FreeBSD/Linux Kernel Cross Reference
sys/i386/xen/pmap.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
44 */
45 /*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 * notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 * notice, this list of conditions and the following disclaimer in the
62 * documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD: releng/10.1/sys/i386/xen/pmap.c 270920 2014-09-01 07:58:15Z kib $");
79
80 /*
81 * Manages physical address maps.
82 *
83 * Since the information managed by this module is
84 * also stored by the logical address mapping module,
85 * this module may throw away valid virtual-to-physical
86 * mappings at almost any time. However, invalidations
87 * of virtual-to-physical mappings must be done as
88 * requested.
89 *
90 * In order to cope with hardware architectures which
91 * make virtual-to-physical map invalidates expensive,
92 * this module may delay invalidate or reduced protection
93 * operations until such time as they are actually
94 * necessary. This module is given full information as
95 * to which processors are currently using which maps,
96 * and to when physical maps must be made correct.
97 */
98
99 #include "opt_cpu.h"
100 #include "opt_pmap.h"
101 #include "opt_smp.h"
102 #include "opt_xbox.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/kernel.h>
107 #include <sys/ktr.h>
108 #include <sys/lock.h>
109 #include <sys/malloc.h>
110 #include <sys/mman.h>
111 #include <sys/msgbuf.h>
112 #include <sys/mutex.h>
113 #include <sys/proc.h>
114 #include <sys/rwlock.h>
115 #include <sys/sf_buf.h>
116 #include <sys/sx.h>
117 #include <sys/vmmeter.h>
118 #include <sys/sched.h>
119 #include <sys/sysctl.h>
120 #ifdef SMP
121 #include <sys/smp.h>
122 #else
123 #include <sys/cpuset.h>
124 #endif
125
126 #include <vm/vm.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_page.h>
130 #include <vm/vm_map.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_extern.h>
133 #include <vm/vm_pageout.h>
134 #include <vm/vm_pager.h>
135 #include <vm/uma.h>
136
137 #include <machine/cpu.h>
138 #include <machine/cputypes.h>
139 #include <machine/md_var.h>
140 #include <machine/pcb.h>
141 #include <machine/specialreg.h>
142 #ifdef SMP
143 #include <machine/smp.h>
144 #endif
145
146 #ifdef XBOX
147 #include <machine/xbox.h>
148 #endif
149
150 #include <xen/interface/xen.h>
151 #include <xen/hypervisor.h>
152 #include <machine/xen/hypercall.h>
153 #include <machine/xen/xenvar.h>
154 #include <machine/xen/xenfunc.h>
155
156 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157 #define CPU_ENABLE_SSE
158 #endif
159
160 #ifndef PMAP_SHPGPERPROC
161 #define PMAP_SHPGPERPROC 200
162 #endif
163
164 #define DIAGNOSTIC
165
166 #if !defined(DIAGNOSTIC)
167 #ifdef __GNUC_GNU_INLINE__
168 #define PMAP_INLINE __attribute__((__gnu_inline__)) inline
169 #else
170 #define PMAP_INLINE extern inline
171 #endif
172 #else
173 #define PMAP_INLINE
174 #endif
175
176 #ifdef PV_STATS
177 #define PV_STAT(x) do { x ; } while (0)
178 #else
179 #define PV_STAT(x) do { } while (0)
180 #endif
181
182 /*
183 * Get PDEs and PTEs for user/kernel address space
184 */
185 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
186 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
187
188 #define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
189 #define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
190 #define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
191 #define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
192 #define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
193
194 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
195
196 #define HAMFISTED_LOCKING
197 #ifdef HAMFISTED_LOCKING
198 static struct mtx createdelete_lock;
199 #endif
200
201 struct pmap kernel_pmap_store;
202 LIST_HEAD(pmaplist, pmap);
203 static struct pmaplist allpmaps;
204 static struct mtx allpmaps_lock;
205
206 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
207 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
208 int pgeflag = 0; /* PG_G or-in */
209 int pseflag = 0; /* PG_PS or-in */
210
211 int nkpt;
212 vm_offset_t kernel_vm_end;
213 extern u_int32_t KERNend;
214
215 #ifdef PAE
216 pt_entry_t pg_nx;
217 #endif
218
219 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
220
221 static int pat_works; /* Is page attribute table sane? */
222
223 /*
224 * This lock is defined as static in other pmap implementations. It cannot,
225 * however, be defined as static here, because it is (ab)used to serialize
226 * queued page table changes in other sources files.
227 */
228 struct rwlock pvh_global_lock;
229
230 /*
231 * Data for the pv entry allocation mechanism
232 */
233 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
234 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
235 static int shpgperproc = PMAP_SHPGPERPROC;
236
237 struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
238 int pv_maxchunks; /* How many chunks we have KVA for */
239 vm_offset_t pv_vafree; /* freelist stored in the PTE */
240
241 /*
242 * All those kernel PT submaps that BSD is so fond of
243 */
244 struct sysmaps {
245 struct mtx lock;
246 pt_entry_t *CMAP1;
247 pt_entry_t *CMAP2;
248 caddr_t CADDR1;
249 caddr_t CADDR2;
250 };
251 static struct sysmaps sysmaps_pcpu[MAXCPU];
252 pt_entry_t *CMAP3;
253 caddr_t ptvmmap = 0;
254 caddr_t CADDR3;
255 struct msgbuf *msgbufp = 0;
256
257 /*
258 * Crashdump maps.
259 */
260 static caddr_t crashdumpmap;
261
262 static pt_entry_t *PMAP1 = 0, *PMAP2;
263 static pt_entry_t *PADDR1 = 0, *PADDR2;
264 #ifdef SMP
265 static int PMAP1cpu;
266 static int PMAP1changedcpu;
267 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268 &PMAP1changedcpu, 0,
269 "Number of times pmap_pte_quick changed CPU with same PMAP1");
270 #endif
271 static int PMAP1changed;
272 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273 &PMAP1changed, 0,
274 "Number of times pmap_pte_quick changed PMAP1");
275 static int PMAP1unchanged;
276 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277 &PMAP1unchanged, 0,
278 "Number of times pmap_pte_quick didn't change PMAP1");
279 static struct mtx PMAP2mutex;
280
281 static void free_pv_chunk(struct pv_chunk *pc);
282 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
283 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
284 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
285 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
286 vm_offset_t va);
287
288 static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
289 vm_page_t m, vm_prot_t prot, vm_page_t mpte);
290 static void pmap_flush_page(vm_page_t m);
291 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
292 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
293 vm_page_t *free);
294 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
295 vm_page_t *free);
296 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
297 vm_offset_t va);
298 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
299 vm_page_t m);
300
301 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
302
303 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
304 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
305 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
306 static void pmap_pte_release(pt_entry_t *pte);
307 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
308 static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
309
310 static __inline void pagezero(void *page);
311
312 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
313 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
314
315 /*
316 * If you get an error here, then you set KVA_PAGES wrong! See the
317 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
318 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
319 */
320 CTASSERT(KERNBASE % (1 << 24) == 0);
321
322 void
323 pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
324 {
325 vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
326
327 switch (type) {
328 case SH_PD_SET_VA:
329 #if 0
330 xen_queue_pt_update(shadow_pdir_ma,
331 xpmap_ptom(val & ~(PG_RW)));
332 #endif
333 xen_queue_pt_update(pdir_ma,
334 xpmap_ptom(val));
335 break;
336 case SH_PD_SET_VA_MA:
337 #if 0
338 xen_queue_pt_update(shadow_pdir_ma,
339 val & ~(PG_RW));
340 #endif
341 xen_queue_pt_update(pdir_ma, val);
342 break;
343 case SH_PD_SET_VA_CLEAR:
344 #if 0
345 xen_queue_pt_update(shadow_pdir_ma, 0);
346 #endif
347 xen_queue_pt_update(pdir_ma, 0);
348 break;
349 }
350 }
351
352 /*
353 * Bootstrap the system enough to run with virtual memory.
354 *
355 * On the i386 this is called after mapping has already been enabled
356 * and just syncs the pmap module with what has already been done.
357 * [We can't call it easily with mapping off since the kernel is not
358 * mapped with PA == VA, hence we would have to relocate every address
359 * from the linked base (virtual) address "KERNBASE" to the actual
360 * (physical) address starting relative to 0]
361 */
362 void
363 pmap_bootstrap(vm_paddr_t firstaddr)
364 {
365 vm_offset_t va;
366 pt_entry_t *pte, *unused;
367 struct sysmaps *sysmaps;
368 int i;
369
370 /*
371 * Initialize the first available kernel virtual address. However,
372 * using "firstaddr" may waste a few pages of the kernel virtual
373 * address space, because locore may not have mapped every physical
374 * page that it allocated. Preferably, locore would provide a first
375 * unused virtual address in addition to "firstaddr".
376 */
377 virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
378
379 virtual_end = VM_MAX_KERNEL_ADDRESS;
380
381 /*
382 * Initialize the kernel pmap (which is statically allocated).
383 */
384 PMAP_LOCK_INIT(kernel_pmap);
385 kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
386 #ifdef PAE
387 kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
388 #endif
389 CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
390 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
391
392 /*
393 * Initialize the global pv list lock.
394 */
395 rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
396
397 LIST_INIT(&allpmaps);
398 mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
399 mtx_lock_spin(&allpmaps_lock);
400 LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
401 mtx_unlock_spin(&allpmaps_lock);
402 if (nkpt == 0)
403 nkpt = NKPT;
404
405 /*
406 * Reserve some special page table entries/VA space for temporary
407 * mapping of pages.
408 */
409 #define SYSMAP(c, p, v, n) \
410 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
411
412 va = virtual_avail;
413 pte = vtopte(va);
414
415 /*
416 * CMAP1/CMAP2 are used for zeroing and copying pages.
417 * CMAP3 is used for the idle process page zeroing.
418 */
419 for (i = 0; i < MAXCPU; i++) {
420 sysmaps = &sysmaps_pcpu[i];
421 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
422 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
423 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
424 PT_SET_MA(sysmaps->CADDR1, 0);
425 PT_SET_MA(sysmaps->CADDR2, 0);
426 }
427 SYSMAP(caddr_t, CMAP3, CADDR3, 1)
428 PT_SET_MA(CADDR3, 0);
429
430 /*
431 * Crashdump maps.
432 */
433 SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
434
435 /*
436 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
437 */
438 SYSMAP(caddr_t, unused, ptvmmap, 1)
439
440 /*
441 * msgbufp is used to map the system message buffer.
442 */
443 SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
444
445 /*
446 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
447 * respectively.
448 */
449 SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
450 SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
451
452 mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
453
454 virtual_avail = va;
455
456 /*
457 * Leave in place an identity mapping (virt == phys) for the low 1 MB
458 * physical memory region that is used by the ACPI wakeup code. This
459 * mapping must not have PG_G set.
460 */
461 #ifndef XEN
462 /*
463 * leave here deliberately to show that this is not supported
464 */
465 #ifdef XBOX
466 /* FIXME: This is gross, but needed for the XBOX. Since we are in such
467 * an early stadium, we cannot yet neatly map video memory ... :-(
468 * Better fixes are very welcome! */
469 if (!arch_i386_is_xbox)
470 #endif
471 for (i = 1; i < NKPT; i++)
472 PTD[i] = 0;
473
474 /* Initialize the PAT MSR if present. */
475 pmap_init_pat();
476
477 /* Turn on PG_G on kernel page(s) */
478 pmap_set_pg();
479 #endif
480
481 #ifdef HAMFISTED_LOCKING
482 mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
483 #endif
484 }
485
486 /*
487 * Setup the PAT MSR.
488 */
489 void
490 pmap_init_pat(void)
491 {
492 uint64_t pat_msr;
493
494 /* Bail if this CPU doesn't implement PAT. */
495 if (!(cpu_feature & CPUID_PAT))
496 return;
497
498 if (cpu_vendor_id != CPU_VENDOR_INTEL ||
499 (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
500 /*
501 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
502 * Program 4 and 5 as WP and WC.
503 * Leave 6 and 7 as UC and UC-.
504 */
505 pat_msr = rdmsr(MSR_PAT);
506 pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
507 pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
508 PAT_VALUE(5, PAT_WRITE_COMBINING);
509 pat_works = 1;
510 } else {
511 /*
512 * Due to some Intel errata, we can only safely use the lower 4
513 * PAT entries. Thus, just replace PAT Index 2 with WC instead
514 * of UC-.
515 *
516 * Intel Pentium III Processor Specification Update
517 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
518 * or Mode C Paging)
519 *
520 * Intel Pentium IV Processor Specification Update
521 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
522 */
523 pat_msr = rdmsr(MSR_PAT);
524 pat_msr &= ~PAT_MASK(2);
525 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
526 pat_works = 0;
527 }
528 wrmsr(MSR_PAT, pat_msr);
529 }
530
531 /*
532 * Initialize a vm_page's machine-dependent fields.
533 */
534 void
535 pmap_page_init(vm_page_t m)
536 {
537
538 TAILQ_INIT(&m->md.pv_list);
539 m->md.pat_mode = PAT_WRITE_BACK;
540 }
541
542 /*
543 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
544 * Requirements:
545 * - Must deal with pages in order to ensure that none of the PG_* bits
546 * are ever set, PG_V in particular.
547 * - Assumes we can write to ptes without pte_store() atomic ops, even
548 * on PAE systems. This should be ok.
549 * - Assumes nothing will ever test these addresses for 0 to indicate
550 * no mapping instead of correctly checking PG_V.
551 * - Assumes a vm_offset_t will fit in a pte (true for i386).
552 * Because PG_V is never set, there can be no mappings to invalidate.
553 */
554 static int ptelist_count = 0;
555 static vm_offset_t
556 pmap_ptelist_alloc(vm_offset_t *head)
557 {
558 vm_offset_t va;
559 vm_offset_t *phead = (vm_offset_t *)*head;
560
561 if (ptelist_count == 0) {
562 printf("out of memory!!!!!!\n");
563 return (0); /* Out of memory */
564 }
565 ptelist_count--;
566 va = phead[ptelist_count];
567 return (va);
568 }
569
570 static void
571 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
572 {
573 vm_offset_t *phead = (vm_offset_t *)*head;
574
575 phead[ptelist_count++] = va;
576 }
577
578 static void
579 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
580 {
581 int i, nstackpages;
582 vm_offset_t va;
583 vm_page_t m;
584
585 nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
586 for (i = 0; i < nstackpages; i++) {
587 va = (vm_offset_t)base + i * PAGE_SIZE;
588 m = vm_page_alloc(NULL, i,
589 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
590 VM_ALLOC_ZERO);
591 pmap_qenter(va, &m, 1);
592 }
593
594 *head = (vm_offset_t)base;
595 for (i = npages - 1; i >= nstackpages; i--) {
596 va = (vm_offset_t)base + i * PAGE_SIZE;
597 pmap_ptelist_free(head, va);
598 }
599 }
600
601
602 /*
603 * Initialize the pmap module.
604 * Called by vm_init, to initialize any structures that the pmap
605 * system needs to map virtual memory.
606 */
607 void
608 pmap_init(void)
609 {
610
611 /*
612 * Initialize the address space (zone) for the pv entries. Set a
613 * high water mark so that the system can recover from excessive
614 * numbers of pv entries.
615 */
616 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
617 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
618 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
619 pv_entry_max = roundup(pv_entry_max, _NPCPV);
620 pv_entry_high_water = 9 * (pv_entry_max / 10);
621
622 pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
623 pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
624 if (pv_chunkbase == NULL)
625 panic("pmap_init: not enough kvm for pv chunks");
626 pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
627 }
628
629
630 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
631 "Max number of PV entries");
632 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
633 "Page share factor per proc");
634
635 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
636 "2/4MB page mapping counters");
637
638 static u_long pmap_pde_mappings;
639 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
640 &pmap_pde_mappings, 0, "2/4MB page mappings");
641
642 /***************************************************
643 * Low level helper routines.....
644 ***************************************************/
645
646 /*
647 * Determine the appropriate bits to set in a PTE or PDE for a specified
648 * caching mode.
