The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/xen/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/10.1/sys/i386/xen/pmap.c 270920 2014-09-01 07:58:15Z kib $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      Since the information managed by this module is
   84  *      also stored by the logical address mapping module,
   85  *      this module may throw away valid virtual-to-physical
   86  *      mappings at almost any time.  However, invalidations
   87  *      of virtual-to-physical mappings must be done as
   88  *      requested.
   89  *
   90  *      In order to cope with hardware architectures which
   91  *      make virtual-to-physical map invalidates expensive,
   92  *      this module may delay invalidate or reduced protection
   93  *      operations until such time as they are actually
   94  *      necessary.  This module is given full information as
   95  *      to which processors are currently using which maps,
   96  *      and to when physical maps must be made correct.
   97  */
   98 
   99 #include "opt_cpu.h"
  100 #include "opt_pmap.h"
  101 #include "opt_smp.h"
  102 #include "opt_xbox.h"
  103 
  104 #include <sys/param.h>
  105 #include <sys/systm.h>
  106 #include <sys/kernel.h>
  107 #include <sys/ktr.h>
  108 #include <sys/lock.h>
  109 #include <sys/malloc.h>
  110 #include <sys/mman.h>
  111 #include <sys/msgbuf.h>
  112 #include <sys/mutex.h>
  113 #include <sys/proc.h>
  114 #include <sys/rwlock.h>
  115 #include <sys/sf_buf.h>
  116 #include <sys/sx.h>
  117 #include <sys/vmmeter.h>
  118 #include <sys/sched.h>
  119 #include <sys/sysctl.h>
  120 #ifdef SMP
  121 #include <sys/smp.h>
  122 #else
  123 #include <sys/cpuset.h>
  124 #endif
  125 
  126 #include <vm/vm.h>
  127 #include <vm/vm_param.h>
  128 #include <vm/vm_kern.h>
  129 #include <vm/vm_page.h>
  130 #include <vm/vm_map.h>
  131 #include <vm/vm_object.h>
  132 #include <vm/vm_extern.h>
  133 #include <vm/vm_pageout.h>
  134 #include <vm/vm_pager.h>
  135 #include <vm/uma.h>
  136 
  137 #include <machine/cpu.h>
  138 #include <machine/cputypes.h>
  139 #include <machine/md_var.h>
  140 #include <machine/pcb.h>
  141 #include <machine/specialreg.h>
  142 #ifdef SMP
  143 #include <machine/smp.h>
  144 #endif
  145 
  146 #ifdef XBOX
  147 #include <machine/xbox.h>
  148 #endif
  149 
  150 #include <xen/interface/xen.h>
  151 #include <xen/hypervisor.h>
  152 #include <machine/xen/hypercall.h>
  153 #include <machine/xen/xenvar.h>
  154 #include <machine/xen/xenfunc.h>
  155 
  156 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  157 #define CPU_ENABLE_SSE
  158 #endif
  159 
  160 #ifndef PMAP_SHPGPERPROC
  161 #define PMAP_SHPGPERPROC 200
  162 #endif
  163 
  164 #define DIAGNOSTIC
  165 
  166 #if !defined(DIAGNOSTIC)
  167 #ifdef __GNUC_GNU_INLINE__
  168 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  169 #else
  170 #define PMAP_INLINE     extern inline
  171 #endif
  172 #else
  173 #define PMAP_INLINE
  174 #endif
  175 
  176 #ifdef PV_STATS
  177 #define PV_STAT(x)      do { x ; } while (0)
  178 #else
  179 #define PV_STAT(x)      do { } while (0)
  180 #endif
  181 
  182 /*
  183  * Get PDEs and PTEs for user/kernel address space
  184  */
  185 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  186 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  187 
  188 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  189 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  190 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  191 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  192 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  193 
  194 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  195 
  196 #define HAMFISTED_LOCKING
  197 #ifdef HAMFISTED_LOCKING
  198 static struct mtx createdelete_lock;
  199 #endif
  200 
  201 struct pmap kernel_pmap_store;
  202 LIST_HEAD(pmaplist, pmap);
  203 static struct pmaplist allpmaps;
  204 static struct mtx allpmaps_lock;
  205 
  206 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  207 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  208 int pgeflag = 0;                /* PG_G or-in */
  209 int pseflag = 0;                /* PG_PS or-in */
  210 
  211 int nkpt;
  212 vm_offset_t kernel_vm_end;
  213 extern u_int32_t KERNend;
  214 
  215 #ifdef PAE
  216 pt_entry_t pg_nx;
  217 #endif
  218 
  219 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  220 
  221 static int pat_works;                   /* Is page attribute table sane? */
  222 
  223 /*
  224  * This lock is defined as static in other pmap implementations.  It cannot,
  225  * however, be defined as static here, because it is (ab)used to serialize
  226  * queued page table changes in other sources files.
  227  */
  228 struct rwlock pvh_global_lock;
  229 
  230 /*
  231  * Data for the pv entry allocation mechanism
  232  */
  233 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  234 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  235 static int shpgperproc = PMAP_SHPGPERPROC;
  236 
  237 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  238 int pv_maxchunks;                       /* How many chunks we have KVA for */
  239 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  240 
  241 /*
  242  * All those kernel PT submaps that BSD is so fond of
  243  */
  244 struct sysmaps {
  245         struct  mtx lock;
  246         pt_entry_t *CMAP1;
  247         pt_entry_t *CMAP2;
  248         caddr_t CADDR1;
  249         caddr_t CADDR2;
  250 };
  251 static struct sysmaps sysmaps_pcpu[MAXCPU];
  252 pt_entry_t *CMAP3;
  253 caddr_t ptvmmap = 0;
  254 caddr_t CADDR3;
  255 struct msgbuf *msgbufp = 0;
  256 
  257 /*
  258  * Crashdump maps.
  259  */
  260 static caddr_t crashdumpmap;
  261 
  262 static pt_entry_t *PMAP1 = 0, *PMAP2;
  263 static pt_entry_t *PADDR1 = 0, *PADDR2;
  264 #ifdef SMP
  265 static int PMAP1cpu;
  266 static int PMAP1changedcpu;
  267 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  268            &PMAP1changedcpu, 0,
  269            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  270 #endif
  271 static int PMAP1changed;
  272 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  273            &PMAP1changed, 0,
  274            "Number of times pmap_pte_quick changed PMAP1");
  275 static int PMAP1unchanged;
  276 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  277            &PMAP1unchanged, 0,
  278            "Number of times pmap_pte_quick didn't change PMAP1");
  279 static struct mtx PMAP2mutex;
  280 
  281 static void     free_pv_chunk(struct pv_chunk *pc);
  282 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  283 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  284 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  285 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  286                     vm_offset_t va);
  287 
  288 static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
  289     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  290 static void pmap_flush_page(vm_page_t m);
  291 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  292 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  293     vm_page_t *free);
  294 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  295     vm_page_t *free);
  296 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  297                                         vm_offset_t va);
  298 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  299     vm_page_t m);
  300 
  301 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  302 
  303 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
  304 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
  305 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  306 static void pmap_pte_release(pt_entry_t *pte);
  307 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  308 static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
  309 
  310 static __inline void pagezero(void *page);
  311 
  312 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  313 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  314 
  315 /*
  316  * If you get an error here, then you set KVA_PAGES wrong! See the
  317  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  318  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  319  */
  320 CTASSERT(KERNBASE % (1 << 24) == 0);
  321 
  322 void 
  323 pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
  324 {
  325         vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
  326         
  327         switch (type) {
  328         case SH_PD_SET_VA:
  329 #if 0           
  330                 xen_queue_pt_update(shadow_pdir_ma,
  331                                     xpmap_ptom(val & ~(PG_RW)));
  332 #endif          
  333                 xen_queue_pt_update(pdir_ma,
  334                                     xpmap_ptom(val));   
  335                 break;
  336         case SH_PD_SET_VA_MA:
  337 #if 0           
  338                 xen_queue_pt_update(shadow_pdir_ma,
  339                                     val & ~(PG_RW));
  340 #endif          
  341                 xen_queue_pt_update(pdir_ma, val);      
  342                 break;
  343         case SH_PD_SET_VA_CLEAR:
  344 #if 0
  345                 xen_queue_pt_update(shadow_pdir_ma, 0);
  346 #endif          
  347                 xen_queue_pt_update(pdir_ma, 0);        
  348                 break;
  349         }
  350 }
  351 
  352 /*
  353  *      Bootstrap the system enough to run with virtual memory.
  354  *
  355  *      On the i386 this is called after mapping has already been enabled
  356  *      and just syncs the pmap module with what has already been done.
  357  *      [We can't call it easily with mapping off since the kernel is not
  358  *      mapped with PA == VA, hence we would have to relocate every address
  359  *      from the linked base (virtual) address "KERNBASE" to the actual
  360  *      (physical) address starting relative to 0]
  361  */
  362 void
  363 pmap_bootstrap(vm_paddr_t firstaddr)
  364 {
  365         vm_offset_t va;
  366         pt_entry_t *pte, *unused;
  367         struct sysmaps *sysmaps;
  368         int i;
  369 
  370         /*
  371          * Initialize the first available kernel virtual address.  However,
  372          * using "firstaddr" may waste a few pages of the kernel virtual
  373          * address space, because locore may not have mapped every physical
  374          * page that it allocated.  Preferably, locore would provide a first
  375          * unused virtual address in addition to "firstaddr".
  376          */
  377         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  378 
  379         virtual_end = VM_MAX_KERNEL_ADDRESS;
  380 
  381         /*
  382          * Initialize the kernel pmap (which is statically allocated).
  383          */
  384         PMAP_LOCK_INIT(kernel_pmap);
  385         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  386 #ifdef PAE
  387         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  388 #endif
  389         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  390         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  391 
  392         /*
  393          * Initialize the global pv list lock.
  394          */
  395         rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
  396 
  397         LIST_INIT(&allpmaps);
  398         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  399         mtx_lock_spin(&allpmaps_lock);
  400         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  401         mtx_unlock_spin(&allpmaps_lock);
  402         if (nkpt == 0)
  403                 nkpt = NKPT;
  404 
  405         /*
  406          * Reserve some special page table entries/VA space for temporary
  407          * mapping of pages.
  408          */
  409 #define SYSMAP(c, p, v, n)      \
  410         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  411 
  412         va = virtual_avail;
  413         pte = vtopte(va);
  414 
  415         /*
  416          * CMAP1/CMAP2 are used for zeroing and copying pages.
  417          * CMAP3 is used for the idle process page zeroing.
  418          */
  419         for (i = 0; i < MAXCPU; i++) {
  420                 sysmaps = &sysmaps_pcpu[i];
  421                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  422                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  423                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  424                 PT_SET_MA(sysmaps->CADDR1, 0);
  425                 PT_SET_MA(sysmaps->CADDR2, 0);
  426         }
  427         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  428         PT_SET_MA(CADDR3, 0);
  429 
  430         /*
  431          * Crashdump maps.
  432          */
  433         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  434 
  435         /*
  436          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  437          */
  438         SYSMAP(caddr_t, unused, ptvmmap, 1)
  439 
  440         /*
  441          * msgbufp is used to map the system message buffer.
  442          */
  443         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  444 
  445         /*
  446          * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
  447          * respectively.
  448          */
  449         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  450         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  451 
  452         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  453 
  454         virtual_avail = va;
  455 
  456         /*
  457          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  458          * physical memory region that is used by the ACPI wakeup code.  This
  459          * mapping must not have PG_G set. 
  460          */
  461 #ifndef XEN
  462         /*
  463          * leave here deliberately to show that this is not supported
  464          */
  465 #ifdef XBOX
  466         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  467          * an early stadium, we cannot yet neatly map video memory ... :-(
  468          * Better fixes are very welcome! */
  469         if (!arch_i386_is_xbox)
  470 #endif
  471         for (i = 1; i < NKPT; i++)
  472                 PTD[i] = 0;
  473 
  474         /* Initialize the PAT MSR if present. */
  475         pmap_init_pat();
  476 
  477         /* Turn on PG_G on kernel page(s) */
  478         pmap_set_pg();
  479 #endif
  480 
  481 #ifdef HAMFISTED_LOCKING
  482         mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
  483 #endif
  484 }
  485 
  486 /*
  487  * Setup the PAT MSR.
  488  */
  489 void
  490 pmap_init_pat(void)
  491 {
  492         uint64_t pat_msr;
  493 
  494         /* Bail if this CPU doesn't implement PAT. */
  495         if (!(cpu_feature & CPUID_PAT))
  496                 return;
  497 
  498         if (cpu_vendor_id != CPU_VENDOR_INTEL ||
  499             (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
  500                 /*
  501                  * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
  502                  * Program 4 and 5 as WP and WC.
  503                  * Leave 6 and 7 as UC and UC-.
  504                  */
  505                 pat_msr = rdmsr(MSR_PAT);
  506                 pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
  507                 pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
  508                     PAT_VALUE(5, PAT_WRITE_COMBINING);
  509                 pat_works = 1;
  510         } else {
  511                 /*
  512                  * Due to some Intel errata, we can only safely use the lower 4
  513                  * PAT entries.  Thus, just replace PAT Index 2 with WC instead
  514                  * of UC-.
  515                  *
  516                  *   Intel Pentium III Processor Specification Update
  517                  * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  518                  * or Mode C Paging)
  519                  *
  520                  *   Intel Pentium IV  Processor Specification Update
  521                  * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  522                  */
  523                 pat_msr = rdmsr(MSR_PAT);
  524                 pat_msr &= ~PAT_MASK(2);
  525                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  526                 pat_works = 0;
  527         }
  528         wrmsr(MSR_PAT, pat_msr);
  529 }
  530 
  531 /*
  532  * Initialize a vm_page's machine-dependent fields.
  533  */
  534 void
  535 pmap_page_init(vm_page_t m)
  536 {
  537 
  538         TAILQ_INIT(&m->md.pv_list);
  539         m->md.pat_mode = PAT_WRITE_BACK;
  540 }
  541 
  542 /*
  543  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  544  * Requirements:
  545  *  - Must deal with pages in order to ensure that none of the PG_* bits
  546  *    are ever set, PG_V in particular.
  547  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  548  *    on PAE systems.  This should be ok.
  549  *  - Assumes nothing will ever test these addresses for 0 to indicate
  550  *    no mapping instead of correctly checking PG_V.
  551  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  552  * Because PG_V is never set, there can be no mappings to invalidate.
  553  */
  554 static int ptelist_count = 0;
  555 static vm_offset_t
  556 pmap_ptelist_alloc(vm_offset_t *head)
  557 {
  558         vm_offset_t va;
  559         vm_offset_t *phead = (vm_offset_t *)*head;
  560         
  561         if (ptelist_count == 0) {
  562                 printf("out of memory!!!!!!\n");
  563                 return (0);     /* Out of memory */
  564         }
  565         ptelist_count--;
  566         va = phead[ptelist_count];
  567         return (va);
  568 }
  569 
  570 static void
  571 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  572 {
  573         vm_offset_t *phead = (vm_offset_t *)*head;
  574 
  575         phead[ptelist_count++] = va;
  576 }
  577 
  578 static void
  579 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  580 {
  581         int i, nstackpages;
  582         vm_offset_t va;
  583         vm_page_t m;
  584         
  585         nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
  586         for (i = 0; i < nstackpages; i++) {
  587                 va = (vm_offset_t)base + i * PAGE_SIZE;
  588                 m = vm_page_alloc(NULL, i,
  589                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
  590                     VM_ALLOC_ZERO);
  591                 pmap_qenter(va, &m, 1);
  592         }
  593 
  594         *head = (vm_offset_t)base;
  595         for (i = npages - 1; i >= nstackpages; i--) {
  596                 va = (vm_offset_t)base + i * PAGE_SIZE;
  597                 pmap_ptelist_free(head, va);
  598         }
  599 }
  600 
  601 
  602 /*
  603  *      Initialize the pmap module.
  604  *      Called by vm_init, to initialize any structures that the pmap
  605  *      system needs to map virtual memory.
  606  */
  607 void
  608 pmap_init(void)
  609 {
  610 
  611         /*
  612          * Initialize the address space (zone) for the pv entries.  Set a
  613          * high water mark so that the system can recover from excessive
  614          * numbers of pv entries.
  615          */
  616         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  617         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  618         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  619         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  620         pv_entry_high_water = 9 * (pv_entry_max / 10);
  621 
  622         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  623         pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
  624         if (pv_chunkbase == NULL)
  625                 panic("pmap_init: not enough kvm for pv chunks");
  626         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  627 }
  628 
  629 
  630 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  631         "Max number of PV entries");
  632 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  633         "Page share factor per proc");
  634 
  635 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  636     "2/4MB page mapping counters");
  637 
  638 static u_long pmap_pde_mappings;
  639 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  640     &pmap_pde_mappings, 0, "2/4MB page mappings");
  641 
  642 /***************************************************
  643  * Low level helper routines.....
  644  ***************************************************/
  645 
  646 /*
  647  * Determine the appropriate bits to set in a PTE or PDE for a specified
  648  * caching mode.
