The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/xen/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/8.0/sys/i386/xen/pmap.c 197126 2009-09-12 18:11:48Z kib $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #define PMAP_DIAGNOSTIC
  107 
  108 #include "opt_cpu.h"
  109 #include "opt_pmap.h"
  110 #include "opt_msgbuf.h"
  111 #include "opt_smp.h"
  112 #include "opt_xbox.h"
  113 
  114 #include <sys/param.h>
  115 #include <sys/systm.h>
  116 #include <sys/kernel.h>
  117 #include <sys/ktr.h>
  118 #include <sys/lock.h>
  119 #include <sys/malloc.h>
  120 #include <sys/mman.h>
  121 #include <sys/msgbuf.h>
  122 #include <sys/mutex.h>
  123 #include <sys/proc.h>
  124 #include <sys/sf_buf.h>
  125 #include <sys/sx.h>
  126 #include <sys/vmmeter.h>
  127 #include <sys/sched.h>
  128 #include <sys/sysctl.h>
  129 #ifdef SMP
  130 #include <sys/smp.h>
  131 #endif
  132 
  133 #include <vm/vm.h>
  134 #include <vm/vm_param.h>
  135 #include <vm/vm_kern.h>
  136 #include <vm/vm_page.h>
  137 #include <vm/vm_map.h>
  138 #include <vm/vm_object.h>
  139 #include <vm/vm_extern.h>
  140 #include <vm/vm_pageout.h>
  141 #include <vm/vm_pager.h>
  142 #include <vm/uma.h>
  143 
  144 #include <machine/cpu.h>
  145 #include <machine/cputypes.h>
  146 #include <machine/md_var.h>
  147 #include <machine/pcb.h>
  148 #include <machine/specialreg.h>
  149 #ifdef SMP
  150 #include <machine/smp.h>
  151 #endif
  152 
  153 #ifdef XBOX
  154 #include <machine/xbox.h>
  155 #endif
  156 
  157 #include <xen/interface/xen.h>
  158 #include <xen/hypervisor.h>
  159 #include <machine/xen/hypercall.h>
  160 #include <machine/xen/xenvar.h>
  161 #include <machine/xen/xenfunc.h>
  162 
  163 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  164 #define CPU_ENABLE_SSE
  165 #endif
  166 
  167 #ifndef PMAP_SHPGPERPROC
  168 #define PMAP_SHPGPERPROC 200
  169 #endif
  170 
  171 #if defined(DIAGNOSTIC)
  172 #define PMAP_DIAGNOSTIC
  173 #endif
  174 
  175 #if !defined(PMAP_DIAGNOSTIC)
  176 #define PMAP_INLINE     __gnu89_inline
  177 #else
  178 #define PMAP_INLINE
  179 #endif
  180 
  181 #define PV_STATS
  182 #ifdef PV_STATS
  183 #define PV_STAT(x)      do { x ; } while (0)
  184 #else
  185 #define PV_STAT(x)      do { } while (0)
  186 #endif
  187 
  188 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  189 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  190 
  191 /*
  192  * Get PDEs and PTEs for user/kernel address space
  193  */
  194 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  195 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  196 
  197 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  198 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  199 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  200 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  201 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  202 
  203 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  204 
  205 struct pmap kernel_pmap_store;
  206 LIST_HEAD(pmaplist, pmap);
  207 static struct pmaplist allpmaps;
  208 static struct mtx allpmaps_lock;
  209 
  210 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  211 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  212 int pgeflag = 0;                /* PG_G or-in */
  213 int pseflag = 0;                /* PG_PS or-in */
  214 
  215 int nkpt;
  216 vm_offset_t kernel_vm_end;
  217 extern u_int32_t KERNend;
  218 
  219 #ifdef PAE
  220 pt_entry_t pg_nx;
  221 #if !defined(XEN) 
  222 static uma_zone_t pdptzone;
  223 #endif
  224 #endif
  225 
  226 /*
  227  * Data for the pv entry allocation mechanism
  228  */
  229 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  230 static struct md_page *pv_table;
  231 static int shpgperproc = PMAP_SHPGPERPROC;
  232 
  233 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  234 int pv_maxchunks;                       /* How many chunks we have KVA for */
  235 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  236 
  237 /*
  238  * All those kernel PT submaps that BSD is so fond of
  239  */
  240 struct sysmaps {
  241         struct  mtx lock;
  242         pt_entry_t *CMAP1;
  243         pt_entry_t *CMAP2;
  244         caddr_t CADDR1;
  245         caddr_t CADDR2;
  246 };
  247 static struct sysmaps sysmaps_pcpu[MAXCPU];
  248 pt_entry_t *CMAP1 = 0;
  249 static pt_entry_t *CMAP3;
  250 caddr_t CADDR1 = 0, ptvmmap = 0;
  251 static caddr_t CADDR3;
  252 struct msgbuf *msgbufp = 0;
  253 
  254 /*
  255  * Crashdump maps.
  256  */
  257 static caddr_t crashdumpmap;
  258 
  259 static pt_entry_t *PMAP1 = 0, *PMAP2;
  260 static pt_entry_t *PADDR1 = 0, *PADDR2;
  261 #ifdef SMP
  262 static int PMAP1cpu;
  263 static int PMAP1changedcpu;
  264 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  265            &PMAP1changedcpu, 0,
  266            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  267 #endif
  268 static int PMAP1changed;
  269 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  270            &PMAP1changed, 0,
  271            "Number of times pmap_pte_quick changed PMAP1");
  272 static int PMAP1unchanged;
  273 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  274            &PMAP1unchanged, 0,
  275            "Number of times pmap_pte_quick didn't change PMAP1");
  276 static struct mtx PMAP2mutex;
  277 
  278 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  279 static int pg_ps_enabled;
  280 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
  281     "Are large page mappings enabled?");
  282 
  283 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  284         "Max number of PV entries");
  285 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  286         "Page share factor per proc");
  287 
  288 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  289 static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
  290 
  291 static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
  292     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  293 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  294     vm_page_t *free);
  295 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  296     vm_page_t *free);
  297 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  298                                         vm_offset_t va);
  299 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  300 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  301     vm_page_t m);
  302 
  303 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  304 
  305 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  306 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
  307 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  308 static void pmap_pte_release(pt_entry_t *pte);
  309 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  310 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  311 static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
  312 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  313 
  314 
  315 #if defined(PAE) && !defined(XEN)
  316 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  317 #endif
  318 
  319 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  320 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  321 
  322 /*
  323  * If you get an error here, then you set KVA_PAGES wrong! See the
  324  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  325  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  326  */
  327 CTASSERT(KERNBASE % (1 << 24) == 0);
  328 
  329 
  330 
  331 static __inline void
  332 pagezero(void *page)
  333 {
  334 #if defined(I686_CPU)
  335         if (cpu_class == CPUCLASS_686) {
  336 #if defined(CPU_ENABLE_SSE)
  337                 if (cpu_feature & CPUID_SSE2)
  338                         sse2_pagezero(page);
  339                 else
  340 #endif
  341                         i686_pagezero(page);
  342         } else
  343 #endif
  344                 bzero(page, PAGE_SIZE);
  345 }
  346 
  347 void 
  348 pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
  349 {
  350         vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
  351         
  352         switch (type) {
  353         case SH_PD_SET_VA:
  354 #if 0           
  355                 xen_queue_pt_update(shadow_pdir_ma,
  356                                     xpmap_ptom(val & ~(PG_RW)));
  357 #endif          
  358                 xen_queue_pt_update(pdir_ma,
  359                                     xpmap_ptom(val));   
  360                 break;
  361         case SH_PD_SET_VA_MA:
  362 #if 0           
  363                 xen_queue_pt_update(shadow_pdir_ma,
  364                                     val & ~(PG_RW));
  365 #endif          
  366                 xen_queue_pt_update(pdir_ma, val);      
  367                 break;
  368         case SH_PD_SET_VA_CLEAR:
  369 #if 0
  370                 xen_queue_pt_update(shadow_pdir_ma, 0);
  371 #endif          
  372                 xen_queue_pt_update(pdir_ma, 0);        
  373                 break;
  374         }
  375 }
  376 
  377 /*
  378  * Move the kernel virtual free pointer to the next
  379  * 4MB.  This is used to help improve performance
  380  * by using a large (4MB) page for much of the kernel
  381  * (.text, .data, .bss)
  382  */
  383 static vm_offset_t
  384 pmap_kmem_choose(vm_offset_t addr)
  385 {
  386         vm_offset_t newaddr = addr;
  387 
  388 #ifndef DISABLE_PSE
  389         if (cpu_feature & CPUID_PSE)
  390                 newaddr = (addr + PDRMASK) & ~PDRMASK;
  391 #endif
  392         return newaddr;
  393 }
  394 
  395 /*
  396  *      Bootstrap the system enough to run with virtual memory.
  397  *
  398  *      On the i386 this is called after mapping has already been enabled
  399  *      and just syncs the pmap module with what has already been done.
  400  *      [We can't call it easily with mapping off since the kernel is not
  401  *      mapped with PA == VA, hence we would have to relocate every address
  402  *      from the linked base (virtual) address "KERNBASE" to the actual
  403  *      (physical) address starting relative to 0]
  404  */
  405 void
  406 pmap_bootstrap(vm_paddr_t firstaddr)
  407 {
  408         vm_offset_t va;
  409         pt_entry_t *pte, *unused;
  410         struct sysmaps *sysmaps;
  411         int i;
  412 
  413         /*
  414          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  415          * large. It should instead be correctly calculated in locore.s and
  416          * not based on 'first' (which is a physical address, not a virtual
  417          * address, for the start of unused physical memory). The kernel
  418          * page tables are NOT double mapped and thus should not be included
  419          * in this calculation.
  420          */
  421         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  422         virtual_avail = pmap_kmem_choose(virtual_avail);
  423 
  424         virtual_end = VM_MAX_KERNEL_ADDRESS;
  425 
  426         /*
  427          * Initialize the kernel pmap (which is statically allocated).
  428          */
  429         PMAP_LOCK_INIT(kernel_pmap);
  430         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  431 #ifdef PAE
  432         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  433 #endif
  434         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  435         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  436         LIST_INIT(&allpmaps);
  437         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  438         mtx_lock_spin(&allpmaps_lock);
  439         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  440         mtx_unlock_spin(&allpmaps_lock);
  441         if (nkpt == 0)
  442                 nkpt = NKPT;
  443 
  444         /*
  445          * Reserve some special page table entries/VA space for temporary
  446          * mapping of pages.
  447          */
  448 #define SYSMAP(c, p, v, n)      \
  449         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  450 
  451         va = virtual_avail;
  452         pte = vtopte(va);
  453 
  454         /*
  455          * CMAP1/CMAP2 are used for zeroing and copying pages.
  456          * CMAP3 is used for the idle process page zeroing.
  457          */
  458         for (i = 0; i < MAXCPU; i++) {
  459                 sysmaps = &sysmaps_pcpu[i];
  460                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  461                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  462                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  463         }
  464         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  465         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  466         PT_SET_MA(CADDR3, 0);
  467 
  468         /*
  469          * Crashdump maps.
  470          */
  471         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  472 
  473         /*
  474          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  475          */
  476         SYSMAP(caddr_t, unused, ptvmmap, 1)
  477 
  478         /*
  479          * msgbufp is used to map the system message buffer.
  480          */
  481         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
  482 
  483         /*
  484          * ptemap is used for pmap_pte_quick
  485          */
  486         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
  487         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
  488 
  489         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  490 
  491         virtual_avail = va;
  492         PT_SET_MA(CADDR1, 0);
  493 
  494         /*
  495          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  496          * physical memory region that is used by the ACPI wakeup code.  This
  497          * mapping must not have PG_G set. 
  498          */
  499 #ifndef XEN
  500         /*
  501          * leave here deliberately to show that this is not supported
  502          */
  503 #ifdef XBOX
  504         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  505          * an early stadium, we cannot yet neatly map video memory ... :-(
  506          * Better fixes are very welcome! */
  507         if (!arch_i386_is_xbox)
  508 #endif
  509         for (i = 1; i < NKPT; i++)
  510                 PTD[i] = 0;
  511 
  512         /* Initialize the PAT MSR if present. */
  513         pmap_init_pat();
  514 
  515         /* Turn on PG_G on kernel page(s) */
  516         pmap_set_pg();
  517 #endif
  518 }
  519 
  520 /*
  521  * Setup the PAT MSR.