649 */
650 int
651 pmap_cache_bits(int mode, boolean_t is_pde)
652 {
653 int pat_flag, pat_index, cache_bits;
654
655 /* The PAT bit is different for PTE's and PDE's. */
656 pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
657
658 /* If we don't support PAT, map extended modes to older ones. */
659 if (!(cpu_feature & CPUID_PAT)) {
660 switch (mode) {
661 case PAT_UNCACHEABLE:
662 case PAT_WRITE_THROUGH:
663 case PAT_WRITE_BACK:
664 break;
665 case PAT_UNCACHED:
666 case PAT_WRITE_COMBINING:
667 case PAT_WRITE_PROTECTED:
668 mode = PAT_UNCACHEABLE;
669 break;
670 }
671 }
672
673 /* Map the caching mode to a PAT index. */
674 if (pat_works) {
675 switch (mode) {
676 case PAT_UNCACHEABLE:
677 pat_index = 3;
678 break;
679 case PAT_WRITE_THROUGH:
680 pat_index = 1;
681 break;
682 case PAT_WRITE_BACK:
683 pat_index = 0;
684 break;
685 case PAT_UNCACHED:
686 pat_index = 2;
687 break;
688 case PAT_WRITE_COMBINING:
689 pat_index = 5;
690 break;
691 case PAT_WRITE_PROTECTED:
692 pat_index = 4;
693 break;
694 default:
695 panic("Unknown caching mode %d\n", mode);
696 }
697 } else {
698 switch (mode) {
699 case PAT_UNCACHED:
700 case PAT_UNCACHEABLE:
701 case PAT_WRITE_PROTECTED:
702 pat_index = 3;
703 break;
704 case PAT_WRITE_THROUGH:
705 pat_index = 1;
706 break;
707 case PAT_WRITE_BACK:
708 pat_index = 0;
709 break;
710 case PAT_WRITE_COMBINING:
711 pat_index = 2;
712 break;
713 default:
714 panic("Unknown caching mode %d\n", mode);
715 }
716 }
717
718 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
719 cache_bits = 0;
720 if (pat_index & 0x4)
721 cache_bits |= pat_flag;
722 if (pat_index & 0x2)
723 cache_bits |= PG_NC_PCD;
724 if (pat_index & 0x1)
725 cache_bits |= PG_NC_PWT;
726 return (cache_bits);
727 }
728 #ifdef SMP
729 /*
730 * For SMP, these functions have to use the IPI mechanism for coherence.
731 *
732 * N.B.: Before calling any of the following TLB invalidation functions,
733 * the calling processor must ensure that all stores updating a non-
734 * kernel page table are globally performed. Otherwise, another
735 * processor could cache an old, pre-update entry without being
736 * invalidated. This can happen one of two ways: (1) The pmap becomes
737 * active on another processor after its pm_active field is checked by
738 * one of the following functions but before a store updating the page
739 * table is globally performed. (2) The pmap becomes active on another
740 * processor before its pm_active field is checked but due to
741 * speculative loads one of the following functions stills reads the
742 * pmap as inactive on the other processor.
743 *
744 * The kernel page table is exempt because its pm_active field is
745 * immutable. The kernel page table is always active on every
746 * processor.
747 */
748 void
749 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
750 {
751 cpuset_t other_cpus;
752 u_int cpuid;
753
754 CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
755 pmap, va);
756
757 sched_pin();
758 if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
759 invlpg(va);
760 smp_invlpg(va);
761 } else {
762 cpuid = PCPU_GET(cpuid);
763 other_cpus = all_cpus;
764 CPU_CLR(cpuid, &other_cpus);
765 if (CPU_ISSET(cpuid, &pmap->pm_active))
766 invlpg(va);
767 CPU_AND(&other_cpus, &pmap->pm_active);
768 if (!CPU_EMPTY(&other_cpus))
769 smp_masked_invlpg(other_cpus, va);
770 }
771 sched_unpin();
772 PT_UPDATES_FLUSH();
773 }
774
775 void
776 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
777 {
778 cpuset_t other_cpus;
779 vm_offset_t addr;
780 u_int cpuid;
781
782 CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
783 pmap, sva, eva);
784
785 sched_pin();
786 if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
787 for (addr = sva; addr < eva; addr += PAGE_SIZE)
788 invlpg(addr);
789 smp_invlpg_range(sva, eva);
790 } else {
791 cpuid = PCPU_GET(cpuid);
792 other_cpus = all_cpus;
793 CPU_CLR(cpuid, &other_cpus);
794 if (CPU_ISSET(cpuid, &pmap->pm_active))
795 for (addr = sva; addr < eva; addr += PAGE_SIZE)
796 invlpg(addr);
797 CPU_AND(&other_cpus, &pmap->pm_active);
798 if (!CPU_EMPTY(&other_cpus))
799 smp_masked_invlpg_range(other_cpus, sva, eva);
800 }
801 sched_unpin();
802 PT_UPDATES_FLUSH();
803 }
804
805 void
806 pmap_invalidate_all(pmap_t pmap)
807 {
808 cpuset_t other_cpus;
809 u_int cpuid;
810
811 CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
812
813 sched_pin();
814 if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
815 invltlb();
816 smp_invltlb();
817 } else {
818 cpuid = PCPU_GET(cpuid);
819 other_cpus = all_cpus;
820 CPU_CLR(cpuid, &other_cpus);
821 if (CPU_ISSET(cpuid, &pmap->pm_active))
822 invltlb();
823 CPU_AND(&other_cpus, &pmap->pm_active);
824 if (!CPU_EMPTY(&other_cpus))
825 smp_masked_invltlb(other_cpus);
826 }
827 sched_unpin();
828 }
829
830 void
831 pmap_invalidate_cache(void)
832 {
833
834 sched_pin();
835 wbinvd();
836 smp_cache_flush();
837 sched_unpin();
838 }
839 #else /* !SMP */
840 /*
841 * Normal, non-SMP, 486+ invalidation functions.
842 * We inline these within pmap.c for speed.
843 */
844 PMAP_INLINE void
845 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
846 {
847 CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
848 pmap, va);
849
850 if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
851 invlpg(va);
852 PT_UPDATES_FLUSH();
853 }
854
855 PMAP_INLINE void
856 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
857 {
858 vm_offset_t addr;
859
860 if (eva - sva > PAGE_SIZE)
861 CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
862 pmap, sva, eva);
863
864 if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
865 for (addr = sva; addr < eva; addr += PAGE_SIZE)
866 invlpg(addr);
867 PT_UPDATES_FLUSH();
868 }
869
870 PMAP_INLINE void
871 pmap_invalidate_all(pmap_t pmap)
872 {
873
874 CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
875
876 if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
877 invltlb();
878 }
879
880 PMAP_INLINE void
881 pmap_invalidate_cache(void)
882 {
883
884 wbinvd();
885 }
886 #endif /* !SMP */
887
888 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
889
890 void
891 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
892 {
893
894 KASSERT((sva & PAGE_MASK) == 0,
895 ("pmap_invalidate_cache_range: sva not page-aligned"));
896 KASSERT((eva & PAGE_MASK) == 0,
897 ("pmap_invalidate_cache_range: eva not page-aligned"));
898
899 if (cpu_feature & CPUID_SS)
900 ; /* If "Self Snoop" is supported, do nothing. */
901 else if ((cpu_feature & CPUID_CLFSH) != 0 &&
902 eva - sva < PMAP_CLFLUSH_THRESHOLD) {
903
904 /*
905 * Otherwise, do per-cache line flush. Use the mfence
906 * instruction to insure that previous stores are
907 * included in the write-back. The processor
908 * propagates flush to other processors in the cache
909 * coherence domain.
910 */
911 mfence();
912 for (; sva < eva; sva += cpu_clflush_line_size)
913 clflush(sva);
914 mfence();
915 } else {
916
917 /*
918 * No targeted cache flush methods are supported by CPU,
919 * or the supplied range is bigger than 2MB.
920 * Globally invalidate cache.
921 */
922 pmap_invalidate_cache();
923 }
924 }
925
926 void
927 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
928 {
929 int i;
930
931 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
932 (cpu_feature & CPUID_CLFSH) == 0) {
933 pmap_invalidate_cache();
934 } else {
935 for (i = 0; i < count; i++)
936 pmap_flush_page(pages[i]);
937 }
938 }
939
940 /*
941 * Are we current address space or kernel? N.B. We return FALSE when
942 * a pmap's page table is in use because a kernel thread is borrowing
943 * it. The borrowed page table can change spontaneously, making any
944 * dependence on its continued use subject to a race condition.
945 */
946 static __inline int
947 pmap_is_current(pmap_t pmap)
948 {
949
950 return (pmap == kernel_pmap ||
951 (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
952 (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
953 }
954
955 /*
956 * If the given pmap is not the current or kernel pmap, the returned pte must
957 * be released by passing it to pmap_pte_release().
958 */
959 pt_entry_t *
960 pmap_pte(pmap_t pmap, vm_offset_t va)
961 {
962 pd_entry_t newpf;
963 pd_entry_t *pde;
964
965 pde = pmap_pde(pmap, va);
966 if (*pde & PG_PS)
967 return (pde);
968 if (*pde != 0) {
969 /* are we current address space or kernel? */
970 if (pmap_is_current(pmap))
971 return (vtopte(va));
972 mtx_lock(&PMAP2mutex);
973 newpf = *pde & PG_FRAME;
974 if ((*PMAP2 & PG_FRAME) != newpf) {
975 PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
976 CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
977 pmap, va, (*PMAP2 & 0xffffffff));
978 }
979 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
980 }
981 return (NULL);
982 }
983
984 /*
985 * Releases a pte that was obtained from pmap_pte(). Be prepared for the pte
986 * being NULL.
987 */
988 static __inline void
989 pmap_pte_release(pt_entry_t *pte)
990 {
991
992 if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
993 CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
994 *PMAP2);
995 rw_wlock(&pvh_global_lock);
996 PT_SET_VA(PMAP2, 0, TRUE);
997 rw_wunlock(&pvh_global_lock);
998 mtx_unlock(&PMAP2mutex);
999 }
1000 }
1001
1002 static __inline void
1003 invlcaddr(void *caddr)
1004 {
1005
1006 invlpg((u_int)caddr);
1007 PT_UPDATES_FLUSH();
1008 }
1009
1010 /*
1011 * Super fast pmap_pte routine best used when scanning
1012 * the pv lists. This eliminates many coarse-grained
1013 * invltlb calls. Note that many of the pv list
1014 * scans are across different pmaps. It is very wasteful
1015 * to do an entire invltlb for checking a single mapping.
1016 *
1017 * If the given pmap is not the current pmap, pvh_global_lock
1018 * must be held and curthread pinned to a CPU.
1019 */
1020 static pt_entry_t *
1021 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1022 {
1023 pd_entry_t newpf;
1024 pd_entry_t *pde;
1025
1026 pde = pmap_pde(pmap, va);
1027 if (*pde & PG_PS)
1028 return (pde);
1029 if (*pde != 0) {
1030 /* are we current address space or kernel? */
1031 if (pmap_is_current(pmap))
1032 return (vtopte(va));
1033 rw_assert(&pvh_global_lock, RA_WLOCKED);
1034 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1035 newpf = *pde & PG_FRAME;
1036 if ((*PMAP1 & PG_FRAME) != newpf) {
1037 PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1038 CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1039 pmap, va, (u_long)*PMAP1);
1040
1041 #ifdef SMP
1042 PMAP1cpu = PCPU_GET(cpuid);
1043 #endif
1044 PMAP1changed++;
1045 } else
1046 #ifdef SMP
1047 if (PMAP1cpu != PCPU_GET(cpuid)) {
1048 PMAP1cpu = PCPU_GET(cpuid);
1049 invlcaddr(PADDR1);
1050 PMAP1changedcpu++;
1051 } else
1052 #endif
1053 PMAP1unchanged++;
1054 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1055 }
1056 return (0);
1057 }
1058
1059 /*
1060 * Routine: pmap_extract
1061 * Function:
1062 * Extract the physical page address associated
1063 * with the given map/virtual_address pair.
1064 */
1065 vm_paddr_t
1066 pmap_extract(pmap_t pmap, vm_offset_t va)
1067 {
1068 vm_paddr_t rtval;
1069 pt_entry_t *pte;
1070 pd_entry_t pde;
1071 pt_entry_t pteval;
1072
1073 rtval = 0;
1074 PMAP_LOCK(pmap);
1075 pde = pmap->pm_pdir[va >> PDRSHIFT];
1076 if (pde != 0) {
1077 if ((pde & PG_PS) != 0) {
1078 rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1079 PMAP_UNLOCK(pmap);
1080 return rtval;
1081 }
1082 pte = pmap_pte(pmap, va);
1083 pteval = *pte ? xpmap_mtop(*pte) : 0;
1084 rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1085 pmap_pte_release(pte);
1086 }
1087 PMAP_UNLOCK(pmap);
1088 return (rtval);
1089 }
1090
1091 /*
1092 * Routine: pmap_extract_ma
1093 * Function:
1094 * Like pmap_extract, but returns machine address
1095 */
1096 vm_paddr_t
1097 pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1098 {
1099 vm_paddr_t rtval;
1100 pt_entry_t *pte;
1101 pd_entry_t pde;
1102
1103 rtval = 0;
1104 PMAP_LOCK(pmap);
1105 pde = pmap->pm_pdir[va >> PDRSHIFT];
1106 if (pde != 0) {
1107 if ((pde & PG_PS) != 0) {
1108 rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1109 PMAP_UNLOCK(pmap);
1110 return rtval;
1111 }
1112 pte = pmap_pte(pmap, va);
1113 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1114 pmap_pte_release(pte);
1115 }
1116 PMAP_UNLOCK(pmap);
1117 return (rtval);
1118 }
1119
1120 /*
1121 * Routine: pmap_extract_and_hold
1122 * Function:
1123 * Atomically extract and hold the physical page
1124 * with the given pmap and virtual address pair
1125 * if that mapping permits the given protection.
1126 */
1127 vm_page_t
1128 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1129 {
1130 pd_entry_t pde;
1131 pt_entry_t pte, *ptep;
1132 vm_page_t m;
1133 vm_paddr_t pa;
1134
1135 pa = 0;
1136 m = NULL;
1137 PMAP_LOCK(pmap);
1138 retry:
1139 pde = PT_GET(pmap_pde(pmap, va));
1140 if (pde != 0) {
1141 if (pde & PG_PS) {
1142 if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1143 if (vm_page_pa_tryrelock(pmap, (pde &
1144 PG_PS_FRAME) | (va & PDRMASK), &pa))
1145 goto retry;
1146 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1147 (va & PDRMASK));
1148 vm_page_hold(m);
1149 }
1150 } else {
1151 ptep = pmap_pte(pmap, va);
1152 pte = PT_GET(ptep);
1153 pmap_pte_release(ptep);
1154 if (pte != 0 &&
1155 ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1156 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1157 &pa))
1158 goto retry;
1159 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1160 vm_page_hold(m);
1161 }
1162 }
1163 }
1164 PA_UNLOCK_COND(pa);
1165 PMAP_UNLOCK(pmap);
1166 return (m);
1167 }
1168
1169 /***************************************************
1170 * Low level mapping routines.....
1171 ***************************************************/
1172
1173 /*
1174 * Add a wired page to the kva.
1175 * Note: not SMP coherent.
1176 *
1177 * This function may be used before pmap_bootstrap() is called.
1178 */
1179 void
1180 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1181 {
1182
1183 PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1184 }
1185
1186 void
1187 pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1188 {
1189 pt_entry_t *pte;
1190
1191 pte = vtopte(va);
1192 pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1193 }
1194
1195 static __inline void
1196 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1197 {
1198
1199 PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1200 }
1201
1202 /*
1203 * Remove a page from the kernel pagetables.
1204 * Note: not SMP coherent.
1205 *
1206 * This function may be used before pmap_bootstrap() is called.
1207 */
1208 PMAP_INLINE void
1209 pmap_kremove(vm_offset_t va)
1210 {
1211 pt_entry_t *pte;
1212
1213 pte = vtopte(va);
1214 PT_CLEAR_VA(pte, FALSE);
1215 }
1216
1217 /*
1218 * Used to map a range of physical addresses into kernel
1219 * virtual address space.
1220 *
1221 * The value passed in '*virt' is a suggested virtual address for
1222 * the mapping. Architectures which can support a direct-mapped
1223 * physical to virtual region can return the appropriate address
1224 * within that region, leaving '*virt' unchanged. Other
1225 * architectures should map the pages starting at '*virt' and
1226 * update '*virt' with the first usable address after the mapped
1227 * region.
1228 */
1229 vm_offset_t
1230 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1231 {
1232 vm_offset_t va, sva;
1233
1234 va = sva = *virt;
1235 CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1236 va, start, end, prot);
1237 while (start < end) {
1238 pmap_kenter(va, start);
1239 va += PAGE_SIZE;
1240 start += PAGE_SIZE;
1241 }
1242 pmap_invalidate_range(kernel_pmap, sva, va);
1243 *virt = va;
1244 return (sva);
1245 }
1246
1247
1248 /*
1249 * Add a list of wired pages to the kva
1250 * this routine is only used for temporary
1251 * kernel mappings that do not need to have
1252 * page modification or references recorded.
1253 * Note that old mappings are simply written
1254 * over. The page *must* be wired.
1255 * Note: SMP coherent. Uses a ranged shootdown IPI.