  649  */
  650 int
  651 pmap_cache_bits(int mode, boolean_t is_pde)
  652 {
  653         int pat_flag, pat_index, cache_bits;
  654 
  655         /* The PAT bit is different for PTE's and PDE's. */
  656         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  657 
  658         /* If we don't support PAT, map extended modes to older ones. */
  659         if (!(cpu_feature & CPUID_PAT)) {
  660                 switch (mode) {
  661                 case PAT_UNCACHEABLE:
  662                 case PAT_WRITE_THROUGH:
  663                 case PAT_WRITE_BACK:
  664                         break;
  665                 case PAT_UNCACHED:
  666                 case PAT_WRITE_COMBINING:
  667                 case PAT_WRITE_PROTECTED:
  668                         mode = PAT_UNCACHEABLE;
  669                         break;
  670                 }
  671         }
  672         
  673         /* Map the caching mode to a PAT index. */
  674         if (pat_works) {
  675                 switch (mode) {
  676                         case PAT_UNCACHEABLE:
  677                                 pat_index = 3;
  678                                 break;
  679                         case PAT_WRITE_THROUGH:
  680                                 pat_index = 1;
  681                                 break;
  682                         case PAT_WRITE_BACK:
  683                                 pat_index = 0;
  684                                 break;
  685                         case PAT_UNCACHED:
  686                                 pat_index = 2;
  687                                 break;
  688                         case PAT_WRITE_COMBINING:
  689                                 pat_index = 5;
  690                                 break;
  691                         case PAT_WRITE_PROTECTED:
  692                                 pat_index = 4;
  693                                 break;
  694                         default:
  695                                 panic("Unknown caching mode %d\n", mode);
  696                 }
  697         } else {
  698                 switch (mode) {
  699                         case PAT_UNCACHED:
  700                         case PAT_UNCACHEABLE:
  701                         case PAT_WRITE_PROTECTED:
  702                                 pat_index = 3;
  703                                 break;
  704                         case PAT_WRITE_THROUGH:
  705                                 pat_index = 1;
  706                                 break;
  707                         case PAT_WRITE_BACK:
  708                                 pat_index = 0;
  709                                 break;
  710                         case PAT_WRITE_COMBINING:
  711                                 pat_index = 2;
  712                                 break;
  713                         default:
  714                                 panic("Unknown caching mode %d\n", mode);
  715                 }
  716         }       
  717 
  718         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  719         cache_bits = 0;
  720         if (pat_index & 0x4)
  721                 cache_bits |= pat_flag;
  722         if (pat_index & 0x2)
  723                 cache_bits |= PG_NC_PCD;
  724         if (pat_index & 0x1)
  725                 cache_bits |= PG_NC_PWT;
  726         return (cache_bits);
  727 }
  728 #ifdef SMP
  729 /*
  730  * For SMP, these functions have to use the IPI mechanism for coherence.
  731  *
  732  * N.B.: Before calling any of the following TLB invalidation functions,
  733  * the calling processor must ensure that all stores updating a non-
  734  * kernel page table are globally performed.  Otherwise, another
  735  * processor could cache an old, pre-update entry without being
  736  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  737  * active on another processor after its pm_active field is checked by
  738  * one of the following functions but before a store updating the page
  739  * table is globally performed. (2) The pmap becomes active on another
  740  * processor before its pm_active field is checked but due to
  741  * speculative loads one of the following functions stills reads the
  742  * pmap as inactive on the other processor.
  743  * 
  744  * The kernel page table is exempt because its pm_active field is
  745  * immutable.  The kernel page table is always active on every
  746  * processor.
  747  */
  748 void
  749 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  750 {
  751         cpuset_t other_cpus;
  752         u_int cpuid;
  753 
  754         CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
  755             pmap, va);
  756         
  757         sched_pin();
  758         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  759                 invlpg(va);
  760                 smp_invlpg(va);
  761         } else {
  762                 cpuid = PCPU_GET(cpuid);
  763                 other_cpus = all_cpus;
  764                 CPU_CLR(cpuid, &other_cpus);
  765                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  766                         invlpg(va);
  767                 CPU_AND(&other_cpus, &pmap->pm_active);
  768                 if (!CPU_EMPTY(&other_cpus))
  769                         smp_masked_invlpg(other_cpus, va);
  770         }
  771         sched_unpin();
  772         PT_UPDATES_FLUSH();
  773 }
  774 
  775 void
  776 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  777 {
  778         cpuset_t other_cpus;
  779         vm_offset_t addr;
  780         u_int cpuid;
  781 
  782         CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
  783             pmap, sva, eva);
  784 
  785         sched_pin();
  786         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  787                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  788                         invlpg(addr);
  789                 smp_invlpg_range(sva, eva);
  790         } else {
  791                 cpuid = PCPU_GET(cpuid);
  792                 other_cpus = all_cpus;
  793                 CPU_CLR(cpuid, &other_cpus);
  794                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  795                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  796                                 invlpg(addr);
  797                 CPU_AND(&other_cpus, &pmap->pm_active);
  798                 if (!CPU_EMPTY(&other_cpus))
  799                         smp_masked_invlpg_range(other_cpus, sva, eva);
  800         }
  801         sched_unpin();
  802         PT_UPDATES_FLUSH();
  803 }
  804 
  805 void
  806 pmap_invalidate_all(pmap_t pmap)
  807 {
  808         cpuset_t other_cpus;
  809         u_int cpuid;
  810 
  811         CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
  812 
  813         sched_pin();
  814         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  815                 invltlb();
  816                 smp_invltlb();
  817         } else {
  818                 cpuid = PCPU_GET(cpuid);
  819                 other_cpus = all_cpus;
  820                 CPU_CLR(cpuid, &other_cpus);
  821                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  822                         invltlb();
  823                 CPU_AND(&other_cpus, &pmap->pm_active);
  824                 if (!CPU_EMPTY(&other_cpus))
  825                         smp_masked_invltlb(other_cpus);
  826         }
  827         sched_unpin();
  828 }
  829 
  830 void
  831 pmap_invalidate_cache(void)
  832 {
  833 
  834         sched_pin();
  835         wbinvd();
  836         smp_cache_flush();
  837         sched_unpin();
  838 }
  839 #else /* !SMP */
  840 /*
  841  * Normal, non-SMP, 486+ invalidation functions.
  842  * We inline these within pmap.c for speed.
  843  */
  844 PMAP_INLINE void
  845 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  846 {
  847         CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
  848             pmap, va);
  849 
  850         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
  851                 invlpg(va);
  852         PT_UPDATES_FLUSH();
  853 }
  854 
  855 PMAP_INLINE void
  856 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  857 {
  858         vm_offset_t addr;
  859 
  860         if (eva - sva > PAGE_SIZE)
  861                 CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
  862                     pmap, sva, eva);
  863 
  864         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
  865                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  866                         invlpg(addr);
  867         PT_UPDATES_FLUSH();
  868 }
  869 
  870 PMAP_INLINE void
  871 pmap_invalidate_all(pmap_t pmap)
  872 {
  873 
  874         CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
  875         
  876         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
  877                 invltlb();
  878 }
  879 
  880 PMAP_INLINE void
  881 pmap_invalidate_cache(void)
  882 {
  883 
  884         wbinvd();
  885 }
  886 #endif /* !SMP */
  887 
  888 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
  889 
  890 void
  891 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
  892 {
  893 
  894         KASSERT((sva & PAGE_MASK) == 0,
  895             ("pmap_invalidate_cache_range: sva not page-aligned"));
  896         KASSERT((eva & PAGE_MASK) == 0,
  897             ("pmap_invalidate_cache_range: eva not page-aligned"));
  898 
  899         if (cpu_feature & CPUID_SS)
  900                 ; /* If "Self Snoop" is supported, do nothing. */
  901         else if ((cpu_feature & CPUID_CLFSH) != 0 &&
  902             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
  903 
  904                 /*
  905                  * Otherwise, do per-cache line flush.  Use the mfence
  906                  * instruction to insure that previous stores are
  907                  * included in the write-back.  The processor
  908                  * propagates flush to other processors in the cache
  909                  * coherence domain.
  910                  */
  911                 mfence();
  912                 for (; sva < eva; sva += cpu_clflush_line_size)
  913                         clflush(sva);
  914                 mfence();
  915         } else {
  916 
  917                 /*
  918                  * No targeted cache flush methods are supported by CPU,
  919                  * or the supplied range is bigger than 2MB.
  920                  * Globally invalidate cache.
  921                  */
  922                 pmap_invalidate_cache();
  923         }
  924 }
  925 
  926 void
  927 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
  928 {
  929         int i;
  930 
  931         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
  932             (cpu_feature & CPUID_CLFSH) == 0) {
  933                 pmap_invalidate_cache();
  934         } else {
  935                 for (i = 0; i < count; i++)
  936                         pmap_flush_page(pages[i]);
  937         }
  938 }
  939 
  940 /*
  941  * Are we current address space or kernel?  N.B. We return FALSE when
  942  * a pmap's page table is in use because a kernel thread is borrowing
  943  * it.  The borrowed page table can change spontaneously, making any
  944  * dependence on its continued use subject to a race condition.
  945  */
  946 static __inline int
  947 pmap_is_current(pmap_t pmap)
  948 {
  949 
  950         return (pmap == kernel_pmap ||
  951             (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
  952             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
  953 }
  954 
  955 /*
  956  * If the given pmap is not the current or kernel pmap, the returned pte must
  957  * be released by passing it to pmap_pte_release().
  958  */
  959 pt_entry_t *
  960 pmap_pte(pmap_t pmap, vm_offset_t va)
  961 {
  962         pd_entry_t newpf;
  963         pd_entry_t *pde;
  964 
  965         pde = pmap_pde(pmap, va);
  966         if (*pde & PG_PS)
  967                 return (pde);
  968         if (*pde != 0) {
  969                 /* are we current address space or kernel? */
  970                 if (pmap_is_current(pmap))
  971                         return (vtopte(va));
  972                 mtx_lock(&PMAP2mutex);
  973                 newpf = *pde & PG_FRAME;
  974                 if ((*PMAP2 & PG_FRAME) != newpf) {
  975                         PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
  976                         CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
  977                             pmap, va, (*PMAP2 & 0xffffffff));
  978                 }
  979                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
  980         }
  981         return (NULL);
  982 }
  983 
  984 /*
  985  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
  986  * being NULL.
  987  */
  988 static __inline void
  989 pmap_pte_release(pt_entry_t *pte)
  990 {
  991 
  992         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
  993                 CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
  994                     *PMAP2);
  995                 rw_wlock(&pvh_global_lock);
  996                 PT_SET_VA(PMAP2, 0, TRUE);
  997                 rw_wunlock(&pvh_global_lock);
  998                 mtx_unlock(&PMAP2mutex);
  999         }
 1000 }
 1001 
 1002 static __inline void
 1003 invlcaddr(void *caddr)
 1004 {
 1005 
 1006         invlpg((u_int)caddr);
 1007         PT_UPDATES_FLUSH();
 1008 }
 1009 
 1010 /*
 1011  * Super fast pmap_pte routine best used when scanning
 1012  * the pv lists.  This eliminates many coarse-grained
 1013  * invltlb calls.  Note that many of the pv list
 1014  * scans are across different pmaps.  It is very wasteful
 1015  * to do an entire invltlb for checking a single mapping.
 1016  *
 1017  * If the given pmap is not the current pmap, pvh_global_lock
 1018  * must be held and curthread pinned to a CPU.
 1019  */
 1020 static pt_entry_t *
 1021 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1022 {
 1023         pd_entry_t newpf;
 1024         pd_entry_t *pde;
 1025 
 1026         pde = pmap_pde(pmap, va);
 1027         if (*pde & PG_PS)
 1028                 return (pde);
 1029         if (*pde != 0) {
 1030                 /* are we current address space or kernel? */
 1031                 if (pmap_is_current(pmap))
 1032                         return (vtopte(va));
 1033                 rw_assert(&pvh_global_lock, RA_WLOCKED);
 1034                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1035                 newpf = *pde & PG_FRAME;
 1036                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1037                         PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
 1038                         CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
 1039                             pmap, va, (u_long)*PMAP1);
 1040                         
 1041 #ifdef SMP
 1042                         PMAP1cpu = PCPU_GET(cpuid);
 1043 #endif
 1044                         PMAP1changed++;
 1045                 } else
 1046 #ifdef SMP
 1047                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1048                         PMAP1cpu = PCPU_GET(cpuid);
 1049                         invlcaddr(PADDR1);
 1050                         PMAP1changedcpu++;
 1051                 } else
 1052 #endif
 1053                         PMAP1unchanged++;
 1054                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1055         }
 1056         return (0);
 1057 }
 1058 
 1059 /*
 1060  *      Routine:        pmap_extract
 1061  *      Function:
 1062  *              Extract the physical page address associated
 1063  *              with the given map/virtual_address pair.
 1064  */
 1065 vm_paddr_t 
 1066 pmap_extract(pmap_t pmap, vm_offset_t va)
 1067 {
 1068         vm_paddr_t rtval;
 1069         pt_entry_t *pte;
 1070         pd_entry_t pde;
 1071         pt_entry_t pteval;
 1072 
 1073         rtval = 0;
 1074         PMAP_LOCK(pmap);
 1075         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1076         if (pde != 0) {
 1077                 if ((pde & PG_PS) != 0) {
 1078                         rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
 1079                         PMAP_UNLOCK(pmap);
 1080                         return rtval;
 1081                 }
 1082                 pte = pmap_pte(pmap, va);
 1083                 pteval = *pte ? xpmap_mtop(*pte) : 0;
 1084                 rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
 1085                 pmap_pte_release(pte);
 1086         }
 1087         PMAP_UNLOCK(pmap);
 1088         return (rtval);
 1089 }
 1090 
 1091 /*
 1092  *      Routine:        pmap_extract_ma
 1093  *      Function:
 1094  *              Like pmap_extract, but returns machine address
 1095  */
 1096 vm_paddr_t 
 1097 pmap_extract_ma(pmap_t pmap, vm_offset_t va)
 1098 {
 1099         vm_paddr_t rtval;
 1100         pt_entry_t *pte;
 1101         pd_entry_t pde;
 1102 
 1103         rtval = 0;
 1104         PMAP_LOCK(pmap);
 1105         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1106         if (pde != 0) {
 1107                 if ((pde & PG_PS) != 0) {
 1108                         rtval = (pde & ~PDRMASK) | (va & PDRMASK);
 1109                         PMAP_UNLOCK(pmap);
 1110                         return rtval;
 1111                 }
 1112                 pte = pmap_pte(pmap, va);
 1113                 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1114                 pmap_pte_release(pte);
 1115         }
 1116         PMAP_UNLOCK(pmap);
 1117         return (rtval);
 1118 }
 1119 
 1120 /*
 1121  *      Routine:        pmap_extract_and_hold
 1122  *      Function:
 1123  *              Atomically extract and hold the physical page
 1124  *              with the given pmap and virtual address pair
 1125  *              if that mapping permits the given protection.
 1126  */
 1127 vm_page_t
 1128 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1129 {
 1130         pd_entry_t pde;
 1131         pt_entry_t pte, *ptep;
 1132         vm_page_t m;
 1133         vm_paddr_t pa;
 1134 
 1135         pa = 0;
 1136         m = NULL;
 1137         PMAP_LOCK(pmap);
 1138 retry:
 1139         pde = PT_GET(pmap_pde(pmap, va));
 1140         if (pde != 0) {
 1141                 if (pde & PG_PS) {
 1142                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1143                                 if (vm_page_pa_tryrelock(pmap, (pde &
 1144                                     PG_PS_FRAME) | (va & PDRMASK), &pa))
 1145                                         goto retry;
 1146                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1147                                     (va & PDRMASK));
 1148                                 vm_page_hold(m);
 1149                         }
 1150                 } else {
 1151                         ptep = pmap_pte(pmap, va);
 1152                         pte = PT_GET(ptep);
 1153                         pmap_pte_release(ptep);
 1154                         if (pte != 0 &&
 1155                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1156                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 1157                                     &pa))
 1158                                         goto retry;
 1159                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1160                                 vm_page_hold(m);
 1161                         }
 1162                 }
 1163         }
 1164         PA_UNLOCK_COND(pa);
 1165         PMAP_UNLOCK(pmap);
 1166         return (m);
 1167 }
 1168 
 1169 /***************************************************
 1170  * Low level mapping routines.....
 1171  ***************************************************/
 1172 
 1173 /*
 1174  * Add a wired page to the kva.
 1175  * Note: not SMP coherent.
 1176  *
 1177  * This function may be used before pmap_bootstrap() is called.
 1178  */
 1179 void 
 1180 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1181 {
 1182 
 1183         PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
 1184 }
 1185 
 1186 void 
 1187 pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
 1188 {
 1189         pt_entry_t *pte;
 1190 
 1191         pte = vtopte(va);
 1192         pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
 1193 }
 1194 
 1195 static __inline void
 1196 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1197 {
 1198 
 1199         PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1200 }
 1201 
 1202 /*
 1203  * Remove a page from the kernel pagetables.
 1204  * Note: not SMP coherent.
 1205  *
 1206  * This function may be used before pmap_bootstrap() is called.
 1207  */
 1208 PMAP_INLINE void
 1209 pmap_kremove(vm_offset_t va)
 1210 {
 1211         pt_entry_t *pte;
 1212 
 1213         pte = vtopte(va);
 1214         PT_CLEAR_VA(pte, FALSE);
 1215 }
 1216 
 1217 /*
 1218  *      Used to map a range of physical addresses into kernel
 1219  *      virtual address space.
 1220  *
 1221  *      The value passed in '*virt' is a suggested virtual address for
 1222  *      the mapping. Architectures which can support a direct-mapped
 1223  *      physical to virtual region can return the appropriate address
 1224  *      within that region, leaving '*virt' unchanged. Other
 1225  *      architectures should map the pages starting at '*virt' and
 1226  *      update '*virt' with the first usable address after the mapped
 1227  *      region.
 1228  */
 1229 vm_offset_t
 1230 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1231 {
 1232         vm_offset_t va, sva;
 1233 
 1234         va = sva = *virt;
 1235         CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
 1236             va, start, end, prot);
 1237         while (start < end) {
 1238                 pmap_kenter(va, start);
 1239                 va += PAGE_SIZE;
 1240                 start += PAGE_SIZE;
 1241         }
 1242         pmap_invalidate_range(kernel_pmap, sva, va);
 1243         *virt = va;
 1244         return (sva);
 1245 }
 1246 
 1247 
 1248 /*
 1249  * Add a list of wired pages to the kva
 1250  * this routine is only used for temporary
 1251  * kernel mappings that do not need to have
 1252  * page modification or references recorded.
 1253  * Note that old mappings are simply written
 1254  * over.  The page *must* be wired.