  522  */
  523 void
  524 pmap_init_pat(void)
  525 {
  526         uint64_t pat_msr;
  527 
  528         /* Bail if this CPU doesn't implement PAT. */
  529         if (!(cpu_feature & CPUID_PAT))
  530                 return;
  531 
  532 #ifdef PAT_WORKS
  533         /*
  534          * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
  535          * Program 4 and 5 as WP and WC.
  536          * Leave 6 and 7 as UC and UC-.
  537          */
  538         pat_msr = rdmsr(MSR_PAT);
  539         pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
  540         pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
  541             PAT_VALUE(5, PAT_WRITE_COMBINING);
  542 #else
  543         /*
  544          * Due to some Intel errata, we can only safely use the lower 4
  545          * PAT entries.  Thus, just replace PAT Index 2 with WC instead
  546          * of UC-.
  547          *
  548          *   Intel Pentium III Processor Specification Update
  549          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  550          * or Mode C Paging)
  551          *
  552          *   Intel Pentium IV  Processor Specification Update
  553          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  554          */
  555         pat_msr = rdmsr(MSR_PAT);
  556         pat_msr &= ~PAT_MASK(2);
  557         pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  558 #endif
  559         wrmsr(MSR_PAT, pat_msr);
  560 }
  561 
  562 /*
  563  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  564  */
  565 void
  566 pmap_set_pg(void)
  567 {
  568         pd_entry_t pdir;
  569         pt_entry_t *pte;
  570         vm_offset_t va, endva;
  571         int i; 
  572 
  573         if (pgeflag == 0)
  574                 return;
  575 
  576         i = KERNLOAD/NBPDR;
  577         endva = KERNBASE + KERNend;
  578 
  579         if (pseflag) {
  580                 va = KERNBASE + KERNLOAD;
  581                 while (va  < endva) {
  582                         pdir = kernel_pmap->pm_pdir[KPTDI+i];
  583                         pdir |= pgeflag;
  584                         kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
  585                         invltlb();      /* Play it safe, invltlb() every time */
  586                         i++;
  587                         va += NBPDR;
  588                 }
  589         } else {
  590                 va = (vm_offset_t)btext;
  591                 while (va < endva) {
  592                         pte = vtopte(va);
  593                         if (*pte & PG_V)
  594                                 *pte |= pgeflag;
  595                         invltlb();      /* Play it safe, invltlb() every time */
  596                         va += PAGE_SIZE;
  597                 }
  598         }
  599 }
  600 
  601 /*
  602  * Initialize a vm_page's machine-dependent fields.
  603  */
  604 void
  605 pmap_page_init(vm_page_t m)
  606 {
  607 
  608         TAILQ_INIT(&m->md.pv_list);
  609         m->md.pat_mode = PAT_WRITE_BACK;
  610 }
  611 
  612 #if defined(PAE) && !defined(XEN)
  613 static void *
  614 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  615 {
  616 
  617         /* Inform UMA that this allocator uses kernel_map/object. */
  618         *flags = UMA_SLAB_KERNEL;
  619         return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
  620             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  621 }
  622 #endif
  623 
  624 /*
  625  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  626  * Requirements:
  627  *  - Must deal with pages in order to ensure that none of the PG_* bits
  628  *    are ever set, PG_V in particular.
  629  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  630  *    on PAE systems.  This should be ok.
  631  *  - Assumes nothing will ever test these addresses for 0 to indicate
  632  *    no mapping instead of correctly checking PG_V.
  633  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  634  * Because PG_V is never set, there can be no mappings to invalidate.
  635  */
  636 static int ptelist_count = 0;
  637 static vm_offset_t
  638 pmap_ptelist_alloc(vm_offset_t *head)
  639 {
  640         vm_offset_t va;
  641         vm_offset_t *phead = (vm_offset_t *)*head;
  642         
  643         if (ptelist_count == 0) {
  644                 printf("out of memory!!!!!!\n");
  645                 return (0);     /* Out of memory */
  646         }
  647         ptelist_count--;
  648         va = phead[ptelist_count];
  649         return (va);
  650 }
  651 
  652 static void
  653 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  654 {
  655         vm_offset_t *phead = (vm_offset_t *)*head;
  656 
  657         phead[ptelist_count++] = va;
  658 }
  659 
  660 static void
  661 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  662 {
  663         int i, nstackpages;
  664         vm_offset_t va;
  665         vm_page_t m;
  666         
  667         nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
  668         for (i = 0; i < nstackpages; i++) {
  669                 va = (vm_offset_t)base + i * PAGE_SIZE;
  670                 m = vm_page_alloc(NULL, i,
  671                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
  672                     VM_ALLOC_ZERO);
  673                 pmap_qenter(va, &m, 1);
  674         }
  675 
  676         *head = (vm_offset_t)base;
  677         for (i = npages - 1; i >= nstackpages; i--) {
  678                 va = (vm_offset_t)base + i * PAGE_SIZE;
  679                 pmap_ptelist_free(head, va);
  680         }
  681 }
  682 
  683 
  684 /*
  685  *      Initialize the pmap module.
  686  *      Called by vm_init, to initialize any structures that the pmap
  687  *      system needs to map virtual memory.
  688  */
  689 void
  690 pmap_init(void)
  691 {
  692         vm_page_t mpte;
  693         vm_size_t s;
  694         int i, pv_npg;
  695 
  696         /*
  697          * Initialize the vm page array entries for the kernel pmap's
  698          * page table pages.
  699          */ 
  700         for (i = 0; i < nkpt; i++) {
  701                 mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
  702                 KASSERT(mpte >= vm_page_array &&
  703                     mpte < &vm_page_array[vm_page_array_size],
  704                     ("pmap_init: page table page is out of range"));
  705                 mpte->pindex = i + KPTDI;
  706                 mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
  707         }
  708 
  709         /*
  710          * Initialize the address space (zone) for the pv entries.  Set a
  711          * high water mark so that the system can recover from excessive
  712          * numbers of pv entries.
  713          */
  714         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  715         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  716         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  717         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  718         pv_entry_high_water = 9 * (pv_entry_max / 10);
  719 
  720         /*
  721          * Are large page mappings enabled?
  722          */
  723         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  724 
  725         /*
  726          * Calculate the size of the pv head table for superpages.
  727          */
  728         for (i = 0; phys_avail[i + 1]; i += 2);
  729         pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
  730 
  731         /*
  732          * Allocate memory for the pv head table for superpages.
  733          */
  734         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  735         s = round_page(s);
  736         pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
  737         for (i = 0; i < pv_npg; i++)
  738                 TAILQ_INIT(&pv_table[i].pv_list);
  739 
  740         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  741         pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
  742             PAGE_SIZE * pv_maxchunks);
  743         if (pv_chunkbase == NULL)
  744                 panic("pmap_init: not enough kvm for pv chunks");
  745         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  746 #if defined(PAE) && !defined(XEN)
  747         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  748             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  749             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  750         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  751 #endif
  752 }
  753 
  754 
  755 /***************************************************
  756  * Low level helper routines.....
  757  ***************************************************/
  758 
  759 /*
  760  * Determine the appropriate bits to set in a PTE or PDE for a specified
  761  * caching mode.
  762  */
  763 int
  764 pmap_cache_bits(int mode, boolean_t is_pde)
  765 {
  766         int pat_flag, pat_index, cache_bits;
  767 
  768         /* The PAT bit is different for PTE's and PDE's. */
  769         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  770 
  771         /* If we don't support PAT, map extended modes to older ones. */
  772         if (!(cpu_feature & CPUID_PAT)) {
  773                 switch (mode) {
  774                 case PAT_UNCACHEABLE:
  775                 case PAT_WRITE_THROUGH:
  776                 case PAT_WRITE_BACK:
  777                         break;
  778                 case PAT_UNCACHED:
  779                 case PAT_WRITE_COMBINING:
  780                 case PAT_WRITE_PROTECTED:
  781                         mode = PAT_UNCACHEABLE;
  782                         break;
  783                 }
  784         }
  785         
  786         /* Map the caching mode to a PAT index. */
  787         switch (mode) {
  788 #ifdef PAT_WORKS
  789         case PAT_UNCACHEABLE:
  790                 pat_index = 3;
  791                 break;
  792         case PAT_WRITE_THROUGH:
  793                 pat_index = 1;
  794                 break;
  795         case PAT_WRITE_BACK:
  796                 pat_index = 0;
  797                 break;
  798         case PAT_UNCACHED:
  799                 pat_index = 2;
  800                 break;
  801         case PAT_WRITE_COMBINING:
  802                 pat_index = 5;
  803                 break;
  804         case PAT_WRITE_PROTECTED:
  805                 pat_index = 4;
  806                 break;
  807 #else
  808         case PAT_UNCACHED:
  809         case PAT_UNCACHEABLE:
  810         case PAT_WRITE_PROTECTED:
  811                 pat_index = 3;
  812                 break;
  813         case PAT_WRITE_THROUGH:
  814                 pat_index = 1;
  815                 break;
  816         case PAT_WRITE_BACK:
  817                 pat_index = 0;
  818                 break;
  819         case PAT_WRITE_COMBINING:
  820                 pat_index = 2;
  821                 break;
  822 #endif
  823         default:
  824                 panic("Unknown caching mode %d\n", mode);
  825         }       
  826 
  827         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  828         cache_bits = 0;
  829         if (pat_index & 0x4)
  830                 cache_bits |= pat_flag;
  831         if (pat_index & 0x2)
  832                 cache_bits |= PG_NC_PCD;
  833         if (pat_index & 0x1)
  834                 cache_bits |= PG_NC_PWT;
  835         return (cache_bits);
  836 }
  837 #ifdef SMP
  838 /*
  839  * For SMP, these functions have to use the IPI mechanism for coherence.
  840  *
  841  * N.B.: Before calling any of the following TLB invalidation functions,
  842  * the calling processor must ensure that all stores updating a non-
  843  * kernel page table are globally performed.  Otherwise, another
  844  * processor could cache an old, pre-update entry without being
  845  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  846  * active on another processor after its pm_active field is checked by
  847  * one of the following functions but before a store updating the page
  848  * table is globally performed. (2) The pmap becomes active on another
  849  * processor before its pm_active field is checked but due to
  850  * speculative loads one of the following functions stills reads the
  851  * pmap as inactive on the other processor.
  852  * 
  853  * The kernel page table is exempt because its pm_active field is
  854  * immutable.  The kernel page table is always active on every
  855  * processor.
  856  */
  857 void
  858 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  859 {
  860         u_int cpumask;
  861         u_int other_cpus;
  862 
  863         CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
  864             pmap, va);
  865         
  866         sched_pin();
  867         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  868                 invlpg(va);
  869                 smp_invlpg(va);
  870         } else {
  871                 cpumask = PCPU_GET(cpumask);
  872                 other_cpus = PCPU_GET(other_cpus);
  873                 if (pmap->pm_active & cpumask)
  874                         invlpg(va);
  875                 if (pmap->pm_active & other_cpus)
  876                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  877         }
  878         sched_unpin();
  879         PT_UPDATES_FLUSH();
  880 }
  881 
  882 void
  883 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  884 {
  885         u_int cpumask;
  886         u_int other_cpus;
  887         vm_offset_t addr;
  888 
  889         CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
  890             pmap, sva, eva);
  891 
  892         sched_pin();
  893         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  894                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  895                         invlpg(addr);
  896                 smp_invlpg_range(sva, eva);
  897         } else {
  898                 cpumask = PCPU_GET(cpumask);
  899                 other_cpus = PCPU_GET(other_cpus);
  900                 if (pmap->pm_active & cpumask)
  901                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  902                                 invlpg(addr);
  903                 if (pmap->pm_active & other_cpus)
  904                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  905                             sva, eva);
  906         }
  907         sched_unpin();
  908         PT_UPDATES_FLUSH();
  909 }
  910 
  911 void
  912 pmap_invalidate_all(pmap_t pmap)
  913 {
  914         u_int cpumask;
  915         u_int other_cpus;
  916 
  917         CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
  918 
  919         sched_pin();
  920         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  921                 invltlb();
  922                 smp_invltlb();
  923         } else {
  924                 cpumask = PCPU_GET(cpumask);
  925                 other_cpus = PCPU_GET(other_cpus);
  926                 if (pmap->pm_active & cpumask)
  927                         invltlb();
  928                 if (pmap->pm_active & other_cpus)
  929                         smp_masked_invltlb(pmap->pm_active & other_cpus);
  930         }
  931         sched_unpin();
  932 }
  933 
  934 void
  935 pmap_invalidate_cache(void)
  936 {
  937 
  938         sched_pin();
  939         wbinvd();
  940         smp_cache_flush();
  941         sched_unpin();
  942 }
  943 #else /* !SMP */
  944 /*
  945  * Normal, non-SMP, 486+ invalidation functions.
