a.size = args->arg2;
  259                 a.shmflg = args->arg3;
  260                 return (linux_shmget(td, &a));
  261         }
  262         case LINUX_SHMCTL: {
  263                 struct linux_shmctl_args a;
  264 
  265                 a.shmid = args->arg1;
  266                 a.cmd = args->arg2;
  267                 a.buf = args->ptr;
  268                 return (linux_shmctl(td, &a));
  269         }
  270         default:
  271                 break;
  272         }
  273 
  274         return (EINVAL);
  275 }
  276 
  277 int
  278 linux_old_select(struct thread *td, struct linux_old_select_args *args)
  279 {
  280         struct l_old_select_argv linux_args;
  281         struct linux_select_args newsel;
  282         int error;
  283 
  284 #ifdef DEBUG
  285         if (ldebug(old_select))
  286                 printf(ARGS(old_select, "%p"), args->ptr);
  287 #endif
  288 
  289         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  290         if (error)
  291                 return (error);
  292 
  293         newsel.nfds = linux_args.nfds;
  294         newsel.readfds = linux_args.readfds;
  295         newsel.writefds = linux_args.writefds;
  296         newsel.exceptfds = linux_args.exceptfds;
  297         newsel.timeout = linux_args.timeout;
  298         return (linux_select(td, &newsel));
  299 }
  300 
  301 int
  302 linux_fork(struct thread *td, struct linux_fork_args *args)
  303 {
  304         int error;
  305         struct proc *p2;
  306         struct thread *td2;
  307 
  308 #ifdef DEBUG
  309         if (ldebug(fork))
  310                 printf(ARGS(fork, ""));
  311 #endif
  312 
  313         if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
  314                 return (error);
  315         
  316         if (error == 0) {
  317                 td->td_retval[0] = p2->p_pid;
  318                 td->td_retval[1] = 0;
  319         }
  320 
  321         if (td->td_retval[1] == 1)
  322                 td->td_retval[0] = 0;
  323         error = linux_proc_init(td, td->td_retval[0], 0);
  324         if (error)
  325                 return (error);
  326 
  327         td2 = FIRST_THREAD_IN_PROC(p2);
  328 
  329         /*
  330          * Make this runnable after we are finished with it.
  331          */
  332         thread_lock(td2);
  333         TD_SET_CAN_RUN(td2);
  334         sched_add(td2, SRQ_BORING);
  335         thread_unlock(td2);
  336 
  337         return (0);
  338 }
  339 
  340 int
  341 linux_vfork(struct thread *td, struct linux_vfork_args *args)
  342 {
  343         int error;
  344         struct proc *p2;
  345         struct thread *td2;
  346 
  347 #ifdef DEBUG
  348         if (ldebug(vfork))
  349                 printf(ARGS(vfork, ""));
  350 #endif
  351 
  352         /* exclude RFPPWAIT */
  353         if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
  354                 return (error);
  355         if (error == 0) {
  356                 td->td_retval[0] = p2->p_pid;
  357                 td->td_retval[1] = 0;
  358         }
  359         /* Are we the child? */
  360         if (td->td_retval[1] == 1)
  361                 td->td_retval[0] = 0;
  362         error = linux_proc_init(td, td->td_retval[0], 0);
  363         if (error)
  364                 return (error);
  365 
  366         PROC_LOCK(p2);
  367         p2->p_flag |= P_PPWAIT;
  368         PROC_UNLOCK(p2);
  369 
  370         td2 = FIRST_THREAD_IN_PROC(p2);
  371         
  372         /*
  373          * Make this runnable after we are finished with it.