 1255  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1256  */
 1257 void
 1258 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1259 {
 1260         pt_entry_t *endpte, *pte;
 1261         vm_paddr_t pa;
 1262         vm_offset_t va = sva;
 1263         int mclcount = 0;
 1264         multicall_entry_t mcl[16];
 1265         multicall_entry_t *mclp = mcl;
 1266         int error;
 1267 
 1268         CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
 1269         pte = vtopte(sva);
 1270         endpte = pte + count;
 1271         while (pte < endpte) {
 1272                 pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
 1273 
 1274                 mclp->op = __HYPERVISOR_update_va_mapping;
 1275                 mclp->args[0] = va;
 1276                 mclp->args[1] = (uint32_t)(pa & 0xffffffff);
 1277                 mclp->args[2] = (uint32_t)(pa >> 32);
 1278                 mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
 1279         
 1280                 va += PAGE_SIZE;
 1281                 pte++;
 1282                 ma++;
 1283                 mclp++;
 1284                 mclcount++;
 1285                 if (mclcount == 16) {
 1286                         error = HYPERVISOR_multicall(mcl, mclcount);
 1287                         mclp = mcl;
 1288                         mclcount = 0;
 1289                         KASSERT(error == 0, ("bad multicall %d", error));
 1290                 }               
 1291         }
 1292         if (mclcount) {
 1293                 error = HYPERVISOR_multicall(mcl, mclcount);
 1294                 KASSERT(error == 0, ("bad multicall %d", error));
 1295         }
 1296         
 1297 #ifdef INVARIANTS
 1298         for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
 1299                 KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
 1300 #endif  
 1301 }
 1302 
 1303 /*
 1304  * This routine tears out page mappings from the
 1305  * kernel -- it is meant only for temporary mappings.
 1306  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1307  */
 1308 void
 1309 pmap_qremove(vm_offset_t sva, int count)
 1310 {
 1311         vm_offset_t va;
 1312 
 1313         CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
 1314         va = sva;
 1315         rw_wlock(&pvh_global_lock);
 1316         critical_enter();
 1317         while (count-- > 0) {
 1318                 pmap_kremove(va);
 1319                 va += PAGE_SIZE;
 1320         }
 1321         PT_UPDATES_FLUSH();
 1322         pmap_invalidate_range(kernel_pmap, sva, va);
 1323         critical_exit();
 1324         rw_wunlock(&pvh_global_lock);
 1325 }
 1326 
 1327 /***************************************************
 1328  * Page table page management routines.....
 1329  ***************************************************/
 1330 static __inline void
 1331 pmap_free_zero_pages(vm_page_t free)
 1332 {
 1333         vm_page_t m;
 1334 
 1335         while (free != NULL) {
 1336                 m = free;
 1337                 free = (void *)m->object;
 1338                 m->object = NULL;
 1339                 vm_page_free_zero(m);
 1340         }
 1341 }
 1342 
 1343 /*
 1344  * Decrements a page table page's wire count, which is used to record the
 1345  * number of valid page table entries within the page.  If the wire count
 1346  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 1347  * page table page was unmapped and FALSE otherwise.
 1348  */
 1349 static inline boolean_t
 1350 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1351 {
 1352 
 1353         --m->wire_count;
 1354         if (m->wire_count == 0) {
 1355                 _pmap_unwire_ptp(pmap, m, free);
 1356                 return (TRUE);
 1357         } else
 1358                 return (FALSE);
 1359 }
 1360 
 1361 static void
 1362 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1363 {
 1364         vm_offset_t pteva;
 1365 
 1366         PT_UPDATES_FLUSH();
 1367         /*
 1368          * unmap the page table page
 1369          */
 1370         xen_pt_unpin(pmap->pm_pdir[m->pindex]);
 1371         /*
 1372          * page *might* contain residual mapping :-/  
 1373          */
 1374         PD_CLEAR_VA(pmap, m->pindex, TRUE);
 1375         pmap_zero_page(m);
 1376         --pmap->pm_stats.resident_count;
 1377 
 1378         /*
 1379          * This is a release store so that the ordinary store unmapping
 1380          * the page table page is globally performed before TLB shoot-
 1381          * down is begun.
 1382          */
 1383         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1384 
 1385         /*
 1386          * Do an invltlb to make the invalidated mapping
 1387          * take effect immediately.
 1388          */
 1389         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1390         pmap_invalidate_page(pmap, pteva);
 1391 
 1392         /* 
 1393          * Put page on a list so that it is released after
 1394          * *ALL* TLB shootdown is done
 1395          */
 1396         m->object = (void *)*free;
 1397         *free = m;
 1398 }
 1399 
 1400 /*
 1401  * After removing a page table entry, this routine is used to
 1402  * conditionally free the page, and manage the hold/wire counts.
 1403  */
 1404 static int
 1405 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1406 {
 1407         pd_entry_t ptepde;
 1408         vm_page_t mpte;
 1409 
 1410         if (va >= VM_MAXUSER_ADDRESS)
 1411                 return (0);
 1412         ptepde = PT_GET(pmap_pde(pmap, va));
 1413         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1414         return (pmap_unwire_ptp(pmap, mpte, free));
 1415 }
 1416 
 1417 /*
 1418  * Initialize the pmap for the swapper process.
 1419  */
 1420 void
 1421 pmap_pinit0(pmap_t pmap)
 1422 {
 1423 
 1424         PMAP_LOCK_INIT(pmap);
 1425         /*
 1426          * Since the page table directory is shared with the kernel pmap,
 1427          * which is already included in the list "allpmaps", this pmap does
 1428          * not need to be inserted into that list.
 1429          */
 1430         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1431 #ifdef PAE
 1432         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1433 #endif
 1434         CPU_ZERO(&pmap->pm_active);
 1435         PCPU_SET(curpmap, pmap);
 1436         TAILQ_INIT(&pmap->pm_pvchunk);
 1437         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1438 }
 1439 
 1440 /*
 1441  * Initialize a preallocated and zeroed pmap structure,
 1442  * such as one in a vmspace structure.
 1443  */
 1444 int
 1445 pmap_pinit(pmap_t pmap)
 1446 {
 1447         vm_page_t m, ptdpg[NPGPTD + 1];
 1448         int npgptd = NPGPTD + 1;
 1449         int i;
 1450 
 1451 #ifdef HAMFISTED_LOCKING
 1452         mtx_lock(&createdelete_lock);
 1453 #endif
 1454 
 1455         /*
 1456          * No need to allocate page table space yet but we do need a valid
 1457          * page directory table.
 1458          */
 1459         if (pmap->pm_pdir == NULL) {
 1460                 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
 1461                 if (pmap->pm_pdir == NULL) {
 1462 #ifdef HAMFISTED_LOCKING
 1463                         mtx_unlock(&createdelete_lock);
 1464 #endif
 1465                         return (0);
 1466                 }
 1467 #ifdef PAE
 1468                 pmap->pm_pdpt = (pd_entry_t *)kva_alloc(1);
 1469 #endif
 1470         }
 1471 
 1472         /*
 1473          * allocate the page directory page(s)
 1474          */
 1475         for (i = 0; i < npgptd;) {
 1476                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 1477                     VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1478                 if (m == NULL)
 1479                         VM_WAIT;
 1480                 else {
 1481                         ptdpg[i++] = m;
 1482                 }
 1483         }
 1484 
 1485         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1486 
 1487         for (i = 0; i < NPGPTD; i++)
 1488                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1489                         pagezero(pmap->pm_pdir + (i * NPDEPG));
 1490 
 1491         mtx_lock_spin(&allpmaps_lock);
 1492         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1493         /* Copy the kernel page table directory entries. */
 1494         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1495         mtx_unlock_spin(&allpmaps_lock);
 1496 
 1497 #ifdef PAE
 1498         pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
 1499         if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
 1500                 bzero(pmap->pm_pdpt, PAGE_SIZE);
 1501         for (i = 0; i < NPGPTD; i++) {
 1502                 vm_paddr_t ma;
 1503                 
 1504                 ma = VM_PAGE_TO_MACH(ptdpg[i]);
 1505                 pmap->pm_pdpt[i] = ma | PG_V;
 1506 
 1507         }
 1508 #endif  
 1509         for (i = 0; i < NPGPTD; i++) {
 1510                 pt_entry_t *pd;
 1511                 vm_paddr_t ma;
 1512                 
 1513                 ma = VM_PAGE_TO_MACH(ptdpg[i]);
 1514                 pd = pmap->pm_pdir + (i * NPDEPG);
 1515                 PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
 1516 #if 0           
 1517                 xen_pgd_pin(ma);
 1518 #endif          
 1519         }
 1520         
 1521 #ifdef PAE      
 1522         PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
 1523 #endif
 1524         rw_wlock(&pvh_global_lock);
 1525         xen_flush_queue();
 1526         xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
 1527         for (i = 0; i < NPGPTD; i++) {
 1528                 vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
 1529                 PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
 1530         }
 1531         xen_flush_queue();
 1532         rw_wunlock(&pvh_global_lock);
 1533         CPU_ZERO(&pmap->pm_active);
 1534         TAILQ_INIT(&pmap->pm_pvchunk);
 1535         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1536 
 1537 #ifdef HAMFISTED_LOCKING
 1538         mtx_unlock(&createdelete_lock);
 1539 #endif
 1540         return (1);
 1541 }
 1542 
 1543 /*
 1544  * this routine is called if the page table page is not
 1545  * mapped correctly.
 1546  */
 1547 static vm_page_t
 1548 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
 1549 {
 1550         vm_paddr_t ptema;
 1551         vm_page_t m;
 1552 
 1553         /*
 1554          * Allocate a page table page.
 1555          */
 1556         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1557             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1558                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1559                         PMAP_UNLOCK(pmap);
 1560                         rw_wunlock(&pvh_global_lock);
 1561                         VM_WAIT;
 1562                         rw_wlock(&pvh_global_lock);
 1563                         PMAP_LOCK(pmap);
 1564                 }
 1565 
 1566                 /*
 1567                  * Indicate the need to retry.  While waiting, the page table
 1568                  * page may have been allocated.
 1569                  */
 1570                 return (NULL);
 1571         }
 1572         if ((m->flags & PG_ZERO) == 0)
 1573                 pmap_zero_page(m);
 1574 
 1575         /*
 1576          * Map the pagetable page into the process address space, if
 1577          * it isn't already there.
 1578          */
 1579 
 1580         pmap->pm_stats.resident_count++;
 1581 
 1582         ptema = VM_PAGE_TO_MACH(m);
 1583         xen_pt_pin(ptema);
 1584         PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
 1585                 (ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
 1586         
 1587         KASSERT(pmap->pm_pdir[ptepindex],
 1588             ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
 1589         return (m);
 1590 }
 1591 
 1592 static vm_page_t
 1593 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1594 {
 1595         u_int ptepindex;
 1596         pd_entry_t ptema;
 1597         vm_page_t m;
 1598 
 1599         /*
 1600          * Calculate pagetable page index
 1601          */
 1602         ptepindex = va >> PDRSHIFT;
 1603 retry:
 1604         /*
 1605          * Get the page directory entry
 1606          */
 1607         ptema = pmap->pm_pdir[ptepindex];
 1608 
 1609         /*
 1610          * This supports switching from a 4MB page to a
 1611          * normal 4K page.
 1612          */
 1613         if (ptema & PG_PS) {
 1614                 /*
 1615                  * XXX 
 1616                  */
 1617                 pmap->pm_pdir[ptepindex] = 0;
 1618                 ptema = 0;
 1619                 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1620                 pmap_invalidate_all(kernel_pmap);
 1621         }
 1622 
 1623         /*
 1624          * If the page table page is mapped, we just increment the
 1625          * hold count, and activate it.
 1626          */
 1627         if (ptema & PG_V) {
 1628                 m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
 1629                 m->wire_count++;
 1630         } else {
 1631                 /*
 1632                  * Here if the pte page isn't mapped, or if it has
 1633                  * been deallocated. 
 1634                  */
 1635                 CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
 1636                     pmap, va, flags);
 1637                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1638                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 1639                         goto retry;
 1640 
 1641                 KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
 1642         }
 1643         return (m);
 1644 }
 1645 
 1646 
 1647 /***************************************************
 1648 * Pmap allocation/deallocation routines.
 1649  ***************************************************/
 1650 
 1651 #ifdef SMP
 1652 /*
 1653  * Deal with a SMP shootdown of other users of the pmap that we are
 1654  * trying to dispose of.  This can be a bit hairy.
 1655  */
 1656 static cpuset_t *lazymask;
 1657 static u_int lazyptd;
 1658 static volatile u_int lazywait;
 1659 
 1660 void pmap_lazyfix_action(void);
 1661 
 1662 void
 1663 pmap_lazyfix_action(void)
 1664 {
 1665 
 1666 #ifdef COUNT_IPIS
 1667         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1668 #endif
 1669         if (rcr3() == lazyptd)
 1670                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1671         CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
 1672         atomic_store_rel_int(&lazywait, 1);
 1673 }
 1674 
 1675 static void
 1676 pmap_lazyfix_self(u_int cpuid)
 1677 {
 1678 
 1679         if (rcr3() == lazyptd)
 1680                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1681         CPU_CLR_ATOMIC(cpuid, lazymask);
 1682 }
 1683 
 1684 
 1685 static void
 1686 pmap_lazyfix(pmap_t pmap)
 1687 {
 1688         cpuset_t mymask, mask;
 1689         u_int cpuid, spins;
 1690         int lsb;
 1691 
 1692         mask = pmap->pm_active;
 1693         while (!CPU_EMPTY(&mask)) {
 1694                 spins = 50000000;
 1695 
 1696                 /* Find least significant set bit. */
 1697                 lsb = CPU_FFS(&mask);
 1698                 MPASS(lsb != 0);
 1699                 lsb--;
 1700                 CPU_SETOF(lsb, &mask);
 1701                 mtx_lock_spin(&smp_ipi_mtx);
 1702 #ifdef PAE
 1703                 lazyptd = vtophys(pmap->pm_pdpt);
 1704 #else
 1705                 lazyptd = vtophys(pmap->pm_pdir);
 1706 #endif
 1707                 cpuid = PCPU_GET(cpuid);
 1708 
 1709                 /* Use a cpuset just for having an easy check. */
 1710                 CPU_SETOF(cpuid, &mymask);
 1711                 if (!CPU_CMP(&mask, &mymask)) {
 1712                         lazymask = &pmap->pm_active;
 1713                         pmap_lazyfix_self(cpuid);
 1714                 } else {
 1715                         atomic_store_rel_int((u_int *)&lazymask,
 1716                             (u_int)&pmap->pm_active);
 1717                         atomic_store_rel_int(&lazywait, 0);
 1718                         ipi_selected(mask, IPI_LAZYPMAP);
 1719                         while (lazywait == 0) {
 1720                                 ia32_pause();
 1721                                 if (--spins == 0)
 1722                                         break;
 1723                         }
 1724                 }
 1725                 mtx_unlock_spin(&smp_ipi_mtx);
 1726                 if (spins == 0)
 1727                         printf("pmap_lazyfix: spun for 50000000\n");
 1728                 mask = pmap->pm_active;
 1729         }
 1730 }
 1731 
 1732 #else   /* SMP */
 1733 
 1734 /*
 1735  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1736  * unlikely to have to even execute this code, including the fact
 1737  * that the cleanup is deferred until the parent does a wait(2), which
 1738  * means that another userland process has run.
 1739  */
 1740 static void
 1741 pmap_lazyfix(pmap_t pmap)
 1742 {
 1743         u_int cr3;
 1744 
 1745         cr3 = vtophys(pmap->pm_pdir);
 1746         if (cr3 == rcr3()) {
 1747                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1748                 CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
 1749         }
 1750 }
 1751 #endif  /* SMP */
 1752 
 1753 /*
 1754  * Release any resources held by the given physical map.
 1755  * Called when a pmap initialized by pmap_pinit is being released.
 1756  * Should only be called if the map contains no valid mappings.