1256 */
1257 void
1258 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1259 {
1260 pt_entry_t *endpte, *pte;
1261 vm_paddr_t pa;
1262 vm_offset_t va = sva;
1263 int mclcount = 0;
1264 multicall_entry_t mcl[16];
1265 multicall_entry_t *mclp = mcl;
1266 int error;
1267
1268 CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1269 pte = vtopte(sva);
1270 endpte = pte + count;
1271 while (pte < endpte) {
1272 pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1273
1274 mclp->op = __HYPERVISOR_update_va_mapping;
1275 mclp->args[0] = va;
1276 mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1277 mclp->args[2] = (uint32_t)(pa >> 32);
1278 mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1279
1280 va += PAGE_SIZE;
1281 pte++;
1282 ma++;
1283 mclp++;
1284 mclcount++;
1285 if (mclcount == 16) {
1286 error = HYPERVISOR_multicall(mcl, mclcount);
1287 mclp = mcl;
1288 mclcount = 0;
1289 KASSERT(error == 0, ("bad multicall %d", error));
1290 }
1291 }
1292 if (mclcount) {
1293 error = HYPERVISOR_multicall(mcl, mclcount);
1294 KASSERT(error == 0, ("bad multicall %d", error));
1295 }
1296
1297 #ifdef INVARIANTS
1298 for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1299 KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1300 #endif
1301 }
1302
1303 /*
1304 * This routine tears out page mappings from the
1305 * kernel -- it is meant only for temporary mappings.
1306 * Note: SMP coherent. Uses a ranged shootdown IPI.
1307 */
1308 void
1309 pmap_qremove(vm_offset_t sva, int count)
1310 {
1311 vm_offset_t va;
1312
1313 CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1314 va = sva;
1315 rw_wlock(&pvh_global_lock);
1316 critical_enter();
1317 while (count-- > 0) {
1318 pmap_kremove(va);
1319 va += PAGE_SIZE;
1320 }
1321 PT_UPDATES_FLUSH();
1322 pmap_invalidate_range(kernel_pmap, sva, va);
1323 critical_exit();
1324 rw_wunlock(&pvh_global_lock);
1325 }
1326
1327 /***************************************************
1328 * Page table page management routines.....
1329 ***************************************************/
1330 static __inline void
1331 pmap_free_zero_pages(vm_page_t free)
1332 {
1333 vm_page_t m;
1334
1335 while (free != NULL) {
1336 m = free;
1337 free = (void *)m->object;
1338 m->object = NULL;
1339 vm_page_free_zero(m);
1340 }
1341 }
1342
1343 /*
1344 * Decrements a page table page's wire count, which is used to record the
1345 * number of valid page table entries within the page. If the wire count
1346 * drops to zero, then the page table page is unmapped. Returns TRUE if the
1347 * page table page was unmapped and FALSE otherwise.
1348 */
1349 static inline boolean_t
1350 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1351 {
1352
1353 --m->wire_count;
1354 if (m->wire_count == 0) {
1355 _pmap_unwire_ptp(pmap, m, free);
1356 return (TRUE);
1357 } else
1358 return (FALSE);
1359 }
1360
1361 static void
1362 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1363 {
1364 vm_offset_t pteva;
1365
1366 PT_UPDATES_FLUSH();
1367 /*
1368 * unmap the page table page
1369 */
1370 xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1371 /*
1372 * page *might* contain residual mapping :-/
1373 */
1374 PD_CLEAR_VA(pmap, m->pindex, TRUE);
1375 pmap_zero_page(m);
1376 --pmap->pm_stats.resident_count;
1377
1378 /*
1379 * This is a release store so that the ordinary store unmapping
1380 * the page table page is globally performed before TLB shoot-
1381 * down is begun.
1382 */
1383 atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1384
1385 /*
1386 * Do an invltlb to make the invalidated mapping
1387 * take effect immediately.
1388 */
1389 pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1390 pmap_invalidate_page(pmap, pteva);
1391
1392 /*
1393 * Put page on a list so that it is released after
1394 * *ALL* TLB shootdown is done
1395 */
1396 m->object = (void *)*free;
1397 *free = m;
1398 }
1399
1400 /*
1401 * After removing a page table entry, this routine is used to
1402 * conditionally free the page, and manage the hold/wire counts.
1403 */
1404 static int
1405 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1406 {
1407 pd_entry_t ptepde;
1408 vm_page_t mpte;
1409
1410 if (va >= VM_MAXUSER_ADDRESS)
1411 return (0);
1412 ptepde = PT_GET(pmap_pde(pmap, va));
1413 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1414 return (pmap_unwire_ptp(pmap, mpte, free));
1415 }
1416
1417 /*
1418 * Initialize the pmap for the swapper process.
1419 */
1420 void
1421 pmap_pinit0(pmap_t pmap)
1422 {
1423
1424 PMAP_LOCK_INIT(pmap);
1425 /*
1426 * Since the page table directory is shared with the kernel pmap,
1427 * which is already included in the list "allpmaps", this pmap does
1428 * not need to be inserted into that list.
1429 */
1430 pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1431 #ifdef PAE
1432 pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1433 #endif
1434 CPU_ZERO(&pmap->pm_active);
1435 PCPU_SET(curpmap, pmap);
1436 TAILQ_INIT(&pmap->pm_pvchunk);
1437 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1438 }
1439
1440 /*
1441 * Initialize a preallocated and zeroed pmap structure,
1442 * such as one in a vmspace structure.
1443 */
1444 int
1445 pmap_pinit(pmap_t pmap)
1446 {
1447 vm_page_t m, ptdpg[NPGPTD + 1];
1448 int npgptd = NPGPTD + 1;
1449 int i;
1450
1451 #ifdef HAMFISTED_LOCKING
1452 mtx_lock(&createdelete_lock);
1453 #endif
1454
1455 /*
1456 * No need to allocate page table space yet but we do need a valid
1457 * page directory table.
1458 */
1459 if (pmap->pm_pdir == NULL) {
1460 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1461 if (pmap->pm_pdir == NULL) {
1462 #ifdef HAMFISTED_LOCKING
1463 mtx_unlock(&createdelete_lock);
1464 #endif
1465 return (0);
1466 }
1467 #ifdef PAE
1468 pmap->pm_pdpt = (pd_entry_t *)kva_alloc(1);
1469 #endif
1470 }
1471
1472 /*
1473 * allocate the page directory page(s)
1474 */
1475 for (i = 0; i < npgptd;) {
1476 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1477 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1478 if (m == NULL)
1479 VM_WAIT;
1480 else {
1481 ptdpg[i++] = m;
1482 }
1483 }
1484
1485 pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1486
1487 for (i = 0; i < NPGPTD; i++)
1488 if ((ptdpg[i]->flags & PG_ZERO) == 0)
1489 pagezero(pmap->pm_pdir + (i * NPDEPG));
1490
1491 mtx_lock_spin(&allpmaps_lock);
1492 LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1493 /* Copy the kernel page table directory entries. */
1494 bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1495 mtx_unlock_spin(&allpmaps_lock);
1496
1497 #ifdef PAE
1498 pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1499 if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1500 bzero(pmap->pm_pdpt, PAGE_SIZE);
1501 for (i = 0; i < NPGPTD; i++) {
1502 vm_paddr_t ma;
1503
1504 ma = VM_PAGE_TO_MACH(ptdpg[i]);
1505 pmap->pm_pdpt[i] = ma | PG_V;
1506
1507 }
1508 #endif
1509 for (i = 0; i < NPGPTD; i++) {
1510 pt_entry_t *pd;
1511 vm_paddr_t ma;
1512
1513 ma = VM_PAGE_TO_MACH(ptdpg[i]);
1514 pd = pmap->pm_pdir + (i * NPDEPG);
1515 PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1516 #if 0
1517 xen_pgd_pin(ma);
1518 #endif
1519 }
1520
1521 #ifdef PAE
1522 PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1523 #endif
1524 rw_wlock(&pvh_global_lock);
1525 xen_flush_queue();
1526 xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1527 for (i = 0; i < NPGPTD; i++) {
1528 vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1529 PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1530 }
1531 xen_flush_queue();
1532 rw_wunlock(&pvh_global_lock);
1533 CPU_ZERO(&pmap->pm_active);
1534 TAILQ_INIT(&pmap->pm_pvchunk);
1535 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1536
1537 #ifdef HAMFISTED_LOCKING
1538 mtx_unlock(&createdelete_lock);
1539 #endif
1540 return (1);
1541 }
1542
1543 /*
1544 * this routine is called if the page table page is not
1545 * mapped correctly.
1546 */
1547 static vm_page_t
1548 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1549 {
1550 vm_paddr_t ptema;
1551 vm_page_t m;
1552
1553 /*
1554 * Allocate a page table page.
1555 */
1556 if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1557 VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1558 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1559 PMAP_UNLOCK(pmap);
1560 rw_wunlock(&pvh_global_lock);
1561 VM_WAIT;
1562 rw_wlock(&pvh_global_lock);
1563 PMAP_LOCK(pmap);
1564 }
1565
1566 /*
1567 * Indicate the need to retry. While waiting, the page table
1568 * page may have been allocated.
1569 */
1570 return (NULL);
1571 }
1572 if ((m->flags & PG_ZERO) == 0)
1573 pmap_zero_page(m);
1574
1575 /*
1576 * Map the pagetable page into the process address space, if
1577 * it isn't already there.
1578 */
1579
1580 pmap->pm_stats.resident_count++;
1581
1582 ptema = VM_PAGE_TO_MACH(m);
1583 xen_pt_pin(ptema);
1584 PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1585 (ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1586
1587 KASSERT(pmap->pm_pdir[ptepindex],
1588 ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1589 return (m);
1590 }
1591
1592 static vm_page_t
1593 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1594 {
1595 u_int ptepindex;
1596 pd_entry_t ptema;
1597 vm_page_t m;
1598
1599 /*
1600 * Calculate pagetable page index
1601 */
1602 ptepindex = va >> PDRSHIFT;
1603 retry:
1604 /*
1605 * Get the page directory entry
1606 */
1607 ptema = pmap->pm_pdir[ptepindex];
1608
1609 /*
1610 * This supports switching from a 4MB page to a
1611 * normal 4K page.
1612 */
1613 if (ptema & PG_PS) {
1614 /*
1615 * XXX
1616 */
1617 pmap->pm_pdir[ptepindex] = 0;
1618 ptema = 0;
1619 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1620 pmap_invalidate_all(kernel_pmap);
1621 }
1622
1623 /*
1624 * If the page table page is mapped, we just increment the
1625 * hold count, and activate it.
1626 */
1627 if (ptema & PG_V) {
1628 m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1629 m->wire_count++;
1630 } else {
1631 /*
1632 * Here if the pte page isn't mapped, or if it has
1633 * been deallocated.
1634 */
1635 CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1636 pmap, va, flags);
1637 m = _pmap_allocpte(pmap, ptepindex, flags);
1638 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1639 goto retry;
1640
1641 KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1642 }
1643 return (m);
1644 }
1645
1646
1647 /***************************************************
1648 * Pmap allocation/deallocation routines.
1649 ***************************************************/
1650
1651 #ifdef SMP
1652 /*
1653 * Deal with a SMP shootdown of other users of the pmap that we are
1654 * trying to dispose of. This can be a bit hairy.
1655 */
1656 static cpuset_t *lazymask;
1657 static u_int lazyptd;
1658 static volatile u_int lazywait;
1659
1660 void pmap_lazyfix_action(void);
1661
1662 void
1663 pmap_lazyfix_action(void)
1664 {
1665
1666 #ifdef COUNT_IPIS
1667 (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1668 #endif
1669 if (rcr3() == lazyptd)
1670 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1671 CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1672 atomic_store_rel_int(&lazywait, 1);
1673 }
1674
1675 static void
1676 pmap_lazyfix_self(u_int cpuid)
1677 {
1678
1679 if (rcr3() == lazyptd)
1680 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1681 CPU_CLR_ATOMIC(cpuid, lazymask);
1682 }
1683
1684
1685 static void
1686 pmap_lazyfix(pmap_t pmap)
1687 {
1688 cpuset_t mymask, mask;
1689 u_int cpuid, spins;
1690 int lsb;
1691
1692 mask = pmap->pm_active;
1693 while (!CPU_EMPTY(&mask)) {
1694 spins = 50000000;
1695
1696 /* Find least significant set bit. */
1697 lsb = CPU_FFS(&mask);
1698 MPASS(lsb != 0);
1699 lsb--;
1700 CPU_SETOF(lsb, &mask);
1701 mtx_lock_spin(&smp_ipi_mtx);
1702 #ifdef PAE
1703 lazyptd = vtophys(pmap->pm_pdpt);
1704 #else
1705 lazyptd = vtophys(pmap->pm_pdir);
1706 #endif
1707 cpuid = PCPU_GET(cpuid);
1708
1709 /* Use a cpuset just for having an easy check. */
1710 CPU_SETOF(cpuid, &mymask);
1711 if (!CPU_CMP(&mask, &mymask)) {
1712 lazymask = &pmap->pm_active;
1713 pmap_lazyfix_self(cpuid);
1714 } else {
1715 atomic_store_rel_int((u_int *)&lazymask,
1716 (u_int)&pmap->pm_active);
1717 atomic_store_rel_int(&lazywait, 0);
1718 ipi_selected(mask, IPI_LAZYPMAP);
1719 while (lazywait == 0) {
1720 ia32_pause();
1721 if (--spins == 0)
1722 break;
1723 }
1724 }
1725 mtx_unlock_spin(&smp_ipi_mtx);
1726 if (spins == 0)
1727 printf("pmap_lazyfix: spun for 50000000\n");
1728 mask = pmap->pm_active;
1729 }
1730 }
1731
1732 #else /* SMP */
1733
1734 /*
1735 * Cleaning up on uniprocessor is easy. For various reasons, we're
1736 * unlikely to have to even execute this code, including the fact
1737 * that the cleanup is deferred until the parent does a wait(2), which
1738 * means that another userland process has run.
1739 */
1740 static void
1741 pmap_lazyfix(pmap_t pmap)
1742 {
1743 u_int cr3;
1744
1745 cr3 = vtophys(pmap->pm_pdir);
1746 if (cr3 == rcr3()) {
1747 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1748 CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1749 }
1750 }
1751 #endif /* SMP */
1752
1753 /*
1754 * Release any resources held by the given physical map.
1755 * Called when a pmap initialized by pmap_pinit is being released.
1756 * Should only be called if the map contains no valid mappings.
1757 */
1758 void
1759 pmap_release(pmap_t pmap)
1760 {
1761 vm_page_t m, ptdpg[2*NPGPTD+1];
1762 vm_paddr_t ma;
1763 int i;
1764 #ifdef PAE
1765 int npgptd = NPGPTD + 1;
1766 #else
1767 int npgptd = NPGPTD;
1768 #endif
1769
1770 KASSERT(pmap->pm_stats.resident_count == 0,
1771 ("pmap_release: pmap resident count %ld != 0",
1772 pmap->pm_stats.resident_count));
1773 PT_UPDATES_FLUSH();
1774
1775 #ifdef HAMFISTED_LOCKING
1776 mtx_lock(&createdelete_lock);
1777 #endif
1778
1779 pmap_lazyfix(pmap);
1780 mtx_lock_spin(&allpmaps_lock);
1781 LIST_REMOVE(pmap, pm_list);
1782 mtx_unlock_spin(&allpmaps_lock);
1783
1784 for (i = 0; i < NPGPTD; i++)
1785 ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1786 pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1787 #ifdef PAE
1788 ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1789 #endif
1790
1791 for (i = 0; i < npgptd; i++) {
1792 m = ptdpg[i];
1793 ma = VM_PAGE_TO_MACH(m);
1794 /* unpinning L1 and L2 treated the same */
1795 #if 0
1796 xen_pgd_unpin(ma);
1797 #else
1798 if (i == NPGPTD)
1799 xen_pgd_unpin(ma);
1800 #endif
1801 #ifdef PAE
1802 if (i < NPGPTD)
1803 KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1804 ("pmap_release: got wrong ptd page"));
1805 #endif
1806 m->wire_count--;
1807 atomic_subtract_int(&cnt.v_wire_count, 1);
1808 vm_page_free(m);
1809 }
1810 #ifdef PAE
1811 pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1812 #endif
1813
1814 #ifdef HAMFISTED_LOCKING
1815 mtx_unlock(&createdelete_lock);
1816 #endif
1817 }
1818
1819 static int
1820 kvm_size(SYSCTL_HANDLER_ARGS)
1821 {
1822 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1823
1824 return (sysctl_handle_long(oidp, &ksize, 0, req));
1825 }
1826 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1827 0, 0, kvm_size, "IU", "Size of KVM");
1828
1829 static int
1830 kvm_free(SYSCTL_HANDLER_ARGS)
1831 {
1832 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1833
1834 return (sysctl_handle_long(oidp, &kfree, 0, req));
1835 }
1836 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1837 0, 0, kvm_free, "IU", "Amount of KVM free");
1838
1839 /*
1840 * grow the number of kernel page table entries, if needed
1841 */
1842 void
1843 pmap_growkernel(vm_offset_t addr)
1844 {
1845 struct pmap *pmap;
1846 vm_paddr_t ptppaddr;
1847 vm_page_t nkpg;
1848 pd_entry_t newpdir;
1849
1850 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1851 if (kernel_vm_end == 0) {
1852 kernel_vm_end = KERNBASE;
1853 nkpt = 0;
1854 while (pdir_pde(PTD, kernel_vm_end)) {
1855 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1856 nkpt++;
1857 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1858 kernel_vm_end = kernel_map->max_offset;
1859 break;
1860 }
1861 }
1862 }
1863 addr = roundup2(addr, NBPDR);
1864 if (addr - 1 >= kernel_map->max_offset)
1865 addr = kernel_map->max_offset;
1866 while (kernel_vm_end < addr) {
1867 if (pdir_pde(PTD, kernel_vm_end)) {
1868 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1869 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1870 kernel_vm_end = kernel_map->max_offset;
1871 break;
1872 }
1873 continue;
1874 }
1875
1876 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1877 VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1878 VM_ALLOC_ZERO);
1879 if (nkpg == NULL)
1880 panic("pmap_growkernel: no memory to grow kernel");
1881
1882 nkpt++;
1883
1884 if ((nkpg->flags & PG_ZERO) == 0)
1885 pmap_zero_page(nkpg);
1886 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1887 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1888 rw_wlock(&pvh_global_lock);
1889 PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1890 mtx_lock_spin(&allpmaps_lock);
1891 LIST_FOREACH(pmap, &allpmaps, pm_list)
1892 PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1893
1894 mtx_unlock_spin(&allpmaps_lock);
1895 rw_wunlock(&pvh_global_lock);
1896
1897 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1898 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1899 kernel_vm_end = kernel_map->max_offset;
1900 break;
1901 }
1902 }
1903 }
1904
1905
1906 /***************************************************
1907 * page management routines.