  946  * We inline these within pmap.c for speed.
  947  */
  948 PMAP_INLINE void
  949 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  950 {
  951         CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
  952             pmap, va);
  953 
  954         if (pmap == kernel_pmap || pmap->pm_active)
  955                 invlpg(va);
  956         PT_UPDATES_FLUSH();
  957 }
  958 
  959 PMAP_INLINE void
  960 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  961 {
  962         vm_offset_t addr;
  963 
  964         if (eva - sva > PAGE_SIZE)
  965                 CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
  966                     pmap, sva, eva);
  967 
  968         if (pmap == kernel_pmap || pmap->pm_active)
  969                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  970                         invlpg(addr);
  971         PT_UPDATES_FLUSH();
  972 }
  973 
  974 PMAP_INLINE void
  975 pmap_invalidate_all(pmap_t pmap)
  976 {
  977 
  978         CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
  979         
  980         if (pmap == kernel_pmap || pmap->pm_active)
  981                 invltlb();
  982 }
  983 
  984 PMAP_INLINE void
  985 pmap_invalidate_cache(void)
  986 {
  987 
  988         wbinvd();
  989 }
  990 #endif /* !SMP */
  991 
  992 void
  993 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
  994 {
  995 
  996         KASSERT((sva & PAGE_MASK) == 0,
  997             ("pmap_invalidate_cache_range: sva not page-aligned"));
  998         KASSERT((eva & PAGE_MASK) == 0,
  999             ("pmap_invalidate_cache_range: eva not page-aligned"));
 1000 
 1001         if (cpu_feature & CPUID_SS)
 1002                 ; /* If "Self Snoop" is supported, do nothing. */
 1003         else if (cpu_feature & CPUID_CLFSH) {
 1004 
 1005                 /*
 1006                  * Otherwise, do per-cache line flush.  Use the mfence
 1007                  * instruction to insure that previous stores are
 1008                  * included in the write-back.  The processor
 1009                  * propagates flush to other processors in the cache
 1010                  * coherence domain.
 1011                  */
 1012                 mfence();
 1013                 for (; sva < eva; sva += cpu_clflush_line_size)
 1014                         clflush(sva);
 1015                 mfence();
 1016         } else {
 1017 
 1018                 /*
 1019                  * No targeted cache flush methods are supported by CPU,
 1020                  * globally invalidate cache as a last resort.
 1021                  */
 1022                 pmap_invalidate_cache();
 1023         }
 1024 }
 1025 
 1026 /*
 1027  * Are we current address space or kernel?  N.B. We return FALSE when
 1028  * a pmap's page table is in use because a kernel thread is borrowing
 1029  * it.  The borrowed page table can change spontaneously, making any
 1030  * dependence on its continued use subject to a race condition.
 1031  */
 1032 static __inline int
 1033 pmap_is_current(pmap_t pmap)
 1034 {
 1035 
 1036         return (pmap == kernel_pmap ||
 1037             (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
 1038                 (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
 1039 }
 1040 
 1041 /*
 1042  * If the given pmap is not the current or kernel pmap, the returned pte must
 1043  * be released by passing it to pmap_pte_release().
 1044  */
 1045 pt_entry_t *
 1046 pmap_pte(pmap_t pmap, vm_offset_t va)
 1047 {
 1048         pd_entry_t newpf;
 1049         pd_entry_t *pde;
 1050 
 1051         pde = pmap_pde(pmap, va);
 1052         if (*pde & PG_PS)
 1053                 return (pde);
 1054         if (*pde != 0) {
 1055                 /* are we current address space or kernel? */
 1056                 if (pmap_is_current(pmap))
 1057                         return (vtopte(va));
 1058                 mtx_lock(&PMAP2mutex);
 1059                 newpf = *pde & PG_FRAME;
 1060                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1061                         PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
 1062                         CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
 1063                             pmap, va, (*PMAP2 & 0xffffffff));
 1064                 }
 1065                 
 1066                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1067         }
 1068         return (0);
 1069 }
 1070 
 1071 /*
 1072  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1073  * being NULL.
 1074  */
 1075 static __inline void
 1076 pmap_pte_release(pt_entry_t *pte)
 1077 {
 1078 
 1079         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
 1080                 CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
 1081                     *PMAP2);
 1082                 PT_SET_VA(PMAP2, 0, TRUE);
 1083                 mtx_unlock(&PMAP2mutex);
 1084         }
 1085 }
 1086 
 1087 static __inline void
 1088 invlcaddr(void *caddr)
 1089 {
 1090 
 1091         invlpg((u_int)caddr);
 1092         PT_UPDATES_FLUSH();
 1093 }
 1094 
 1095 /*
 1096  * Super fast pmap_pte routine best used when scanning
 1097  * the pv lists.  This eliminates many coarse-grained
 1098  * invltlb calls.  Note that many of the pv list
 1099  * scans are across different pmaps.  It is very wasteful
 1100  * to do an entire invltlb for checking a single mapping.
 1101  *
 1102  * If the given pmap is not the current pmap, vm_page_queue_mtx
 1103  * must be held and curthread pinned to a CPU.
 1104  */
 1105 static pt_entry_t *
 1106 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1107 {
 1108         pd_entry_t newpf;
 1109         pd_entry_t *pde;
 1110 
 1111         pde = pmap_pde(pmap, va);
 1112         if (*pde & PG_PS)
 1113                 return (pde);
 1114         if (*pde != 0) {
 1115                 /* are we current address space or kernel? */
 1116                 if (pmap_is_current(pmap))
 1117                         return (vtopte(va));
 1118                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1119                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1120                 newpf = *pde & PG_FRAME;
 1121                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1122                         PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
 1123                         CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
 1124                             pmap, va, (u_long)*PMAP1);
 1125                         
 1126 #ifdef SMP
 1127                         PMAP1cpu = PCPU_GET(cpuid);
 1128 #endif
 1129                         PMAP1changed++;
 1130                 } else
 1131 #ifdef SMP
 1132                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1133                         PMAP1cpu = PCPU_GET(cpuid);
 1134                         invlcaddr(PADDR1);
 1135                         PMAP1changedcpu++;
 1136                 } else
 1137 #endif
 1138                         PMAP1unchanged++;
 1139                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1140         }
 1141         return (0);
 1142 }
 1143 
 1144 /*
 1145  *      Routine:        pmap_extract
 1146  *      Function:
 1147  *              Extract the physical page address associated
 1148  *              with the given map/virtual_address pair.
 1149  */
 1150 vm_paddr_t 
 1151 pmap_extract(pmap_t pmap, vm_offset_t va)
 1152 {
 1153         vm_paddr_t rtval;
 1154         pt_entry_t *pte;
 1155         pd_entry_t pde;
 1156         pt_entry_t pteval;
 1157         
 1158         rtval = 0;
 1159         PMAP_LOCK(pmap);
 1160         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1161         if (pde != 0) {
 1162                 if ((pde & PG_PS) != 0) {
 1163                         rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
 1164                         PMAP_UNLOCK(pmap);
 1165                         return rtval;
 1166                 }
 1167                 pte = pmap_pte(pmap, va);
 1168                 pteval = *pte ? xpmap_mtop(*pte) : 0;
 1169                 rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
 1170                 pmap_pte_release(pte);
 1171         }
 1172         PMAP_UNLOCK(pmap);
 1173         return (rtval);
 1174 }
 1175 
 1176 /*
 1177  *      Routine:        pmap_extract_ma
 1178  *      Function:
 1179  *              Like pmap_extract, but returns machine address
 1180  */
 1181 vm_paddr_t 
 1182 pmap_extract_ma(pmap_t pmap, vm_offset_t va)
 1183 {
 1184         vm_paddr_t rtval;
 1185         pt_entry_t *pte;
 1186         pd_entry_t pde;
 1187 
 1188         rtval = 0;
 1189         PMAP_LOCK(pmap);
 1190         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1191         if (pde != 0) {
 1192                 if ((pde & PG_PS) != 0) {
 1193                         rtval = (pde & ~PDRMASK) | (va & PDRMASK);
 1194                         PMAP_UNLOCK(pmap);
 1195                         return rtval;
 1196                 }
 1197                 pte = pmap_pte(pmap, va);
 1198                 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1199                 pmap_pte_release(pte);
 1200         }
 1201         PMAP_UNLOCK(pmap);
 1202         return (rtval);
 1203 }
 1204 
 1205 /*
 1206  *      Routine:        pmap_extract_and_hold
 1207  *      Function:
 1208  *              Atomically extract and hold the physical page
 1209  *              with the given pmap and virtual address pair
 1210  *              if that mapping permits the given protection.
 1211  */
 1212 vm_page_t
 1213 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1214 {
 1215         pd_entry_t pde;
 1216         pt_entry_t pte;
 1217         vm_page_t m;
 1218 
 1219         m = NULL;
 1220         vm_page_lock_queues();
 1221         PMAP_LOCK(pmap);
 1222         pde = PT_GET(pmap_pde(pmap, va));
 1223         if (pde != 0) {
 1224                 if (pde & PG_PS) {
 1225                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1226                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1227                                     (va & PDRMASK));
 1228                                 vm_page_hold(m);
 1229                         }
 1230                 } else {
 1231                         sched_pin();
 1232                         pte = PT_GET(pmap_pte_quick(pmap, va));
 1233                         if (*PMAP1)
 1234                                 PT_SET_MA(PADDR1, 0);
 1235                         if ((pte & PG_V) &&
 1236                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1237                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1238                                 vm_page_hold(m);
 1239                         }
 1240                         sched_unpin();
 1241                 }
 1242         }
 1243         vm_page_unlock_queues();
 1244         PMAP_UNLOCK(pmap);
 1245         return (m);
 1246 }
 1247 
 1248 /***************************************************
 1249  * Low level mapping routines.....
 1250  ***************************************************/
 1251 
 1252 /*
 1253  * Add a wired page to the kva.
 1254  * Note: not SMP coherent.
 1255  */
 1256 void 
 1257 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1258 {
 1259         PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
 1260 }
 1261 
 1262 void 
 1263 pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
 1264 {
 1265         pt_entry_t *pte;
 1266 
 1267         pte = vtopte(va);
 1268         pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
 1269 }
 1270 
 1271 
 1272 static __inline void 
 1273 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1274 {
 1275         PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1276 }
 1277 
 1278 /*
 1279  * Remove a page from the kernel pagetables.
 1280  * Note: not SMP coherent.
 1281  */
 1282 PMAP_INLINE void
 1283 pmap_kremove(vm_offset_t va)
 1284 {
 1285         pt_entry_t *pte;
 1286 
 1287         pte = vtopte(va);
 1288         PT_CLEAR_VA(pte, FALSE);
 1289 }
 1290 
 1291 /*
 1292  *      Used to map a range of physical addresses into kernel
 1293  *      virtual address space.
 1294  *
 1295  *      The value passed in '*virt' is a suggested virtual address for
 1296  *      the mapping. Architectures which can support a direct-mapped
 1297  *      physical to virtual region can return the appropriate address
 1298  *      within that region, leaving '*virt' unchanged. Other
 1299  *      architectures should map the pages starting at '*virt' and
 1300  *      update '*virt' with the first usable address after the mapped
 1301  *      region.