  374          */
  375         thread_lock(td2);
  376         TD_SET_CAN_RUN(td2);
  377         sched_add(td2, SRQ_BORING);
  378         thread_unlock(td2);
  379 
  380         /* wait for the children to exit, ie. emulate vfork */
  381         PROC_LOCK(p2);
  382         while (p2->p_flag & P_PPWAIT)
  383                 cv_wait(&p2->p_pwait, &p2->p_mtx);
  384         PROC_UNLOCK(p2);
  385 
  386         return (0);
  387 }
  388 
  389 int
  390 linux_clone(struct thread *td, struct linux_clone_args *args)
  391 {
  392         int error, ff = RFPROC | RFSTOPPED;
  393         struct proc *p2;
  394         struct thread *td2;
  395         int exit_signal;
  396         struct linux_emuldata *em;
  397 
  398 #ifdef DEBUG
  399         if (ldebug(clone)) {
  400                 printf(ARGS(clone, "flags %x, stack %x, parent tid: %x, child tid: %x"),
  401                     (unsigned int)args->flags, (unsigned int)args->stack, 
  402                     (unsigned int)args->parent_tidptr, (unsigned int)args->child_tidptr);
  403         }
  404 #endif
  405 
  406         exit_signal = args->flags & 0x000000ff;
  407         if (LINUX_SIG_VALID(exit_signal)) {
  408                 if (exit_signal <= LINUX_SIGTBLSZ)
  409                         exit_signal =
  410                             linux_to_bsd_signal[_SIG_IDX(exit_signal)];
  411         } else if (exit_signal != 0)
  412                 return (EINVAL);
  413 
  414         if (args->flags & LINUX_CLONE_VM)
  415                 ff |= RFMEM;
  416         if (args->flags & LINUX_CLONE_SIGHAND)
  417                 ff |= RFSIGSHARE;
  418         /* 
  419          * XXX: in linux sharing of fs info (chroot/cwd/umask)
  420          * and open files is independant. in fbsd its in one
  421          * structure but in reality it doesn't cause any problems
  422          * because both of these flags are usually set together.
  423          */
  424         if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
  425                 ff |= RFFDG;
  426 
  427         /*
  428          * Attempt to detect when linux_clone(2) is used for creating
  429          * kernel threads. Unfortunately despite the existence of the
  430          * CLONE_THREAD flag, version of linuxthreads package used in
  431          * most popular distros as of beginning of 2005 doesn't make
  432          * any use of it. Therefore, this detection relies on
  433          * empirical observation that linuxthreads sets certain
  434          * combination of flags, so that we can make more or less
  435          * precise detection and notify the FreeBSD kernel that several
  436          * processes are in fact part of the same threading group, so
  437          * that special treatment is necessary for signal delivery
  438          * between those processes and fd locking.
  439          */
  440         if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
  441                 ff |= RFTHREAD;
  442 
  443         if (args->flags & LINUX_CLONE_PARENT_SETTID)
  444                 if (args->parent_tidptr == NULL)
  445                         return (EINVAL);
  446 
  447         error = fork1(td, ff, 0, &p2);
  448         if (error)
  449                 return (error);
  450 
  451         if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
  452                 sx_xlock(&proctree_lock);
  453                 PROC_LOCK(p2);
  454                 proc_reparent(p2, td->td_proc->p_pptr);
  455                 PROC_UNLOCK(p2);
  456                 sx_xunlock(&proctree_lock);
  457         }
  458         
  459         /* create the emuldata */
  460         error = linux_proc_init(td, p2->p_pid, args->flags);
  461         /* reference it - no need to check this */
  462         em = em_find(p2, EMUL_DOLOCK);
  463         KASSERT(em != NULL, ("clone: emuldata not found.\n"));
  464         /* and adjust it */
  465 
  466         if (args->flags & LINUX_CLONE_THREAD) {
  467                 /* XXX: linux mangles pgrp and pptr somehow
  468                  * I think it might be this but I am not sure.
  469                  */
  470 #ifdef notyet
  471                 PROC_LOCK(p2);
  472                 p2->p_pgrp = td->td_proc->p_pgrp;
  473                 PROC_UNLOCK(p2);
  474 #endif
  475                 exit_signal = 0;
  476         }
  477 
  478         if (args->flags & LINUX_CLONE_CHILD_SETTID)
  479                 em->child_set_tid = args->child_tidptr;
  480         else
  481                 em->child_set_tid = NULL;
  482 
  483         if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
  484                 em->child_clear_tid = args->child_tidptr;
  485         else
  486                 em->child_clear_tid = NULL;
  487 
  488         EMUL_UNLOCK(&emul_lock);
  489 
  490         if (args->flags & LINUX_CLONE_PARENT_SETTID) {
  491                 error = copyout(&p2->p_pid, args->parent_tidptr, sizeof(p2->p_pid));
  492                 if (error)
  493                         printf(LMSG("copyout failed!"));
  494         }
  495 
  496         PROC_LOCK(p2);
  497         p2->p_sigparent = exit_signal;
  498         PROC_UNLOCK(p2);
  499         td2 = FIRST_THREAD_IN_PROC(p2);
  500         /* 
  501          * in a case of stack = NULL we are supposed to COW calling process stack
  502          * this is what normal fork() does so we just keep the tf_esp arg intact
  503          */
  504         if (args->stack)
  505                 td2->td_frame->tf_esp = (unsigned int)args->stack;
  506 