 1757  */
 1758 void
 1759 pmap_release(pmap_t pmap)
 1760 {
 1761         vm_page_t m, ptdpg[2*NPGPTD+1];
 1762         vm_paddr_t ma;
 1763         int i;
 1764 #ifdef PAE      
 1765         int npgptd = NPGPTD + 1;
 1766 #else
 1767         int npgptd = NPGPTD;
 1768 #endif
 1769 
 1770         KASSERT(pmap->pm_stats.resident_count == 0,
 1771             ("pmap_release: pmap resident count %ld != 0",
 1772             pmap->pm_stats.resident_count));
 1773         PT_UPDATES_FLUSH();
 1774 
 1775 #ifdef HAMFISTED_LOCKING
 1776         mtx_lock(&createdelete_lock);
 1777 #endif
 1778 
 1779         pmap_lazyfix(pmap);
 1780         mtx_lock_spin(&allpmaps_lock);
 1781         LIST_REMOVE(pmap, pm_list);
 1782         mtx_unlock_spin(&allpmaps_lock);
 1783 
 1784         for (i = 0; i < NPGPTD; i++)
 1785                 ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
 1786         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1787 #ifdef PAE
 1788         ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
 1789 #endif  
 1790 
 1791         for (i = 0; i < npgptd; i++) {
 1792                 m = ptdpg[i];
 1793                 ma = VM_PAGE_TO_MACH(m);
 1794                 /* unpinning L1 and L2 treated the same */
 1795 #if 0
 1796                 xen_pgd_unpin(ma);
 1797 #else
 1798                 if (i == NPGPTD)
 1799                         xen_pgd_unpin(ma);
 1800 #endif
 1801 #ifdef PAE
 1802                 if (i < NPGPTD)
 1803                         KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 1804                             ("pmap_release: got wrong ptd page"));
 1805 #endif
 1806                 m->wire_count--;
 1807                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1808                 vm_page_free(m);
 1809         }
 1810 #ifdef PAE
 1811         pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
 1812 #endif
 1813 
 1814 #ifdef HAMFISTED_LOCKING
 1815         mtx_unlock(&createdelete_lock);
 1816 #endif
 1817 }
 1818 
 1819 static int
 1820 kvm_size(SYSCTL_HANDLER_ARGS)
 1821 {
 1822         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1823 
 1824         return (sysctl_handle_long(oidp, &ksize, 0, req));
 1825 }
 1826 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1827     0, 0, kvm_size, "IU", "Size of KVM");
 1828 
 1829 static int
 1830 kvm_free(SYSCTL_HANDLER_ARGS)
 1831 {
 1832         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1833 
 1834         return (sysctl_handle_long(oidp, &kfree, 0, req));
 1835 }
 1836 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1837     0, 0, kvm_free, "IU", "Amount of KVM free");
 1838 
 1839 /*
 1840  * grow the number of kernel page table entries, if needed
 1841  */
 1842 void
 1843 pmap_growkernel(vm_offset_t addr)
 1844 {
 1845         struct pmap *pmap;
 1846         vm_paddr_t ptppaddr;
 1847         vm_page_t nkpg;
 1848         pd_entry_t newpdir;
 1849 
 1850         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1851         if (kernel_vm_end == 0) {
 1852                 kernel_vm_end = KERNBASE;
 1853                 nkpt = 0;
 1854                 while (pdir_pde(PTD, kernel_vm_end)) {
 1855                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1856                         nkpt++;
 1857                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1858                                 kernel_vm_end = kernel_map->max_offset;
 1859                                 break;
 1860                         }
 1861                 }
 1862         }
 1863         addr = roundup2(addr, NBPDR);
 1864         if (addr - 1 >= kernel_map->max_offset)
 1865                 addr = kernel_map->max_offset;
 1866         while (kernel_vm_end < addr) {
 1867                 if (pdir_pde(PTD, kernel_vm_end)) {
 1868                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1869                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1870                                 kernel_vm_end = kernel_map->max_offset;
 1871                                 break;
 1872                         }
 1873                         continue;
 1874                 }
 1875 
 1876                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 1877                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1878                     VM_ALLOC_ZERO);
 1879                 if (nkpg == NULL)
 1880                         panic("pmap_growkernel: no memory to grow kernel");
 1881 
 1882                 nkpt++;
 1883 
 1884                 if ((nkpg->flags & PG_ZERO) == 0)
 1885                         pmap_zero_page(nkpg);
 1886                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1887                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1888                 rw_wlock(&pvh_global_lock);
 1889                 PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
 1890                 mtx_lock_spin(&allpmaps_lock);
 1891                 LIST_FOREACH(pmap, &allpmaps, pm_list)
 1892                         PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
 1893 
 1894                 mtx_unlock_spin(&allpmaps_lock);
 1895                 rw_wunlock(&pvh_global_lock);
 1896 
 1897                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1898                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1899                         kernel_vm_end = kernel_map->max_offset;
 1900                         break;
 1901                 }
 1902         }
 1903 }
 1904 
 1905 
 1906 /***************************************************
 1907  * page management routines.
 1908  ***************************************************/
 1909 
 1910 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1911 CTASSERT(_NPCM == 11);
 1912 CTASSERT(_NPCPV == 336);
 1913 
 1914 static __inline struct pv_chunk *
 1915 pv_to_chunk(pv_entry_t pv)
 1916 {
 1917 
 1918         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 1919 }
 1920 
 1921 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1922 
 1923 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1924 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1925 
 1926 static const uint32_t pc_freemask[_NPCM] = {
 1927         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1928         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1929         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1930         PC_FREE0_9, PC_FREE10
 1931 };
 1932 
 1933 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1934         "Current number of pv entries");
 1935 
 1936 #ifdef PV_STATS
 1937 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1938 
 1939 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 1940         "Current number of pv entry chunks");
 1941 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 1942         "Current number of pv entry chunks allocated");
 1943 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 1944         "Current number of pv entry chunks frees");
 1945 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 1946         "Number of times tried to get a chunk page but failed.");
 1947 
 1948 static long pv_entry_frees, pv_entry_allocs;
 1949 static int pv_entry_spare;
 1950 
 1951 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 1952         "Current number of pv entry frees");
 1953 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 1954         "Current number of pv entry allocs");
 1955 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 1956         "Current number of spare pv entries");
 1957 #endif
 1958 
 1959 /*
 1960  * We are in a serious low memory condition.  Resort to
 1961  * drastic measures to free some pages so we can allocate
 1962  * another pv entry chunk.
 1963  */
 1964 static vm_page_t
 1965 pmap_pv_reclaim(pmap_t locked_pmap)
 1966 {
 1967         struct pch newtail;
 1968         struct pv_chunk *pc;
 1969         pmap_t pmap;
 1970         pt_entry_t *pte, tpte;
 1971         pv_entry_t pv;
 1972         vm_offset_t va;
 1973         vm_page_t free, m, m_pc;
 1974         uint32_t inuse;
 1975         int bit, field, freed;
 1976 
 1977         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 1978         pmap = NULL;
 1979         free = m_pc = NULL;
 1980         TAILQ_INIT(&newtail);
 1981         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
 1982             free == NULL)) {
 1983                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1984                 if (pmap != pc->pc_pmap) {
 1985                         if (pmap != NULL) {
 1986                                 pmap_invalidate_all(pmap);
 1987                                 if (pmap != locked_pmap)
 1988                                         PMAP_UNLOCK(pmap);
 1989                         }
 1990                         pmap = pc->pc_pmap;
 1991                         /* Avoid deadlock and lock recursion. */
 1992                         if (pmap > locked_pmap)
 1993                                 PMAP_LOCK(pmap);
 1994                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 1995                                 pmap = NULL;
 1996                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1997                                 continue;
 1998                         }
 1999                 }
 2000 
 2001                 /*
 2002                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 2003                  */
 2004                 freed = 0;
 2005                 for (field = 0; field < _NPCM; field++) {
 2006                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 2007                             inuse != 0; inuse &= ~(1UL << bit)) {
 2008                                 bit = bsfl(inuse);
 2009                                 pv = &pc->pc_pventry[field * 32 + bit];
 2010                                 va = pv->pv_va;
 2011                                 pte = pmap_pte(pmap, va);
 2012                                 tpte = *pte;
 2013                                 if ((tpte & PG_W) == 0)
 2014                                         tpte = pte_load_clear(pte);
 2015                                 pmap_pte_release(pte);
 2016                                 if ((tpte & PG_W) != 0)
 2017                                         continue;
 2018                                 KASSERT(tpte != 0,
 2019                                     ("pmap_pv_reclaim: pmap %p va %x zero pte",
 2020                                     pmap, va));
 2021                                 if ((tpte & PG_G) != 0)
 2022                                         pmap_invalidate_page(pmap, va);
 2023                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2024                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2025                                         vm_page_dirty(m);
 2026                                 if ((tpte & PG_A) != 0)
 2027                                         vm_page_aflag_set(m, PGA_REFERENCED);
 2028                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 2029                                 if (TAILQ_EMPTY(&m->md.pv_list))
 2030                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2031                                 pc->pc_map[field] |= 1UL << bit;
 2032                                 pmap_unuse_pt(pmap, va, &free);
 2033                                 freed++;
 2034                         }
 2035                 }
 2036                 if (freed == 0) {
 2037                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2038                         continue;
 2039                 }
 2040                 /* Every freed mapping is for a 4 KB page. */
 2041                 pmap->pm_stats.resident_count -= freed;
 2042                 PV_STAT(pv_entry_frees += freed);
 2043                 PV_STAT(pv_entry_spare += freed);
 2044                 pv_entry_count -= freed;
 2045                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2046                 for (field = 0; field < _NPCM; field++)
 2047                         if (pc->pc_map[field] != pc_freemask[field]) {
 2048                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2049                                     pc_list);
 2050                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2051 
 2052                                 /*
 2053                                  * One freed pv entry in locked_pmap is
 2054                                  * sufficient.
 2055                                  */
 2056                                 if (pmap == locked_pmap)
 2057                                         goto out;
 2058                                 break;
 2059                         }
 2060                 if (field == _NPCM) {
 2061                         PV_STAT(pv_entry_spare -= _NPCPV);
 2062                         PV_STAT(pc_chunk_count--);
 2063                         PV_STAT(pc_chunk_frees++);
 2064                         /* Entire chunk is free; return it. */
 2065                         m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2066                         pmap_qremove((vm_offset_t)pc, 1);
 2067                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2068                         break;
 2069                 }
 2070         }
 2071 out:
 2072         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 2073         if (pmap != NULL) {
 2074                 pmap_invalidate_all(pmap);
 2075                 if (pmap != locked_pmap)
 2076                         PMAP_UNLOCK(pmap);
 2077         }
 2078         if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
 2079                 m_pc = free;
 2080                 free = (void *)m_pc->object;
 2081                 /* Recycle a freed page table page. */
 2082                 m_pc->wire_count = 1;
 2083                 atomic_add_int(&cnt.v_wire_count, 1);
 2084         }
 2085         pmap_free_zero_pages(free);
 2086         return (m_pc);
 2087 }
 2088 
 2089 /*
 2090  * free the pv_entry back to the free list
 2091  */
 2092 static void
 2093 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2094 {
 2095         struct pv_chunk *pc;
 2096         int idx, field, bit;
 2097 
 2098         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2099         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2100         PV_STAT(pv_entry_frees++);
 2101         PV_STAT(pv_entry_spare++);
 2102         pv_entry_count--;
 2103         pc = pv_to_chunk(pv);
 2104         idx = pv - &pc->pc_pventry[0];
 2105         field = idx / 32;
 2106         bit = idx % 32;
 2107         pc->pc_map[field] |= 1ul << bit;
 2108         for (idx = 0; idx < _NPCM; idx++)
 2109                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2110                         /*
 2111                          * 98% of the time, pc is already at the head of the
 2112                          * list.  If it isn't already, move it to the head.
 2113                          */
 2114                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 2115                             pc)) {
 2116                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2117                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2118                                     pc_list);
 2119                         }
 2120                         return;
 2121                 }
 2122         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2123         free_pv_chunk(pc);
 2124 }
 2125 
 2126 static void
 2127 free_pv_chunk(struct pv_chunk *pc)
 2128 {
 2129         vm_page_t m;
 2130 
 2131         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2132         PV_STAT(pv_entry_spare -= _NPCPV);
 2133         PV_STAT(pc_chunk_count--);
 2134         PV_STAT(pc_chunk_frees++);
 2135         /* entire chunk is free, return it */
 2136         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2137         pmap_qremove((vm_offset_t)pc, 1);
 2138         vm_page_unwire(m, 0);
 2139         vm_page_free(m);
 2140         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2141 }
 2142 
 2143 /*
 2144  * get a new pv_entry, allocating a block from the system
 2145  * when needed.
 2146  */
 2147 static pv_entry_t
 2148 get_pv_entry(pmap_t pmap, boolean_t try)
 2149 {
 2150         static const struct timeval printinterval = { 60, 0 };
 2151         static struct timeval lastprint;
 2152         int bit, field;
 2153         pv_entry_t pv;
 2154         struct pv_chunk *pc;
 2155         vm_page_t m;
 2156 
 2157         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2158         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2159         PV_STAT(pv_entry_allocs++);
 2160         pv_entry_count++;
 2161         if (pv_entry_count > pv_entry_high_water)
 2162                 if (ratecheck(&lastprint, &printinterval))
 2163                         printf("Approaching the limit on PV entries, consider "
 2164                             "increasing either the vm.pmap.shpgperproc or the "
 2165                             "vm.pmap.pv_entry_max tunable.\n");
 2166 retry:
 2167         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2168         if (pc != NULL) {
 2169                 for (field = 0; field < _NPCM; field++) {
 2170                         if (pc->pc_map[field]) {
 2171                                 bit = bsfl(pc->pc_map[field]);
 2172                                 break;
 2173                         }
 2174                 }
 2175                 if (field < _NPCM) {
 2176                         pv = &pc->pc_pventry[field * 32 + bit];
 2177                         pc->pc_map[field] &= ~(1ul << bit);
 2178                         /* If this was the last item, move it to tail */
 2179                         for (field = 0; field < _NPCM; field++)
 2180                                 if (pc->pc_map[field] != 0) {
 2181                                         PV_STAT(pv_entry_spare--);
 2182                                         return (pv);    /* not full, return */
 2183                                 }
 2184                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2185                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2186                         PV_STAT(pv_entry_spare--);
 2187                         return (pv);
 2188                 }
 2189         }
 2190         /*
 2191          * Access to the ptelist "pv_vafree" is synchronized by the page
 2192          * queues lock.  If "pv_vafree" is currently non-empty, it will
 2193          * remain non-empty until pmap_ptelist_alloc() completes.
 2194          */
 2195         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 2196             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2197                 if (try) {
 2198                         pv_entry_count--;
 2199                         PV_STAT(pc_chunk_tryfail++);
 2200                         return (NULL);
 2201                 }
 2202                 m = pmap_pv_reclaim(pmap);
 2203                 if (m == NULL)
 2204                         goto retry;
 2205         }
 2206         PV_STAT(pc_chunk_count++);
 2207         PV_STAT(pc_chunk_allocs++);
 2208         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2209         pmap_qenter((vm_offset_t)pc, &m, 1);
 2210         if ((m->flags & PG_ZERO) == 0)
 2211                 pagezero(pc);
 2212         pc->pc_pmap = pmap;
 2213         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2214         for (field = 1; field < _NPCM; field++)
 2215                 pc->pc_map[field] = pc_freemask[field];
 2216         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 2217         pv = &pc->pc_pventry[0];
 2218         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2219         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2220         return (pv);
 2221 }
 2222 
 2223 static __inline pv_entry_t
 2224 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2225 {
 2226         pv_entry_t pv;
 2227 
 2228         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2229         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 2230                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2231                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 2232                         break;
 2233                 }
 2234         }
 2235         return (pv);
 2236 }
 2237 
 2238 static void
 2239 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2240 {
 2241         pv_entry_t pv;
 2242 
 2243         pv = pmap_pvh_remove(pvh, pmap, va);
 2244         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2245         free_pv_entry(pmap, pv);
 2246 }
 2247 
 2248 static void
 2249 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2250 {
 2251 
 2252         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2253         pmap_pvh_free(&m->md, pmap, va);
 2254         if (TAILQ_EMPTY(&m->md.pv_list))
 2255                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2256 }
 2257 
 2258 /*
 2259  * Conditionally create a pv entry.
 2260  */
 2261 static boolean_t
 2262 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2263 {
 2264         pv_entry_t pv;
 2265 
 2266         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2267         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2268         if (pv_entry_count < pv_entry_high_water && 
 2269             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2270                 pv->pv_va = va;
 2271                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2272                 return (TRUE);
 2273         } else
 2274                 return (FALSE);
 2275 }
 2276 
 2277 /*
 2278  * pmap_remove_pte: do the things to unmap a page in a process
 2279  */
 2280 static int
 2281 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 2282 {
 2283         pt_entry_t oldpte;
 2284         vm_page_t m;
 2285 
 2286         CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
 2287             pmap, (u_long)*ptq, va);
 2288         
 2289         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2290         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2291         oldpte = *ptq;
 2292         PT_SET_VA_MA(ptq, 0, TRUE);
 2293         KASSERT(oldpte != 0,
 2294             ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
 2295         if (oldpte & PG_W)
 2296                 pmap->pm_stats.wired_count -= 1;
 2297         /*
 2298          * Machines that don't support invlpg, also don't support
 2299          * PG_G.
 2300          */
 2301         if (oldpte & PG_G)
 2302                 pmap_invalidate_page(kernel_pmap, va);
 2303         pmap->pm_stats.resident_count -= 1;
 2304         if (oldpte & PG_MANAGED) {
 2305                 m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
 2306                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2307                         vm_page_dirty(m);
 2308                 if (oldpte & PG_A)
 2309                         vm_page_aflag_set(m, PGA_REFERENCED);
 2310                 pmap_remove_entry(pmap, m, va);
 2311         }
 2312         return (pmap_unuse_pt(pmap, va, free));
 2313 }
 2314 
 2315 /*
 2316  * Remove a single page from a process address space
 2317  */
 2318 static void
 2319 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 2320 {
 2321         pt_entry_t *pte;
 2322 
 2323         CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
 2324             pmap, va);
 2325         
 2326         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2327         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2328         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2329         if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
 2330                 return;
 2331         pmap_remove_pte(pmap, pte, va, free);
 2332         pmap_invalidate_page(pmap, va);
 2333         if (*PMAP1)
 2334                 PT_SET_MA(PADDR1, 0);
 2335 
 2336 }
 2337 
 2338 /*
 2339  *      Remove the given range of addresses from the specified map.
 2340  *
 2341  *      It is assumed that the start and end are properly
 2342  *      rounded to the page size.
 2343  */
 2344 void
 2345 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2346 {
 2347         vm_offset_t pdnxt;
 2348         pd_entry_t ptpaddr;
 2349         pt_entry_t *pte;
 2350         vm_page_t free = NULL;
 2351         int anyvalid;
 2352 
 2353         CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
 2354             pmap, sva, eva);
 2355 
 2356         /*
 2357          * Perform an unsynchronized read.  This is, however, safe.
 2358          */
 2359         if (pmap->pm_stats.resident_count == 0)
 2360                 return;
 2361 
 2362         anyvalid = 0;
 2363 
 2364         rw_wlock(&pvh_global_lock);
 2365         sched_pin();
 2366         PMAP_LOCK(pmap);
 2367 
 2368         /*
 2369          * special handling of removing one page.  a very
 2370          * common operation and easy to short circuit some
 2371          * code.
 2372          */
 2373         if ((sva + PAGE_SIZE == eva) && 
 2374             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2375                 pmap_remove_page(pmap, sva, &free);
 2376                 goto out;
 2377         }
 2378 
 2379         for (; sva < eva; sva = pdnxt) {
 2380                 u_int pdirindex;
 2381 
 2382                 /*
 2383                  * Calculate index for next page table.
 2384                  */
 2385                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2386                 if (pdnxt < sva)
 2387                         pdnxt = eva;
 2388                 if (pmap->pm_stats.resident_count == 0)
 2389                         break;
 2390 
 2391                 pdirindex = sva >> PDRSHIFT;
 2392                 ptpaddr = pmap->pm_pdir[pdirindex];
 2393 
 2394                 /*
 2395                  * Weed out invalid mappings. Note: we assume that the page
 2396                  * directory table is always allocated, and in kernel virtual.