 1302  */
 1303 vm_offset_t
 1304 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1305 {
 1306         vm_offset_t va, sva;
 1307 
 1308         va = sva = *virt;
 1309         CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
 1310             va, start, end, prot);
 1311         while (start < end) {
 1312                 pmap_kenter(va, start);
 1313                 va += PAGE_SIZE;
 1314                 start += PAGE_SIZE;
 1315         }
 1316         pmap_invalidate_range(kernel_pmap, sva, va);
 1317         *virt = va;
 1318         return (sva);
 1319 }
 1320 
 1321 
 1322 /*
 1323  * Add a list of wired pages to the kva
 1324  * this routine is only used for temporary
 1325  * kernel mappings that do not need to have
 1326  * page modification or references recorded.
 1327  * Note that old mappings are simply written
 1328  * over.  The page *must* be wired.
 1329  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1330  */
 1331 void
 1332 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1333 {
 1334         pt_entry_t *endpte, *pte;
 1335         vm_paddr_t pa;
 1336         vm_offset_t va = sva;
 1337         int mclcount = 0;
 1338         multicall_entry_t mcl[16];
 1339         multicall_entry_t *mclp = mcl;
 1340         int error;
 1341 
 1342         CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
 1343         pte = vtopte(sva);
 1344         endpte = pte + count;
 1345         while (pte < endpte) {
 1346                 pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
 1347 
 1348                 mclp->op = __HYPERVISOR_update_va_mapping;
 1349                 mclp->args[0] = va;
 1350                 mclp->args[1] = (uint32_t)(pa & 0xffffffff);
 1351                 mclp->args[2] = (uint32_t)(pa >> 32);
 1352                 mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
 1353         
 1354                 va += PAGE_SIZE;
 1355                 pte++;
 1356                 ma++;
 1357                 mclp++;
 1358                 mclcount++;
 1359                 if (mclcount == 16) {
 1360                         error = HYPERVISOR_multicall(mcl, mclcount);
 1361                         mclp = mcl;
 1362                         mclcount = 0;
 1363                         KASSERT(error == 0, ("bad multicall %d", error));
 1364                 }               
 1365         }
 1366         if (mclcount) {
 1367                 error = HYPERVISOR_multicall(mcl, mclcount);
 1368                 KASSERT(error == 0, ("bad multicall %d", error));
 1369         }
 1370         
 1371 #ifdef INVARIANTS
 1372         for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
 1373                 KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
 1374 #endif  
 1375 }
 1376 
 1377 
 1378 /*
 1379  * This routine tears out page mappings from the
 1380  * kernel -- it is meant only for temporary mappings.
 1381  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1382  */
 1383 void
 1384 pmap_qremove(vm_offset_t sva, int count)
 1385 {
 1386         vm_offset_t va;
 1387 
 1388         CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
 1389         va = sva;
 1390         vm_page_lock_queues();
 1391         critical_enter();
 1392         while (count-- > 0) {
 1393                 pmap_kremove(va);
 1394                 va += PAGE_SIZE;
 1395         }
 1396         pmap_invalidate_range(kernel_pmap, sva, va);
 1397         critical_exit();
 1398         vm_page_unlock_queues();
 1399 }
 1400 
 1401 /***************************************************
 1402  * Page table page management routines.....
 1403  ***************************************************/
 1404 static __inline void
 1405 pmap_free_zero_pages(vm_page_t free)
 1406 {
 1407         vm_page_t m;
 1408 
 1409         while (free != NULL) {
 1410                 m = free;
 1411                 free = m->right;
 1412                 vm_page_free_zero(m);
 1413         }
 1414 }
 1415 
 1416 /*
 1417  * This routine unholds page table pages, and if the hold count
 1418  * drops to zero, then it decrements the wire count.
 1419  */
 1420 static __inline int
 1421 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1422 {
 1423 
 1424         --m->wire_count;
 1425         if (m->wire_count == 0)
 1426                 return _pmap_unwire_pte_hold(pmap, m, free);
 1427         else
 1428                 return 0;
 1429 }
 1430 
 1431 static int 
 1432 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1433 {
 1434         vm_offset_t pteva;
 1435 
 1436         PT_UPDATES_FLUSH();
 1437         /*
 1438          * unmap the page table page
 1439          */
 1440         xen_pt_unpin(pmap->pm_pdir[m->pindex]);
 1441         /*
 1442          * page *might* contain residual mapping :-/  
 1443          */
 1444         PD_CLEAR_VA(pmap, m->pindex, TRUE);
 1445         pmap_zero_page(m);
 1446         --pmap->pm_stats.resident_count;
 1447 
 1448         /*
 1449          * This is a release store so that the ordinary store unmapping
 1450          * the page table page is globally performed before TLB shoot-
 1451          * down is begun.
 1452          */
 1453         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1454 
 1455         /*
 1456          * Do an invltlb to make the invalidated mapping
 1457          * take effect immediately.
 1458          */
 1459         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1460         pmap_invalidate_page(pmap, pteva);
 1461 
 1462         /* 
 1463          * Put page on a list so that it is released after
 1464          * *ALL* TLB shootdown is done
 1465          */
 1466         m->right = *free;
 1467         *free = m;
 1468 
 1469         return 1;
 1470 }
 1471 
 1472 /*
 1473  * After removing a page table entry, this routine is used to
 1474  * conditionally free the page, and manage the hold/wire counts.
 1475  */
 1476 static int
 1477 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1478 {
 1479         pd_entry_t ptepde;
 1480         vm_page_t mpte;
 1481 
 1482         if (va >= VM_MAXUSER_ADDRESS)
 1483                 return 0;
 1484         ptepde = PT_GET(pmap_pde(pmap, va));
 1485         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1486         return pmap_unwire_pte_hold(pmap, mpte, free);
 1487 }
 1488 
 1489 void
 1490 pmap_pinit0(pmap_t pmap)
 1491 {
 1492 
 1493         PMAP_LOCK_INIT(pmap);
 1494         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1495 #ifdef PAE
 1496         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1497 #endif
 1498         pmap->pm_active = 0;
 1499         PCPU_SET(curpmap, pmap);
 1500         TAILQ_INIT(&pmap->pm_pvchunk);
 1501         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1502         mtx_lock_spin(&allpmaps_lock);
 1503         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1504         mtx_unlock_spin(&allpmaps_lock);
 1505 }
 1506 
 1507 /*
 1508  * Initialize a preallocated and zeroed pmap structure,
 1509  * such as one in a vmspace structure.
 1510  */
 1511 int
 1512 pmap_pinit(pmap_t pmap)
 1513 {
 1514         vm_page_t m, ptdpg[NPGPTD + 1];
 1515         int npgptd = NPGPTD + 1;
 1516         static int color;
 1517         int i;
 1518 
 1519         PMAP_LOCK_INIT(pmap);
 1520 
 1521         /*
 1522          * No need to allocate page table space yet but we do need a valid
 1523          * page directory table.
 1524          */
 1525         if (pmap->pm_pdir == NULL) {
 1526                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1527                     NBPTD);
 1528                 if (pmap->pm_pdir == NULL) {
 1529                         PMAP_LOCK_DESTROY(pmap);
 1530                         return (0);
 1531                 }
 1532 #if defined(XEN) && defined(PAE)        
 1533                 pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
 1534 #endif
 1535                 
 1536 #if defined(PAE) && !defined(XEN)
 1537                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1538                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1539                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1540                     ("pmap_pinit: pdpt misaligned"));
 1541                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1542                     ("pmap_pinit: pdpt above 4g"));
 1543 #endif
 1544         }
 1545 
 1546         /*
 1547          * allocate the page directory page(s)
 1548          */
 1549         for (i = 0; i < npgptd;) {
 1550                 m = vm_page_alloc(NULL, color++,
 1551                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1552                     VM_ALLOC_ZERO);
 1553                 if (m == NULL)
 1554                         VM_WAIT;
 1555                 else {
 1556                         ptdpg[i++] = m;
 1557                 }
 1558         }
 1559         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1560         for (i = 0; i < NPGPTD; i++) {
 1561                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1562                         pagezero(&pmap->pm_pdir[i*NPTEPG]);
 1563         }
 1564 
 1565         mtx_lock_spin(&allpmaps_lock);
 1566         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1567         mtx_unlock_spin(&allpmaps_lock);
 1568         /* Wire in kernel global address entries. */
 1569 
 1570         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1571 #ifdef PAE
 1572 #ifdef XEN
 1573         pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
 1574         if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
 1575                 bzero(pmap->pm_pdpt, PAGE_SIZE);
 1576 #endif  
 1577         for (i = 0; i < NPGPTD; i++) {
 1578                 vm_paddr_t ma;
 1579                 
 1580                 ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
 1581                 pmap->pm_pdpt[i] = ma | PG_V;
 1582 
 1583         }
 1584 #endif  
 1585 #ifdef XEN
 1586         for (i = 0; i < NPGPTD; i++) {
 1587                 pt_entry_t *pd;
 1588                 vm_paddr_t ma;
 1589                 
 1590                 ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
 1591                 pd = pmap->pm_pdir + (i * NPDEPG);
 1592                 PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
 1593 #if 0           
 1594                 xen_pgd_pin(ma);
 1595 #endif          
 1596         }
 1597         
 1598 #ifdef PAE      
 1599         PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
 1600 #endif
 1601         vm_page_lock_queues();
 1602         xen_flush_queue();
 1603         xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
 1604         for (i = 0; i < NPGPTD; i++) {
 1605                 vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
 1606                 PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
 1607         }
 1608         xen_flush_queue();
 1609         vm_page_unlock_queues();
 1610 #endif
 1611         pmap->pm_active = 0;
 1612         TAILQ_INIT(&pmap->pm_pvchunk);
 1613         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1614 
 1615         return (1);
 1616 }
 1617 
 1618 /*
 1619  * this routine is called if the page table page is not
 1620  * mapped correctly.
 1621  */
 1622 static vm_page_t
 1623 _pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
 1624 {
 1625         vm_paddr_t ptema;
 1626         vm_page_t m;
 1627 
 1628         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1629             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1630             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1631 
 1632         /*
 1633          * Allocate a page table page.
 1634          */
 1635         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1636             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1637                 if (flags & M_WAITOK) {
 1638                         PMAP_UNLOCK(pmap);
 1639                         vm_page_unlock_queues();
 1640                         VM_WAIT;
 1641                         vm_page_lock_queues();
 1642                         PMAP_LOCK(pmap);
 1643                 }
 1644 
 1645                 /*
 1646                  * Indicate the need to retry.  While waiting, the page table
 1647                  * page may have been allocated.
 1648                  */
 1649                 return (NULL);
 1650         }
 1651         if ((m->flags & PG_ZERO) == 0)
 1652                 pmap_zero_page(m);
 1653 
 1654         /*
 1655          * Map the pagetable page into the process address space, if
 1656          * it isn't already there.
 1657          */
 1658         pmap->pm_stats.resident_count++;
 1659 
 1660         ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
 1661         xen_pt_pin(ptema);
 1662         PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
 1663                 (ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
 1664         
 1665         KASSERT(pmap->pm_pdir[ptepindex],
 1666             ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
 1667         return (m);
 1668 }
 1669 
 1670 static vm_page_t
 1671 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1672 {
 1673         unsigned ptepindex;
 1674         pd_entry_t ptema;
 1675         vm_page_t m;
 1676 
 1677         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1678             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1679             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1680 
 1681         /*
 1682          * Calculate pagetable page index
 1683          */
 1684         ptepindex = va >> PDRSHIFT;
 1685 retry:
 1686         /*
 1687          * Get the page directory entry
 1688          */
 1689         ptema = pmap->pm_pdir[ptepindex];
 1690 
 1691         /*
 1692          * This supports switching from a 4MB page to a
 1693          * normal 4K page.
 1694          */
 1695         if (ptema & PG_PS) {
 1696                 /*
 1697                  * XXX 
 1698                  */
 1699                 pmap->pm_pdir[ptepindex] = 0;
 1700                 ptema = 0;
 1701                 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1702                 pmap_invalidate_all(kernel_pmap);
 1703         }
 1704 
 1705         /*
 1706          * If the page table page is mapped, we just increment the
 1707          * hold count, and activate it.