  507         if (args->flags & LINUX_CLONE_SETTLS) {
  508                 struct l_user_desc info;
  509                 int idx;
  510                 int a[2];
  511                 struct segment_descriptor sd;
  512 
  513                 error = copyin((void *)td->td_frame->tf_esi, &info, sizeof(struct l_user_desc));
  514                 if (error) {
  515                         printf(LMSG("copyin failed!"));
  516                 } else {
  517                 
  518                         idx = info.entry_number;
  519                 
  520                         /* 
  521                          * looks like we're getting the idx we returned
  522                          * in the set_thread_area() syscall
  523                          */
  524                         if (idx != 6 && idx != 3) {
  525                                 printf(LMSG("resetting idx!"));
  526                                 idx = 3;
  527                         }
  528 
  529                         /* this doesnt happen in practice */
  530                         if (idx == 6) {
  531                                 /* we might copy out the entry_number as 3 */
  532                                 info.entry_number = 3;
  533                                 error = copyout(&info, (void *) td->td_frame->tf_esi, sizeof(struct l_user_desc));
  534                                 if (error)
  535                                         printf(LMSG("copyout failed!"));
  536                         }
  537 
  538                         a[0] = LINUX_LDT_entry_a(&info);
  539                         a[1] = LINUX_LDT_entry_b(&info);
  540 
  541                         memcpy(&sd, &a, sizeof(a));
  542 #ifdef DEBUG
  543                 if (ldebug(clone))
  544                         printf("Segment created in clone with CLONE_SETTLS: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
  545                         sd.sd_hibase,
  546                         sd.sd_lolimit,
  547                         sd.sd_hilimit,
  548                         sd.sd_type,
  549                         sd.sd_dpl,
  550                         sd.sd_p,
  551                         sd.sd_xx,
  552                         sd.sd_def32,
  553                         sd.sd_gran);
  554 #endif
  555 
  556                         /* set %gs */
  557                         td2->td_pcb->pcb_gsd = sd;
  558                         td2->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL);
  559                 }
  560         } 
  561 
  562 #ifdef DEBUG
  563         if (ldebug(clone))
  564                 printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
  565                     (long)p2->p_pid, args->stack, exit_signal);
  566 #endif
  567         if (args->flags & LINUX_CLONE_VFORK) {
  568                 PROC_LOCK(p2);
  569                 p2->p_flag |= P_PPWAIT;
  570                 PROC_UNLOCK(p2);
  571         }
  572 
  573         /*
  574          * Make this runnable after we are finished with it.
  575          */
  576         thread_lock(td2);
  577         TD_SET_CAN_RUN(td2);
  578         sched_add(td2, SRQ_BORING);
  579         thread_unlock(td2);
  580 
  581         td->td_retval[0] = p2->p_pid;
  582         td->td_retval[1] = 0;
  583 
  584         if (args->flags & LINUX_CLONE_VFORK) {
  585                 /* wait for the children to exit, ie. emulate vfork */
  586                 PROC_LOCK(p2);
  587                 while (p2->p_flag & P_PPWAIT)
  588                         cv_wait(&p2->p_pwait, &p2->p_mtx);
  589                 PROC_UNLOCK(p2);
  590         }
  591 
  592         return (0);
  593 }
  594 
  595 #define STACK_SIZE  (2 * 1024 * 1024)
  596 #define GUARD_SIZE  (4 * PAGE_SIZE)
  597 
  598 int
  599 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
  600 {
  601 
  602 #ifdef DEBUG
  603         if (ldebug(mmap2))
  604                 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
  605                     (void *)args->addr, args->len, args->prot,
  606                     args->flags, args->fd, args->pgoff);
  607 #endif
  608 
  609         return (linux_mmap_common(td, args->addr, args->len, args->prot,
  610                 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
  611                 PAGE_SIZE));
  612 }
  613 
  614 int
  615 linux_mmap(struct thread *td, struct linux_mmap_args *args)
  616 {
  617         int error;
  618         struct l_mmap_argv linux_args;
  619 
  620         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  621         if (error)
  622                 return (error);
  623 
  624 #ifdef DEBUG
  625         if (ldebug(mmap))
  626                 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
  627                     (void *)linux_args.addr, linux_args.len, linux_args.prot,
  628                     linux_args.flags, linux_args.fd, linux_args.pgoff);
  629 #endif
  630 
  631         return (linux_mmap_common(td, linux_args.addr, linux_args.len,
  632             linux_args.prot, linux_args.flags, linux_args.fd,
  633             (uint32_t)linux_args.pgoff));
  634 }
  635 
  636 static int
  637 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
  638     l_int flags, l_int fd, l_loff_t pos)
  639 {
  640         struct proc *p = td->td_proc;
  641         struct mmap_args /* {
  642                 caddr_t addr;
  643                 size_t len;
  644                 int prot;
  645                 int flags;
  646                 int fd;
  647                 long pad;
  648                 off_t pos;