 2397                  */
 2398                 if (ptpaddr == 0)
 2399                         continue;
 2400 
 2401                 /*
 2402                  * Check for large page.
 2403                  */
 2404                 if ((ptpaddr & PG_PS) != 0) {
 2405                         PD_CLEAR_VA(pmap, pdirindex, TRUE);
 2406                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2407                         anyvalid = 1;
 2408                         continue;
 2409                 }
 2410 
 2411                 /*
 2412                  * Limit our scan to either the end of the va represented
 2413                  * by the current page table page, or to the end of the
 2414                  * range being removed.
 2415                  */
 2416                 if (pdnxt > eva)
 2417                         pdnxt = eva;
 2418 
 2419                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2420                     sva += PAGE_SIZE) {
 2421                         if ((*pte & PG_V) == 0)
 2422                                 continue;
 2423 
 2424                         /*
 2425                          * The TLB entry for a PG_G mapping is invalidated
 2426                          * by pmap_remove_pte().
 2427                          */
 2428                         if ((*pte & PG_G) == 0)
 2429                                 anyvalid = 1;
 2430                         if (pmap_remove_pte(pmap, pte, sva, &free))
 2431                                 break;
 2432                 }
 2433         }
 2434         PT_UPDATES_FLUSH();
 2435         if (*PMAP1)
 2436                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2437 out:
 2438         if (anyvalid)
 2439                 pmap_invalidate_all(pmap);
 2440         sched_unpin();
 2441         rw_wunlock(&pvh_global_lock);
 2442         PMAP_UNLOCK(pmap);
 2443         pmap_free_zero_pages(free);
 2444 }
 2445 
 2446 /*
 2447  *      Routine:        pmap_remove_all
 2448  *      Function:
 2449  *              Removes this physical page from
 2450  *              all physical maps in which it resides.
 2451  *              Reflects back modify bits to the pager.
 2452  *
 2453  *      Notes:
 2454  *              Original versions of this routine were very
 2455  *              inefficient because they iteratively called
 2456  *              pmap_remove (slow...)
 2457  */
 2458 
 2459 void
 2460 pmap_remove_all(vm_page_t m)
 2461 {
 2462         pv_entry_t pv;
 2463         pmap_t pmap;
 2464         pt_entry_t *pte, tpte;
 2465         vm_page_t free;
 2466 
 2467         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2468             ("pmap_remove_all: page %p is not managed", m));
 2469         free = NULL;
 2470         rw_wlock(&pvh_global_lock);
 2471         sched_pin();
 2472         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2473                 pmap = PV_PMAP(pv);
 2474                 PMAP_LOCK(pmap);
 2475                 pmap->pm_stats.resident_count--;
 2476                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2477                 tpte = *pte;
 2478                 PT_SET_VA_MA(pte, 0, TRUE);
 2479                 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
 2480                     pmap, pv->pv_va));
 2481                 if (tpte & PG_W)
 2482                         pmap->pm_stats.wired_count--;
 2483                 if (tpte & PG_A)
 2484                         vm_page_aflag_set(m, PGA_REFERENCED);
 2485 
 2486                 /*
 2487                  * Update the vm_page_t clean and reference bits.
 2488                  */
 2489                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2490                         vm_page_dirty(m);
 2491                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2492                 pmap_invalidate_page(pmap, pv->pv_va);
 2493                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 2494                 free_pv_entry(pmap, pv);
 2495                 PMAP_UNLOCK(pmap);
 2496         }
 2497         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2498         PT_UPDATES_FLUSH();
 2499         if (*PMAP1)
 2500                 PT_SET_MA(PADDR1, 0);
 2501         sched_unpin();
 2502         rw_wunlock(&pvh_global_lock);
 2503         pmap_free_zero_pages(free);
 2504 }
 2505 
 2506 /*
 2507  *      Set the physical protection on the
 2508  *      specified range of this map as requested.
 2509  */
 2510 void
 2511 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 2512 {
 2513         vm_offset_t pdnxt;
 2514         pd_entry_t ptpaddr;
 2515         pt_entry_t *pte;
 2516         int anychanged;
 2517 
 2518         CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
 2519             pmap, sva, eva, prot);
 2520         
 2521         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 2522                 pmap_remove(pmap, sva, eva);
 2523                 return;
 2524         }
 2525 
 2526 #ifdef PAE
 2527         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 2528             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 2529                 return;
 2530 #else
 2531         if (prot & VM_PROT_WRITE)
 2532                 return;
 2533 #endif
 2534 
 2535         anychanged = 0;
 2536 
 2537         rw_wlock(&pvh_global_lock);
 2538         sched_pin();
 2539         PMAP_LOCK(pmap);
 2540         for (; sva < eva; sva = pdnxt) {
 2541                 pt_entry_t obits, pbits;
 2542                 u_int pdirindex;
 2543 
 2544                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2545                 if (pdnxt < sva)
 2546                         pdnxt = eva;
 2547 
 2548                 pdirindex = sva >> PDRSHIFT;
 2549                 ptpaddr = pmap->pm_pdir[pdirindex];
 2550 
 2551                 /*
 2552                  * Weed out invalid mappings. Note: we assume that the page
 2553                  * directory table is always allocated, and in kernel virtual.
 2554                  */
 2555                 if (ptpaddr == 0)
 2556                         continue;
 2557 
 2558                 /*
 2559                  * Check for large page.
 2560                  */
 2561                 if ((ptpaddr & PG_PS) != 0) {
 2562                         if ((prot & VM_PROT_WRITE) == 0)
 2563                                 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 2564 #ifdef PAE
 2565                         if ((prot & VM_PROT_EXECUTE) == 0)
 2566                                 pmap->pm_pdir[pdirindex] |= pg_nx;
 2567 #endif
 2568                         anychanged = 1;
 2569                         continue;
 2570                 }
 2571 
 2572                 if (pdnxt > eva)
 2573                         pdnxt = eva;
 2574 
 2575                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2576                     sva += PAGE_SIZE) {
 2577                         vm_page_t m;
 2578 
 2579 retry:
 2580                         /*
 2581                          * Regardless of whether a pte is 32 or 64 bits in
 2582                          * size, PG_RW, PG_A, and PG_M are among the least
 2583                          * significant 32 bits.
 2584                          */
 2585                         obits = pbits = *pte;
 2586                         if ((pbits & PG_V) == 0)
 2587                                 continue;
 2588 
 2589                         if ((prot & VM_PROT_WRITE) == 0) {
 2590                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 2591                                     (PG_MANAGED | PG_M | PG_RW)) {
 2592                                         m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
 2593                                             PG_FRAME);
 2594                                         vm_page_dirty(m);
 2595                                 }
 2596                                 pbits &= ~(PG_RW | PG_M);
 2597                         }
 2598 #ifdef PAE
 2599                         if ((prot & VM_PROT_EXECUTE) == 0)
 2600                                 pbits |= pg_nx;
 2601 #endif
 2602 
 2603                         if (pbits != obits) {
 2604                                 obits = *pte;
 2605                                 PT_SET_VA_MA(pte, pbits, TRUE);
 2606                                 if (*pte != pbits)
 2607                                         goto retry;
 2608                                 if (obits & PG_G)
 2609                                         pmap_invalidate_page(pmap, sva);
 2610                                 else
 2611                                         anychanged = 1;
 2612                         }
 2613                 }
 2614         }
 2615         PT_UPDATES_FLUSH();
 2616         if (*PMAP1)
 2617                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2618         if (anychanged)
 2619                 pmap_invalidate_all(pmap);
 2620         sched_unpin();
 2621         rw_wunlock(&pvh_global_lock);
 2622         PMAP_UNLOCK(pmap);
 2623 }
 2624 
 2625 /*
 2626  *      Insert the given physical page (p) at
 2627  *      the specified virtual address (v) in the
 2628  *      target physical map with the protection requested.
 2629  *
 2630  *      If specified, the page will be wired down, meaning
 2631  *      that the related pte can not be reclaimed.
 2632  *
 2633  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2634  *      or lose information.  That is, this routine must actually
 2635  *      insert this page into the given map NOW.
 2636  */
 2637 int
 2638 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2639     u_int flags, int8_t psind __unused)
 2640 {
 2641         pd_entry_t *pde;
 2642         pt_entry_t *pte;
 2643         pt_entry_t newpte, origpte;
 2644         pv_entry_t pv;
 2645         vm_paddr_t opa, pa;
 2646         vm_page_t mpte, om;
 2647         boolean_t invlva, wired;
 2648 
 2649         CTR5(KTR_PMAP,
 2650             "pmap_enter: pmap=%08p va=0x%08x ma=0x%08x prot=0x%x flags=0x%x",
 2651             pmap, va, VM_PAGE_TO_MACH(m), prot, flags);
 2652         va = trunc_page(va);
 2653         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 2654         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 2655             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 2656             va));
 2657         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 2658                 VM_OBJECT_ASSERT_LOCKED(m->object);
 2659 
 2660         mpte = NULL;
 2661         wired = (flags & PMAP_ENTER_WIRED) != 0;
 2662 
 2663         rw_wlock(&pvh_global_lock);
 2664         PMAP_LOCK(pmap);
 2665         sched_pin();
 2666 
 2667         /*
 2668          * In the case that a page table page is not
 2669          * resident, we are creating it here.
 2670          */
 2671         if (va < VM_MAXUSER_ADDRESS) {
 2672                 mpte = pmap_allocpte(pmap, va, flags);
 2673                 if (mpte == NULL) {
 2674                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 2675                             ("pmap_allocpte failed with sleep allowed"));
 2676                         sched_unpin();
 2677                         rw_wunlock(&pvh_global_lock);
 2678                         PMAP_UNLOCK(pmap);
 2679                         return (KERN_RESOURCE_SHORTAGE);
 2680                 }
 2681         }
 2682 
 2683         pde = pmap_pde(pmap, va);
 2684         if ((*pde & PG_PS) != 0)
 2685                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2686         pte = pmap_pte_quick(pmap, va);
 2687 
 2688         /*
 2689          * Page Directory table entry not valid, we need a new PT page
 2690          */
 2691         if (pte == NULL) {
 2692                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 2693                         (uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
 2694         }
 2695 
 2696         pa = VM_PAGE_TO_PHYS(m);
 2697         om = NULL;
 2698         opa = origpte = 0;
 2699 
 2700 #if 0
 2701         KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
 2702                 pte, *pte));
 2703 #endif
 2704         origpte = *pte;
 2705         if (origpte)
 2706                 origpte = xpmap_mtop(origpte);
 2707         opa = origpte & PG_FRAME;
 2708 
 2709         /*
 2710          * Mapping has not changed, must be protection or wiring change.
 2711          */
 2712         if (origpte && (opa == pa)) {
 2713                 /*
 2714                  * Wiring change, just update stats. We don't worry about
 2715                  * wiring PT pages as they remain resident as long as there
 2716                  * are valid mappings in them. Hence, if a user page is wired,
 2717                  * the PT page will be also.
 2718                  */
 2719                 if (wired && ((origpte & PG_W) == 0))
 2720                         pmap->pm_stats.wired_count++;
 2721                 else if (!wired && (origpte & PG_W))
 2722                         pmap->pm_stats.wired_count--;
 2723 
 2724                 /*
 2725                  * Remove extra pte reference
 2726                  */
 2727                 if (mpte)
 2728                         mpte->wire_count--;
 2729 
 2730                 if (origpte & PG_MANAGED) {
 2731                         om = m;
 2732                         pa |= PG_MANAGED;
 2733                 }
 2734                 goto validate;
 2735         } 
 2736 
 2737         pv = NULL;
 2738 
 2739         /*
 2740          * Mapping has changed, invalidate old range and fall through to
 2741          * handle validating new mapping.
 2742          */
 2743         if (opa) {
 2744                 if (origpte & PG_W)
 2745                         pmap->pm_stats.wired_count--;
 2746                 if (origpte & PG_MANAGED) {
 2747                         om = PHYS_TO_VM_PAGE(opa);
 2748                         pv = pmap_pvh_remove(&om->md, pmap, va);
 2749                 } else if (va < VM_MAXUSER_ADDRESS) 
 2750                         printf("va=0x%x is unmanaged :-( \n", va);
 2751                         
 2752                 if (mpte != NULL) {
 2753                         mpte->wire_count--;
 2754                         KASSERT(mpte->wire_count > 0,
 2755                             ("pmap_enter: missing reference to page table page,"
 2756                              " va: 0x%x", va));
 2757                 }
 2758         } else
 2759                 pmap->pm_stats.resident_count++;
 2760 
 2761         /*
 2762          * Enter on the PV list if part of our managed memory.
 2763          */
 2764         if ((m->oflags & VPO_UNMANAGED) == 0) {
 2765                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 2766                     ("pmap_enter: managed mapping within the clean submap"));
 2767                 if (pv == NULL)
 2768                         pv = get_pv_entry(pmap, FALSE);
 2769                 pv->pv_va = va;
 2770                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2771                 pa |= PG_MANAGED;
 2772         } else if (pv != NULL)
 2773                 free_pv_entry(pmap, pv);
 2774 
 2775         /*
 2776          * Increment counters
 2777          */
 2778         if (wired)
 2779                 pmap->pm_stats.wired_count++;
 2780 
 2781 validate:
 2782         /*
 2783          * Now validate mapping with desired protection/wiring.
 2784          */
 2785         newpte = (pt_entry_t)(pa | PG_V);
 2786         if ((prot & VM_PROT_WRITE) != 0) {
 2787                 newpte |= PG_RW;
 2788                 if ((newpte & PG_MANAGED) != 0)
 2789                         vm_page_aflag_set(m, PGA_WRITEABLE);
 2790         }
 2791 #ifdef PAE
 2792         if ((prot & VM_PROT_EXECUTE) == 0)
 2793                 newpte |= pg_nx;
 2794 #endif
 2795         if (wired)
 2796                 newpte |= PG_W;
 2797         if (va < VM_MAXUSER_ADDRESS)
 2798                 newpte |= PG_U;
 2799         if (pmap == kernel_pmap)
 2800                 newpte |= pgeflag;
 2801 
 2802         critical_enter();
 2803         /*
 2804          * if the mapping or permission bits are different, we need
 2805          * to update the pte.
 2806          */
 2807         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2808                 if (origpte) {
 2809                         invlva = FALSE;
 2810                         origpte = *pte;
 2811                         PT_SET_VA(pte, newpte | PG_A, FALSE);
 2812                         if (origpte & PG_A) {
 2813                                 if (origpte & PG_MANAGED)
 2814                                         vm_page_aflag_set(om, PGA_REFERENCED);
 2815                                 if (opa != VM_PAGE_TO_PHYS(m))
 2816                                         invlva = TRUE;
 2817 #ifdef PAE
 2818                                 if ((origpte & PG_NX) == 0 &&
 2819                                     (newpte & PG_NX) != 0)
 2820                                         invlva = TRUE;
 2821 #endif
 2822                         }
 2823                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 2824                                 if ((origpte & PG_MANAGED) != 0)
 2825                                         vm_page_dirty(om);
 2826                                 if ((prot & VM_PROT_WRITE) == 0)
 2827                                         invlva = TRUE;
 2828                         }
 2829                         if ((origpte & PG_MANAGED) != 0 &&
 2830                             TAILQ_EMPTY(&om->md.pv_list))
 2831                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2832                         if (invlva)
 2833                                 pmap_invalidate_page(pmap, va);
 2834                 } else{
 2835                         PT_SET_VA(pte, newpte | PG_A, FALSE);
 2836                 }
 2837                 
 2838         }
 2839         PT_UPDATES_FLUSH();
 2840         critical_exit();
 2841         if (*PMAP1)
 2842                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2843         sched_unpin();
 2844         rw_wunlock(&pvh_global_lock);
 2845         PMAP_UNLOCK(pmap);
 2846         return (KERN_SUCCESS);
 2847 }
 2848 
 2849 /*
 2850  * Maps a sequence of resident pages belonging to the same object.
 2851  * The sequence begins with the given page m_start.  This page is
 2852  * mapped at the given virtual address start.  Each subsequent page is
 2853  * mapped at a virtual address that is offset from start by the same
 2854  * amount as the page is offset from m_start within the object.  The
 2855  * last page in the sequence is the page with the largest offset from
 2856  * m_start that can be mapped at a virtual address less than the given
 2857  * virtual address end.  Not every virtual page between start and end
 2858  * is mapped; only those for which a resident page exists with the
 2859  * corresponding offset from m_start are mapped.
 2860  */
 2861 void
 2862 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2863     vm_page_t m_start, vm_prot_t prot)
 2864 {
 2865         vm_page_t m, mpte;
 2866         vm_pindex_t diff, psize;
 2867         multicall_entry_t mcl[16];
 2868         multicall_entry_t *mclp = mcl;
 2869         int error, count = 0;
 2870 
 2871         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 2872 
 2873         psize = atop(end - start);
 2874         mpte = NULL;
 2875         m = m_start;
 2876         rw_wlock(&pvh_global_lock);
 2877         PMAP_LOCK(pmap);
 2878         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2879                 mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
 2880                     prot, mpte);
 2881                 m = TAILQ_NEXT(m, listq);
 2882                 if (count == 16) {
 2883                         error = HYPERVISOR_multicall(mcl, count);
 2884                         KASSERT(error == 0, ("bad multicall %d", error));
 2885                         mclp = mcl;
 2886                         count = 0;
 2887                 }
 2888         }
 2889         if (count) {
 2890                 error = HYPERVISOR_multicall(mcl, count);
 2891                 KASSERT(error == 0, ("bad multicall %d", error));
 2892         }
 2893         rw_wunlock(&pvh_global_lock);
 2894         PMAP_UNLOCK(pmap);
 2895 }
 2896 
 2897 /*
 2898  * this code makes some *MAJOR* assumptions:
 2899  * 1. Current pmap & pmap exists.
 2900  * 2. Not wired.
 2901  * 3. Read access.
 2902  * 4. No page table pages.
 2903  * but is *MUCH* faster than pmap_enter...