1908 ***************************************************/
1909
1910 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1911 CTASSERT(_NPCM == 11);
1912 CTASSERT(_NPCPV == 336);
1913
1914 static __inline struct pv_chunk *
1915 pv_to_chunk(pv_entry_t pv)
1916 {
1917
1918 return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1919 }
1920
1921 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1922
1923 #define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
1924 #define PC_FREE10 0x0000fffful /* Free values for index 10 */
1925
1926 static const uint32_t pc_freemask[_NPCM] = {
1927 PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1928 PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1929 PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1930 PC_FREE0_9, PC_FREE10
1931 };
1932
1933 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1934 "Current number of pv entries");
1935
1936 #ifdef PV_STATS
1937 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1938
1939 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1940 "Current number of pv entry chunks");
1941 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1942 "Current number of pv entry chunks allocated");
1943 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1944 "Current number of pv entry chunks frees");
1945 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1946 "Number of times tried to get a chunk page but failed.");
1947
1948 static long pv_entry_frees, pv_entry_allocs;
1949 static int pv_entry_spare;
1950
1951 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1952 "Current number of pv entry frees");
1953 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1954 "Current number of pv entry allocs");
1955 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1956 "Current number of spare pv entries");
1957 #endif
1958
1959 /*
1960 * We are in a serious low memory condition. Resort to
1961 * drastic measures to free some pages so we can allocate
1962 * another pv entry chunk.
1963 */
1964 static vm_page_t
1965 pmap_pv_reclaim(pmap_t locked_pmap)
1966 {
1967 struct pch newtail;
1968 struct pv_chunk *pc;
1969 pmap_t pmap;
1970 pt_entry_t *pte, tpte;
1971 pv_entry_t pv;
1972 vm_offset_t va;
1973 vm_page_t free, m, m_pc;
1974 uint32_t inuse;
1975 int bit, field, freed;
1976
1977 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1978 pmap = NULL;
1979 free = m_pc = NULL;
1980 TAILQ_INIT(&newtail);
1981 while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1982 free == NULL)) {
1983 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1984 if (pmap != pc->pc_pmap) {
1985 if (pmap != NULL) {
1986 pmap_invalidate_all(pmap);
1987 if (pmap != locked_pmap)
1988 PMAP_UNLOCK(pmap);
1989 }
1990 pmap = pc->pc_pmap;
1991 /* Avoid deadlock and lock recursion. */
1992 if (pmap > locked_pmap)
1993 PMAP_LOCK(pmap);
1994 else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1995 pmap = NULL;
1996 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1997 continue;
1998 }
1999 }
2000
2001 /*
2002 * Destroy every non-wired, 4 KB page mapping in the chunk.
2003 */
2004 freed = 0;
2005 for (field = 0; field < _NPCM; field++) {
2006 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2007 inuse != 0; inuse &= ~(1UL << bit)) {
2008 bit = bsfl(inuse);
2009 pv = &pc->pc_pventry[field * 32 + bit];
2010 va = pv->pv_va;
2011 pte = pmap_pte(pmap, va);
2012 tpte = *pte;
2013 if ((tpte & PG_W) == 0)
2014 tpte = pte_load_clear(pte);
2015 pmap_pte_release(pte);
2016 if ((tpte & PG_W) != 0)
2017 continue;
2018 KASSERT(tpte != 0,
2019 ("pmap_pv_reclaim: pmap %p va %x zero pte",
2020 pmap, va));
2021 if ((tpte & PG_G) != 0)
2022 pmap_invalidate_page(pmap, va);
2023 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2024 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2025 vm_page_dirty(m);
2026 if ((tpte & PG_A) != 0)
2027 vm_page_aflag_set(m, PGA_REFERENCED);
2028 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2029 if (TAILQ_EMPTY(&m->md.pv_list))
2030 vm_page_aflag_clear(m, PGA_WRITEABLE);
2031 pc->pc_map[field] |= 1UL << bit;
2032 pmap_unuse_pt(pmap, va, &free);
2033 freed++;
2034 }
2035 }
2036 if (freed == 0) {
2037 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2038 continue;
2039 }
2040 /* Every freed mapping is for a 4 KB page. */
2041 pmap->pm_stats.resident_count -= freed;
2042 PV_STAT(pv_entry_frees += freed);
2043 PV_STAT(pv_entry_spare += freed);
2044 pv_entry_count -= freed;
2045 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2046 for (field = 0; field < _NPCM; field++)
2047 if (pc->pc_map[field] != pc_freemask[field]) {
2048 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2049 pc_list);
2050 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2051
2052 /*
2053 * One freed pv entry in locked_pmap is
2054 * sufficient.
2055 */
2056 if (pmap == locked_pmap)
2057 goto out;
2058 break;
2059 }
2060 if (field == _NPCM) {
2061 PV_STAT(pv_entry_spare -= _NPCPV);
2062 PV_STAT(pc_chunk_count--);
2063 PV_STAT(pc_chunk_frees++);
2064 /* Entire chunk is free; return it. */
2065 m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2066 pmap_qremove((vm_offset_t)pc, 1);
2067 pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2068 break;
2069 }
2070 }
2071 out:
2072 TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2073 if (pmap != NULL) {
2074 pmap_invalidate_all(pmap);
2075 if (pmap != locked_pmap)
2076 PMAP_UNLOCK(pmap);
2077 }
2078 if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2079 m_pc = free;
2080 free = (void *)m_pc->object;
2081 /* Recycle a freed page table page. */
2082 m_pc->wire_count = 1;
2083 atomic_add_int(&cnt.v_wire_count, 1);
2084 }
2085 pmap_free_zero_pages(free);
2086 return (m_pc);
2087 }
2088
2089 /*
2090 * free the pv_entry back to the free list
2091 */
2092 static void
2093 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2094 {
2095 struct pv_chunk *pc;
2096 int idx, field, bit;
2097
2098 rw_assert(&pvh_global_lock, RA_WLOCKED);
2099 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2100 PV_STAT(pv_entry_frees++);
2101 PV_STAT(pv_entry_spare++);
2102 pv_entry_count--;
2103 pc = pv_to_chunk(pv);
2104 idx = pv - &pc->pc_pventry[0];
2105 field = idx / 32;
2106 bit = idx % 32;
2107 pc->pc_map[field] |= 1ul << bit;
2108 for (idx = 0; idx < _NPCM; idx++)
2109 if (pc->pc_map[idx] != pc_freemask[idx]) {
2110 /*
2111 * 98% of the time, pc is already at the head of the
2112 * list. If it isn't already, move it to the head.
2113 */
2114 if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2115 pc)) {
2116 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2117 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2118 pc_list);
2119 }
2120 return;
2121 }
2122 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2123 free_pv_chunk(pc);
2124 }
2125
2126 static void
2127 free_pv_chunk(struct pv_chunk *pc)
2128 {
2129 vm_page_t m;
2130
2131 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2132 PV_STAT(pv_entry_spare -= _NPCPV);
2133 PV_STAT(pc_chunk_count--);
2134 PV_STAT(pc_chunk_frees++);
2135 /* entire chunk is free, return it */
2136 m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2137 pmap_qremove((vm_offset_t)pc, 1);
2138 vm_page_unwire(m, 0);
2139 vm_page_free(m);
2140 pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2141 }
2142
2143 /*
2144 * get a new pv_entry, allocating a block from the system
2145 * when needed.
2146 */
2147 static pv_entry_t
2148 get_pv_entry(pmap_t pmap, boolean_t try)
2149 {
2150 static const struct timeval printinterval = { 60, 0 };
2151 static struct timeval lastprint;
2152 int bit, field;
2153 pv_entry_t pv;
2154 struct pv_chunk *pc;
2155 vm_page_t m;
2156
2157 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2158 rw_assert(&pvh_global_lock, RA_WLOCKED);
2159 PV_STAT(pv_entry_allocs++);
2160 pv_entry_count++;
2161 if (pv_entry_count > pv_entry_high_water)
2162 if (ratecheck(&lastprint, &printinterval))
2163 printf("Approaching the limit on PV entries, consider "
2164 "increasing either the vm.pmap.shpgperproc or the "
2165 "vm.pmap.pv_entry_max tunable.\n");
2166 retry:
2167 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2168 if (pc != NULL) {
2169 for (field = 0; field < _NPCM; field++) {
2170 if (pc->pc_map[field]) {
2171 bit = bsfl(pc->pc_map[field]);
2172 break;
2173 }
2174 }
2175 if (field < _NPCM) {
2176 pv = &pc->pc_pventry[field * 32 + bit];
2177 pc->pc_map[field] &= ~(1ul << bit);
2178 /* If this was the last item, move it to tail */
2179 for (field = 0; field < _NPCM; field++)
2180 if (pc->pc_map[field] != 0) {
2181 PV_STAT(pv_entry_spare--);
2182 return (pv); /* not full, return */
2183 }
2184 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2185 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2186 PV_STAT(pv_entry_spare--);
2187 return (pv);
2188 }
2189 }
2190 /*
2191 * Access to the ptelist "pv_vafree" is synchronized by the page
2192 * queues lock. If "pv_vafree" is currently non-empty, it will
2193 * remain non-empty until pmap_ptelist_alloc() completes.
2194 */
2195 if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2196 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2197 if (try) {
2198 pv_entry_count--;
2199 PV_STAT(pc_chunk_tryfail++);
2200 return (NULL);
2201 }
2202 m = pmap_pv_reclaim(pmap);
2203 if (m == NULL)
2204 goto retry;
2205 }
2206 PV_STAT(pc_chunk_count++);
2207 PV_STAT(pc_chunk_allocs++);
2208 pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2209 pmap_qenter((vm_offset_t)pc, &m, 1);
2210 if ((m->flags & PG_ZERO) == 0)
2211 pagezero(pc);
2212 pc->pc_pmap = pmap;
2213 pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
2214 for (field = 1; field < _NPCM; field++)
2215 pc->pc_map[field] = pc_freemask[field];
2216 TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2217 pv = &pc->pc_pventry[0];
2218 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2219 PV_STAT(pv_entry_spare += _NPCPV - 1);
2220 return (pv);
2221 }
2222
2223 static __inline pv_entry_t
2224 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2225 {
2226 pv_entry_t pv;
2227
2228 rw_assert(&pvh_global_lock, RA_WLOCKED);
2229 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2230 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2231 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2232 break;
2233 }
2234 }
2235 return (pv);
2236 }
2237
2238 static void
2239 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2240 {
2241 pv_entry_t pv;
2242
2243 pv = pmap_pvh_remove(pvh, pmap, va);
2244 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2245 free_pv_entry(pmap, pv);
2246 }
2247
2248 static void
2249 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2250 {
2251
2252 rw_assert(&pvh_global_lock, RA_WLOCKED);
2253 pmap_pvh_free(&m->md, pmap, va);
2254 if (TAILQ_EMPTY(&m->md.pv_list))
2255 vm_page_aflag_clear(m, PGA_WRITEABLE);
2256 }
2257
2258 /*
2259 * Conditionally create a pv entry.
2260 */
2261 static boolean_t
2262 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2263 {
2264 pv_entry_t pv;
2265
2266 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2267 rw_assert(&pvh_global_lock, RA_WLOCKED);
2268 if (pv_entry_count < pv_entry_high_water &&
2269 (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2270 pv->pv_va = va;
2271 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2272 return (TRUE);
2273 } else
2274 return (FALSE);
2275 }
2276
2277 /*
2278 * pmap_remove_pte: do the things to unmap a page in a process
2279 */
2280 static int
2281 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2282 {
2283 pt_entry_t oldpte;
2284 vm_page_t m;
2285
2286 CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2287 pmap, (u_long)*ptq, va);
2288
2289 rw_assert(&pvh_global_lock, RA_WLOCKED);
2290 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2291 oldpte = *ptq;
2292 PT_SET_VA_MA(ptq, 0, TRUE);
2293 KASSERT(oldpte != 0,
2294 ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2295 if (oldpte & PG_W)
2296 pmap->pm_stats.wired_count -= 1;
2297 /*
2298 * Machines that don't support invlpg, also don't support
2299 * PG_G.
2300 */
2301 if (oldpte & PG_G)
2302 pmap_invalidate_page(kernel_pmap, va);
2303 pmap->pm_stats.resident_count -= 1;
2304 if (oldpte & PG_MANAGED) {
2305 m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2306 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2307 vm_page_dirty(m);
2308 if (oldpte & PG_A)
2309 vm_page_aflag_set(m, PGA_REFERENCED);
2310 pmap_remove_entry(pmap, m, va);
2311 }
2312 return (pmap_unuse_pt(pmap, va, free));
2313 }
2314
2315 /*
2316 * Remove a single page from a process address space
2317 */
2318 static void
2319 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2320 {
2321 pt_entry_t *pte;
2322
2323 CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2324 pmap, va);
2325
2326 rw_assert(&pvh_global_lock, RA_WLOCKED);
2327 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2328 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2329 if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2330 return;
2331 pmap_remove_pte(pmap, pte, va, free);
2332 pmap_invalidate_page(pmap, va);
2333 if (*PMAP1)
2334 PT_SET_MA(PADDR1, 0);
2335
2336 }
2337
2338 /*
2339 * Remove the given range of addresses from the specified map.
2340 *
2341 * It is assumed that the start and end are properly
2342 * rounded to the page size.
2343 */
2344 void
2345 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2346 {
2347 vm_offset_t pdnxt;
2348 pd_entry_t ptpaddr;
2349 pt_entry_t *pte;
2350 vm_page_t free = NULL;
2351 int anyvalid;
2352
2353 CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2354 pmap, sva, eva);
2355
2356 /*
2357 * Perform an unsynchronized read. This is, however, safe.
2358 */
2359 if (pmap->pm_stats.resident_count == 0)
2360 return;
2361
2362 anyvalid = 0;
2363
2364 rw_wlock(&pvh_global_lock);
2365 sched_pin();
2366 PMAP_LOCK(pmap);
2367
2368 /*
2369 * special handling of removing one page. a very
2370 * common operation and easy to short circuit some
2371 * code.
2372 */
2373 if ((sva + PAGE_SIZE == eva) &&
2374 ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2375 pmap_remove_page(pmap, sva, &free);
2376 goto out;
2377 }
2378
2379 for (; sva < eva; sva = pdnxt) {
2380 u_int pdirindex;
2381
2382 /*
2383 * Calculate index for next page table.
2384 */
2385 pdnxt = (sva + NBPDR) & ~PDRMASK;
2386 if (pdnxt < sva)
2387 pdnxt = eva;
2388 if (pmap->pm_stats.resident_count == 0)
2389 break;
2390
2391 pdirindex = sva >> PDRSHIFT;
2392 ptpaddr = pmap->pm_pdir[pdirindex];
2393
2394 /*
2395 * Weed out invalid mappings. Note: we assume that the page
2396 * directory table is always allocated, and in kernel virtual.
2397 */
2398 if (ptpaddr == 0)
2399 continue;
2400
2401 /*
2402 * Check for large page.
2403 */
2404 if ((ptpaddr & PG_PS) != 0) {
2405 PD_CLEAR_VA(pmap, pdirindex, TRUE);
2406 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2407 anyvalid = 1;
2408 continue;
2409 }
2410
2411 /*
2412 * Limit our scan to either the end of the va represented
2413 * by the current page table page, or to the end of the
2414 * range being removed.