 1708          */
 1709         if (ptema & PG_V) {
 1710                 m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
 1711                 m->wire_count++;
 1712         } else {
 1713                 /*
 1714                  * Here if the pte page isn't mapped, or if it has
 1715                  * been deallocated. 
 1716                  */
 1717                 CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
 1718                     pmap, va, flags);
 1719                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1720                 if (m == NULL && (flags & M_WAITOK))
 1721                         goto retry;
 1722 
 1723                 KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
 1724         }
 1725         return (m);
 1726 }
 1727 
 1728 
 1729 /***************************************************
 1730 * Pmap allocation/deallocation routines.
 1731  ***************************************************/
 1732 
 1733 #ifdef SMP
 1734 /*
 1735  * Deal with a SMP shootdown of other users of the pmap that we are
 1736  * trying to dispose of.  This can be a bit hairy.
 1737  */
 1738 static u_int *lazymask;
 1739 static u_int lazyptd;
 1740 static volatile u_int lazywait;
 1741 
 1742 void pmap_lazyfix_action(void);
 1743 
 1744 void
 1745 pmap_lazyfix_action(void)
 1746 {
 1747         u_int mymask = PCPU_GET(cpumask);
 1748 
 1749 #ifdef COUNT_IPIS
 1750         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1751 #endif
 1752         if (rcr3() == lazyptd)
 1753                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1754         atomic_clear_int(lazymask, mymask);
 1755         atomic_store_rel_int(&lazywait, 1);
 1756 }
 1757 
 1758 static void
 1759 pmap_lazyfix_self(u_int mymask)
 1760 {
 1761 
 1762         if (rcr3() == lazyptd)
 1763                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1764         atomic_clear_int(lazymask, mymask);
 1765 }
 1766 
 1767 
 1768 static void
 1769 pmap_lazyfix(pmap_t pmap)
 1770 {
 1771         u_int mymask;
 1772         u_int mask;
 1773         u_int spins;
 1774 
 1775         while ((mask = pmap->pm_active) != 0) {
 1776                 spins = 50000000;
 1777                 mask = mask & -mask;    /* Find least significant set bit */
 1778                 mtx_lock_spin(&smp_ipi_mtx);
 1779 #ifdef PAE
 1780                 lazyptd = vtophys(pmap->pm_pdpt);
 1781 #else
 1782                 lazyptd = vtophys(pmap->pm_pdir);
 1783 #endif
 1784                 mymask = PCPU_GET(cpumask);
 1785                 if (mask == mymask) {
 1786                         lazymask = &pmap->pm_active;
 1787                         pmap_lazyfix_self(mymask);
 1788                 } else {
 1789                         atomic_store_rel_int((u_int *)&lazymask,
 1790                             (u_int)&pmap->pm_active);
 1791                         atomic_store_rel_int(&lazywait, 0);
 1792                         ipi_selected(mask, IPI_LAZYPMAP);
 1793                         while (lazywait == 0) {
 1794                                 ia32_pause();
 1795                                 if (--spins == 0)
 1796                                         break;
 1797                         }
 1798                 }
 1799                 mtx_unlock_spin(&smp_ipi_mtx);
 1800                 if (spins == 0)
 1801                         printf("pmap_lazyfix: spun for 50000000\n");
 1802         }
 1803 }
 1804 
 1805 #else   /* SMP */
 1806 
 1807 /*
 1808  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1809  * unlikely to have to even execute this code, including the fact
 1810  * that the cleanup is deferred until the parent does a wait(2), which
 1811  * means that another userland process has run.
 1812  */
 1813 static void
 1814 pmap_lazyfix(pmap_t pmap)
 1815 {
 1816         u_int cr3;
 1817 
 1818         cr3 = vtophys(pmap->pm_pdir);
 1819         if (cr3 == rcr3()) {
 1820                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1821                 pmap->pm_active &= ~(PCPU_GET(cpumask));
 1822         }
 1823 }
 1824 #endif  /* SMP */
 1825 
 1826 /*
 1827  * Release any resources held by the given physical map.
 1828  * Called when a pmap initialized by pmap_pinit is being released.
 1829  * Should only be called if the map contains no valid mappings.
 1830  */
 1831 void
 1832 pmap_release(pmap_t pmap)
 1833 {
 1834         vm_page_t m, ptdpg[2*NPGPTD+1];
 1835         vm_paddr_t ma;
 1836         int i;
 1837 #ifdef XEN
 1838 #ifdef PAE      
 1839         int npgptd = NPGPTD + 1;
 1840 #else
 1841         int npgptd = NPGPTD;
 1842 #endif
 1843 #else 
 1844         int npgptd = NPGPTD;
 1845 #endif  
 1846         KASSERT(pmap->pm_stats.resident_count == 0,
 1847             ("pmap_release: pmap resident count %ld != 0",
 1848             pmap->pm_stats.resident_count));
 1849         PT_UPDATES_FLUSH();
 1850 
 1851         pmap_lazyfix(pmap);
 1852         mtx_lock_spin(&allpmaps_lock);
 1853         LIST_REMOVE(pmap, pm_list);
 1854         mtx_unlock_spin(&allpmaps_lock);
 1855 
 1856         for (i = 0; i < NPGPTD; i++)
 1857                 ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
 1858         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1859 #if defined(PAE) && defined(XEN)
 1860         ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
 1861 #endif  
 1862 
 1863         for (i = 0; i < npgptd; i++) {
 1864                 m = ptdpg[i];
 1865                 ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
 1866                 /* unpinning L1 and L2 treated the same */
 1867                 xen_pgd_unpin(ma);
 1868 #ifdef PAE
 1869                 KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
 1870                     ("pmap_release: got wrong ptd page"));
 1871 #endif
 1872                 m->wire_count--;
 1873                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1874                 vm_page_free(m);
 1875         }
 1876         PMAP_LOCK_DESTROY(pmap);
 1877 }
 1878 
 1879 static int
 1880 kvm_size(SYSCTL_HANDLER_ARGS)
 1881 {
 1882         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1883 
 1884         return sysctl_handle_long(oidp, &ksize, 0, req);
 1885 }
 1886 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1887     0, 0, kvm_size, "IU", "Size of KVM");
 1888 
 1889 static int
 1890 kvm_free(SYSCTL_HANDLER_ARGS)
 1891 {
 1892         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1893 
 1894         return sysctl_handle_long(oidp, &kfree, 0, req);
 1895 }
 1896 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1897     0, 0, kvm_free, "IU", "Amount of KVM free");
 1898 
 1899 /*
 1900  * grow the number of kernel page table entries, if needed
 1901  */
 1902 void
 1903 pmap_growkernel(vm_offset_t addr)
 1904 {
 1905         struct pmap *pmap;
 1906         vm_paddr_t ptppaddr;
 1907         vm_page_t nkpg;
 1908         pd_entry_t newpdir;
 1909 
 1910         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1911         if (kernel_vm_end == 0) {
 1912                 kernel_vm_end = KERNBASE;
 1913                 nkpt = 0;
 1914                 while (pdir_pde(PTD, kernel_vm_end)) {
 1915                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1916                         nkpt++;
 1917                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1918                                 kernel_vm_end = kernel_map->max_offset;
 1919                                 break;
 1920                         }
 1921                 }
 1922         }
 1923         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1924         if (addr - 1 >= kernel_map->max_offset)
 1925                 addr = kernel_map->max_offset;
 1926         while (kernel_vm_end < addr) {
 1927                 if (pdir_pde(PTD, kernel_vm_end)) {
 1928                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1929                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1930                                 kernel_vm_end = kernel_map->max_offset;
 1931                                 break;
 1932                         }
 1933                         continue;
 1934                 }
 1935 
 1936                 /*
 1937                  * This index is bogus, but out of the way
 1938                  */
 1939                 nkpg = vm_page_alloc(NULL, nkpt,
 1940                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1941                 if (!nkpg)
 1942                         panic("pmap_growkernel: no memory to grow kernel");
 1943 
 1944                 nkpt++;
 1945 
 1946                 pmap_zero_page(nkpg);
 1947                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1948                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1949                 vm_page_lock_queues();
 1950                 PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
 1951                 mtx_lock_spin(&allpmaps_lock);
 1952                 LIST_FOREACH(pmap, &allpmaps, pm_list)
 1953                         PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
 1954 
 1955                 mtx_unlock_spin(&allpmaps_lock);
 1956                 vm_page_unlock_queues();
 1957 
 1958                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1959                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1960                         kernel_vm_end = kernel_map->max_offset;
 1961                         break;
 1962                 }
 1963         }
 1964 }
 1965 
 1966 
 1967 /***************************************************
 1968  * page management routines.
 1969  ***************************************************/
 1970 
 1971 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1972 CTASSERT(_NPCM == 11);
 1973 
 1974 static __inline struct pv_chunk *
 1975 pv_to_chunk(pv_entry_t pv)
 1976 {
 1977 
 1978         return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
 1979 }
 1980 
 1981 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1982 
 1983 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1984 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1985 
 1986 static uint32_t pc_freemask[11] = {
 1987         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1988         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1989         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1990         PC_FREE0_9, PC_FREE10
 1991 };
 1992 
 1993 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1994         "Current number of pv entries");
 1995 
 1996 #ifdef PV_STATS
 1997 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1998 
 1999 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2000         "Current number of pv entry chunks");
 2001 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2002         "Current number of pv entry chunks allocated");
 2003 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2004         "Current number of pv entry chunks frees");
 2005 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2006         "Number of times tried to get a chunk page but failed.");
 2007 
 2008 static long pv_entry_frees, pv_entry_allocs;
 2009 static int pv_entry_spare;
 2010 
 2011 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2012         "Current number of pv entry frees");
 2013 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2014         "Current number of pv entry allocs");
 2015 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2016         "Current number of spare pv entries");
 2017 
 2018 static int pmap_collect_inactive, pmap_collect_active;
 2019 
 2020 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
 2021         "Current number times pmap_collect called on inactive queue");
 2022 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
 2023         "Current number times pmap_collect called on active queue");
 2024 #endif
 2025 
 2026 /*
 2027  * We are in a serious low memory condition.  Resort to
 2028  * drastic measures to free some pages so we can allocate
 2029  * another pv entry chunk.  This is normally called to
 2030  * unmap inactive pages, and if necessary, active pages.
 2031  */
 2032 static void
 2033 pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
 2034 {
 2035         pmap_t pmap;
 2036         pt_entry_t *pte, tpte;
 2037         pv_entry_t next_pv, pv;
 2038         vm_offset_t va;
 2039         vm_page_t m, free;
 2040 
 2041         sched_pin();
 2042         TAILQ_FOREACH(m, &vpq->pl, pageq) {
 2043                 if (m->hold_count || m->busy)
 2044                         continue;
 2045                 TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
 2046                         va = pv->pv_va;
 2047                         pmap = PV_PMAP(pv);
 2048                         /* Avoid deadlock and lock recursion. */
 2049                         if (pmap > locked_pmap)
 2050                                 PMAP_LOCK(pmap);
 2051                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
 2052                                 continue;
 2053                         pmap->pm_stats.resident_count--;
 2054                         pte = pmap_pte_quick(pmap, va);
 2055                         tpte = pte_load_clear(pte);
 2056                         KASSERT((tpte & PG_W) == 0,
 2057                             ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
 2058                         if (tpte & PG_A)
 2059                                 vm_page_flag_set(m, PG_REFERENCED);
 2060                         if (tpte & PG_M) {
 2061                                 KASSERT((tpte & PG_RW),
 2062         ("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
 2063                                     va, (uintmax_t)tpte));
 2064                                 vm_page_dirty(m);
 2065                         }
 2066                         free = NULL;
 2067                         pmap_unuse_pt(pmap, va, &free);
 2068                         pmap_invalidate_page(pmap, va);
 2069                         pmap_free_zero_pages(free);
 2070                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2071                         if (TAILQ_EMPTY(&m->md.pv_list))
 2072                                 vm_page_flag_clear(m, PG_WRITEABLE);
 2073                         free_pv_entry(pmap, pv);
 2074                         if (pmap != locked_pmap)
 2075                                 PMAP_UNLOCK(pmap);
 2076                 }
 2077         }
 2078         sched_unpin();
 2079 }
 2080 
 2081 
 2082 /*
 2083  * free the pv_entry back to the free list
 2084  */
 2085 static void
 2086 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2087 {
 2088         vm_page_t m;
 2089         struct pv_chunk *pc;
 2090         int idx, field, bit;
 2091 
 2092         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2093         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2094         PV_STAT(pv_entry_frees++);
 2095         PV_STAT(pv_entry_spare++);
 2096         pv_entry_count--;
 2097         pc = pv_to_chunk(pv);
 2098         idx = pv - &pc->pc_pventry[0];
 2099         field = idx / 32;
 2100         bit = idx % 32;
 2101         pc->pc_map[field] |= 1ul << bit;
 2102         /* move to head of list */
 2103         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2104         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2105         for (idx = 0; idx < _NPCM; idx++)
 2106                 if (pc->pc_map[idx] != pc_freemask[idx])
 2107                         return;
 2108         PV_STAT(pv_entry_spare -= _NPCPV);
 2109         PV_STAT(pc_chunk_count--);
 2110         PV_STAT(pc_chunk_frees++);
 2111         /* entire chunk is free, return it */
 2112         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2113         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2114         pmap_qremove((vm_offset_t)pc, 1);
 2115         vm_page_unwire(m, 0);
 2116         vm_page_free(m);
 2117         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2118 }
 2119 
 2120 /*
 2121  * get a new pv_entry, allocating a block from the system
 2122  * when needed.