 2904  */
 2905 
 2906 void
 2907 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2908 {
 2909         multicall_entry_t mcl, *mclp;
 2910         int count = 0;
 2911         mclp = &mcl;
 2912 
 2913         CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
 2914             pmap, va, m, prot);
 2915         
 2916         rw_wlock(&pvh_global_lock);
 2917         PMAP_LOCK(pmap);
 2918         (void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
 2919         if (count)
 2920                 HYPERVISOR_multicall(&mcl, count);
 2921         rw_wunlock(&pvh_global_lock);
 2922         PMAP_UNLOCK(pmap);
 2923 }
 2924 
 2925 #ifdef notyet
 2926 void
 2927 pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
 2928 {
 2929         int i, error, index = 0;
 2930         multicall_entry_t mcl[16];
 2931         multicall_entry_t *mclp = mcl;
 2932                 
 2933         PMAP_LOCK(pmap);
 2934         for (i = 0; i < count; i++, addrs++, pages++, prots++) {
 2935                 if (!pmap_is_prefaultable_locked(pmap, *addrs))
 2936                         continue;
 2937 
 2938                 (void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
 2939                 if (index == 16) {
 2940                         error = HYPERVISOR_multicall(mcl, index);
 2941                         mclp = mcl;
 2942                         index = 0;
 2943                         KASSERT(error == 0, ("bad multicall %d", error));
 2944                 }
 2945         }
 2946         if (index) {
 2947                 error = HYPERVISOR_multicall(mcl, index);
 2948                 KASSERT(error == 0, ("bad multicall %d", error));
 2949         }
 2950         
 2951         PMAP_UNLOCK(pmap);
 2952 }
 2953 #endif
 2954 
 2955 static vm_page_t
 2956 pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
 2957     vm_prot_t prot, vm_page_t mpte)
 2958 {
 2959         pt_entry_t *pte;
 2960         vm_paddr_t pa;
 2961         vm_page_t free;
 2962         multicall_entry_t *mcl = *mclpp;
 2963 
 2964         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2965             (m->oflags & VPO_UNMANAGED) != 0,
 2966             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2967         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2968         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2969 
 2970         /*
 2971          * In the case that a page table page is not
 2972          * resident, we are creating it here.
 2973          */
 2974         if (va < VM_MAXUSER_ADDRESS) {
 2975                 u_int ptepindex;
 2976                 pd_entry_t ptema;
 2977 
 2978                 /*
 2979                  * Calculate pagetable page index
 2980                  */
 2981                 ptepindex = va >> PDRSHIFT;
 2982                 if (mpte && (mpte->pindex == ptepindex)) {
 2983                         mpte->wire_count++;
 2984                 } else {
 2985                         /*
 2986                          * Get the page directory entry
 2987                          */
 2988                         ptema = pmap->pm_pdir[ptepindex];
 2989 
 2990                         /*
 2991                          * If the page table page is mapped, we just increment
 2992                          * the hold count, and activate it.
 2993                          */
 2994                         if (ptema & PG_V) {
 2995                                 if (ptema & PG_PS)
 2996                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2997                                 mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
 2998                                 mpte->wire_count++;
 2999                         } else {
 3000                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3001                                     PMAP_ENTER_NOSLEEP);
 3002                                 if (mpte == NULL)
 3003                                         return (mpte);
 3004                         }
 3005                 }
 3006         } else {
 3007                 mpte = NULL;
 3008         }
 3009 
 3010         /*
 3011          * This call to vtopte makes the assumption that we are
 3012          * entering the page into the current pmap.  In order to support
 3013          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3014          * But that isn't as quick as vtopte.
 3015          */
 3016         KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
 3017         pte = vtopte(va);
 3018         if (*pte & PG_V) {
 3019                 if (mpte != NULL) {
 3020                         mpte->wire_count--;
 3021                         mpte = NULL;
 3022                 }
 3023                 return (mpte);
 3024         }
 3025 
 3026         /*
 3027          * Enter on the PV list if part of our managed memory.
 3028          */
 3029         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 3030             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3031                 if (mpte != NULL) {
 3032                         free = NULL;
 3033                         if (pmap_unwire_ptp(pmap, mpte, &free)) {
 3034                                 pmap_invalidate_page(pmap, va);
 3035                                 pmap_free_zero_pages(free);
 3036                         }
 3037                         
 3038                         mpte = NULL;
 3039                 }
 3040                 return (mpte);
 3041         }
 3042 
 3043         /*
 3044          * Increment counters
 3045          */
 3046         pmap->pm_stats.resident_count++;
 3047 
 3048         pa = VM_PAGE_TO_PHYS(m);
 3049 #ifdef PAE
 3050         if ((prot & VM_PROT_EXECUTE) == 0)
 3051                 pa |= pg_nx;
 3052 #endif
 3053 
 3054 #if 0
 3055         /*
 3056          * Now validate mapping with RO protection
 3057          */
 3058         if ((m->oflags & VPO_UNMANAGED) != 0)
 3059                 pte_store(pte, pa | PG_V | PG_U);
 3060         else
 3061                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3062 #else
 3063         /*
 3064          * Now validate mapping with RO protection
 3065          */
 3066         if ((m->oflags & VPO_UNMANAGED) != 0)
 3067                 pa =    xpmap_ptom(pa | PG_V | PG_U);
 3068         else
 3069                 pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
 3070 
 3071         mcl->op = __HYPERVISOR_update_va_mapping;
 3072         mcl->args[0] = va;
 3073         mcl->args[1] = (uint32_t)(pa & 0xffffffff);
 3074         mcl->args[2] = (uint32_t)(pa >> 32);
 3075         mcl->args[3] = 0;
 3076         *mclpp = mcl + 1;
 3077         *count = *count + 1;
 3078 #endif  
 3079         return (mpte);
 3080 }
 3081 
 3082 /*
 3083  * Make a temporary mapping for a physical address.  This is only intended
 3084  * to be used for panic dumps.
 3085  */
 3086 void *
 3087 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3088 {
 3089         vm_offset_t va;
 3090         vm_paddr_t ma = xpmap_ptom(pa);
 3091 
 3092         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3093         PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
 3094         invlpg(va);
 3095         return ((void *)crashdumpmap);
 3096 }
 3097 
 3098 /*
 3099  * This code maps large physical mmap regions into the
 3100  * processor address space.  Note that some shortcuts
 3101  * are taken, but the code works.
 3102  */
 3103 void
 3104 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3105     vm_pindex_t pindex, vm_size_t size)
 3106 {
 3107         pd_entry_t *pde;
 3108         vm_paddr_t pa, ptepa;
 3109         vm_page_t p;
 3110         int pat_mode;
 3111 
 3112         VM_OBJECT_ASSERT_WLOCKED(object);
 3113         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3114             ("pmap_object_init_pt: non-device object"));
 3115         if (pseflag && 
 3116             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3117                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3118                         return;
 3119                 p = vm_page_lookup(object, pindex);
 3120                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3121                     ("pmap_object_init_pt: invalid page %p", p));
 3122                 pat_mode = p->md.pat_mode;
 3123 
 3124                 /*
 3125                  * Abort the mapping if the first page is not physically
 3126                  * aligned to a 2/4MB page boundary.
 3127                  */
 3128                 ptepa = VM_PAGE_TO_PHYS(p);
 3129                 if (ptepa & (NBPDR - 1))
 3130                         return;
 3131 
 3132                 /*
 3133                  * Skip the first page.  Abort the mapping if the rest of
 3134                  * the pages are not physically contiguous or have differing
 3135                  * memory attributes.
 3136                  */
 3137                 p = TAILQ_NEXT(p, listq);
 3138                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3139                     pa += PAGE_SIZE) {
 3140                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3141                             ("pmap_object_init_pt: invalid page %p", p));
 3142                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3143                             pat_mode != p->md.pat_mode)
 3144                                 return;
 3145                         p = TAILQ_NEXT(p, listq);
 3146                 }
 3147 
 3148                 /*
 3149                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3150                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3151                  * "pa" will not affect the termination of this loop.
 3152                  */
 3153                 PMAP_LOCK(pmap);
 3154                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3155                     size; pa += NBPDR) {
 3156                         pde = pmap_pde(pmap, addr);
 3157                         if (*pde == 0) {
 3158                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3159                                     PG_U | PG_RW | PG_V);
 3160                                 pmap->pm_stats.resident_count += NBPDR /
 3161                                     PAGE_SIZE;
 3162                                 pmap_pde_mappings++;
 3163                         }
 3164                         /* Else continue on if the PDE is already valid. */
 3165                         addr += NBPDR;
 3166                 }
 3167                 PMAP_UNLOCK(pmap);
 3168         }
 3169 }
 3170 
 3171 /*
 3172  *      Clear the wired attribute from the mappings for the specified range of
 3173  *      addresses in the given pmap.  Every valid mapping within that range
 3174  *      must have the wired attribute set.  In contrast, invalid mappings
 3175  *      cannot have the wired attribute set, so they are ignored.
 3176  *
 3177  *      The wired attribute of the page table entry is not a hardware feature,
 3178  *      so there is no need to invalidate any TLB entries.
 3179  */
 3180 void
 3181 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 3182 {
 3183         vm_offset_t pdnxt;
 3184         pd_entry_t *pde;
 3185         pt_entry_t *pte;
 3186 
 3187         CTR3(KTR_PMAP, "pmap_unwire: pmap=%p sva=0x%x eva=0x%x", pmap, sva,
 3188             eva);
 3189         rw_wlock(&pvh_global_lock);
 3190         sched_pin();
 3191         PMAP_LOCK(pmap);
 3192         for (; sva < eva; sva = pdnxt) {
 3193                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3194                 if (pdnxt < sva)
 3195                         pdnxt = eva;
 3196                 pde = pmap_pde(pmap, sva);
 3197                 if ((*pde & PG_V) == 0)
 3198                         continue;
 3199                 if ((*pde & PG_PS) != 0)
 3200                         panic("pmap_unwire: unexpected PG_PS in pde %#jx",
 3201                             (uintmax_t)*pde);
 3202                 if (pdnxt > eva)
 3203                         pdnxt = eva;
 3204                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3205                     sva += PAGE_SIZE) {
 3206                         if ((*pte & PG_V) == 0)
 3207                                 continue;
 3208                         if ((*pte & PG_W) == 0)
 3209                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 3210                                     (uintmax_t)*pte);
 3211                         PT_SET_VA_MA(pte, *pte & ~PG_W, FALSE);
 3212                         pmap->pm_stats.wired_count--;
 3213                 }
 3214         }
 3215         if (*PMAP1)
 3216                 PT_CLEAR_VA(PMAP1, FALSE);
 3217         PT_UPDATES_FLUSH();
 3218         sched_unpin();
 3219         rw_wunlock(&pvh_global_lock);
 3220         PMAP_UNLOCK(pmap);
 3221 }
 3222 
 3223 
 3224 /*
 3225  *      Copy the range specified by src_addr/len
 3226  *      from the source map to the range dst_addr/len
 3227  *      in the destination map.
 3228  *
 3229  *      This routine is only advisory and need not do anything.
 3230  */
 3231 
 3232 void
 3233 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 3234     vm_offset_t src_addr)
 3235 {
 3236         vm_page_t   free;
 3237         vm_offset_t addr;
 3238         vm_offset_t end_addr = src_addr + len;
 3239         vm_offset_t pdnxt;
 3240 
 3241         if (dst_addr != src_addr)
 3242                 return;
 3243 
 3244         if (!pmap_is_current(src_pmap)) {
 3245                 CTR2(KTR_PMAP,
 3246                     "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
 3247                     (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
 3248                 
 3249                 return;
 3250         }
 3251         CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
 3252             dst_pmap, src_pmap, dst_addr, len, src_addr);
 3253         
 3254 #ifdef HAMFISTED_LOCKING
 3255         mtx_lock(&createdelete_lock);
 3256 #endif
 3257 
 3258         rw_wlock(&pvh_global_lock);
 3259         if (dst_pmap < src_pmap) {
 3260                 PMAP_LOCK(dst_pmap);
 3261                 PMAP_LOCK(src_pmap);
 3262         } else {
 3263                 PMAP_LOCK(src_pmap);
 3264                 PMAP_LOCK(dst_pmap);
 3265         }
 3266         sched_pin();
 3267         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 3268                 pt_entry_t *src_pte, *dst_pte;
 3269                 vm_page_t dstmpte, srcmpte;
 3270                 pd_entry_t srcptepaddr;
 3271                 u_int ptepindex;
 3272 
 3273                 KASSERT(addr < UPT_MIN_ADDRESS,
 3274                     ("pmap_copy: invalid to pmap_copy page tables"));
 3275 
 3276                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 3277                 if (pdnxt < addr)
 3278                         pdnxt = end_addr;
 3279                 ptepindex = addr >> PDRSHIFT;
 3280 
 3281                 srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
 3282                 if (srcptepaddr == 0)
 3283                         continue;
 3284                         
 3285                 if (srcptepaddr & PG_PS) {
 3286                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 3287                                 PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
 3288                                 dst_pmap->pm_stats.resident_count +=
 3289                                     NBPDR / PAGE_SIZE;
 3290                         }
 3291                         continue;
 3292                 }
 3293 
 3294                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 3295                 KASSERT(srcmpte->wire_count > 0,
 3296                     ("pmap_copy: source page table page is unused"));
 3297 
 3298                 if (pdnxt > end_addr)
 3299                         pdnxt = end_addr;
 3300 
 3301                 src_pte = vtopte(addr);
 3302                 while (addr < pdnxt) {
 3303                         pt_entry_t ptetemp;
 3304                         ptetemp = *src_pte;
 3305                         /*
 3306                          * we only virtual copy managed pages
 3307                          */
 3308                         if ((ptetemp & PG_MANAGED) != 0) {
 3309                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 3310                                     PMAP_ENTER_NOSLEEP);
 3311                                 if (dstmpte == NULL)
 3312                                         goto out;
 3313                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 3314                                 if (*dst_pte == 0 &&
 3315                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 3316                                     PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
 3317                                         /*
 3318                                          * Clear the wired, modified, and
 3319                                          * accessed (referenced) bits
 3320                                          * during the copy.
 3321                                          */
 3322                                         KASSERT(ptetemp != 0, ("src_pte not set"));
 3323                                         PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
 3324                                         KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
 3325                                             ("no pmap copy expected: 0x%jx saw: 0x%jx",
 3326                                                 ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
 3327                                         dst_pmap->pm_stats.resident_count++;
 3328                                 } else {
 3329                                         free = NULL;
 3330                                         if (pmap_unwire_ptp(dst_pmap, dstmpte,
 3331                                             &free)) {
 3332                                                 pmap_invalidate_page(dst_pmap,
 3333                                                     addr);
 3334                                                 pmap_free_zero_pages(free);
 3335                                         }
 3336                                         goto out;
 3337                                 }
 3338                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 3339                                         break;
 3340                         }
 3341                         addr += PAGE_SIZE;
 3342                         src_pte++;
 3343                 }
 3344         }
 3345 out:
 3346         PT_UPDATES_FLUSH();
 3347         sched_unpin();
 3348         rw_wunlock(&pvh_global_lock);
 3349         PMAP_UNLOCK(src_pmap);
 3350         PMAP_UNLOCK(dst_pmap);
 3351 
 3352 #ifdef HAMFISTED_LOCKING
 3353         mtx_unlock(&createdelete_lock);
 3354 #endif
 3355 }       
 3356 
 3357 static __inline void
 3358 pagezero(void *page)
 3359 {
 3360 #if defined(I686_CPU)
 3361         if (cpu_class == CPUCLASS_686) {
 3362 #if defined(CPU_ENABLE_SSE)
 3363                 if (cpu_feature & CPUID_SSE2)
 3364                         sse2_pagezero(page);
 3365                 else
 3366 #endif
 3367                         i686_pagezero(page);
 3368         } else
 3369 #endif
 3370                 bzero(page, PAGE_SIZE);
 3371 }
 3372 
 3373 /*
 3374  *      pmap_zero_page zeros the specified hardware page by mapping 
 3375  *      the page into KVM and using bzero to clear its contents.
 3376  */
 3377 void
 3378 pmap_zero_page(vm_page_t m)
 3379 {
 3380         struct sysmaps *sysmaps;
 3381 
 3382         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3383         mtx_lock(&sysmaps->lock);
 3384         if (*sysmaps->CMAP2)
 3385                 panic("pmap_zero_page: CMAP2 busy");
 3386         sched_pin();
 3387         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
 3388         pagezero(sysmaps->CADDR2);
 3389         PT_SET_MA(sysmaps->CADDR2, 0);
 3390         sched_unpin();
 3391         mtx_unlock(&sysmaps->lock);
 3392 }
 3393 
 3394 /*
 3395  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 3396  *      the page into KVM and using bzero to clear its contents.
 3397  *
 3398  *      off and size may not cover an area beyond a single hardware page.
 3399  */
 3400 void
 3401 pmap_zero_page_area(vm_page_t m, int off, int size)
 3402 {
 3403         struct sysmaps *sysmaps;
 3404 
 3405         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3406         mtx_lock(&sysmaps->lock);
 3407         if (*sysmaps->CMAP2)
 3408                 panic("pmap_zero_page_area: CMAP2 busy");
 3409         sched_pin();
 3410         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
 3411 
 3412         if (off == 0 && size == PAGE_SIZE) 
 3413                 pagezero(sysmaps->CADDR2);
 3414         else
 3415                 bzero((char *)sysmaps->CADDR2 + off, size);
 3416         PT_SET_MA(sysmaps->CADDR2, 0);
 3417         sched_unpin();
 3418         mtx_unlock(&sysmaps->lock);
 3419 }
 3420 
 3421 /*
 3422  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 3423  *      the page into KVM and using bzero to clear its contents.  This
 3424  *      is intended to be called from the vm_pagezero process only and
 3425  *      outside of Giant.
 3426  */
 3427 void
 3428 pmap_zero_page_idle(vm_page_t m)
 3429 {
 3430 
 3431         if (*CMAP3)
 3432                 panic("pmap_zero_page_idle: CMAP3 busy");
 3433         sched_pin();
 3434         PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
 3435         pagezero(CADDR3);
 3436         PT_SET_MA(CADDR3, 0);
 3437         sched_unpin();
 3438 }
 3439 
 3440 /*
 3441  *      pmap_copy_page copies the specified (machine independent)
 3442  *      page by mapping the page into virtual memory and using
 3443  *      bcopy to copy the page, one machine dependent page at a
 3444  *      time.