2415 */
2416 if (pdnxt > eva)
2417 pdnxt = eva;
2418
2419 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2420 sva += PAGE_SIZE) {
2421 if ((*pte & PG_V) == 0)
2422 continue;
2423
2424 /*
2425 * The TLB entry for a PG_G mapping is invalidated
2426 * by pmap_remove_pte().
2427 */
2428 if ((*pte & PG_G) == 0)
2429 anyvalid = 1;
2430 if (pmap_remove_pte(pmap, pte, sva, &free))
2431 break;
2432 }
2433 }
2434 PT_UPDATES_FLUSH();
2435 if (*PMAP1)
2436 PT_SET_VA_MA(PMAP1, 0, TRUE);
2437 out:
2438 if (anyvalid)
2439 pmap_invalidate_all(pmap);
2440 sched_unpin();
2441 rw_wunlock(&pvh_global_lock);
2442 PMAP_UNLOCK(pmap);
2443 pmap_free_zero_pages(free);
2444 }
2445
2446 /*
2447 * Routine: pmap_remove_all
2448 * Function:
2449 * Removes this physical page from
2450 * all physical maps in which it resides.
2451 * Reflects back modify bits to the pager.
2452 *
2453 * Notes:
2454 * Original versions of this routine were very
2455 * inefficient because they iteratively called
2456 * pmap_remove (slow...)
2457 */
2458
2459 void
2460 pmap_remove_all(vm_page_t m)
2461 {
2462 pv_entry_t pv;
2463 pmap_t pmap;
2464 pt_entry_t *pte, tpte;
2465 vm_page_t free;
2466
2467 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2468 ("pmap_remove_all: page %p is not managed", m));
2469 free = NULL;
2470 rw_wlock(&pvh_global_lock);
2471 sched_pin();
2472 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2473 pmap = PV_PMAP(pv);
2474 PMAP_LOCK(pmap);
2475 pmap->pm_stats.resident_count--;
2476 pte = pmap_pte_quick(pmap, pv->pv_va);
2477 tpte = *pte;
2478 PT_SET_VA_MA(pte, 0, TRUE);
2479 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
2480 pmap, pv->pv_va));
2481 if (tpte & PG_W)
2482 pmap->pm_stats.wired_count--;
2483 if (tpte & PG_A)
2484 vm_page_aflag_set(m, PGA_REFERENCED);
2485
2486 /*
2487 * Update the vm_page_t clean and reference bits.
2488 */
2489 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2490 vm_page_dirty(m);
2491 pmap_unuse_pt(pmap, pv->pv_va, &free);
2492 pmap_invalidate_page(pmap, pv->pv_va);
2493 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2494 free_pv_entry(pmap, pv);
2495 PMAP_UNLOCK(pmap);
2496 }
2497 vm_page_aflag_clear(m, PGA_WRITEABLE);
2498 PT_UPDATES_FLUSH();
2499 if (*PMAP1)
2500 PT_SET_MA(PADDR1, 0);
2501 sched_unpin();
2502 rw_wunlock(&pvh_global_lock);
2503 pmap_free_zero_pages(free);
2504 }
2505
2506 /*
2507 * Set the physical protection on the
2508 * specified range of this map as requested.
2509 */
2510 void
2511 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2512 {
2513 vm_offset_t pdnxt;
2514 pd_entry_t ptpaddr;
2515 pt_entry_t *pte;
2516 int anychanged;
2517
2518 CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2519 pmap, sva, eva, prot);
2520
2521 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2522 pmap_remove(pmap, sva, eva);
2523 return;
2524 }
2525
2526 #ifdef PAE
2527 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2528 (VM_PROT_WRITE|VM_PROT_EXECUTE))
2529 return;
2530 #else
2531 if (prot & VM_PROT_WRITE)
2532 return;
2533 #endif
2534
2535 anychanged = 0;
2536
2537 rw_wlock(&pvh_global_lock);
2538 sched_pin();
2539 PMAP_LOCK(pmap);
2540 for (; sva < eva; sva = pdnxt) {
2541 pt_entry_t obits, pbits;
2542 u_int pdirindex;
2543
2544 pdnxt = (sva + NBPDR) & ~PDRMASK;
2545 if (pdnxt < sva)
2546 pdnxt = eva;
2547
2548 pdirindex = sva >> PDRSHIFT;
2549 ptpaddr = pmap->pm_pdir[pdirindex];
2550
2551 /*
2552 * Weed out invalid mappings. Note: we assume that the page
2553 * directory table is always allocated, and in kernel virtual.
2554 */
2555 if (ptpaddr == 0)
2556 continue;
2557
2558 /*
2559 * Check for large page.
2560 */
2561 if ((ptpaddr & PG_PS) != 0) {
2562 if ((prot & VM_PROT_WRITE) == 0)
2563 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2564 #ifdef PAE
2565 if ((prot & VM_PROT_EXECUTE) == 0)
2566 pmap->pm_pdir[pdirindex] |= pg_nx;
2567 #endif
2568 anychanged = 1;
2569 continue;
2570 }
2571
2572 if (pdnxt > eva)
2573 pdnxt = eva;
2574
2575 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2576 sva += PAGE_SIZE) {
2577 vm_page_t m;
2578
2579 retry:
2580 /*
2581 * Regardless of whether a pte is 32 or 64 bits in
2582 * size, PG_RW, PG_A, and PG_M are among the least
2583 * significant 32 bits.
2584 */
2585 obits = pbits = *pte;
2586 if ((pbits & PG_V) == 0)
2587 continue;
2588
2589 if ((prot & VM_PROT_WRITE) == 0) {
2590 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2591 (PG_MANAGED | PG_M | PG_RW)) {
2592 m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2593 PG_FRAME);
2594 vm_page_dirty(m);
2595 }
2596 pbits &= ~(PG_RW | PG_M);
2597 }
2598 #ifdef PAE
2599 if ((prot & VM_PROT_EXECUTE) == 0)
2600 pbits |= pg_nx;
2601 #endif
2602
2603 if (pbits != obits) {
2604 obits = *pte;
2605 PT_SET_VA_MA(pte, pbits, TRUE);
2606 if (*pte != pbits)
2607 goto retry;
2608 if (obits & PG_G)
2609 pmap_invalidate_page(pmap, sva);
2610 else
2611 anychanged = 1;
2612 }
2613 }
2614 }
2615 PT_UPDATES_FLUSH();
2616 if (*PMAP1)
2617 PT_SET_VA_MA(PMAP1, 0, TRUE);
2618 if (anychanged)
2619 pmap_invalidate_all(pmap);
2620 sched_unpin();
2621 rw_wunlock(&pvh_global_lock);
2622 PMAP_UNLOCK(pmap);
2623 }
2624
2625 /*
2626 * Insert the given physical page (p) at
2627 * the specified virtual address (v) in the
2628 * target physical map with the protection requested.
2629 *
2630 * If specified, the page will be wired down, meaning
2631 * that the related pte can not be reclaimed.
2632 *
2633 * NB: This is the only routine which MAY NOT lazy-evaluate
2634 * or lose information. That is, this routine must actually
2635 * insert this page into the given map NOW.
2636 */
2637 int
2638 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2639 u_int flags, int8_t psind __unused)
2640 {
2641 pd_entry_t *pde;
2642 pt_entry_t *pte;
2643 pt_entry_t newpte, origpte;
2644 pv_entry_t pv;
2645 vm_paddr_t opa, pa;
2646 vm_page_t mpte, om;
2647 boolean_t invlva, wired;
2648
2649 CTR5(KTR_PMAP,
2650 "pmap_enter: pmap=%08p va=0x%08x ma=0x%08x prot=0x%x flags=0x%x",
2651 pmap, va, VM_PAGE_TO_MACH(m), prot, flags);
2652 va = trunc_page(va);
2653 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2654 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2655 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2656 va));
2657 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2658 VM_OBJECT_ASSERT_LOCKED(m->object);
2659
2660 mpte = NULL;
2661 wired = (flags & PMAP_ENTER_WIRED) != 0;
2662
2663 rw_wlock(&pvh_global_lock);
2664 PMAP_LOCK(pmap);
2665 sched_pin();
2666
2667 /*
2668 * In the case that a page table page is not
2669 * resident, we are creating it here.
2670 */
2671 if (va < VM_MAXUSER_ADDRESS) {
2672 mpte = pmap_allocpte(pmap, va, flags);
2673 if (mpte == NULL) {
2674 KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
2675 ("pmap_allocpte failed with sleep allowed"));
2676 sched_unpin();
2677 rw_wunlock(&pvh_global_lock);
2678 PMAP_UNLOCK(pmap);
2679 return (KERN_RESOURCE_SHORTAGE);
2680 }
2681 }
2682
2683 pde = pmap_pde(pmap, va);
2684 if ((*pde & PG_PS) != 0)
2685 panic("pmap_enter: attempted pmap_enter on 4MB page");
2686 pte = pmap_pte_quick(pmap, va);
2687
2688 /*
2689 * Page Directory table entry not valid, we need a new PT page
2690 */
2691 if (pte == NULL) {
2692 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2693 (uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2694 }
2695
2696 pa = VM_PAGE_TO_PHYS(m);
2697 om = NULL;
2698 opa = origpte = 0;
2699
2700 #if 0
2701 KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2702 pte, *pte));
2703 #endif
2704 origpte = *pte;
2705 if (origpte)
2706 origpte = xpmap_mtop(origpte);
2707 opa = origpte & PG_FRAME;
2708
2709 /*
2710 * Mapping has not changed, must be protection or wiring change.
2711 */
2712 if (origpte && (opa == pa)) {
2713 /*
2714 * Wiring change, just update stats. We don't worry about
2715 * wiring PT pages as they remain resident as long as there
2716 * are valid mappings in them. Hence, if a user page is wired,
2717 * the PT page will be also.
2718 */
2719 if (wired && ((origpte & PG_W) == 0))
2720 pmap->pm_stats.wired_count++;
2721 else if (!wired && (origpte & PG_W))
2722 pmap->pm_stats.wired_count--;
2723
2724 /*
2725 * Remove extra pte reference
2726 */
2727 if (mpte)
2728 mpte->wire_count--;
2729
2730 if (origpte & PG_MANAGED) {
2731 om = m;
2732 pa |= PG_MANAGED;
2733 }
2734 goto validate;
2735 }
2736
2737 pv = NULL;
2738
2739 /*
2740 * Mapping has changed, invalidate old range and fall through to
2741 * handle validating new mapping.
2742 */
2743 if (opa) {
2744 if (origpte & PG_W)
2745 pmap->pm_stats.wired_count--;
2746 if (origpte & PG_MANAGED) {
2747 om = PHYS_TO_VM_PAGE(opa);
2748 pv = pmap_pvh_remove(&om->md, pmap, va);
2749 } else if (va < VM_MAXUSER_ADDRESS)
2750 printf("va=0x%x is unmanaged :-( \n", va);
2751
2752 if (mpte != NULL) {
2753 mpte->wire_count--;
2754 KASSERT(mpte->wire_count > 0,
2755 ("pmap_enter: missing reference to page table page,"
2756 " va: 0x%x", va));
2757 }
2758 } else
2759 pmap->pm_stats.resident_count++;
2760
2761 /*
2762 * Enter on the PV list if part of our managed memory.
2763 */
2764 if ((m->oflags & VPO_UNMANAGED) == 0) {
2765 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2766 ("pmap_enter: managed mapping within the clean submap"));
2767 if (pv == NULL)
2768 pv = get_pv_entry(pmap, FALSE);
2769 pv->pv_va = va;
2770 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2771 pa |= PG_MANAGED;
2772 } else if (pv != NULL)
2773 free_pv_entry(pmap, pv);
2774
2775 /*
2776 * Increment counters
2777 */
2778 if (wired)
2779 pmap->pm_stats.wired_count++;
2780
2781 validate:
2782 /*
2783 * Now validate mapping with desired protection/wiring.
2784 */
2785 newpte = (pt_entry_t)(pa | PG_V);
2786 if ((prot & VM_PROT_WRITE) != 0) {
2787 newpte |= PG_RW;
2788 if ((newpte & PG_MANAGED) != 0)
2789 vm_page_aflag_set(m, PGA_WRITEABLE);
2790 }
2791 #ifdef PAE
2792 if ((prot & VM_PROT_EXECUTE) == 0)
2793 newpte |= pg_nx;
2794 #endif
2795 if (wired)
2796 newpte |= PG_W;
2797 if (va < VM_MAXUSER_ADDRESS)
2798 newpte |= PG_U;
2799 if (pmap == kernel_pmap)
2800 newpte |= pgeflag;
2801
2802 critical_enter();
2803 /*
2804 * if the mapping or permission bits are different, we need
2805 * to update the pte.
2806 */
2807 if ((origpte & ~(PG_M|PG_A)) != newpte) {
2808 if (origpte) {
2809 invlva = FALSE;
2810 origpte = *pte;
2811 PT_SET_VA(pte, newpte | PG_A, FALSE);
2812 if (origpte & PG_A) {
2813 if (origpte & PG_MANAGED)
2814 vm_page_aflag_set(om, PGA_REFERENCED);
2815 if (opa != VM_PAGE_TO_PHYS(m))
2816 invlva = TRUE;
2817 #ifdef PAE
2818 if ((origpte & PG_NX) == 0 &&
2819 (newpte & PG_NX) != 0)
2820 invlva = TRUE;
2821 #endif
2822 }
2823 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2824 if ((origpte & PG_MANAGED) != 0)
2825 vm_page_dirty(om);
2826 if ((prot & VM_PROT_WRITE) == 0)
2827 invlva = TRUE;
2828 }
2829 if ((origpte & PG_MANAGED) != 0 &&
2830 TAILQ_EMPTY(&om->md.pv_list))
2831 vm_page_aflag_clear(om, PGA_WRITEABLE);
2832 if (invlva)
2833 pmap_invalidate_page(pmap, va);
2834 } else{
2835 PT_SET_VA(pte, newpte | PG_A, FALSE);
2836 }
2837
2838 }
2839 PT_UPDATES_FLUSH();
2840 critical_exit();
2841 if (*PMAP1)
2842 PT_SET_VA_MA(PMAP1, 0, TRUE);
2843 sched_unpin();
2844 rw_wunlock(&pvh_global_lock);
2845 PMAP_UNLOCK(pmap);
2846 return (KERN_SUCCESS);
2847 }
2848
2849 /*
2850 * Maps a sequence of resident pages belonging to the same object.
2851 * The sequence begins with the given page m_start. This page is
2852 * mapped at the given virtual address start. Each subsequent page is
2853 * mapped at a virtual address that is offset from start by the same
2854 * amount as the page is offset from m_start within the object. The
2855 * last page in the sequence is the page with the largest offset from
2856 * m_start that can be mapped at a virtual address less than the given
2857 * virtual address end. Not every virtual page between start and end
2858 * is mapped; only those for which a resident page exists with the
2859 * corresponding offset from m_start are mapped.
2860 */
2861 void
2862 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2863 vm_page_t m_start, vm_prot_t prot)
2864 {
2865 vm_page_t m, mpte;
2866 vm_pindex_t diff, psize;
2867 multicall_entry_t mcl[16];
2868 multicall_entry_t *mclp = mcl;
2869 int error, count = 0;
2870
2871 VM_OBJECT_ASSERT_LOCKED(m_start->object);
2872
2873 psize = atop(end - start);
2874 mpte = NULL;
2875 m = m_start;
2876 rw_wlock(&pvh_global_lock);
2877 PMAP_LOCK(pmap);
2878 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2879 mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2880 prot, mpte);
2881 m = TAILQ_NEXT(m, listq);
2882 if (count == 16) {
2883 error = HYPERVISOR_multicall(mcl, count);
2884 KASSERT(error == 0, ("bad multicall %d", error));
2885 mclp = mcl;
2886 count = 0;
2887 }
2888 }
2889 if (count) {
2890 error = HYPERVISOR_multicall(mcl, count);
2891 KASSERT(error == 0, ("bad multicall %d", error));
2892 }
2893 rw_wunlock(&pvh_global_lock);
2894 PMAP_UNLOCK(pmap);
2895 }
2896
2897 /*
2898 * this code makes some *MAJOR* assumptions:
2899 * 1. Current pmap & pmap exists.
2900 * 2. Not wired.
2901 * 3. Read access.
2902 * 4. No page table pages.
2903 * but is *MUCH* faster than pmap_enter...