  649         } */ bsd_args;
  650         int error;
  651         struct file *fp;
  652 
  653         error = 0;
  654         bsd_args.flags = 0;
  655         fp = NULL;
  656 
  657         /*
  658          * Linux mmap(2):
  659          * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
  660          */
  661         if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
  662                 return (EINVAL);
  663 
  664         if (flags & LINUX_MAP_SHARED)
  665                 bsd_args.flags |= MAP_SHARED;
  666         if (flags & LINUX_MAP_PRIVATE)
  667                 bsd_args.flags |= MAP_PRIVATE;
  668         if (flags & LINUX_MAP_FIXED)
  669                 bsd_args.flags |= MAP_FIXED;
  670         if (flags & LINUX_MAP_ANON) {
  671                 /* Enforce pos to be on page boundary, then ignore. */
  672                 if ((pos & PAGE_MASK) != 0)
  673                         return (EINVAL);
  674                 pos = 0;
  675                 bsd_args.flags |= MAP_ANON;
  676         } else
  677                 bsd_args.flags |= MAP_NOSYNC;
  678         if (flags & LINUX_MAP_GROWSDOWN)
  679                 bsd_args.flags |= MAP_STACK;
  680 
  681         /*
  682          * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
  683          * on Linux/i386. We do this to ensure maximum compatibility.
  684          * Linux/ia64 does the same in i386 emulation mode.
  685          */
  686         bsd_args.prot = prot;
  687         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  688                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  689 
  690         /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
  691         bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
  692         if (bsd_args.fd != -1) {
  693                 /*
  694                  * Linux follows Solaris mmap(2) description:
  695                  * The file descriptor fildes is opened with
  696                  * read permission, regardless of the
  697                  * protection options specified.
  698                  */
  699 
  700                 if ((error = fget(td, bsd_args.fd, &fp)) != 0)
  701                         return (error);
  702                 if (fp->f_type != DTYPE_VNODE) {
  703                         fdrop(fp, td);
  704                         return (EINVAL);
  705                 }
  706 
  707                 /* Linux mmap() just fails for O_WRONLY files */
  708                 if (!(fp->f_flag & FREAD)) {
  709                         fdrop(fp, td);
  710                         return (EACCES);
  711                 }
  712 
  713                 fdrop(fp, td);
  714         }
  715 
  716         if (flags & LINUX_MAP_GROWSDOWN) {
  717                 /* 
  718                  * The Linux MAP_GROWSDOWN option does not limit auto
  719                  * growth of the region.  Linux mmap with this option
  720                  * takes as addr the inital BOS, and as len, the initial
  721                  * region size.  It can then grow down from addr without
  722                  * limit.  However, linux threads has an implicit internal
  723                  * limit to stack size of STACK_SIZE.  Its just not
  724                  * enforced explicitly in linux.  But, here we impose
  725                  * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
  726                  * region, since we can do this with our mmap.
  727                  *
  728                  * Our mmap with MAP_STACK takes addr as the maximum
  729                  * downsize limit on BOS, and as len the max size of
  730                  * the region.  It them maps the top SGROWSIZ bytes,
  731                  * and auto grows the region down, up to the limit
  732                  * in addr.
  733                  *
  734                  * If we don't use the MAP_STACK option, the effect
  735                  * of this code is to allocate a stack region of a
  736                  * fixed size of (STACK_SIZE - GUARD_SIZE).
  737                  */
  738 
  739                 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
  740                         /* 
  741                          * Some linux apps will attempt to mmap
  742                          * thread stacks near the top of their
  743                          * address space.  If their TOS is greater
  744                          * than vm_maxsaddr, vm_map_growstack()
  745                          * will confuse the thread stack with the
  746                          * process stack and deliver a SEGV if they
  747                          * attempt to grow the thread stack past their
  748                          * current stacksize rlimit.  To avoid this,
  749                          * adjust vm_maxsaddr upwards to reflect
  750                          * the current stacksize rlimit rather
  751                          * than the maximum possible stacksize.
  752                          * It would be better to adjust the
  753                          * mmap'ed region, but some apps do not check
  754                          * mmap's return value.
  755                          */
  756                         PROC_LOCK(p);
  757                         p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
  758                             lim_cur(p, RLIMIT_STACK);
  759                         PROC_UNLOCK(p);
  760                 }
  761 
  762                 /*
  763                  * This gives us our maximum stack size and a new BOS.