 3445  */
 3446 void
 3447 pmap_copy_page(vm_page_t src, vm_page_t dst)
 3448 {
 3449         struct sysmaps *sysmaps;
 3450 
 3451         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3452         mtx_lock(&sysmaps->lock);
 3453         if (*sysmaps->CMAP1)
 3454                 panic("pmap_copy_page: CMAP1 busy");
 3455         if (*sysmaps->CMAP2)
 3456                 panic("pmap_copy_page: CMAP2 busy");
 3457         sched_pin();
 3458         PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
 3459         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
 3460         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 3461         PT_SET_MA(sysmaps->CADDR1, 0);
 3462         PT_SET_MA(sysmaps->CADDR2, 0);
 3463         sched_unpin();
 3464         mtx_unlock(&sysmaps->lock);
 3465 }
 3466 
 3467 int unmapped_buf_allowed = 1;
 3468 
 3469 void
 3470 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 3471     vm_offset_t b_offset, int xfersize)
 3472 {
 3473         struct sysmaps *sysmaps;
 3474         vm_page_t a_pg, b_pg;
 3475         char *a_cp, *b_cp;
 3476         vm_offset_t a_pg_offset, b_pg_offset;
 3477         int cnt;
 3478 
 3479         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3480         mtx_lock(&sysmaps->lock);
 3481         if (*sysmaps->CMAP1 != 0)
 3482                 panic("pmap_copy_pages: CMAP1 busy");
 3483         if (*sysmaps->CMAP2 != 0)
 3484                 panic("pmap_copy_pages: CMAP2 busy");
 3485         sched_pin();
 3486         while (xfersize > 0) {
 3487                 a_pg = ma[a_offset >> PAGE_SHIFT];
 3488                 a_pg_offset = a_offset & PAGE_MASK;
 3489                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 3490                 b_pg = mb[b_offset >> PAGE_SHIFT];
 3491                 b_pg_offset = b_offset & PAGE_MASK;
 3492                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 3493                 PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(a_pg) | PG_A);
 3494                 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
 3495                     VM_PAGE_TO_MACH(b_pg) | PG_A | PG_M);
 3496                 a_cp = sysmaps->CADDR1 + a_pg_offset;
 3497                 b_cp = sysmaps->CADDR2 + b_pg_offset;
 3498                 bcopy(a_cp, b_cp, cnt);
 3499                 a_offset += cnt;
 3500                 b_offset += cnt;
 3501                 xfersize -= cnt;
 3502         }
 3503         PT_SET_MA(sysmaps->CADDR1, 0);
 3504         PT_SET_MA(sysmaps->CADDR2, 0);
 3505         sched_unpin();
 3506         mtx_unlock(&sysmaps->lock);
 3507 }
 3508 
 3509 /*
 3510  * Returns true if the pmap's pv is one of the first
 3511  * 16 pvs linked to from this page.  This count may
 3512  * be changed upwards or downwards in the future; it
 3513  * is only necessary that true be returned for a small
 3514  * subset of pmaps for proper page aging.
 3515  */
 3516 boolean_t
 3517 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 3518 {
 3519         pv_entry_t pv;
 3520         int loops = 0;
 3521         boolean_t rv;
 3522 
 3523         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3524             ("pmap_page_exists_quick: page %p is not managed", m));
 3525         rv = FALSE;
 3526         rw_wlock(&pvh_global_lock);
 3527         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 3528                 if (PV_PMAP(pv) == pmap) {
 3529                         rv = TRUE;
 3530                         break;
 3531                 }
 3532                 loops++;
 3533                 if (loops >= 16)
 3534                         break;
 3535         }
 3536         rw_wunlock(&pvh_global_lock);
 3537         return (rv);
 3538 }
 3539 
 3540 /*
 3541  *      pmap_page_wired_mappings:
 3542  *
 3543  *      Return the number of managed mappings to the given physical page
 3544  *      that are wired.
 3545  */
 3546 int
 3547 pmap_page_wired_mappings(vm_page_t m)
 3548 {
 3549         pv_entry_t pv;
 3550         pt_entry_t *pte;
 3551         pmap_t pmap;
 3552         int count;
 3553 
 3554         count = 0;
 3555         if ((m->oflags & VPO_UNMANAGED) != 0)
 3556                 return (count);
 3557         rw_wlock(&pvh_global_lock);
 3558         sched_pin();
 3559         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 3560                 pmap = PV_PMAP(pv);
 3561                 PMAP_LOCK(pmap);
 3562                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3563                 if ((*pte & PG_W) != 0)
 3564                         count++;
 3565                 PMAP_UNLOCK(pmap);
 3566         }
 3567         sched_unpin();
 3568         rw_wunlock(&pvh_global_lock);
 3569         return (count);
 3570 }
 3571 
 3572 /*
 3573  * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
 3574  */
 3575 boolean_t
 3576 pmap_page_is_mapped(vm_page_t m)
 3577 {
 3578 
 3579         if ((m->oflags & VPO_UNMANAGED) != 0)
 3580                 return (FALSE);
 3581         return (!TAILQ_EMPTY(&m->md.pv_list));
 3582 }
 3583 
 3584 /*
 3585  * Remove all pages from specified address space
 3586  * this aids process exit speeds.  Also, this code
 3587  * is special cased for current process only, but
 3588  * can have the more generic (and slightly slower)
 3589  * mode enabled.  This is much faster than pmap_remove
 3590  * in the case of running down an entire address space.
 3591  */
 3592 void
 3593 pmap_remove_pages(pmap_t pmap)
 3594 {
 3595         pt_entry_t *pte, tpte;
 3596         vm_page_t m, free = NULL;
 3597         pv_entry_t pv;
 3598         struct pv_chunk *pc, *npc;
 3599         int field, idx;
 3600         int32_t bit;
 3601         uint32_t inuse, bitmask;
 3602         int allfree;
 3603 
 3604         CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
 3605         
 3606         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 3607                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 3608                 return;
 3609         }
 3610         rw_wlock(&pvh_global_lock);
 3611         KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
 3612         PMAP_LOCK(pmap);
 3613         sched_pin();
 3614         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 3615                 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
 3616                     pc->pc_pmap));
 3617                 allfree = 1;
 3618                 for (field = 0; field < _NPCM; field++) {
 3619                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 3620                         while (inuse != 0) {
 3621                                 bit = bsfl(inuse);
 3622                                 bitmask = 1UL << bit;
 3623                                 idx = field * 32 + bit;
 3624                                 pv = &pc->pc_pventry[idx];
 3625                                 inuse &= ~bitmask;
 3626 
 3627                                 pte = vtopte(pv->pv_va);
 3628                                 tpte = *pte ? xpmap_mtop(*pte) : 0;
 3629 
 3630                                 if (tpte == 0) {
 3631                                         printf(
 3632                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 3633                                             pte, pv->pv_va);
 3634                                         panic("bad pte");
 3635                                 }
 3636 
 3637 /*
 3638  * We cannot remove wired pages from a process' mapping at this time
 3639  */
 3640                                 if (tpte & PG_W) {
 3641                                         allfree = 0;
 3642                                         continue;
 3643                                 }
 3644 
 3645                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 3646                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 3647                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 3648                                     m, (uintmax_t)m->phys_addr,
 3649                                     (uintmax_t)tpte));
 3650 
 3651                                 KASSERT(m < &vm_page_array[vm_page_array_size],
 3652                                         ("pmap_remove_pages: bad tpte %#jx",
 3653                                         (uintmax_t)tpte));
 3654 
 3655 
 3656                                 PT_CLEAR_VA(pte, FALSE);
 3657                                 
 3658                                 /*
 3659                                  * Update the vm_page_t clean/reference bits.
 3660                                  */
 3661                                 if (tpte & PG_M)
 3662                                         vm_page_dirty(m);
 3663 
 3664                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 3665                                 if (TAILQ_EMPTY(&m->md.pv_list))
 3666                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3667 
 3668                                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3669 
 3670                                 /* Mark free */
 3671                                 PV_STAT(pv_entry_frees++);
 3672                                 PV_STAT(pv_entry_spare++);
 3673                                 pv_entry_count--;
 3674                                 pc->pc_map[field] |= bitmask;
 3675                                 pmap->pm_stats.resident_count--;                        
 3676                         }
 3677                 }
 3678                 PT_UPDATES_FLUSH();
 3679                 if (allfree) {
 3680                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 3681                         free_pv_chunk(pc);
 3682                 }
 3683         }
 3684         PT_UPDATES_FLUSH();
 3685         if (*PMAP1)
 3686                 PT_SET_MA(PADDR1, 0);
 3687 
 3688         sched_unpin();
 3689         pmap_invalidate_all(pmap);
 3690         rw_wunlock(&pvh_global_lock);
 3691         PMAP_UNLOCK(pmap);
 3692         pmap_free_zero_pages(free);
 3693 }
 3694 
 3695 /*
 3696  *      pmap_is_modified:
 3697  *
 3698  *      Return whether or not the specified physical page was modified
 3699  *      in any physical maps.
 3700  */
 3701 boolean_t
 3702 pmap_is_modified(vm_page_t m)
 3703 {
 3704         pv_entry_t pv;
 3705         pt_entry_t *pte;
 3706         pmap_t pmap;
 3707         boolean_t rv;
 3708 
 3709         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3710             ("pmap_is_modified: page %p is not managed", m));
 3711         rv = FALSE;
 3712 
 3713         /*
 3714          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 3715          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 3716          * is clear, no PTEs can have PG_M set.
 3717          */
 3718         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3719         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 3720                 return (rv);
 3721         rw_wlock(&pvh_global_lock);
 3722         sched_pin();
 3723         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 3724                 pmap = PV_PMAP(pv);
 3725                 PMAP_LOCK(pmap);
 3726                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3727                 rv = (*pte & PG_M) != 0;
 3728                 PMAP_UNLOCK(pmap);
 3729                 if (rv)
 3730                         break;
 3731         }
 3732         if (*PMAP1)
 3733                 PT_SET_MA(PADDR1, 0);
 3734         sched_unpin();
 3735         rw_wunlock(&pvh_global_lock);
 3736         return (rv);
 3737 }
 3738 
 3739 /*
 3740  *      pmap_is_prefaultable:
 3741  *
 3742  *      Return whether or not the specified virtual address is elgible
 3743  *      for prefault.
 3744  */
 3745 static boolean_t
 3746 pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
 3747 {
 3748         pt_entry_t *pte;
 3749         boolean_t rv = FALSE;
 3750 
 3751         return (rv);
 3752         
 3753         if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
 3754                 pte = vtopte(addr);
 3755                 rv = (*pte == 0);
 3756         }
 3757         return (rv);
 3758 }
 3759 
 3760 boolean_t
 3761 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 3762 {
 3763         boolean_t rv;
 3764         
 3765         PMAP_LOCK(pmap);
 3766         rv = pmap_is_prefaultable_locked(pmap, addr);
 3767         PMAP_UNLOCK(pmap);
 3768         return (rv);
 3769 }
 3770 
 3771 boolean_t
 3772 pmap_is_referenced(vm_page_t m)
 3773 {
 3774         pv_entry_t pv;
 3775         pt_entry_t *pte;
 3776         pmap_t pmap;
 3777         boolean_t rv;
 3778 
 3779         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3780             ("pmap_is_referenced: page %p is not managed", m));
 3781         rv = FALSE;
 3782         rw_wlock(&pvh_global_lock);
 3783         sched_pin();
 3784         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 3785                 pmap = PV_PMAP(pv);
 3786                 PMAP_LOCK(pmap);
 3787                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3788                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 3789                 PMAP_UNLOCK(pmap);
 3790                 if (rv)
 3791                         break;
 3792         }
 3793         if (*PMAP1)
 3794                 PT_SET_MA(PADDR1, 0);
 3795         sched_unpin();
 3796         rw_wunlock(&pvh_global_lock);
 3797         return (rv);
 3798 }
 3799 
 3800 void
 3801 pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
 3802 {
 3803         int i, npages = round_page(len) >> PAGE_SHIFT;
 3804         for (i = 0; i < npages; i++) {
 3805                 pt_entry_t *pte;
 3806                 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
 3807                 rw_wlock(&pvh_global_lock);
 3808                 pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
 3809                 rw_wunlock(&pvh_global_lock);
 3810                 PMAP_MARK_PRIV(xpmap_mtop(*pte));
 3811                 pmap_pte_release(pte);
 3812         }
 3813 }
 3814 
 3815 void
 3816 pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
 3817 {
 3818         int i, npages = round_page(len) >> PAGE_SHIFT;
 3819         for (i = 0; i < npages; i++) {
 3820                 pt_entry_t *pte;
 3821                 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
 3822                 PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
 3823                 rw_wlock(&pvh_global_lock);
 3824                 pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
 3825                 rw_wunlock(&pvh_global_lock);
 3826                 pmap_pte_release(pte);
 3827         }
 3828 }
 3829 
 3830 /*
 3831  * Clear the write and modified bits in each of the given page's mappings.
 3832  */
 3833 void
 3834 pmap_remove_write(vm_page_t m)
 3835 {
 3836         pv_entry_t pv;
 3837         pmap_t pmap;
 3838         pt_entry_t oldpte, *pte;
 3839 
 3840         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3841             ("pmap_remove_write: page %p is not managed", m));
 3842 
 3843         /*
 3844          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 3845          * set by another thread while the object is locked.  Thus,
 3846          * if PGA_WRITEABLE is clear, no page table entries need updating.
 3847          */
 3848         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3849         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 3850                 return;
 3851         rw_wlock(&pvh_global_lock);
 3852         sched_pin();
 3853         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 3854                 pmap = PV_PMAP(pv);
 3855                 PMAP_LOCK(pmap);
 3856                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3857 retry:
 3858                 oldpte = *pte;
 3859                 if ((oldpte & PG_RW) != 0) {
 3860                         vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
 3861                         
 3862                         /*
 3863                          * Regardless of whether a pte is 32 or 64 bits
 3864                          * in size, PG_RW and PG_M are among the least
 3865                          * significant 32 bits.
 3866                          */
 3867                         PT_SET_VA_MA(pte, newpte, TRUE);
 3868                         if (*pte != newpte)
 3869                                 goto retry;
 3870                         
 3871                         if ((oldpte & PG_M) != 0)
 3872                                 vm_page_dirty(m);
 3873                         pmap_invalidate_page(pmap, pv->pv_va);
 3874                 }
 3875                 PMAP_UNLOCK(pmap);
 3876         }
 3877         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3878         PT_UPDATES_FLUSH();
 3879         if (*PMAP1)
 3880                 PT_SET_MA(PADDR1, 0);
 3881         sched_unpin();
 3882         rw_wunlock(&pvh_global_lock);
 3883 }
 3884 
 3885 /*
 3886  *      pmap_ts_referenced:
 3887  *
 3888  *      Return a count of reference bits for a page, clearing those bits.
 3889  *      It is not necessary for every reference bit to be cleared, but it
 3890  *      is necessary that 0 only be returned when there are truly no
 3891  *      reference bits set.
 3892  *
 3893  *      XXX: The exact number of bits to check and clear is a matter that
 3894  *      should be tested and standardized at some point in the future for
 3895  *      optimal aging of shared pages.
 3896  */
 3897 int
 3898 pmap_ts_referenced(vm_page_t m)
 3899 {
 3900         pv_entry_t pv, pvf, pvn;
 3901         pmap_t pmap;
 3902         pt_entry_t *pte;
 3903         int rtval = 0;
 3904 
 3905         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3906             ("pmap_ts_referenced: page %p is not managed", m));
 3907         rw_wlock(&pvh_global_lock);
 3908         sched_pin();
 3909         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3910                 pvf = pv;
 3911                 do {
 3912                         pvn = TAILQ_NEXT(pv, pv_next);
 3913                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 3914                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 3915                         pmap = PV_PMAP(pv);
 3916                         PMAP_LOCK(pmap);
 3917                         pte = pmap_pte_quick(pmap, pv->pv_va);
 3918                         if ((*pte & PG_A) != 0) {
 3919                                 PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
 3920                                 pmap_invalidate_page(pmap, pv->pv_va);
 3921                                 rtval++;
 3922                                 if (rtval > 4)
 3923                                         pvn = NULL;
 3924                         }
 3925                         PMAP_UNLOCK(pmap);
 3926                 } while ((pv = pvn) != NULL && pv != pvf);
 3927         }
 3928         PT_UPDATES_FLUSH();
 3929         if (*PMAP1)
 3930                 PT_SET_MA(PADDR1, 0);
 3931         sched_unpin();
 3932         rw_wunlock(&pvh_global_lock);
 3933         return (rtval);
 3934 }
 3935 
 3936 /*
 3937  *      Apply the given advice to the specified range of addresses within the
 3938  *      given pmap.  Depending on the advice, clear the referenced and/or
 3939  *      modified flags in each mapping and set the mapped page's dirty field.
 3940  */
 3941 void
 3942 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 3943 {
 3944         pd_entry_t oldpde;
 3945         pt_entry_t *pte;
 3946         vm_offset_t pdnxt;
 3947         vm_page_t m;
 3948         boolean_t anychanged;
 3949 
 3950         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 3951                 return;
 3952         anychanged = FALSE;
 3953         rw_wlock(&pvh_global_lock);
 3954         sched_pin();
 3955         PMAP_LOCK(pmap);
 3956         for (; sva < eva; sva = pdnxt) {
 3957                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3958                 if (pdnxt < sva)
 3959                         pdnxt = eva;
 3960                 oldpde = pmap->pm_pdir[sva >> PDRSHIFT];
 3961                 if ((oldpde & (PG_PS | PG_V)) != PG_V)
 3962                         continue;
 3963                 if (pdnxt > eva)
 3964                         pdnxt = eva;
 3965                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3966                     sva += PAGE_SIZE) {
 3967                         if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
 3968                             PG_V))
 3969                                 continue;
 3970                         else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3971                                 if (advice == MADV_DONTNEED) {
 3972                                         /*
 3973                                          * Future calls to pmap_is_modified()
 3974                                          * can be avoided by making the page
 3975                                          * dirty now.