2904 */
2905
2906 void
2907 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2908 {
2909 multicall_entry_t mcl, *mclp;
2910 int count = 0;
2911 mclp = &mcl;
2912
2913 CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2914 pmap, va, m, prot);
2915
2916 rw_wlock(&pvh_global_lock);
2917 PMAP_LOCK(pmap);
2918 (void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2919 if (count)
2920 HYPERVISOR_multicall(&mcl, count);
2921 rw_wunlock(&pvh_global_lock);
2922 PMAP_UNLOCK(pmap);
2923 }
2924
2925 #ifdef notyet
2926 void
2927 pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2928 {
2929 int i, error, index = 0;
2930 multicall_entry_t mcl[16];
2931 multicall_entry_t *mclp = mcl;
2932
2933 PMAP_LOCK(pmap);
2934 for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2935 if (!pmap_is_prefaultable_locked(pmap, *addrs))
2936 continue;
2937
2938 (void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2939 if (index == 16) {
2940 error = HYPERVISOR_multicall(mcl, index);
2941 mclp = mcl;
2942 index = 0;
2943 KASSERT(error == 0, ("bad multicall %d", error));
2944 }
2945 }
2946 if (index) {
2947 error = HYPERVISOR_multicall(mcl, index);
2948 KASSERT(error == 0, ("bad multicall %d", error));
2949 }
2950
2951 PMAP_UNLOCK(pmap);
2952 }
2953 #endif
2954
2955 static vm_page_t
2956 pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2957 vm_prot_t prot, vm_page_t mpte)
2958 {
2959 pt_entry_t *pte;
2960 vm_paddr_t pa;
2961 vm_page_t free;
2962 multicall_entry_t *mcl = *mclpp;
2963
2964 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2965 (m->oflags & VPO_UNMANAGED) != 0,
2966 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2967 rw_assert(&pvh_global_lock, RA_WLOCKED);
2968 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2969
2970 /*
2971 * In the case that a page table page is not
2972 * resident, we are creating it here.
2973 */
2974 if (va < VM_MAXUSER_ADDRESS) {
2975 u_int ptepindex;
2976 pd_entry_t ptema;
2977
2978 /*
2979 * Calculate pagetable page index
2980 */
2981 ptepindex = va >> PDRSHIFT;
2982 if (mpte && (mpte->pindex == ptepindex)) {
2983 mpte->wire_count++;
2984 } else {
2985 /*
2986 * Get the page directory entry
2987 */
2988 ptema = pmap->pm_pdir[ptepindex];
2989
2990 /*
2991 * If the page table page is mapped, we just increment
2992 * the hold count, and activate it.
2993 */
2994 if (ptema & PG_V) {
2995 if (ptema & PG_PS)
2996 panic("pmap_enter_quick: unexpected mapping into 4MB page");
2997 mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2998 mpte->wire_count++;
2999 } else {
3000 mpte = _pmap_allocpte(pmap, ptepindex,
3001 PMAP_ENTER_NOSLEEP);
3002 if (mpte == NULL)
3003 return (mpte);
3004 }
3005 }
3006 } else {
3007 mpte = NULL;
3008 }
3009
3010 /*
3011 * This call to vtopte makes the assumption that we are
3012 * entering the page into the current pmap. In order to support
3013 * quick entry into any pmap, one would likely use pmap_pte_quick.
3014 * But that isn't as quick as vtopte.
3015 */
3016 KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3017 pte = vtopte(va);
3018 if (*pte & PG_V) {
3019 if (mpte != NULL) {
3020 mpte->wire_count--;
3021 mpte = NULL;
3022 }
3023 return (mpte);
3024 }
3025
3026 /*
3027 * Enter on the PV list if part of our managed memory.
3028 */
3029 if ((m->oflags & VPO_UNMANAGED) == 0 &&
3030 !pmap_try_insert_pv_entry(pmap, va, m)) {
3031 if (mpte != NULL) {
3032 free = NULL;
3033 if (pmap_unwire_ptp(pmap, mpte, &free)) {
3034 pmap_invalidate_page(pmap, va);
3035 pmap_free_zero_pages(free);
3036 }
3037
3038 mpte = NULL;
3039 }
3040 return (mpte);
3041 }
3042
3043 /*
3044 * Increment counters
3045 */
3046 pmap->pm_stats.resident_count++;
3047
3048 pa = VM_PAGE_TO_PHYS(m);
3049 #ifdef PAE
3050 if ((prot & VM_PROT_EXECUTE) == 0)
3051 pa |= pg_nx;
3052 #endif
3053
3054 #if 0
3055 /*
3056 * Now validate mapping with RO protection
3057 */
3058 if ((m->oflags & VPO_UNMANAGED) != 0)
3059 pte_store(pte, pa | PG_V | PG_U);
3060 else
3061 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3062 #else
3063 /*
3064 * Now validate mapping with RO protection
3065 */
3066 if ((m->oflags & VPO_UNMANAGED) != 0)
3067 pa = xpmap_ptom(pa | PG_V | PG_U);
3068 else
3069 pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3070
3071 mcl->op = __HYPERVISOR_update_va_mapping;
3072 mcl->args[0] = va;
3073 mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3074 mcl->args[2] = (uint32_t)(pa >> 32);
3075 mcl->args[3] = 0;
3076 *mclpp = mcl + 1;
3077 *count = *count + 1;
3078 #endif
3079 return (mpte);
3080 }
3081
3082 /*
3083 * Make a temporary mapping for a physical address. This is only intended
3084 * to be used for panic dumps.
3085 */
3086 void *
3087 pmap_kenter_temporary(vm_paddr_t pa, int i)
3088 {
3089 vm_offset_t va;
3090 vm_paddr_t ma = xpmap_ptom(pa);
3091
3092 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3093 PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3094 invlpg(va);
3095 return ((void *)crashdumpmap);
3096 }
3097
3098 /*
3099 * This code maps large physical mmap regions into the
3100 * processor address space. Note that some shortcuts
3101 * are taken, but the code works.
3102 */
3103 void
3104 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3105 vm_pindex_t pindex, vm_size_t size)
3106 {
3107 pd_entry_t *pde;
3108 vm_paddr_t pa, ptepa;
3109 vm_page_t p;
3110 int pat_mode;
3111
3112 VM_OBJECT_ASSERT_WLOCKED(object);
3113 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3114 ("pmap_object_init_pt: non-device object"));
3115 if (pseflag &&
3116 (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3117 if (!vm_object_populate(object, pindex, pindex + atop(size)))
3118 return;
3119 p = vm_page_lookup(object, pindex);
3120 KASSERT(p->valid == VM_PAGE_BITS_ALL,
3121 ("pmap_object_init_pt: invalid page %p", p));
3122 pat_mode = p->md.pat_mode;
3123
3124 /*
3125 * Abort the mapping if the first page is not physically
3126 * aligned to a 2/4MB page boundary.
3127 */
3128 ptepa = VM_PAGE_TO_PHYS(p);
3129 if (ptepa & (NBPDR - 1))
3130 return;
3131
3132 /*
3133 * Skip the first page. Abort the mapping if the rest of
3134 * the pages are not physically contiguous or have differing
3135 * memory attributes.
3136 */
3137 p = TAILQ_NEXT(p, listq);
3138 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3139 pa += PAGE_SIZE) {
3140 KASSERT(p->valid == VM_PAGE_BITS_ALL,
3141 ("pmap_object_init_pt: invalid page %p", p));
3142 if (pa != VM_PAGE_TO_PHYS(p) ||
3143 pat_mode != p->md.pat_mode)
3144 return;
3145 p = TAILQ_NEXT(p, listq);
3146 }
3147
3148 /*
3149 * Map using 2/4MB pages. Since "ptepa" is 2/4M aligned and
3150 * "size" is a multiple of 2/4M, adding the PAT setting to
3151 * "pa" will not affect the termination of this loop.
3152 */
3153 PMAP_LOCK(pmap);
3154 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3155 size; pa += NBPDR) {
3156 pde = pmap_pde(pmap, addr);
3157 if (*pde == 0) {
3158 pde_store(pde, pa | PG_PS | PG_M | PG_A |
3159 PG_U | PG_RW | PG_V);
3160 pmap->pm_stats.resident_count += NBPDR /
3161 PAGE_SIZE;
3162 pmap_pde_mappings++;
3163 }
3164 /* Else continue on if the PDE is already valid. */
3165 addr += NBPDR;
3166 }
3167 PMAP_UNLOCK(pmap);
3168 }
3169 }
3170
3171 /*
3172 * Clear the wired attribute from the mappings for the specified range of
3173 * addresses in the given pmap. Every valid mapping within that range
3174 * must have the wired attribute set. In contrast, invalid mappings
3175 * cannot have the wired attribute set, so they are ignored.
3176 *
3177 * The wired attribute of the page table entry is not a hardware feature,
3178 * so there is no need to invalidate any TLB entries.
3179 */
3180 void
3181 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3182 {
3183 vm_offset_t pdnxt;
3184 pd_entry_t *pde;
3185 pt_entry_t *pte;
3186
3187 CTR3(KTR_PMAP, "pmap_unwire: pmap=%p sva=0x%x eva=0x%x", pmap, sva,
3188 eva);
3189 rw_wlock(&pvh_global_lock);
3190 sched_pin();
3191 PMAP_LOCK(pmap);
3192 for (; sva < eva; sva = pdnxt) {
3193 pdnxt = (sva + NBPDR) & ~PDRMASK;
3194 if (pdnxt < sva)
3195 pdnxt = eva;
3196 pde = pmap_pde(pmap, sva);
3197 if ((*pde & PG_V) == 0)
3198 continue;
3199 if ((*pde & PG_PS) != 0)
3200 panic("pmap_unwire: unexpected PG_PS in pde %#jx",
3201 (uintmax_t)*pde);
3202 if (pdnxt > eva)
3203 pdnxt = eva;
3204 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3205 sva += PAGE_SIZE) {
3206 if ((*pte & PG_V) == 0)
3207 continue;
3208 if ((*pte & PG_W) == 0)
3209 panic("pmap_unwire: pte %#jx is missing PG_W",
3210 (uintmax_t)*pte);
3211 PT_SET_VA_MA(pte, *pte & ~PG_W, FALSE);
3212 pmap->pm_stats.wired_count--;
3213 }
3214 }
3215 if (*PMAP1)
3216 PT_CLEAR_VA(PMAP1, FALSE);
3217 PT_UPDATES_FLUSH();
3218 sched_unpin();
3219 rw_wunlock(&pvh_global_lock);
3220 PMAP_UNLOCK(pmap);
3221 }
3222
3223
3224 /*
3225 * Copy the range specified by src_addr/len
3226 * from the source map to the range dst_addr/len
3227 * in the destination map.
3228 *
3229 * This routine is only advisory and need not do anything.
3230 */
3231
3232 void
3233 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3234 vm_offset_t src_addr)
3235 {
3236 vm_page_t free;
3237 vm_offset_t addr;
3238 vm_offset_t end_addr = src_addr + len;
3239 vm_offset_t pdnxt;
3240
3241 if (dst_addr != src_addr)
3242 return;
3243
3244 if (!pmap_is_current(src_pmap)) {
3245 CTR2(KTR_PMAP,
3246 "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3247 (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3248
3249 return;
3250 }
3251 CTR5(KTR_PMAP, "pmap_copy: dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3252 dst_pmap, src_pmap, dst_addr, len, src_addr);
3253
3254 #ifdef HAMFISTED_LOCKING
3255 mtx_lock(&createdelete_lock);
3256 #endif
3257
3258 rw_wlock(&pvh_global_lock);
3259 if (dst_pmap < src_pmap) {
3260 PMAP_LOCK(dst_pmap);
3261 PMAP_LOCK(src_pmap);
3262 } else {
3263 PMAP_LOCK(src_pmap);
3264 PMAP_LOCK(dst_pmap);
3265 }
3266 sched_pin();
3267 for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3268 pt_entry_t *src_pte, *dst_pte;
3269 vm_page_t dstmpte, srcmpte;
3270 pd_entry_t srcptepaddr;
3271 u_int ptepindex;
3272
3273 KASSERT(addr < UPT_MIN_ADDRESS,
3274 ("pmap_copy: invalid to pmap_copy page tables"));
3275
3276 pdnxt = (addr + NBPDR) & ~PDRMASK;
3277 if (pdnxt < addr)
3278 pdnxt = end_addr;
3279 ptepindex = addr >> PDRSHIFT;
3280
3281 srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3282 if (srcptepaddr == 0)
3283 continue;
3284
3285 if (srcptepaddr & PG_PS) {
3286 if (dst_pmap->pm_pdir[ptepindex] == 0) {
3287 PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3288 dst_pmap->pm_stats.resident_count +=
3289 NBPDR / PAGE_SIZE;
3290 }
3291 continue;
3292 }
3293
3294 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3295 KASSERT(srcmpte->wire_count > 0,
3296 ("pmap_copy: source page table page is unused"));
3297
3298 if (pdnxt > end_addr)
3299 pdnxt = end_addr;
3300
3301 src_pte = vtopte(addr);
3302 while (addr < pdnxt) {
3303 pt_entry_t ptetemp;
3304 ptetemp = *src_pte;
3305 /*
3306 * we only virtual copy managed pages
3307 */
3308 if ((ptetemp & PG_MANAGED) != 0) {
3309 dstmpte = pmap_allocpte(dst_pmap, addr,
3310 PMAP_ENTER_NOSLEEP);
3311 if (dstmpte == NULL)
3312 goto out;
3313 dst_pte = pmap_pte_quick(dst_pmap, addr);
3314 if (*dst_pte == 0 &&
3315 pmap_try_insert_pv_entry(dst_pmap, addr,
3316 PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3317 /*
3318 * Clear the wired, modified, and
3319 * accessed (referenced) bits
3320 * during the copy.
3321 */
3322 KASSERT(ptetemp != 0, ("src_pte not set"));
3323 PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3324 KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3325 ("no pmap copy expected: 0x%jx saw: 0x%jx",
3326 ptetemp & ~(PG_W | PG_M | PG_A), *dst_pte));
3327 dst_pmap->pm_stats.resident_count++;
3328 } else {
3329 free = NULL;
3330 if (pmap_unwire_ptp(dst_pmap, dstmpte,
3331 &free)) {
3332 pmap_invalidate_page(dst_pmap,
3333 addr);
3334 pmap_free_zero_pages(free);
3335 }
3336 goto out;
3337 }
3338 if (dstmpte->wire_count >= srcmpte->wire_count)
3339 break;
3340 }
3341 addr += PAGE_SIZE;
3342 src_pte++;
3343 }
3344 }
3345 out:
3346 PT_UPDATES_FLUSH();
3347 sched_unpin();
3348 rw_wunlock(&pvh_global_lock);
3349 PMAP_UNLOCK(src_pmap);
3350 PMAP_UNLOCK(dst_pmap);
3351
3352 #ifdef HAMFISTED_LOCKING
3353 mtx_unlock(&createdelete_lock);
3354 #endif
3355 }
3356
3357 static __inline void
3358 pagezero(void *page)
3359 {
3360 #if defined(I686_CPU)
3361 if (cpu_class == CPUCLASS_686) {
3362 #if defined(CPU_ENABLE_SSE)
3363 if (cpu_feature & CPUID_SSE2)
3364 sse2_pagezero(page);
3365 else
3366 #endif
3367 i686_pagezero(page);
3368 } else
3369 #endif
3370 bzero(page, PAGE_SIZE);
3371 }
3372
3373 /*
3374 * pmap_zero_page zeros the specified hardware page by mapping
3375 * the page into KVM and using bzero to clear its contents.
3376 */
3377 void
3378 pmap_zero_page(vm_page_t m)
3379 {
3380 struct sysmaps *sysmaps;
3381
3382 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3383 mtx_lock(&sysmaps->lock);
3384 if (*sysmaps->CMAP2)
3385 panic("pmap_zero_page: CMAP2 busy");
3386 sched_pin();
3387 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3388 pagezero(sysmaps->CADDR2);
3389 PT_SET_MA(sysmaps->CADDR2, 0);
3390 sched_unpin();
3391 mtx_unlock(&sysmaps->lock);
3392 }
3393
3394 /*
3395 * pmap_zero_page_area zeros the specified hardware page by mapping
3396 * the page into KVM and using bzero to clear its contents.
3397 *
3398 * off and size may not cover an area beyond a single hardware page.
3399 */
3400 void
3401 pmap_zero_page_area(vm_page_t m, int off, int size)
3402 {
3403 struct sysmaps *sysmaps;
3404
3405 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3406 mtx_lock(&sysmaps->lock);
3407 if (*sysmaps->CMAP2)
3408 panic("pmap_zero_page_area: CMAP2 busy");
3409 sched_pin();
3410 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3411
3412 if (off == 0 && size == PAGE_SIZE)
3413 pagezero(sysmaps->CADDR2);
3414 else
3415 bzero((char *)sysmaps->CADDR2 + off, size);
3416 PT_SET_MA(sysmaps->CADDR2, 0);
3417 sched_unpin();
3418 mtx_unlock(&sysmaps->lock);
3419 }
3420
3421 /*
3422 * pmap_zero_page_idle zeros the specified hardware page by mapping
3423 * the page into KVM and using bzero to clear its contents. This
3424 * is intended to be called from the vm_pagezero process only and
3425 * outside of Giant.