 2123  */
 2124 static pv_entry_t
 2125 get_pv_entry(pmap_t pmap, int try)
 2126 {
 2127         static const struct timeval printinterval = { 60, 0 };
 2128         static struct timeval lastprint;
 2129         static vm_pindex_t colour;
 2130         struct vpgqueues *pq;
 2131         int bit, field;
 2132         pv_entry_t pv;
 2133         struct pv_chunk *pc;
 2134         vm_page_t m;
 2135 
 2136         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2137         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2138         PV_STAT(pv_entry_allocs++);
 2139         pv_entry_count++;
 2140         if (pv_entry_count > pv_entry_high_water)
 2141                 if (ratecheck(&lastprint, &printinterval))
 2142                         printf("Approaching the limit on PV entries, consider "
 2143                             "increasing either the vm.pmap.shpgperproc or the "
 2144                             "vm.pmap.pv_entry_max tunable.\n");
 2145         pq = NULL;
 2146 retry:
 2147         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2148         if (pc != NULL) {
 2149                 for (field = 0; field < _NPCM; field++) {
 2150                         if (pc->pc_map[field]) {
 2151                                 bit = bsfl(pc->pc_map[field]);
 2152                                 break;
 2153                         }
 2154                 }
 2155                 if (field < _NPCM) {
 2156                         pv = &pc->pc_pventry[field * 32 + bit];
 2157                         pc->pc_map[field] &= ~(1ul << bit);
 2158                         /* If this was the last item, move it to tail */
 2159                         for (field = 0; field < _NPCM; field++)
 2160                                 if (pc->pc_map[field] != 0) {
 2161                                         PV_STAT(pv_entry_spare--);
 2162                                         return (pv);    /* not full, return */
 2163                                 }
 2164                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2165                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2166                         PV_STAT(pv_entry_spare--);
 2167                         return (pv);
 2168                 }
 2169         }
 2170         /*
 2171          * Access to the ptelist "pv_vafree" is synchronized by the page
 2172          * queues lock.  If "pv_vafree" is currently non-empty, it will
 2173          * remain non-empty until pmap_ptelist_alloc() completes.
 2174          */
 2175         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
 2176             &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
 2177             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2178                 if (try) {
 2179                         pv_entry_count--;
 2180                         PV_STAT(pc_chunk_tryfail++);
 2181                         return (NULL);
 2182                 }
 2183                 /*
 2184                  * Reclaim pv entries: At first, destroy mappings to
 2185                  * inactive pages.  After that, if a pv chunk entry
 2186                  * is still needed, destroy mappings to active pages.
 2187                  */
 2188                 if (pq == NULL) {
 2189                         PV_STAT(pmap_collect_inactive++);
 2190                         pq = &vm_page_queues[PQ_INACTIVE];
 2191                 } else if (pq == &vm_page_queues[PQ_INACTIVE]) {
 2192                         PV_STAT(pmap_collect_active++);
 2193                         pq = &vm_page_queues[PQ_ACTIVE];
 2194                 } else
 2195                         panic("get_pv_entry: increase vm.pmap.shpgperproc");
 2196                 pmap_collect(pmap, pq);
 2197                 goto retry;
 2198         }
 2199         PV_STAT(pc_chunk_count++);
 2200         PV_STAT(pc_chunk_allocs++);
 2201         colour++;
 2202         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2203         pmap_qenter((vm_offset_t)pc, &m, 1);
 2204         if ((m->flags & PG_ZERO) == 0)
 2205                 pagezero(pc);
 2206         pc->pc_pmap = pmap;
 2207         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2208         for (field = 1; field < _NPCM; field++)
 2209                 pc->pc_map[field] = pc_freemask[field];
 2210         pv = &pc->pc_pventry[0];
 2211         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2212         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2213         return (pv);
 2214 }
 2215 
 2216 static void
 2217 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2218 {
 2219         pv_entry_t pv;
 2220 
 2221         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2222         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2223         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2224                 if (pmap == PV_PMAP(pv) && va == pv->pv_va)
 2225                         break;
 2226         }
 2227         KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
 2228         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2229         if (TAILQ_EMPTY(&m->md.pv_list))
 2230                 vm_page_flag_clear(m, PG_WRITEABLE);
 2231         free_pv_entry(pmap, pv);
 2232 }
 2233 
 2234 /*
 2235  * Create a pv entry for page at pa for
 2236  * (pmap, va).
 2237  */
 2238 static void
 2239 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2240 {
 2241         pv_entry_t pv;
 2242 
 2243         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2244         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2245         pv = get_pv_entry(pmap, FALSE);
 2246         pv->pv_va = va;
 2247         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2248 }
 2249 
 2250 /*
 2251  * Conditionally create a pv entry.
 2252  */
 2253 static boolean_t
 2254 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2255 {
 2256         pv_entry_t pv;
 2257 
 2258         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2259         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2260         if (pv_entry_count < pv_entry_high_water && 
 2261             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2262                 pv->pv_va = va;
 2263                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2264                 return (TRUE);
 2265         } else
 2266                 return (FALSE);
 2267 }
 2268 
 2269 /*
 2270  * pmap_remove_pte: do the things to unmap a page in a process
 2271  */
 2272 static int
 2273 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 2274 {
 2275         pt_entry_t oldpte;
 2276         vm_page_t m;
 2277 
 2278         CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
 2279             pmap, (u_long)*ptq, va);
 2280         
 2281         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2282         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2283         oldpte = *ptq;
 2284         PT_SET_VA_MA(ptq, 0, TRUE);
 2285         if (oldpte & PG_W)
 2286                 pmap->pm_stats.wired_count -= 1;
 2287         /*
 2288          * Machines that don't support invlpg, also don't support
 2289          * PG_G.
 2290          */
 2291         if (oldpte & PG_G)
 2292                 pmap_invalidate_page(kernel_pmap, va);
 2293         pmap->pm_stats.resident_count -= 1;
 2294         /*
 2295          * XXX This is not strictly correctly, but somewhere along the line
 2296          * we are losing the managed bit on some pages. It is unclear to me
 2297          * why, but I think the most likely explanation is that xen's writable
 2298          * page table implementation doesn't respect the unused bits.
 2299          */
 2300         if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
 2301                 ) {
 2302                 m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
 2303 
 2304                 if (!(oldpte & PG_MANAGED))
 2305                         printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
 2306 
 2307                 if (oldpte & PG_M) {
 2308                         KASSERT((oldpte & PG_RW),
 2309         ("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
 2310                             va, (uintmax_t)oldpte));
 2311                         vm_page_dirty(m);
 2312                 }
 2313                 if (oldpte & PG_A)
 2314                         vm_page_flag_set(m, PG_REFERENCED);
 2315                 pmap_remove_entry(pmap, m, va);
 2316         } else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
 2317                 printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
 2318 
 2319         return (pmap_unuse_pt(pmap, va, free));
 2320 }
 2321 
 2322 /*
 2323  * Remove a single page from a process address space
 2324  */
 2325 static void
 2326 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 2327 {
 2328         pt_entry_t *pte;
 2329 
 2330         CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
 2331             pmap, va);
 2332         
 2333         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2334         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2335         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2336         if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
 2337                 return;
 2338         pmap_remove_pte(pmap, pte, va, free);
 2339         pmap_invalidate_page(pmap, va);
 2340         if (*PMAP1)
 2341                 PT_SET_MA(PADDR1, 0);
 2342 
 2343 }
 2344 
 2345 /*
 2346  *      Remove the given range of addresses from the specified map.
 2347  *
 2348  *      It is assumed that the start and end are properly
 2349  *      rounded to the page size.
 2350  */
 2351 void
 2352 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2353 {
 2354         vm_offset_t pdnxt;
 2355         pd_entry_t ptpaddr;
 2356         pt_entry_t *pte;
 2357         vm_page_t free = NULL;
 2358         int anyvalid;
 2359         
 2360         CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
 2361             pmap, sva, eva);
 2362         
 2363         /*
 2364          * Perform an unsynchronized read.  This is, however, safe.
 2365          */
 2366         if (pmap->pm_stats.resident_count == 0)
 2367                 return;
 2368 
 2369         anyvalid = 0;
 2370 
 2371         vm_page_lock_queues();
 2372         sched_pin();
 2373         PMAP_LOCK(pmap);
 2374 
 2375         /*
 2376          * special handling of removing one page.  a very
 2377          * common operation and easy to short circuit some
 2378          * code.
 2379          */
 2380         if ((sva + PAGE_SIZE == eva) && 
 2381             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2382                 pmap_remove_page(pmap, sva, &free);
 2383                 goto out;
 2384         }
 2385 
 2386         for (; sva < eva; sva = pdnxt) {
 2387                 unsigned pdirindex;
 2388 
 2389                 /*
 2390                  * Calculate index for next page table.
 2391                  */
 2392                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2393                 if (pmap->pm_stats.resident_count == 0)
 2394                         break;
 2395 
 2396                 pdirindex = sva >> PDRSHIFT;
 2397                 ptpaddr = pmap->pm_pdir[pdirindex];
 2398 
 2399                 /*
 2400                  * Weed out invalid mappings. Note: we assume that the page
 2401                  * directory table is always allocated, and in kernel virtual.
 2402                  */
 2403                 if (ptpaddr == 0)
 2404                         continue;
 2405 
 2406                 /*
 2407                  * Check for large page.
 2408                  */
 2409                 if ((ptpaddr & PG_PS) != 0) {
 2410                         PD_CLEAR_VA(pmap, pdirindex, TRUE);
 2411                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2412                         anyvalid = 1;
 2413                         continue;
 2414                 }
 2415 
 2416                 /*
 2417                  * Limit our scan to either the end of the va represented
 2418                  * by the current page table page, or to the end of the
 2419                  * range being removed.
 2420                  */
 2421                 if (pdnxt > eva)
 2422                         pdnxt = eva;
 2423 
 2424                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2425                     sva += PAGE_SIZE) {
 2426                         if ((*pte & PG_V) == 0)
 2427                                 continue;
 2428 
 2429                         /*
 2430                          * The TLB entry for a PG_G mapping is invalidated
 2431                          * by pmap_remove_pte().
 2432                          */
 2433                         if ((*pte & PG_G) == 0)
 2434                                 anyvalid = 1;
 2435                         if (pmap_remove_pte(pmap, pte, sva, &free))
 2436                                 break;
 2437                 }
 2438         }
 2439         PT_UPDATES_FLUSH();
 2440         if (*PMAP1)
 2441                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2442 out:
 2443         if (anyvalid)
 2444                 pmap_invalidate_all(pmap);
 2445         sched_unpin();
 2446         vm_page_unlock_queues();
 2447         PMAP_UNLOCK(pmap);
 2448         pmap_free_zero_pages(free);
 2449 }
 2450 
 2451 /*
 2452  *      Routine:        pmap_remove_all
 2453  *      Function:
 2454  *              Removes this physical page from
 2455  *              all physical maps in which it resides.