  764                  * If we're using VM_STACK, then mmap will just map
  765                  * the top SGROWSIZ bytes, and let the stack grow down
  766                  * to the limit at BOS.  If we're not using VM_STACK
  767                  * we map the full stack, since we don't have a way
  768                  * to autogrow it.
  769                  */
  770                 if (len > STACK_SIZE - GUARD_SIZE) {
  771                         bsd_args.addr = (caddr_t)PTRIN(addr);
  772                         bsd_args.len = len;
  773                 } else {
  774                         bsd_args.addr = (caddr_t)PTRIN(addr) -
  775                             (STACK_SIZE - GUARD_SIZE - len);
  776                         bsd_args.len = STACK_SIZE - GUARD_SIZE;
  777                 }
  778         } else {
  779                 bsd_args.addr = (caddr_t)PTRIN(addr);
  780                 bsd_args.len  = len;
  781         }
  782         bsd_args.pos = pos;
  783 
  784 #ifdef DEBUG
  785         if (ldebug(mmap))
  786                 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
  787                     __func__,
  788                     (void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
  789                     bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
  790 #endif
  791         error = mmap(td, &bsd_args);
  792 #ifdef DEBUG
  793         if (ldebug(mmap))
  794                 printf("-> %s() return: 0x%x (0x%08x)\n",
  795                         __func__, error, (u_int)td->td_retval[0]);
  796 #endif
  797         return (error);
  798 }
  799 
  800 int
  801 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
  802 {
  803         struct mprotect_args bsd_args;
  804 
  805         bsd_args.addr = uap->addr;
  806         bsd_args.len = uap->len;
  807         bsd_args.prot = uap->prot;
  808         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  809                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  810         return (mprotect(td, &bsd_args));
  811 }
  812 
  813 int
  814 linux_pipe(struct thread *td, struct linux_pipe_args *args)
  815 {
  816         int error;
  817         int fildes[2];
  818 
  819 #ifdef DEBUG
  820         if (ldebug(pipe))
  821                 printf(ARGS(pipe, "*"));
  822 #endif
  823 
  824         error = kern_pipe(td, fildes);
  825         if (error)
  826                 return (error);
  827 
  828         /* XXX: Close descriptors on error. */
  829         return (copyout(fildes, args->pipefds, sizeof fildes));
  830 }
  831 
  832 int
  833 linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
  834 {
  835         int error;
  836         struct i386_ioperm_args iia;
  837 
  838         iia.start = args->start;
  839         iia.length = args->length;
  840         iia.enable = args->enable;
  841         error = i386_set_ioperm(td, &iia);
  842         return (error);
  843 }
  844 
  845 int
  846 linux_iopl(struct thread *td, struct linux_iopl_args *args)
  847 {
  848         int error;
  849 
  850         if (args->level < 0 || args->level > 3)
  851                 return (EINVAL);
  852         if ((error = priv_check(td, PRIV_IO)) != 0)
  853                 return (error);
  854         if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
  855                 return (error);
  856         td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
  857             (args->level * (PSL_IOPL / 3));
  858         return (0);
  859 }
  860 
  861 int
  862 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
  863 {
  864         int error;
  865         struct i386_ldt_args ldt;
  866         struct l_descriptor ld;
  867         union descriptor desc;
  868         int size, written;
  869 
  870         switch (uap->func) {
  871         case 0x00: /* read_ldt */
  872                 ldt.start = 0;
  873                 ldt.descs = uap->ptr;
  874                 ldt.num = uap->bytecount / sizeof(union descriptor);
  875                 error = i386_get_ldt(td, &ldt);
  876                 td->td_retval[0] *= sizeof(union descriptor);
  877                 break;
  878         case 0x02: /* read_default_ldt = 0 */
  879                 size = 5*sizeof(struct l_desc_struct);
  880                 if (size > uap->bytecount)
  881                         size = uap->bytecount;
  882                 for (written = error = 0; written < size && error == 0; written++)
  883                         error = subyte((char *)uap->ptr + written, 0);
  884                 td->td_retval[0] = written;
  885                 break;