3426 */
3427 void
3428 pmap_zero_page_idle(vm_page_t m)
3429 {
3430
3431 if (*CMAP3)
3432 panic("pmap_zero_page_idle: CMAP3 busy");
3433 sched_pin();
3434 PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3435 pagezero(CADDR3);
3436 PT_SET_MA(CADDR3, 0);
3437 sched_unpin();
3438 }
3439
3440 /*
3441 * pmap_copy_page copies the specified (machine independent)
3442 * page by mapping the page into virtual memory and using
3443 * bcopy to copy the page, one machine dependent page at a
3444 * time.
3445 */
3446 void
3447 pmap_copy_page(vm_page_t src, vm_page_t dst)
3448 {
3449 struct sysmaps *sysmaps;
3450
3451 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3452 mtx_lock(&sysmaps->lock);
3453 if (*sysmaps->CMAP1)
3454 panic("pmap_copy_page: CMAP1 busy");
3455 if (*sysmaps->CMAP2)
3456 panic("pmap_copy_page: CMAP2 busy");
3457 sched_pin();
3458 PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3459 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3460 bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3461 PT_SET_MA(sysmaps->CADDR1, 0);
3462 PT_SET_MA(sysmaps->CADDR2, 0);
3463 sched_unpin();
3464 mtx_unlock(&sysmaps->lock);
3465 }
3466
3467 int unmapped_buf_allowed = 1;
3468
3469 void
3470 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3471 vm_offset_t b_offset, int xfersize)
3472 {
3473 struct sysmaps *sysmaps;
3474 vm_page_t a_pg, b_pg;
3475 char *a_cp, *b_cp;
3476 vm_offset_t a_pg_offset, b_pg_offset;
3477 int cnt;
3478
3479 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3480 mtx_lock(&sysmaps->lock);
3481 if (*sysmaps->CMAP1 != 0)
3482 panic("pmap_copy_pages: CMAP1 busy");
3483 if (*sysmaps->CMAP2 != 0)
3484 panic("pmap_copy_pages: CMAP2 busy");
3485 sched_pin();
3486 while (xfersize > 0) {
3487 a_pg = ma[a_offset >> PAGE_SHIFT];
3488 a_pg_offset = a_offset & PAGE_MASK;
3489 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3490 b_pg = mb[b_offset >> PAGE_SHIFT];
3491 b_pg_offset = b_offset & PAGE_MASK;
3492 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3493 PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(a_pg) | PG_A);
3494 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3495 VM_PAGE_TO_MACH(b_pg) | PG_A | PG_M);
3496 a_cp = sysmaps->CADDR1 + a_pg_offset;
3497 b_cp = sysmaps->CADDR2 + b_pg_offset;
3498 bcopy(a_cp, b_cp, cnt);
3499 a_offset += cnt;
3500 b_offset += cnt;
3501 xfersize -= cnt;
3502 }
3503 PT_SET_MA(sysmaps->CADDR1, 0);
3504 PT_SET_MA(sysmaps->CADDR2, 0);
3505 sched_unpin();
3506 mtx_unlock(&sysmaps->lock);
3507 }
3508
3509 /*
3510 * Returns true if the pmap's pv is one of the first
3511 * 16 pvs linked to from this page. This count may
3512 * be changed upwards or downwards in the future; it
3513 * is only necessary that true be returned for a small
3514 * subset of pmaps for proper page aging.
3515 */
3516 boolean_t
3517 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3518 {
3519 pv_entry_t pv;
3520 int loops = 0;
3521 boolean_t rv;
3522
3523 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3524 ("pmap_page_exists_quick: page %p is not managed", m));
3525 rv = FALSE;
3526 rw_wlock(&pvh_global_lock);
3527 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3528 if (PV_PMAP(pv) == pmap) {
3529 rv = TRUE;
3530 break;
3531 }
3532 loops++;
3533 if (loops >= 16)
3534 break;
3535 }
3536 rw_wunlock(&pvh_global_lock);
3537 return (rv);
3538 }
3539
3540 /*
3541 * pmap_page_wired_mappings:
3542 *
3543 * Return the number of managed mappings to the given physical page
3544 * that are wired.
3545 */
3546 int
3547 pmap_page_wired_mappings(vm_page_t m)
3548 {
3549 pv_entry_t pv;
3550 pt_entry_t *pte;
3551 pmap_t pmap;
3552 int count;
3553
3554 count = 0;
3555 if ((m->oflags & VPO_UNMANAGED) != 0)
3556 return (count);
3557 rw_wlock(&pvh_global_lock);
3558 sched_pin();
3559 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3560 pmap = PV_PMAP(pv);
3561 PMAP_LOCK(pmap);
3562 pte = pmap_pte_quick(pmap, pv->pv_va);
3563 if ((*pte & PG_W) != 0)
3564 count++;
3565 PMAP_UNLOCK(pmap);
3566 }
3567 sched_unpin();
3568 rw_wunlock(&pvh_global_lock);
3569 return (count);
3570 }
3571
3572 /*
3573 * Returns TRUE if the given page is mapped. Otherwise, returns FALSE.
3574 */
3575 boolean_t
3576 pmap_page_is_mapped(vm_page_t m)
3577 {
3578
3579 if ((m->oflags & VPO_UNMANAGED) != 0)
3580 return (FALSE);
3581 return (!TAILQ_EMPTY(&m->md.pv_list));
3582 }
3583
3584 /*
3585 * Remove all pages from specified address space
3586 * this aids process exit speeds. Also, this code
3587 * is special cased for current process only, but
3588 * can have the more generic (and slightly slower)
3589 * mode enabled. This is much faster than pmap_remove
3590 * in the case of running down an entire address space.
3591 */
3592 void
3593 pmap_remove_pages(pmap_t pmap)
3594 {
3595 pt_entry_t *pte, tpte;
3596 vm_page_t m, free = NULL;
3597 pv_entry_t pv;
3598 struct pv_chunk *pc, *npc;
3599 int field, idx;
3600 int32_t bit;
3601 uint32_t inuse, bitmask;
3602 int allfree;
3603
3604 CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3605
3606 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3607 printf("warning: pmap_remove_pages called with non-current pmap\n");
3608 return;
3609 }
3610 rw_wlock(&pvh_global_lock);
3611 KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3612 PMAP_LOCK(pmap);
3613 sched_pin();
3614 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3615 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
3616 pc->pc_pmap));
3617 allfree = 1;
3618 for (field = 0; field < _NPCM; field++) {
3619 inuse = ~pc->pc_map[field] & pc_freemask[field];
3620 while (inuse != 0) {
3621 bit = bsfl(inuse);
3622 bitmask = 1UL << bit;
3623 idx = field * 32 + bit;
3624 pv = &pc->pc_pventry[idx];
3625 inuse &= ~bitmask;
3626
3627 pte = vtopte(pv->pv_va);
3628 tpte = *pte ? xpmap_mtop(*pte) : 0;
3629
3630 if (tpte == 0) {
3631 printf(
3632 "TPTE at %p IS ZERO @ VA %08x\n",
3633 pte, pv->pv_va);
3634 panic("bad pte");
3635 }
3636
3637 /*
3638 * We cannot remove wired pages from a process' mapping at this time
3639 */
3640 if (tpte & PG_W) {
3641 allfree = 0;
3642 continue;
3643 }
3644
3645 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3646 KASSERT(m->phys_addr == (tpte & PG_FRAME),
3647 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3648 m, (uintmax_t)m->phys_addr,
3649 (uintmax_t)tpte));
3650
3651 KASSERT(m < &vm_page_array[vm_page_array_size],
3652 ("pmap_remove_pages: bad tpte %#jx",
3653 (uintmax_t)tpte));
3654
3655
3656 PT_CLEAR_VA(pte, FALSE);
3657
3658 /*
3659 * Update the vm_page_t clean/reference bits.
3660 */
3661 if (tpte & PG_M)
3662 vm_page_dirty(m);
3663
3664 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3665 if (TAILQ_EMPTY(&m->md.pv_list))
3666 vm_page_aflag_clear(m, PGA_WRITEABLE);
3667
3668 pmap_unuse_pt(pmap, pv->pv_va, &free);
3669
3670 /* Mark free */
3671 PV_STAT(pv_entry_frees++);
3672 PV_STAT(pv_entry_spare++);
3673 pv_entry_count--;
3674 pc->pc_map[field] |= bitmask;
3675 pmap->pm_stats.resident_count--;
3676 }
3677 }
3678 PT_UPDATES_FLUSH();
3679 if (allfree) {
3680 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3681 free_pv_chunk(pc);
3682 }
3683 }
3684 PT_UPDATES_FLUSH();
3685 if (*PMAP1)
3686 PT_SET_MA(PADDR1, 0);
3687
3688 sched_unpin();
3689 pmap_invalidate_all(pmap);
3690 rw_wunlock(&pvh_global_lock);
3691 PMAP_UNLOCK(pmap);
3692 pmap_free_zero_pages(free);
3693 }
3694
3695 /*
3696 * pmap_is_modified:
3697 *
3698 * Return whether or not the specified physical page was modified
3699 * in any physical maps.
3700 */
3701 boolean_t
3702 pmap_is_modified(vm_page_t m)
3703 {
3704 pv_entry_t pv;
3705 pt_entry_t *pte;
3706 pmap_t pmap;
3707 boolean_t rv;
3708
3709 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3710 ("pmap_is_modified: page %p is not managed", m));
3711 rv = FALSE;
3712
3713 /*
3714 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3715 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
3716 * is clear, no PTEs can have PG_M set.
3717 */
3718 VM_OBJECT_ASSERT_WLOCKED(m->object);
3719 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3720 return (rv);
3721 rw_wlock(&pvh_global_lock);
3722 sched_pin();
3723 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3724 pmap = PV_PMAP(pv);
3725 PMAP_LOCK(pmap);
3726 pte = pmap_pte_quick(pmap, pv->pv_va);
3727 rv = (*pte & PG_M) != 0;
3728 PMAP_UNLOCK(pmap);
3729 if (rv)
3730 break;
3731 }
3732 if (*PMAP1)
3733 PT_SET_MA(PADDR1, 0);
3734 sched_unpin();
3735 rw_wunlock(&pvh_global_lock);
3736 return (rv);
3737 }
3738
3739 /*
3740 * pmap_is_prefaultable:
3741 *
3742 * Return whether or not the specified virtual address is elgible
3743 * for prefault.
3744 */
3745 static boolean_t
3746 pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3747 {
3748 pt_entry_t *pte;
3749 boolean_t rv = FALSE;
3750
3751 return (rv);
3752
3753 if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3754 pte = vtopte(addr);
3755 rv = (*pte == 0);
3756 }
3757 return (rv);
3758 }
3759
3760 boolean_t
3761 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3762 {
3763 boolean_t rv;
3764
3765 PMAP_LOCK(pmap);
3766 rv = pmap_is_prefaultable_locked(pmap, addr);
3767 PMAP_UNLOCK(pmap);
3768 return (rv);
3769 }
3770
3771 boolean_t
3772 pmap_is_referenced(vm_page_t m)
3773 {
3774 pv_entry_t pv;
3775 pt_entry_t *pte;
3776 pmap_t pmap;
3777 boolean_t rv;
3778
3779 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3780 ("pmap_is_referenced: page %p is not managed", m));
3781 rv = FALSE;
3782 rw_wlock(&pvh_global_lock);
3783 sched_pin();
3784 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3785 pmap = PV_PMAP(pv);
3786 PMAP_LOCK(pmap);
3787 pte = pmap_pte_quick(pmap, pv->pv_va);
3788 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3789 PMAP_UNLOCK(pmap);
3790 if (rv)
3791 break;
3792 }
3793 if (*PMAP1)
3794 PT_SET_MA(PADDR1, 0);
3795 sched_unpin();
3796 rw_wunlock(&pvh_global_lock);
3797 return (rv);
3798 }
3799
3800 void
3801 pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3802 {
3803 int i, npages = round_page(len) >> PAGE_SHIFT;
3804 for (i = 0; i < npages; i++) {
3805 pt_entry_t *pte;
3806 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3807 rw_wlock(&pvh_global_lock);
3808 pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3809 rw_wunlock(&pvh_global_lock);
3810 PMAP_MARK_PRIV(xpmap_mtop(*pte));
3811 pmap_pte_release(pte);
3812 }
3813 }
3814
3815 void
3816 pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3817 {
3818 int i, npages = round_page(len) >> PAGE_SHIFT;
3819 for (i = 0; i < npages; i++) {
3820 pt_entry_t *pte;
3821 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3822 PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3823 rw_wlock(&pvh_global_lock);
3824 pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3825 rw_wunlock(&pvh_global_lock);
3826 pmap_pte_release(pte);
3827 }
3828 }
3829
3830 /*
3831 * Clear the write and modified bits in each of the given page's mappings.
3832 */
3833 void
3834 pmap_remove_write(vm_page_t m)
3835 {
3836 pv_entry_t pv;
3837 pmap_t pmap;
3838 pt_entry_t oldpte, *pte;
3839
3840 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3841 ("pmap_remove_write: page %p is not managed", m));
3842
3843 /*
3844 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3845 * set by another thread while the object is locked. Thus,
3846 * if PGA_WRITEABLE is clear, no page table entries need updating.
3847 */
3848 VM_OBJECT_ASSERT_WLOCKED(m->object);
3849 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3850 return;
3851 rw_wlock(&pvh_global_lock);
3852 sched_pin();
3853 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3854 pmap = PV_PMAP(pv);
3855 PMAP_LOCK(pmap);
3856 pte = pmap_pte_quick(pmap, pv->pv_va);
3857 retry:
3858 oldpte = *pte;
3859 if ((oldpte & PG_RW) != 0) {
3860 vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3861
3862 /*
3863 * Regardless of whether a pte is 32 or 64 bits
3864 * in size, PG_RW and PG_M are among the least
3865 * significant 32 bits.
3866 */
3867 PT_SET_VA_MA(pte, newpte, TRUE);
3868 if (*pte != newpte)
3869 goto retry;
3870
3871 if ((oldpte & PG_M) != 0)
3872 vm_page_dirty(m);
3873 pmap_invalidate_page(pmap, pv->pv_va);
3874 }
3875 PMAP_UNLOCK(pmap);
3876 }
3877 vm_page_aflag_clear(m, PGA_WRITEABLE);
3878 PT_UPDATES_FLUSH();
3879 if (*PMAP1)
3880 PT_SET_MA(PADDR1, 0);
3881 sched_unpin();
3882 rw_wunlock(&pvh_global_lock);
3883 }
3884
3885 /*
3886 * pmap_ts_referenced:
3887 *
3888 * Return a count of reference bits for a page, clearing those bits.
3889 * It is not necessary for every reference bit to be cleared, but it
3890 * is necessary that 0 only be returned when there are truly no
3891 * reference bits set.
3892 *
3893 * XXX: The exact number of bits to check and clear is a matter that
3894 * should be tested and standardized at some point in the future for
3895 * optimal aging of shared pages.
3896 */
3897 int
3898 pmap_ts_referenced(vm_page_t m)
3899 {
3900 pv_entry_t pv, pvf, pvn;
3901 pmap_t pmap;
3902 pt_entry_t *pte;
3903 int rtval = 0;
3904
3905 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3906 ("pmap_ts_referenced: page %p is not managed", m));
3907 rw_wlock(&pvh_global_lock);
3908 sched_pin();
3909 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3910 pvf = pv;
3911 do {
3912 pvn = TAILQ_NEXT(pv, pv_next);
3913 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3914 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3915 pmap = PV_PMAP(pv);
3916 PMAP_LOCK(pmap);
3917 pte = pmap_pte_quick(pmap, pv->pv_va);
3918 if ((*pte & PG_A) != 0) {
3919 PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3920 pmap_invalidate_page(pmap, pv->pv_va);
3921 rtval++;
3922 if (rtval > 4)
3923 pvn = NULL;
3924 }
3925 PMAP_UNLOCK(pmap);
3926 } while ((pv = pvn) != NULL && pv != pvf);
3927 }
3928 PT_UPDATES_FLUSH();
3929 if (*PMAP1)
3930 PT_SET_MA(PADDR1, 0);
3931 sched_unpin();
3932 rw_wunlock(&pvh_global_lock);
3933 return (rtval);
3934 }
3935
3936 /*
3937 * Apply the given advice to the specified range of addresses within the
3938 * given pmap. Depending on the advice, clear the referenced and/or
3939 * modified flags in each mapping and set the mapped page's dirty field.