 2456  *              Reflects back modify bits to the pager.
 2457  *
 2458  *      Notes:
 2459  *              Original versions of this routine were very
 2460  *              inefficient because they iteratively called
 2461  *              pmap_remove (slow...)
 2462  */
 2463 
 2464 void
 2465 pmap_remove_all(vm_page_t m)
 2466 {
 2467         pv_entry_t pv;
 2468         pmap_t pmap;
 2469         pt_entry_t *pte, tpte;
 2470         vm_page_t free;
 2471 
 2472 #if defined(PMAP_DIAGNOSTIC)
 2473         /*
 2474          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 2475          */
 2476         if (m->flags & PG_FICTITIOUS) {
 2477                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
 2478                     VM_PAGE_TO_PHYS(m) & 0xffffffff);
 2479         }
 2480 #endif
 2481         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2482         sched_pin();
 2483         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2484                 pmap = PV_PMAP(pv);
 2485                 PMAP_LOCK(pmap);
 2486                 pmap->pm_stats.resident_count--;
 2487                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2488 
 2489                 tpte = *pte;
 2490                 PT_SET_VA_MA(pte, 0, TRUE);
 2491                 if (tpte & PG_W)
 2492                         pmap->pm_stats.wired_count--;
 2493                 if (tpte & PG_A)
 2494                         vm_page_flag_set(m, PG_REFERENCED);
 2495 
 2496                 /*
 2497                  * Update the vm_page_t clean and reference bits.
 2498                  */
 2499                 if (tpte & PG_M) {
 2500                         KASSERT((tpte & PG_RW),
 2501         ("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
 2502                             pv->pv_va, (uintmax_t)tpte));
 2503                         vm_page_dirty(m);
 2504                 }
 2505                 free = NULL;
 2506                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2507                 pmap_invalidate_page(pmap, pv->pv_va);
 2508                 pmap_free_zero_pages(free);
 2509                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2510                 free_pv_entry(pmap, pv);
 2511                 PMAP_UNLOCK(pmap);
 2512         }
 2513         vm_page_flag_clear(m, PG_WRITEABLE);
 2514         PT_UPDATES_FLUSH();
 2515         if (*PMAP1)
 2516                 PT_SET_MA(PADDR1, 0);
 2517         sched_unpin();
 2518 }
 2519 
 2520 /*
 2521  *      Set the physical protection on the
 2522  *      specified range of this map as requested.
 2523  */
 2524 void
 2525 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 2526 {
 2527         vm_offset_t pdnxt;
 2528         pd_entry_t ptpaddr;
 2529         pt_entry_t *pte;
 2530         int anychanged;
 2531 
 2532         CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
 2533             pmap, sva, eva, prot);
 2534         
 2535         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 2536                 pmap_remove(pmap, sva, eva);
 2537                 return;
 2538         }
 2539 
 2540 #ifdef PAE
 2541         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 2542             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 2543                 return;
 2544 #else
 2545         if (prot & VM_PROT_WRITE)
 2546                 return;
 2547 #endif
 2548 
 2549         anychanged = 0;
 2550 
 2551         vm_page_lock_queues();
 2552         sched_pin();
 2553         PMAP_LOCK(pmap);
 2554         for (; sva < eva; sva = pdnxt) {
 2555                 pt_entry_t obits, pbits;
 2556                 unsigned pdirindex;
 2557 
 2558                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2559 
 2560                 pdirindex = sva >> PDRSHIFT;
 2561                 ptpaddr = pmap->pm_pdir[pdirindex];
 2562 
 2563                 /*
 2564                  * Weed out invalid mappings. Note: we assume that the page
 2565                  * directory table is always allocated, and in kernel virtual.
 2566                  */
 2567                 if (ptpaddr == 0)
 2568                         continue;
 2569 
 2570                 /*
 2571                  * Check for large page.
 2572                  */
 2573                 if ((ptpaddr & PG_PS) != 0) {
 2574                         if ((prot & VM_PROT_WRITE) == 0)
 2575                                 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 2576 #ifdef PAE
 2577                         if ((prot & VM_PROT_EXECUTE) == 0)
 2578                                 pmap->pm_pdir[pdirindex] |= pg_nx;
 2579 #endif
 2580                         anychanged = 1;
 2581                         continue;
 2582                 }
 2583 
 2584                 if (pdnxt > eva)
 2585                         pdnxt = eva;
 2586 
 2587                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2588                     sva += PAGE_SIZE) {
 2589                         vm_page_t m;
 2590 
 2591 retry:
 2592                         /*
 2593                          * Regardless of whether a pte is 32 or 64 bits in
 2594                          * size, PG_RW, PG_A, and PG_M are among the least
 2595                          * significant 32 bits.
 2596                          */
 2597                         obits = pbits = *pte;
 2598                         if ((pbits & PG_V) == 0)
 2599                                 continue;
 2600                         if (pbits & PG_MANAGED) {
 2601                                 m = NULL;
 2602                                 if (pbits & PG_A) {
 2603                                         m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
 2604                                         vm_page_flag_set(m, PG_REFERENCED);
 2605                                         pbits &= ~PG_A;
 2606                                 }
 2607                                 if ((pbits & PG_M) != 0) {
 2608                                         if (m == NULL)
 2609                                                 m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
 2610                                         vm_page_dirty(m);
 2611                                 }
 2612                         }
 2613 
 2614                         if ((prot & VM_PROT_WRITE) == 0)
 2615                                 pbits &= ~(PG_RW | PG_M);
 2616 #ifdef PAE
 2617                         if ((prot & VM_PROT_EXECUTE) == 0)
 2618                                 pbits |= pg_nx;
 2619 #endif
 2620 
 2621                         if (pbits != obits) {
 2622 #ifdef XEN
 2623                                 obits = *pte;
 2624                                 PT_SET_VA_MA(pte, pbits, TRUE);
 2625                                 if (*pte != pbits)
 2626                                         goto retry;
 2627 #else                           
 2628 #ifdef PAE
 2629                                 if (!atomic_cmpset_64(pte, obits, pbits))
 2630                                         goto retry;
 2631 #else
 2632                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 2633                                     pbits))
 2634                                         goto retry;
 2635 #endif
 2636 #endif
 2637                                 if (obits & PG_G)
 2638                                         pmap_invalidate_page(pmap, sva);
 2639                                 else
 2640                                         anychanged = 1;
 2641                         }
 2642                 }
 2643         }
 2644         PT_UPDATES_FLUSH();
 2645         if (*PMAP1)
 2646                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2647         if (anychanged)
 2648                 pmap_invalidate_all(pmap);
 2649         sched_unpin();
 2650         vm_page_unlock_queues();
 2651         PMAP_UNLOCK(pmap);
 2652 }
 2653 
 2654 /*
 2655  *      Insert the given physical page (p) at
 2656  *      the specified virtual address (v) in the
 2657  *      target physical map with the protection requested.
 2658  *
 2659  *      If specified, the page will be wired down, meaning
 2660  *      that the related pte can not be reclaimed.
 2661  *
 2662  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2663  *      or lose information.  That is, this routine must actually
 2664  *      insert this page into the given map NOW.
 2665  */
 2666 void
 2667 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 2668     vm_prot_t prot, boolean_t wired)
 2669 {
 2670         vm_paddr_t pa;
 2671         pd_entry_t *pde;
 2672         pt_entry_t *pte;
 2673         vm_paddr_t opa;
 2674         pt_entry_t origpte, newpte;
 2675         vm_page_t mpte, om;
 2676         boolean_t invlva;
 2677 
 2678         CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
 2679             pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
 2680         va = trunc_page(va);
 2681 #ifdef PMAP_DIAGNOSTIC
 2682         if (va > VM_MAX_KERNEL_ADDRESS)
 2683                 panic("pmap_enter: toobig");
 2684         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 2685                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 2686 #endif
 2687 
 2688         mpte = NULL;
 2689 
 2690         vm_page_lock_queues();
 2691         PMAP_LOCK(pmap);
 2692         sched_pin();
 2693 
 2694         /*
 2695          * In the case that a page table page is not
 2696          * resident, we are creating it here.
 2697          */
 2698         if (va < VM_MAXUSER_ADDRESS) {
 2699                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 2700         }
 2701 #if 0 && defined(PMAP_DIAGNOSTIC)
 2702         else {
 2703                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 2704                 origpte = *pdeaddr;
 2705                 if ((origpte & PG_V) == 0) { 
 2706                         panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
 2707                                 pmap->pm_pdir[PTDPTDI], origpte, va);
 2708                 }
 2709         }
 2710 #endif
 2711 
 2712         pde = pmap_pde(pmap, va);
 2713         if ((*pde & PG_PS) != 0)
 2714                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2715         pte = pmap_pte_quick(pmap, va);
 2716 
 2717         /*
 2718          * Page Directory table entry not valid, we need a new PT page
 2719          */
 2720         if (pte == NULL) {
 2721                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
 2722                         (uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
 2723         }
 2724 
 2725         pa = VM_PAGE_TO_PHYS(m);
 2726         om = NULL;
 2727         opa = origpte = 0;
 2728 
 2729 #if 0
 2730         KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
 2731                 pte, *pte));
 2732 #endif
 2733         origpte = *pte;
 2734         if (origpte)
 2735                 origpte = xpmap_mtop(origpte);
 2736         opa = origpte & PG_FRAME;
 2737 
 2738         /*
 2739          * Mapping has not changed, must be protection or wiring change.
 2740          */
 2741         if (origpte && (opa == pa)) {
 2742                 /*
 2743                  * Wiring change, just update stats. We don't worry about
 2744                  * wiring PT pages as they remain resident as long as there
 2745                  * are valid mappings in them. Hence, if a user page is wired,
 2746                  * the PT page will be also.
 2747                  */
 2748                 if (wired && ((origpte & PG_W) == 0))
 2749                         pmap->pm_stats.wired_count++;
 2750                 else if (!wired && (origpte & PG_W))
 2751                         pmap->pm_stats.wired_count--;
 2752 
 2753                 /*
 2754                  * Remove extra pte reference
 2755                  */
 2756                 if (mpte)
 2757                         mpte->wire_count--;
 2758 
 2759                 /*
 2760                  * We might be turning off write access to the page,
 2761                  * so we go ahead and sense modify status.
 2762                  */
 2763                 if (origpte & PG_MANAGED) {
 2764                         om = m;
 2765                         pa |= PG_MANAGED;
 2766                 }
 2767                 goto validate;
 2768         } 
 2769         /*
 2770          * Mapping has changed, invalidate old range and fall through to
 2771          * handle validating new mapping.
 2772          */
 2773         if (opa) {
 2774                 if (origpte & PG_W)
 2775                         pmap->pm_stats.wired_count--;
 2776                 if (origpte & PG_MANAGED) {
 2777                         om = PHYS_TO_VM_PAGE(opa);
 2778                         pmap_remove_entry(pmap, om, va);
 2779                 } else if (va < VM_MAXUSER_ADDRESS) 
 2780                         printf("va=0x%x is unmanaged :-( \n", va);
 2781                         
 2782                 if (mpte != NULL) {
 2783                         mpte->wire_count--;
 2784                         KASSERT(mpte->wire_count > 0,
 2785                             ("pmap_enter: missing reference to page table page,"
 2786                              " va: 0x%x", va));
 2787                 }
 2788         } else
 2789                 pmap->pm_stats.resident_count++;
 2790 
 2791         /*
 2792          * Enter on the PV list if part of our managed memory.
 2793          */
 2794         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 2795                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 2796                     ("pmap_enter: managed mapping within the clean submap"));
 2797                 pmap_insert_entry(pmap, va, m);
 2798                 pa |= PG_MANAGED;
 2799         }
 2800 
 2801         /*
 2802          * Increment counters
 2803          */
 2804         if (wired)
 2805                 pmap->pm_stats.wired_count++;
 2806 
 2807 validate:
 2808         /*
 2809          * Now validate mapping with desired protection/wiring.