  886         case 0x01: /* write_ldt */
  887         case 0x11: /* write_ldt */
  888                 if (uap->bytecount != sizeof(ld))
  889                         return (EINVAL);
  890 
  891                 error = copyin(uap->ptr, &ld, sizeof(ld));
  892                 if (error)
  893                         return (error);
  894 
  895                 ldt.start = ld.entry_number;
  896                 ldt.descs = &desc;
  897                 ldt.num = 1;
  898                 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff);
  899                 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
  900                 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff);
  901                 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
  902                 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
  903                         (ld.contents << 2);
  904                 desc.sd.sd_dpl = 3;
  905                 desc.sd.sd_p = (ld.seg_not_present ^ 1);
  906                 desc.sd.sd_xx = 0;
  907                 desc.sd.sd_def32 = ld.seg_32bit;
  908                 desc.sd.sd_gran = ld.limit_in_pages;
  909                 error = i386_set_ldt(td, &ldt, &desc);
  910                 break;
  911         default:
  912                 error = ENOSYS;
  913                 break;
  914         }
  915 
  916         if (error == EOPNOTSUPP) {
  917                 printf("linux: modify_ldt needs kernel option USER_LDT\n");
  918                 error = ENOSYS;
  919         }
  920 
  921         return (error);
  922 }
  923 
  924 int
  925 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
  926 {
  927         l_osigaction_t osa;
  928         l_sigaction_t act, oact;
  929         int error;
  930 
  931 #ifdef DEBUG
  932         if (ldebug(sigaction))
  933                 printf(ARGS(sigaction, "%d, %p, %p"),
  934                     args->sig, (void *)args->nsa, (void *)args->osa);
  935 #endif
  936 
  937         if (args->nsa != NULL) {
  938                 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
  939                 if (error)
  940                         return (error);
  941                 act.lsa_handler = osa.lsa_handler;
  942                 act.lsa_flags = osa.lsa_flags;
  943                 act.lsa_restorer = osa.lsa_restorer;
  944                 LINUX_SIGEMPTYSET(act.lsa_mask);
  945                 act.lsa_mask.__bits[0] = osa.lsa_mask;
  946         }
  947 
  948         error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
  949             args->osa ? &oact : NULL);
  950 
  951         if (args->osa != NULL && !error) {
  952                 osa.lsa_handler = oact.lsa_handler;
  953                 osa.lsa_flags = oact.lsa_flags;
  954                 osa.lsa_restorer = oact.lsa_restorer;
  955                 osa.lsa_mask = oact.lsa_mask.__bits[0];
  956                 error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
  957         }
  958 
  959         return (error);
  960 }
  961 
  962 /*
  963  * Linux has two extra args, restart and oldmask.  We dont use these,
  964  * but it seems that "restart" is actually a context pointer that
  965  * enables the signal to happen with a different register set.
  966  */
  967 int
  968 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
  969 {
  970         sigset_t sigmask;
  971         l_sigset_t mask;
  972 
  973 #ifdef DEBUG
  974         if (ldebug(sigsuspend))
  975                 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
  976 #endif
  977 
  978         LINUX_SIGEMPTYSET(mask);
  979         mask.__bits[0] = args->mask;
  980         linux_to_bsd_sigset(&mask, &sigmask);
  981         return (kern_sigsuspend(td, sigmask));
  982 }
  983 
  984 int
  985 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
  986 {
  987         l_sigset_t lmask;
  988         sigset_t sigmask;
  989         int error;
  990 
  991 #ifdef DEBUG
  992         if (ldebug(rt_sigsuspend))
  993                 printf(ARGS(rt_sigsuspend, "%p, %d"),
  994                     (void *)uap->newset, uap->sigsetsize);
  995 #endif
  996 
  997         if (uap->sigsetsize != sizeof(l_sigset_t))
  998                 return (EINVAL);
  999 
 1000         error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
 1001         if (error)
 1002                 return (error);
 1003 
 1004         linux_to_bsd_sigset(&lmask, &sigmask);
 1005         return (kern_sigsuspend(td, sigmask));
 1006 }
 1007 
 1008 int
 1009 linux_pause(struct thread *td, struct linux_pause_args *args)
 1010 {