3940 */
3941 void
3942 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
3943 {
3944 pd_entry_t oldpde;
3945 pt_entry_t *pte;
3946 vm_offset_t pdnxt;
3947 vm_page_t m;
3948 boolean_t anychanged;
3949
3950 if (advice != MADV_DONTNEED && advice != MADV_FREE)
3951 return;
3952 anychanged = FALSE;
3953 rw_wlock(&pvh_global_lock);
3954 sched_pin();
3955 PMAP_LOCK(pmap);
3956 for (; sva < eva; sva = pdnxt) {
3957 pdnxt = (sva + NBPDR) & ~PDRMASK;
3958 if (pdnxt < sva)
3959 pdnxt = eva;
3960 oldpde = pmap->pm_pdir[sva >> PDRSHIFT];
3961 if ((oldpde & (PG_PS | PG_V)) != PG_V)
3962 continue;
3963 if (pdnxt > eva)
3964 pdnxt = eva;
3965 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3966 sva += PAGE_SIZE) {
3967 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
3968 PG_V))
3969 continue;
3970 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3971 if (advice == MADV_DONTNEED) {
3972 /*
3973 * Future calls to pmap_is_modified()
3974 * can be avoided by making the page
3975 * dirty now.
3976 */
3977 m = PHYS_TO_VM_PAGE(xpmap_mtop(*pte) &
3978 PG_FRAME);
3979 vm_page_dirty(m);
3980 }
3981 PT_SET_VA_MA(pte, *pte & ~(PG_M | PG_A), TRUE);
3982 } else if ((*pte & PG_A) != 0)
3983 PT_SET_VA_MA(pte, *pte & ~PG_A, TRUE);
3984 else
3985 continue;
3986 if ((*pte & PG_G) != 0)
3987 pmap_invalidate_page(pmap, sva);
3988 else
3989 anychanged = TRUE;
3990 }
3991 }
3992 PT_UPDATES_FLUSH();
3993 if (*PMAP1)
3994 PT_SET_VA_MA(PMAP1, 0, TRUE);
3995 if (anychanged)
3996 pmap_invalidate_all(pmap);
3997 sched_unpin();
3998 rw_wunlock(&pvh_global_lock);
3999 PMAP_UNLOCK(pmap);
4000 }
4001
4002 /*
4003 * Clear the modify bits on the specified physical page.
4004 */
4005 void
4006 pmap_clear_modify(vm_page_t m)
4007 {
4008 pv_entry_t pv;
4009 pmap_t pmap;
4010 pt_entry_t *pte;
4011
4012 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4013 ("pmap_clear_modify: page %p is not managed", m));
4014 VM_OBJECT_ASSERT_WLOCKED(m->object);
4015 KASSERT(!vm_page_xbusied(m),
4016 ("pmap_clear_modify: page %p is exclusive busied", m));
4017
4018 /*
4019 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4020 * If the object containing the page is locked and the page is not
4021 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4022 */
4023 if ((m->aflags & PGA_WRITEABLE) == 0)
4024 return;
4025 rw_wlock(&pvh_global_lock);
4026 sched_pin();
4027 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4028 pmap = PV_PMAP(pv);
4029 PMAP_LOCK(pmap);
4030 pte = pmap_pte_quick(pmap, pv->pv_va);
4031 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4032 /*
4033 * Regardless of whether a pte is 32 or 64 bits
4034 * in size, PG_M is among the least significant
4035 * 32 bits.
4036 */
4037 PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
4038 pmap_invalidate_page(pmap, pv->pv_va);
4039 }
4040 PMAP_UNLOCK(pmap);
4041 }
4042 sched_unpin();
4043 rw_wunlock(&pvh_global_lock);
4044 }
4045
4046 /*
4047 * Miscellaneous support routines follow
4048 */
4049
4050 /*
4051 * Map a set of physical memory pages into the kernel virtual
4052 * address space. Return a pointer to where it is mapped. This
4053 * routine is intended to be used for mapping device memory,
4054 * NOT real memory.
4055 */
4056 void *
4057 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4058 {
4059 vm_offset_t va, offset;
4060 vm_size_t tmpsize;
4061
4062 offset = pa & PAGE_MASK;
4063 size = round_page(offset + size);
4064 pa = pa & PG_FRAME;
4065
4066 if (pa < KERNLOAD && pa + size <= KERNLOAD)
4067 va = KERNBASE + pa;
4068 else
4069 va = kva_alloc(size);
4070 if (!va)
4071 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4072
4073 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4074 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4075 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4076 pmap_invalidate_cache_range(va, va + size);
4077 return ((void *)(va + offset));
4078 }
4079
4080 void *
4081 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4082 {
4083
4084 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4085 }
4086
4087 void *
4088 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4089 {
4090
4091 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4092 }
4093
4094 void
4095 pmap_unmapdev(vm_offset_t va, vm_size_t size)
4096 {
4097 vm_offset_t base, offset;
4098
4099 if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4100 return;
4101 base = trunc_page(va);
4102 offset = va & PAGE_MASK;
4103 size = round_page(offset + size);
4104 kva_free(base, size);
4105 }
4106
4107 /*
4108 * Sets the memory attribute for the specified page.
4109 */
4110 void
4111 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4112 {
4113
4114 m->md.pat_mode = ma;
4115 if ((m->flags & PG_FICTITIOUS) != 0)
4116 return;
4117
4118 /*
4119 * If "m" is a normal page, flush it from the cache.
4120 * See pmap_invalidate_cache_range().
4121 *
4122 * First, try to find an existing mapping of the page by sf
4123 * buffer. sf_buf_invalidate_cache() modifies mapping and
4124 * flushes the cache.
4125 */
4126 if (sf_buf_invalidate_cache(m))
4127 return;
4128
4129 /*
4130 * If page is not mapped by sf buffer, but CPU does not
4131 * support self snoop, map the page transient and do
4132 * invalidation. In the worst case, whole cache is flushed by
4133 * pmap_invalidate_cache_range().
4134 */
4135 if ((cpu_feature & CPUID_SS) == 0)
4136 pmap_flush_page(m);
4137 }
4138
4139 static void
4140 pmap_flush_page(vm_page_t m)
4141 {
4142 struct sysmaps *sysmaps;
4143 vm_offset_t sva, eva;
4144
4145 if ((cpu_feature & CPUID_CLFSH) != 0) {
4146 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4147 mtx_lock(&sysmaps->lock);
4148 if (*sysmaps->CMAP2)
4149 panic("pmap_flush_page: CMAP2 busy");
4150 sched_pin();
4151 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4152 VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4153 pmap_cache_bits(m->md.pat_mode, 0));
4154 invlcaddr(sysmaps->CADDR2);
4155 sva = (vm_offset_t)sysmaps->CADDR2;
4156 eva = sva + PAGE_SIZE;
4157
4158 /*
4159 * Use mfence despite the ordering implied by
4160 * mtx_{un,}lock() because clflush is not guaranteed
4161 * to be ordered by any other instruction.
4162 */
4163 mfence();
4164 for (; sva < eva; sva += cpu_clflush_line_size)
4165 clflush(sva);
4166 mfence();
4167 PT_SET_MA(sysmaps->CADDR2, 0);
4168 sched_unpin();
4169 mtx_unlock(&sysmaps->lock);
4170 } else
4171 pmap_invalidate_cache();
4172 }
4173
4174 /*
4175 * Changes the specified virtual address range's memory type to that given by
4176 * the parameter "mode". The specified virtual address range must be
4177 * completely contained within either the kernel map.
4178 *
4179 * Returns zero if the change completed successfully, and either EINVAL or
4180 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
4181 * of the virtual address range was not mapped, and ENOMEM is returned if
4182 * there was insufficient memory available to complete the change.
4183 */
4184 int
4185 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4186 {
4187 vm_offset_t base, offset, tmpva;
4188 pt_entry_t *pte;
4189 u_int opte, npte;
4190 pd_entry_t *pde;
4191 boolean_t changed;
4192
4193 base = trunc_page(va);
4194 offset = va & PAGE_MASK;
4195 size = round_page(offset + size);
4196
4197 /* Only supported on kernel virtual addresses. */
4198 if (base <= VM_MAXUSER_ADDRESS)
4199 return (EINVAL);
4200
4201 /* 4MB pages and pages that aren't mapped aren't supported. */
4202 for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4203 pde = pmap_pde(kernel_pmap, tmpva);
4204 if (*pde & PG_PS)
4205 return (EINVAL);
4206 if ((*pde & PG_V) == 0)
4207 return (EINVAL);
4208 pte = vtopte(va);
4209 if ((*pte & PG_V) == 0)
4210 return (EINVAL);
4211 }
4212
4213 changed = FALSE;
4214
4215 /*
4216 * Ok, all the pages exist and are 4k, so run through them updating
4217 * their cache mode.
4218 */
4219 for (tmpva = base; size > 0; ) {
4220 pte = vtopte(tmpva);
4221
4222 /*
4223 * The cache mode bits are all in the low 32-bits of the
4224 * PTE, so we can just spin on updating the low 32-bits.
4225 */
4226 do {
4227 opte = *(u_int *)pte;
4228 npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4229 npte |= pmap_cache_bits(mode, 0);
4230 PT_SET_VA_MA(pte, npte, TRUE);
4231 } while (npte != opte && (*pte != npte));
4232 if (npte != opte)
4233 changed = TRUE;
4234 tmpva += PAGE_SIZE;
4235 size -= PAGE_SIZE;
4236 }
4237
4238 /*
4239 * Flush CPU caches to make sure any data isn't cached that
4240 * shouldn't be, etc.
4241 */
4242 if (changed) {
4243 pmap_invalidate_range(kernel_pmap, base, tmpva);
4244 pmap_invalidate_cache_range(base, tmpva);
4245 }
4246 return (0);
4247 }
4248
4249 /*
4250 * perform the pmap work for mincore
4251 */
4252 int
4253 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4254 {
4255 pt_entry_t *ptep, pte;
4256 vm_paddr_t pa;
4257 int val;
4258
4259 PMAP_LOCK(pmap);
4260 retry:
4261 ptep = pmap_pte(pmap, addr);
4262 pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4263 pmap_pte_release(ptep);
4264 val = 0;
4265 if ((pte & PG_V) != 0) {
4266 val |= MINCORE_INCORE;
4267 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4268 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4269 if ((pte & PG_A) != 0)
4270 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4271 }
4272 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4273 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4274 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4275 pa = pte & PG_FRAME;
4276 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4277 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4278 goto retry;
4279 } else
4280 PA_UNLOCK_COND(*locked_pa);
4281 PMAP_UNLOCK(pmap);
4282 return (val);
4283 }
4284
4285 void
4286 pmap_activate(struct thread *td)
4287 {
4288 pmap_t pmap, oldpmap;
4289 u_int cpuid;
4290 u_int32_t cr3;
4291
4292 critical_enter();
4293 pmap = vmspace_pmap(td->td_proc->p_vmspace);
4294 oldpmap = PCPU_GET(curpmap);
4295 cpuid = PCPU_GET(cpuid);
4296 #if defined(SMP)
4297 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4298 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4299 #else
4300 CPU_CLR(cpuid, &oldpmap->pm_active);
4301 CPU_SET(cpuid, &pmap->pm_active);
4302 #endif
4303 #ifdef PAE
4304 cr3 = vtophys(pmap->pm_pdpt);
4305 #else
4306 cr3 = vtophys(pmap->pm_pdir);
4307 #endif
4308 /*
4309 * pmap_activate is for the current thread on the current cpu
4310 */
4311 td->td_pcb->pcb_cr3 = cr3;
4312 PT_UPDATES_FLUSH();
4313 load_cr3(cr3);
4314 PCPU_SET(curpmap, pmap);
4315 critical_exit();
4316 }
4317
4318 void
4319 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4320 {
4321 }
4322
4323 /*
4324 * Increase the starting virtual address of the given mapping if a
4325 * different alignment might result in more superpage mappings.
4326 */
4327 void
4328 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4329 vm_offset_t *addr, vm_size_t size)
4330 {
4331 vm_offset_t superpage_offset;
4332
4333 if (size < NBPDR)
4334 return;
4335 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4336 offset += ptoa(object->pg_color);
4337 superpage_offset = offset & PDRMASK;
4338 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4339 (*addr & PDRMASK) == superpage_offset)
4340 return;
4341 if ((*addr & PDRMASK) < superpage_offset)
4342 *addr = (*addr & ~PDRMASK) + superpage_offset;
4343 else
4344 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4345 }
4346
4347 void
4348 pmap_suspend()
4349 {
4350 pmap_t pmap;
4351 int i, pdir, offset;
4352 vm_paddr_t pdirma;
4353 mmu_update_t mu[4];
4354
4355 /*
4356 * We need to remove the recursive mapping structure from all
4357 * our pmaps so that Xen doesn't get confused when it restores
4358 * the page tables. The recursive map lives at page directory
4359 * index PTDPTDI. We assume that the suspend code has stopped
4360 * the other vcpus (if any).
4361 */
4362 LIST_FOREACH(pmap, &allpmaps, pm_list) {
4363 for (i = 0; i < 4; i++) {
4364 /*
4365 * Figure out which page directory (L2) page
4366 * contains this bit of the recursive map and
4367 * the offset within that page of the map
4368 * entry
4369 */
4370 pdir = (PTDPTDI + i) / NPDEPG;
4371 offset = (PTDPTDI + i) % NPDEPG;
4372 pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4373 mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4374 mu[i].val = 0;
4375 }
4376 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4377 }
4378 }
4379
4380 void
4381 pmap_resume()
4382 {
4383 pmap_t pmap;
4384 int i, pdir, offset;
4385 vm_paddr_t pdirma;
4386 mmu_update_t mu[4];
4387
4388 /*
4389 * Restore the recursive map that we removed on suspend.
4390 */
4391 LIST_FOREACH(pmap, &allpmaps, pm_list) {
4392 for (i = 0; i < 4; i++) {
4393 /*
4394 * Figure out which page directory (L2) page
4395 * contains this bit of the recursive map and
4396 * the offset within that page of the map
4397 * entry
4398 */
4399 pdir = (PTDPTDI + i) / NPDEPG;
4400 offset = (PTDPTDI + i) % NPDEPG;
4401 pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4402 mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4403 mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4404 }
4405 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4406 }
4407 }
4408
4409 #if defined(PMAP_DEBUG)
4410 pmap_pid_dump(int pid)
4411 {
4412 pmap_t pmap;
4413 struct proc *p;
4414 int npte = 0;
4415 int index;
4416
4417 sx_slock(&allproc_lock);
4418 FOREACH_PROC_IN_SYSTEM(p) {
4419 if (p->p_pid != pid)
4420 continue;
4421
4422 if (p->p_vmspace) {
4423 int i,j;
4424 index = 0;
4425 pmap = vmspace_pmap(p->p_vmspace);
4426 for (i = 0; i < NPDEPTD; i++) {
4427 pd_entry_t *pde;
4428 pt_entry_t *pte;
4429 vm_offset_t base = i << PDRSHIFT;
4430
4431 pde = &pmap->pm_pdir[i];
4432 if (pde && pmap_pde_v(pde)) {
4433 for (j = 0; j < NPTEPG; j++) {
4434 vm_offset_t va = base + (j << PAGE_SHIFT);
4435 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4436 if (index) {
4437 index = 0;
4438 printf("\n");
4439 }
4440 sx_sunlock(&allproc_lock);
4441 return (npte);
4442 }
4443 pte = pmap_pte(pmap, va);
4444 if (pte && pmap_pte_v(pte)) {
4445 pt_entry_t pa;
4446 vm_page_t m;
4447 pa = PT_GET(pte);
4448 m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4449 printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4450 va, pa, m->hold_count, m->wire_count, m->flags);
4451 npte++;
4452 index++;
4453 if (index >= 2) {
4454 index = 0;
4455 printf("\n");
4456 } else {
4457 printf(" ");
4458 }
4459 }
4460 }
4461 }
4462 }
4463 }
4464 }
4465 sx_sunlock(&allproc_lock);
4466 return (npte);
4467 }
4468 #endif
4469
4470 #if defined(DEBUG)
4471
4472 static void pads(pmap_t pm);
4473 void pmap_pvdump(vm_paddr_t pa);
4474
4475 /* print address space of pmap*/
4476 static void
4477 pads(pmap_t pm)
4478 {
4479 int i, j;
4480 vm_paddr_t va;
4481 pt_entry_t *ptep;
4482
4483 if (pm == kernel_pmap)
4484 return;
4485 for (i = 0; i < NPDEPTD; i++)
4486 if (pm->pm_pdir[i])
4487 for (j = 0; j < NPTEPG; j++) {
4488 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4489 if (pm == kernel_pmap && va < KERNBASE)
4490 continue;
4491 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4492 continue;
4493 ptep = pmap_pte(pm, va);
4494 if (pmap_pte_v(ptep))
4495 printf("%x:%x ", va, *ptep);
4496 };
4497
4498 }
4499
4500 void
4501 pmap_pvdump(vm_paddr_t pa)
4502 {
4503 pv_entry_t pv;
4504 pmap_t pmap;
4505 vm_page_t m;
4506
4507 printf("pa %x", pa);
4508 m = PHYS_TO_VM_PAGE(pa);
4509 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4510 pmap = PV_PMAP(pv);
4511 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4512 pads(pmap);
4513 }
4514 printf(" ");
4515 }
4516 #endif
Cache object: 20df474027b6bf022d460828a08ea8cf
|