 3976                                          */
 3977                                         m = PHYS_TO_VM_PAGE(xpmap_mtop(*pte) &
 3978                                             PG_FRAME);
 3979                                         vm_page_dirty(m);
 3980                                 }
 3981                                 PT_SET_VA_MA(pte, *pte & ~(PG_M | PG_A), TRUE);
 3982                         } else if ((*pte & PG_A) != 0)
 3983                                 PT_SET_VA_MA(pte, *pte & ~PG_A, TRUE);
 3984                         else
 3985                                 continue;
 3986                         if ((*pte & PG_G) != 0)
 3987                                 pmap_invalidate_page(pmap, sva);
 3988                         else
 3989                                 anychanged = TRUE;
 3990                 }
 3991         }
 3992         PT_UPDATES_FLUSH();
 3993         if (*PMAP1)
 3994                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 3995         if (anychanged)
 3996                 pmap_invalidate_all(pmap);
 3997         sched_unpin();
 3998         rw_wunlock(&pvh_global_lock);
 3999         PMAP_UNLOCK(pmap);
 4000 }
 4001 
 4002 /*
 4003  *      Clear the modify bits on the specified physical page.
 4004  */
 4005 void
 4006 pmap_clear_modify(vm_page_t m)
 4007 {
 4008         pv_entry_t pv;
 4009         pmap_t pmap;
 4010         pt_entry_t *pte;
 4011 
 4012         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4013             ("pmap_clear_modify: page %p is not managed", m));
 4014         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4015         KASSERT(!vm_page_xbusied(m),
 4016             ("pmap_clear_modify: page %p is exclusive busied", m));
 4017 
 4018         /*
 4019          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 4020          * If the object containing the page is locked and the page is not
 4021          * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
 4022          */
 4023         if ((m->aflags & PGA_WRITEABLE) == 0)
 4024                 return;
 4025         rw_wlock(&pvh_global_lock);
 4026         sched_pin();
 4027         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4028                 pmap = PV_PMAP(pv);
 4029                 PMAP_LOCK(pmap);
 4030                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4031                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4032                         /*
 4033                          * Regardless of whether a pte is 32 or 64 bits
 4034                          * in size, PG_M is among the least significant
 4035                          * 32 bits. 
 4036                          */
 4037                         PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
 4038                         pmap_invalidate_page(pmap, pv->pv_va);
 4039                 }
 4040                 PMAP_UNLOCK(pmap);
 4041         }
 4042         sched_unpin();
 4043         rw_wunlock(&pvh_global_lock);
 4044 }
 4045 
 4046 /*
 4047  * Miscellaneous support routines follow
 4048  */
 4049 
 4050 /*
 4051  * Map a set of physical memory pages into the kernel virtual
 4052  * address space. Return a pointer to where it is mapped. This
 4053  * routine is intended to be used for mapping device memory,
 4054  * NOT real memory.
 4055  */
 4056 void *
 4057 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 4058 {
 4059         vm_offset_t va, offset;
 4060         vm_size_t tmpsize;
 4061 
 4062         offset = pa & PAGE_MASK;
 4063         size = round_page(offset + size);
 4064         pa = pa & PG_FRAME;
 4065 
 4066         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 4067                 va = KERNBASE + pa;
 4068         else
 4069                 va = kva_alloc(size);
 4070         if (!va)
 4071                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 4072 
 4073         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 4074                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 4075         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 4076         pmap_invalidate_cache_range(va, va + size);
 4077         return ((void *)(va + offset));
 4078 }
 4079 
 4080 void *
 4081 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 4082 {
 4083 
 4084         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 4085 }
 4086 
 4087 void *
 4088 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 4089 {
 4090 
 4091         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 4092 }
 4093 
 4094 void
 4095 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 4096 {
 4097         vm_offset_t base, offset;
 4098 
 4099         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 4100                 return;
 4101         base = trunc_page(va);
 4102         offset = va & PAGE_MASK;
 4103         size = round_page(offset + size);
 4104         kva_free(base, size);
 4105 }
 4106 
 4107 /*
 4108  * Sets the memory attribute for the specified page.
 4109  */
 4110 void
 4111 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 4112 {
 4113 
 4114         m->md.pat_mode = ma;
 4115         if ((m->flags & PG_FICTITIOUS) != 0)
 4116                 return;
 4117 
 4118         /*
 4119          * If "m" is a normal page, flush it from the cache.
 4120          * See pmap_invalidate_cache_range().
 4121          *
 4122          * First, try to find an existing mapping of the page by sf
 4123          * buffer. sf_buf_invalidate_cache() modifies mapping and
 4124          * flushes the cache.
 4125          */    
 4126         if (sf_buf_invalidate_cache(m))
 4127                 return;
 4128 
 4129         /*
 4130          * If page is not mapped by sf buffer, but CPU does not
 4131          * support self snoop, map the page transient and do
 4132          * invalidation. In the worst case, whole cache is flushed by
 4133          * pmap_invalidate_cache_range().
 4134          */
 4135         if ((cpu_feature & CPUID_SS) == 0)
 4136                 pmap_flush_page(m);
 4137 }
 4138 
 4139 static void
 4140 pmap_flush_page(vm_page_t m)
 4141 {
 4142         struct sysmaps *sysmaps;
 4143         vm_offset_t sva, eva;
 4144 
 4145         if ((cpu_feature & CPUID_CLFSH) != 0) {
 4146                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4147                 mtx_lock(&sysmaps->lock);
 4148                 if (*sysmaps->CMAP2)
 4149                         panic("pmap_flush_page: CMAP2 busy");
 4150                 sched_pin();
 4151                 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
 4152                     VM_PAGE_TO_MACH(m) | PG_A | PG_M |
 4153                     pmap_cache_bits(m->md.pat_mode, 0));
 4154                 invlcaddr(sysmaps->CADDR2);
 4155                 sva = (vm_offset_t)sysmaps->CADDR2;
 4156                 eva = sva + PAGE_SIZE;
 4157 
 4158                 /*
 4159                  * Use mfence despite the ordering implied by
 4160                  * mtx_{un,}lock() because clflush is not guaranteed
 4161                  * to be ordered by any other instruction.
 4162                  */
 4163                 mfence();
 4164                 for (; sva < eva; sva += cpu_clflush_line_size)
 4165                         clflush(sva);
 4166                 mfence();
 4167                 PT_SET_MA(sysmaps->CADDR2, 0);
 4168                 sched_unpin();
 4169                 mtx_unlock(&sysmaps->lock);
 4170         } else
 4171                 pmap_invalidate_cache();
 4172 }
 4173 
 4174 /*
 4175  * Changes the specified virtual address range's memory type to that given by
 4176  * the parameter "mode".  The specified virtual address range must be
 4177  * completely contained within either the kernel map.
 4178  *
 4179  * Returns zero if the change completed successfully, and either EINVAL or
 4180  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 4181  * of the virtual address range was not mapped, and ENOMEM is returned if
 4182  * there was insufficient memory available to complete the change.
 4183  */
 4184 int
 4185 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 4186 {
 4187         vm_offset_t base, offset, tmpva;
 4188         pt_entry_t *pte;
 4189         u_int opte, npte;
 4190         pd_entry_t *pde;
 4191         boolean_t changed;
 4192 
 4193         base = trunc_page(va);
 4194         offset = va & PAGE_MASK;
 4195         size = round_page(offset + size);
 4196 
 4197         /* Only supported on kernel virtual addresses. */
 4198         if (base <= VM_MAXUSER_ADDRESS)
 4199                 return (EINVAL);
 4200 
 4201         /* 4MB pages and pages that aren't mapped aren't supported. */
 4202         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 4203                 pde = pmap_pde(kernel_pmap, tmpva);
 4204                 if (*pde & PG_PS)
 4205                         return (EINVAL);
 4206                 if ((*pde & PG_V) == 0)
 4207                         return (EINVAL);
 4208                 pte = vtopte(va);
 4209                 if ((*pte & PG_V) == 0)
 4210                         return (EINVAL);
 4211         }
 4212 
 4213         changed = FALSE;
 4214 
 4215         /*
 4216          * Ok, all the pages exist and are 4k, so run through them updating
 4217          * their cache mode.
 4218          */
 4219         for (tmpva = base; size > 0; ) {
 4220                 pte = vtopte(tmpva);
 4221 
 4222                 /*
 4223                  * The cache mode bits are all in the low 32-bits of the
 4224                  * PTE, so we can just spin on updating the low 32-bits.
 4225                  */
 4226                 do {
 4227                         opte = *(u_int *)pte;
 4228                         npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
 4229                         npte |= pmap_cache_bits(mode, 0);
 4230                         PT_SET_VA_MA(pte, npte, TRUE);
 4231                 } while (npte != opte && (*pte != npte));
 4232                 if (npte != opte)
 4233                         changed = TRUE;
 4234                 tmpva += PAGE_SIZE;
 4235                 size -= PAGE_SIZE;
 4236         }
 4237 
 4238         /*
 4239          * Flush CPU caches to make sure any data isn't cached that
 4240          * shouldn't be, etc.
 4241          */
 4242         if (changed) {
 4243                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 4244                 pmap_invalidate_cache_range(base, tmpva);
 4245         }
 4246         return (0);
 4247 }
 4248 
 4249 /*
 4250  * perform the pmap work for mincore
 4251  */
 4252 int
 4253 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 4254 {
 4255         pt_entry_t *ptep, pte;
 4256         vm_paddr_t pa;
 4257         int val;
 4258 
 4259         PMAP_LOCK(pmap);
 4260 retry:
 4261         ptep = pmap_pte(pmap, addr);
 4262         pte = (ptep != NULL) ? PT_GET(ptep) : 0;
 4263         pmap_pte_release(ptep);
 4264         val = 0;
 4265         if ((pte & PG_V) != 0) {
 4266                 val |= MINCORE_INCORE;
 4267                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 4268                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 4269                 if ((pte & PG_A) != 0)
 4270                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 4271         }
 4272         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 4273             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 4274             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 4275                 pa = pte & PG_FRAME;
 4276                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 4277                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 4278                         goto retry;
 4279         } else
 4280                 PA_UNLOCK_COND(*locked_pa);
 4281         PMAP_UNLOCK(pmap);
 4282         return (val);
 4283 }
 4284 
 4285 void
 4286 pmap_activate(struct thread *td)
 4287 {
 4288         pmap_t  pmap, oldpmap;
 4289         u_int   cpuid;
 4290         u_int32_t  cr3;
 4291 
 4292         critical_enter();
 4293         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 4294         oldpmap = PCPU_GET(curpmap);
 4295         cpuid = PCPU_GET(cpuid);
 4296 #if defined(SMP)
 4297         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 4298         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 4299 #else
 4300         CPU_CLR(cpuid, &oldpmap->pm_active);
 4301         CPU_SET(cpuid, &pmap->pm_active);
 4302 #endif
 4303 #ifdef PAE
 4304         cr3 = vtophys(pmap->pm_pdpt);
 4305 #else
 4306         cr3 = vtophys(pmap->pm_pdir);
 4307 #endif
 4308         /*
 4309          * pmap_activate is for the current thread on the current cpu
 4310          */
 4311         td->td_pcb->pcb_cr3 = cr3;
 4312         PT_UPDATES_FLUSH();
 4313         load_cr3(cr3);
 4314         PCPU_SET(curpmap, pmap);
 4315         critical_exit();
 4316 }
 4317 
 4318 void
 4319 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 4320 {
 4321 }
 4322 
 4323 /*
 4324  *      Increase the starting virtual address of the given mapping if a
 4325  *      different alignment might result in more superpage mappings.
 4326  */
 4327 void
 4328 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 4329     vm_offset_t *addr, vm_size_t size)
 4330 {
 4331         vm_offset_t superpage_offset;
 4332 
 4333         if (size < NBPDR)
 4334                 return;
 4335         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 4336                 offset += ptoa(object->pg_color);
 4337         superpage_offset = offset & PDRMASK;
 4338         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 4339             (*addr & PDRMASK) == superpage_offset)
 4340                 return;
 4341         if ((*addr & PDRMASK) < superpage_offset)
 4342                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 4343         else
 4344                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 4345 }
 4346 
 4347 void
 4348 pmap_suspend()
 4349 {
 4350         pmap_t pmap;
 4351         int i, pdir, offset;
 4352         vm_paddr_t pdirma;
 4353         mmu_update_t mu[4];
 4354 
 4355         /*
 4356          * We need to remove the recursive mapping structure from all
 4357          * our pmaps so that Xen doesn't get confused when it restores
 4358          * the page tables. The recursive map lives at page directory
 4359          * index PTDPTDI. We assume that the suspend code has stopped
 4360          * the other vcpus (if any).
 4361          */
 4362         LIST_FOREACH(pmap, &allpmaps, pm_list) {
 4363                 for (i = 0; i < 4; i++) {
 4364                         /*
 4365                          * Figure out which page directory (L2) page
 4366                          * contains this bit of the recursive map and
 4367                          * the offset within that page of the map
 4368                          * entry
 4369                          */
 4370                         pdir = (PTDPTDI + i) / NPDEPG;
 4371                         offset = (PTDPTDI + i) % NPDEPG;
 4372                         pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
 4373                         mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
 4374                         mu[i].val = 0;
 4375                 }
 4376                 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
 4377         }
 4378 }
 4379 
 4380 void
 4381 pmap_resume()
 4382 {
 4383         pmap_t pmap;
 4384         int i, pdir, offset;
 4385         vm_paddr_t pdirma;
 4386         mmu_update_t mu[4];
 4387 
 4388         /*
 4389          * Restore the recursive map that we removed on suspend.
 4390          */
 4391         LIST_FOREACH(pmap, &allpmaps, pm_list) {
 4392                 for (i = 0; i < 4; i++) {
 4393                         /*
 4394                          * Figure out which page directory (L2) page
 4395                          * contains this bit of the recursive map and
 4396                          * the offset within that page of the map
 4397                          * entry
 4398                          */
 4399                         pdir = (PTDPTDI + i) / NPDEPG;
 4400                         offset = (PTDPTDI + i) % NPDEPG;
 4401                         pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
 4402                         mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
 4403                         mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
 4404                 }
 4405                 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
 4406         }
 4407 }
 4408 
 4409 #if defined(PMAP_DEBUG)
 4410 pmap_pid_dump(int pid)
 4411 {
 4412         pmap_t pmap;
 4413         struct proc *p;
 4414         int npte = 0;
 4415         int index;
 4416 
 4417         sx_slock(&allproc_lock);
 4418         FOREACH_PROC_IN_SYSTEM(p) {
 4419                 if (p->p_pid != pid)
 4420                         continue;
 4421 
 4422                 if (p->p_vmspace) {
 4423                         int i,j;
 4424                         index = 0;
 4425                         pmap = vmspace_pmap(p->p_vmspace);
 4426                         for (i = 0; i < NPDEPTD; i++) {
 4427                                 pd_entry_t *pde;
 4428                                 pt_entry_t *pte;
 4429                                 vm_offset_t base = i << PDRSHIFT;
 4430                                 
 4431                                 pde = &pmap->pm_pdir[i];
 4432                                 if (pde && pmap_pde_v(pde)) {
 4433                                         for (j = 0; j < NPTEPG; j++) {
 4434                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 4435                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 4436                                                         if (index) {
 4437                                                                 index = 0;
 4438                                                                 printf("\n");
 4439                                                         }
 4440                                                         sx_sunlock(&allproc_lock);
 4441                                                         return (npte);
 4442                                                 }
 4443                                                 pte = pmap_pte(pmap, va);
 4444                                                 if (pte && pmap_pte_v(pte)) {
 4445                                                         pt_entry_t pa;
 4446                                                         vm_page_t m;
 4447                                                         pa = PT_GET(pte);
 4448                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 4449                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 4450                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 4451                                                         npte++;
 4452                                                         index++;
 4453                                                         if (index >= 2) {
 4454                                                                 index = 0;
 4455                                                                 printf("\n");
 4456                                                         } else {
 4457                                                                 printf(" ");
 4458                                                         }
 4459                                                 }
 4460                                         }
 4461                                 }
 4462                         }
 4463                 }
 4464         }
 4465         sx_sunlock(&allproc_lock);
 4466         return (npte);
 4467 }
 4468 #endif
 4469 
 4470 #if defined(DEBUG)
 4471 
 4472 static void     pads(pmap_t pm);
 4473 void            pmap_pvdump(vm_paddr_t pa);
 4474 
 4475 /* print address space of pmap*/
 4476 static void
 4477 pads(pmap_t pm)
 4478 {
 4479         int i, j;
 4480         vm_paddr_t va;
 4481         pt_entry_t *ptep;
 4482 
 4483         if (pm == kernel_pmap)
 4484                 return;
 4485         for (i = 0; i < NPDEPTD; i++)
 4486                 if (pm->pm_pdir[i])
 4487                         for (j = 0; j < NPTEPG; j++) {
 4488                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 4489                                 if (pm == kernel_pmap && va < KERNBASE)
 4490                                         continue;
 4491                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 4492                                         continue;
 4493                                 ptep = pmap_pte(pm, va);
 4494                                 if (pmap_pte_v(ptep))
 4495                                         printf("%x:%x ", va, *ptep);
 4496                         };
 4497 
 4498 }
 4499 
 4500 void
 4501 pmap_pvdump(vm_paddr_t pa)
 4502 {
 4503         pv_entry_t pv;
 4504         pmap_t pmap;
 4505         vm_page_t m;
 4506 
 4507         printf("pa %x", pa);
 4508         m = PHYS_TO_VM_PAGE(pa);
 4509         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4510                 pmap = PV_PMAP(pv);
 4511                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 4512                 pads(pmap);
 4513         }
 4514         printf(" ");
 4515 }
 4516 #endif

Cache object: 20df474027b6bf022d460828a08ea8cf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.