 1011         struct proc *p = td->td_proc;
 1012         sigset_t sigmask;
 1013 
 1014 #ifdef DEBUG
 1015         if (ldebug(pause))
 1016                 printf(ARGS(pause, ""));
 1017 #endif
 1018 
 1019         PROC_LOCK(p);
 1020         sigmask = td->td_sigmask;
 1021         PROC_UNLOCK(p);
 1022         return (kern_sigsuspend(td, sigmask));
 1023 }
 1024 
 1025 int
 1026 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
 1027 {
 1028         stack_t ss, oss;
 1029         l_stack_t lss;
 1030         int error;
 1031 
 1032 #ifdef DEBUG
 1033         if (ldebug(sigaltstack))
 1034                 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
 1035 #endif
 1036 
 1037         if (uap->uss != NULL) {
 1038                 error = copyin(uap->uss, &lss, sizeof(l_stack_t));
 1039                 if (error)
 1040                         return (error);
 1041 
 1042                 ss.ss_sp = lss.ss_sp;
 1043                 ss.ss_size = lss.ss_size;
 1044                 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
 1045         }
 1046         error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
 1047             (uap->uoss != NULL) ? &oss : NULL);
 1048         if (!error && uap->uoss != NULL) {
 1049                 lss.ss_sp = oss.ss_sp;
 1050                 lss.ss_size = oss.ss_size;
 1051                 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
 1052                 error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
 1053         }
 1054 
 1055         return (error);
 1056 }
 1057 
 1058 int
 1059 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
 1060 {
 1061         struct ftruncate_args sa;
 1062 
 1063 #ifdef DEBUG
 1064         if (ldebug(ftruncate64))
 1065                 printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
 1066                     (intmax_t)args->length);
 1067 #endif
 1068 
 1069         sa.fd = args->fd;
 1070         sa.length = args->length;
 1071         return ftruncate(td, &sa);
 1072 }
 1073 
 1074 int
 1075 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args)
 1076 {
 1077         struct l_user_desc info;
 1078         int error;
 1079         int idx;
 1080         int a[2];
 1081         struct segment_descriptor sd;
 1082 
 1083         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
 1084         if (error)
 1085                 return (error);
 1086 
 1087 #ifdef DEBUG
 1088         if (ldebug(set_thread_area))
 1089                 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"),
 1090                       info.entry_number,
 1091                       info.base_addr,
 1092                       info.limit,
 1093                       info.seg_32bit,
 1094                       info.contents,
 1095                       info.read_exec_only,
 1096                       info.limit_in_pages,
 1097                       info.seg_not_present,
 1098                       info.useable);
 1099 #endif
 1100 
 1101         idx = info.entry_number;
 1102         /* 
 1103          * Semantics of linux version: every thread in the system has array of
 1104          * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This 
 1105          * syscall loads one of the selected tls decriptors with a value and
 1106          * also loads GDT descriptors 6, 7 and 8 with the content of the
 1107          * per-thread descriptors.
 1108          *
 1109          * Semantics of fbsd version: I think we can ignore that linux has 3 
 1110          * per-thread descriptors and use just the 1st one. The tls_array[]
 1111          * is used only in set/get-thread_area() syscalls and for loading the
 1112          * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so
 1113          * we will load just one. 
 1114          *
 1115          * XXX: this doesn't work when a user space process tries to use more
 1116          * than 1 TLS segment. Comment in the linux sources says wine might do
 1117          * this.
 1118          */
 1119 
 1120         /* 
 1121          * we support just GLIBC TLS now 
 1122          * we should let 3 proceed as well because we use this segment so
 1123          * if code does two subsequent calls it should succeed
 1124          */
 1125         if (idx != 6 && idx != -1 && idx != 3)
 1126                 return (EINVAL);
 1127 
 1128         /* 
 1129          * we have to copy out the GDT entry we use
 1130          * FreeBSD uses GDT entry #3 for storing %gs so load that
 1131          *
 1132          * XXX: what if a user space program doesn't check this value and tries
 1133          * to use 6, 7 or 8? 
 1134          */
 1135         idx = info.entry_number = 3;
 1136         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
 1137         if (error)
 1138                 return (error);
 1139 
 1140         if (LINUX_LDT_empty(&info)) {
 1141                 a[0] = 0;
 1142                 a[1] = 0;
 1143         } else {
 1144                 a[0] = LINUX_LDT_entry_a(&info);
 1145                 a[1] = LINUX_LDT_entry_b(&info);
 1146         }
 1147 
 1148         memcpy(&sd, &a, sizeof(a));
 1149 #ifdef DEBUG
 1150         if (ldebug(set_thread_area))
 1151                 printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
 1152                         sd.sd_hibase,
 1153                         sd.sd_lolimit,
 1154                         sd.sd_hilimit,
 1155                         sd.sd_type,
 1156                         sd.sd_dpl,
 1157                         sd.sd_p,
 1158                         sd.sd_xx,
 1159                         sd.sd_def32,
 1160                         sd.sd_gran);
 1161 #endif
 1162 
 1163         /* this is taken from i386 version of cpu_set_user_tls() */
 1164         critical_enter();
 1165         /* set %gs */
 1166         td->td_pcb->pcb_gsd = sd;
 1167         PCPU_GET(fsgs_gdt)[1] = sd;
 1168         load_gs(GSEL(GUGS_SEL, SEL_UPL));
 1169         critical_exit();
 1170    
 1171         return (0);
 1172 }
 1173 
 1174 int
 1175 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args)
 1176 {
 1177         
 1178         struct l_user_desc info;
 1179         int error;
 1180         int idx;
 1181         struct l_desc_struct desc;
 1182         struct segment_descriptor sd;
 1183 
 1184 #ifdef DEBUG
 1185         if (ldebug(get_thread_area))
 1186                 printf(ARGS(get_thread_area, "%p"), args->desc);
 1187 #endif
 1188 
 1189         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
 1190         if (error)
 1191                 return (error);
 1192 
 1193         idx = info.entry_number;
 1194         /* XXX: I am not sure if we want 3 to be allowed too. */
 1195         if (idx != 6 && idx != 3)
 1196                 return (EINVAL);
 1197 
 1198         idx = 3;
 1199 
 1200         memset(&info, 0, sizeof(info));
 1201 
 1202         sd = PCPU_GET(fsgs_gdt)[1];
 1203 
 1204         memcpy(&desc, &sd, sizeof(desc));
 1205 
 1206         info.entry_number = idx;
 1207         info.base_addr = LINUX_GET_BASE(&desc);
 1208         info.limit = LINUX_GET_LIMIT(&desc);
 1209         info.seg_32bit = LINUX_GET_32BIT(&desc);
 1210         info.contents = LINUX_GET_CONTENTS(&desc);
 1211         info.read_exec_only = !LINUX_GET_WRITABLE(&desc);
 1212         info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc);
 1213         info.seg_not_present = !LINUX_GET_PRESENT(&desc);
 1214         info.useable = LINUX_GET_USEABLE(&desc);
 1215 
 1216         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
 1217         if (error)
 1218                 return (EFAULT);
 1219 
 1220         return (0);
 1221 }
 1222 
 1223 /* copied from kern/kern_time.c */
 1224 int
 1225 linux_timer_create(struct thread *td, struct linux_timer_create_args *args)
 1226 {
 1227         return ktimer_create(td, (struct ktimer_create_args *) args);
 1228 }
 1229 
 1230 int
 1231 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args)
 1232 {
 1233         return ktimer_settime(td, (struct ktimer_settime_args *) args);
 1234 }
 1235 
 1236 int
 1237 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args)
 1238 {
 1239         return ktimer_gettime(td, (struct ktimer_gettime_args *) args);
 1240 }
 1241 
 1242 int
 1243 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args)
 1244 {
 1245         return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args);
 1246 }
 1247 
 1248 int
 1249 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args)
 1250 {
 1251         return ktimer_delete(td, (struct ktimer_delete_args *) args);
 1252 }
 1253 
 1254 /* XXX: this wont work with module - convert it */
 1255 int
 1256 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
 1257 {
 1258 #ifdef P1003_1B_MQUEUE
 1259         return kmq_open(td, (struct kmq_open_args *) args);
 1260 #else
 1261         return (ENOSYS);
 1262 #endif
 1263 }
 1264 
 1265 int
 1266 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
 1267 {
 1268 #ifdef P1003_1B_MQUEUE
 1269         return kmq_unlink(td, (struct kmq_unlink_args *) args);
 1270 #else
 1271         return (ENOSYS);
 1272 #endif
 1273 }
 1274 
 1275 int
 1276 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
 1277 {
 1278 #ifdef P1003_1B_MQUEUE
 1279         return kmq_timedsend(td, (struct kmq_timedsend_args *) args);
 1280 #else
 1281         return (ENOSYS);
 1282 #endif
 1283 }
 1284 
 1285 int
 1286 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
 1287 {
 1288 #ifdef P1003_1B_MQUEUE
 1289         return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args);
 1290 #else
 1291         return (ENOSYS);
 1292 #endif
 1293 }
 1294 
 1295 int
 1296 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
 1297 {
 1298 #ifdef P1003_1B_MQUEUE
 1299         return kmq_notify(td, (struct kmq_notify_args *) args);
 1300 #else
 1301         return (ENOSYS);
 1302 #endif
 1303 }
 1304 
 1305 int
 1306 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
 1307 {
 1308 #ifdef P1003_1B_MQUEUE
 1309         return kmq_setattr(td, (struct kmq_setattr_args *) args);
 1310 #else
 1311         return (ENOSYS);
 1312 #endif
 1313 }
 1314 

Cache object: 38d894f5308f438c41c211e59030e8d7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.