 2810          */
 2811         newpte = (pt_entry_t)(pa | PG_V);
 2812         if ((prot & VM_PROT_WRITE) != 0) {
 2813                 newpte |= PG_RW;
 2814                 vm_page_flag_set(m, PG_WRITEABLE);
 2815         }
 2816 #ifdef PAE
 2817         if ((prot & VM_PROT_EXECUTE) == 0)
 2818                 newpte |= pg_nx;
 2819 #endif
 2820         if (wired)
 2821                 newpte |= PG_W;
 2822         if (va < VM_MAXUSER_ADDRESS)
 2823                 newpte |= PG_U;
 2824         if (pmap == kernel_pmap)
 2825                 newpte |= pgeflag;
 2826 
 2827         critical_enter();
 2828         /*
 2829          * if the mapping or permission bits are different, we need
 2830          * to update the pte.
 2831          */
 2832         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2833                 if (origpte) {
 2834                         invlva = FALSE;
 2835                         origpte = *pte;
 2836                         PT_SET_VA(pte, newpte | PG_A, FALSE);
 2837                         if (origpte & PG_A) {
 2838                                 if (origpte & PG_MANAGED)
 2839                                         vm_page_flag_set(om, PG_REFERENCED);
 2840                                 if (opa != VM_PAGE_TO_PHYS(m))
 2841                                         invlva = TRUE;
 2842 #ifdef PAE
 2843                                 if ((origpte & PG_NX) == 0 &&
 2844                                     (newpte & PG_NX) != 0)
 2845                                         invlva = TRUE;
 2846 #endif
 2847                         }
 2848                         if (origpte & PG_M) {
 2849                                 KASSERT((origpte & PG_RW),
 2850         ("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
 2851                                     va, (uintmax_t)origpte));
 2852                                 if ((origpte & PG_MANAGED) != 0)
 2853                                         vm_page_dirty(om);
 2854                                 if ((prot & VM_PROT_WRITE) == 0)
 2855                                         invlva = TRUE;
 2856                         }
 2857                         if (invlva)
 2858                                 pmap_invalidate_page(pmap, va);
 2859                 } else{
 2860                         PT_SET_VA(pte, newpte | PG_A, FALSE);
 2861                 }
 2862                 
 2863         }
 2864         PT_UPDATES_FLUSH();
 2865         critical_exit();
 2866         if (*PMAP1)
 2867                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2868         sched_unpin();
 2869         vm_page_unlock_queues();
 2870         PMAP_UNLOCK(pmap);
 2871 }
 2872 
 2873 /*
 2874  * Maps a sequence of resident pages belonging to the same object.
 2875  * The sequence begins with the given page m_start.  This page is
 2876  * mapped at the given virtual address start.  Each subsequent page is
 2877  * mapped at a virtual address that is offset from start by the same
 2878  * amount as the page is offset from m_start within the object.  The
 2879  * last page in the sequence is the page with the largest offset from
 2880  * m_start that can be mapped at a virtual address less than the given
 2881  * virtual address end.  Not every virtual page between start and end
 2882  * is mapped; only those for which a resident page exists with the
 2883  * corresponding offset from m_start are mapped.
 2884  */
 2885 void
 2886 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2887     vm_page_t m_start, vm_prot_t prot)
 2888 {
 2889         vm_page_t m, mpte;
 2890         vm_pindex_t diff, psize;
 2891         multicall_entry_t mcl[16];
 2892         multicall_entry_t *mclp = mcl;
 2893         int error, count = 0;
 2894         
 2895         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2896         psize = atop(end - start);
 2897             
 2898         mpte = NULL;
 2899         m = m_start;
 2900         PMAP_LOCK(pmap);
 2901         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2902                 mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
 2903                     prot, mpte);
 2904                 m = TAILQ_NEXT(m, listq);
 2905                 if (count == 16) {
 2906                         error = HYPERVISOR_multicall(mcl, count);
 2907                         KASSERT(error == 0, ("bad multicall %d", error));
 2908                         mclp = mcl;
 2909                         count = 0;
 2910                 }
 2911         }
 2912         if (count) {
 2913                 error = HYPERVISOR_multicall(mcl, count);
 2914                 KASSERT(error == 0, ("bad multicall %d", error));
 2915         }
 2916         
 2917         PMAP_UNLOCK(pmap);
 2918 }
 2919 
 2920 /*
 2921  * this code makes some *MAJOR* assumptions:
 2922  * 1. Current pmap & pmap exists.
 2923  * 2. Not wired.
 2924  * 3. Read access.
 2925  * 4. No page table pages.
 2926  * but is *MUCH* faster than pmap_enter...
 2927  */
 2928 
 2929 void
 2930 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2931 {
 2932         multicall_entry_t mcl, *mclp;
 2933         int count = 0;
 2934         mclp = &mcl;
 2935         
 2936         CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
 2937             pmap, va, m, prot);
 2938         
 2939         PMAP_LOCK(pmap);
 2940         (void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
 2941         if (count)
 2942                 HYPERVISOR_multicall(&mcl, count);
 2943         PMAP_UNLOCK(pmap);
 2944 }
 2945 
 2946 #ifdef notyet
 2947 void
 2948 pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
 2949 {
 2950         int i, error, index = 0;
 2951         multicall_entry_t mcl[16];
 2952         multicall_entry_t *mclp = mcl;
 2953                 
 2954         PMAP_LOCK(pmap);
 2955         for (i = 0; i < count; i++, addrs++, pages++, prots++) {
 2956                 if (!pmap_is_prefaultable_locked(pmap, *addrs))
 2957                         continue;
 2958 
 2959                 (void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
 2960                 if (index == 16) {
 2961                         error = HYPERVISOR_multicall(mcl, index);
 2962                         mclp = mcl;
 2963                         index = 0;
 2964                         KASSERT(error == 0, ("bad multicall %d", error));
 2965                 }
 2966         }
 2967         if (index) {
 2968                 error = HYPERVISOR_multicall(mcl, index);
 2969                 KASSERT(error == 0, ("bad multicall %d", error));
 2970         }
 2971         
 2972         PMAP_UNLOCK(pmap);
 2973 }
 2974 #endif
 2975 
 2976 static vm_page_t
 2977 pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
 2978     vm_prot_t prot, vm_page_t mpte)
 2979 {
 2980         pt_entry_t *pte;
 2981         vm_paddr_t pa;
 2982         vm_page_t free;
 2983         multicall_entry_t *mcl = *mclpp;
 2984         
 2985         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2986             (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
 2987             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2988         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2989         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2990 
 2991         /*
 2992          * In the case that a page table page is not
 2993          * resident, we are creating it here.
 2994          */
 2995         if (va < VM_MAXUSER_ADDRESS) {
 2996                 unsigned ptepindex;
 2997                 pd_entry_t ptema;
 2998 
 2999                 /*
 3000                  * Calculate pagetable page index
 3001                  */
 3002                 ptepindex = va >> PDRSHIFT;
 3003                 if (mpte && (mpte->pindex == ptepindex)) {
 3004                         mpte->wire_count++;
 3005                 } else {
 3006                         /*
 3007                          * Get the page directory entry
 3008                          */
 3009                         ptema = pmap->pm_pdir[ptepindex];
 3010 
 3011                         /*
 3012                          * If the page table page is mapped, we just increment
 3013                          * the hold count, and activate it.
 3014                          */
 3015                         if (ptema & PG_V) {
 3016                                 if (ptema & PG_PS)
 3017                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 3018                                 mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
 3019                                 mpte->wire_count++;
 3020                         } else {
 3021                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3022                                     M_NOWAIT);
 3023                                 if (mpte == NULL)
 3024                                         return (mpte);
 3025                         }
 3026                 }
 3027         } else {
 3028                 mpte = NULL;
 3029         }
 3030 
 3031         /*
 3032          * This call to vtopte makes the assumption that we are
 3033          * entering the page into the current pmap.  In order to support
 3034          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3035          * But that isn't as quick as vtopte.
 3036          */
 3037         KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
 3038         pte = vtopte(va);
 3039         if (*pte & PG_V) {
 3040                 if (mpte != NULL) {
 3041                         mpte->wire_count--;
 3042                         mpte = NULL;
 3043                 }
 3044                 return (mpte);
 3045         }
 3046 
 3047         /*
 3048          * Enter on the PV list if part of our managed memory.
 3049          */
 3050         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
 3051             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3052                 if (mpte != NULL) {
 3053                         free = NULL;
 3054                         if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
 3055                                 pmap_invalidate_page(pmap, va);
 3056                                 pmap_free_zero_pages(free);
 3057                         }
 3058                         
 3059                         mpte = NULL;
 3060                 }
 3061                 return (mpte);
 3062         }
 3063 
 3064         /*
 3065          * Increment counters
 3066          */
 3067         pmap->pm_stats.resident_count++;
 3068 
 3069         pa = VM_PAGE_TO_PHYS(m);
 3070 #ifdef PAE
 3071         if ((prot & VM_PROT_EXECUTE) == 0)
 3072                 pa |= pg_nx;
 3073 #endif
 3074 
 3075 #if 0
 3076         /*
 3077          * Now validate mapping with RO protection
 3078          */
 3079         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 3080                 pte_store(pte, pa | PG_V | PG_U);
 3081         else
 3082                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3083 #else
 3084         /*
 3085          * Now validate mapping with RO protection
 3086          */
 3087         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 3088                 pa =    xpmap_ptom(pa | PG_V | PG_U);
 3089         else
 3090                 pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
 3091 
 3092         mcl->op = __HYPERVISOR_update_va_mapping;
 3093         mcl->args[0] = va;
 3094         mcl->args[1] = (uint32_t)(pa & 0xffffffff);
 3095         mcl->args[2] = (uint32_t)(pa >> 32);
 3096         mcl->args[3] = 0;
 3097         *mclpp = mcl + 1;
 3098         *count = *count + 1;
 3099 #endif  
 3100         return mpte;
 3101 }
 3102 
 3103 /*
 3104  * Make a temporary mapping for a physical address.  This is only intended
 3105  * to be used for panic dumps.
 3106  */
 3107 void *
 3108 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3109 {
 3110         vm_offset_t va;
 3111 
 3112         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3113         pmap_kenter(va, pa);
 3114         invlpg(va);
 3115         return ((void *)crashdumpmap);
 3116 }
 3117 
 3118 /*
 3119  * This code maps large physical mmap regions into the
 3120  * processor address space.  Note that some shortcuts
 3121  * are taken, but the code works.
 3122  */
 3123 void
 3124 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 3125                     vm_object_t object, vm_pindex_t pindex,
 3126                     vm_size_t size)
 3127 {
 3128         vm_page_t p;
 3129 
 3130         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 3131         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3132             ("pmap_object_init_pt: non-device object"));
 3133         if (pseflag && 
 3134             ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 3135                 int i;
 3136                 vm_page_t m[1];
 3137                 unsigned int ptepindex;
 3138                 int npdes;
 3139                 pd_entry_t ptepa;
 3140 
 3141                 PMAP_LOCK(pmap);
 3142                 if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
 3143                         goto out;
 3144                 PMAP_UNLOCK(pmap);
 3145 retry:
 3146                 p = vm_page_lookup(object, pindex);
 3147                 if (p != NULL) {
 3148                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 3149                                 goto retry;
 3150                 } else {
 3151                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 3152                         if (p == NULL)
 3153                                 return;
 3154                         m[0] = p;
 3155 
 3156                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 3157                                 vm_page_lock_queues();
 3158                                 vm_page_free(p);
 3159                                 vm_page_unlock_queues();
 3160                                 return;
 3161                         }
 3162 
 3163                         p = vm_page_lookup(object, pindex);
 3164                         vm_page_wakeup(p);
 3165                 }
 3166 
 3167                 ptepa = VM_PAGE_TO_PHYS(p);
 3168                 if (ptepa & (NBPDR - 1))
 3169                         return;
 3170 
 3171                 p->valid = VM_PAGE_BITS_ALL;
 3172 
 3173                 PMAP_LOCK(pmap);
 3174                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 3175                 npdes = size >> PDRSHIFT;
 3176                 critical_enter();
 3177                 for(i = 0; i < npdes; i++) {
 3178                         PD_SET_VA(pmap, ptepindex,
 3179                             ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
 3180                         ptepa += NBPDR;
 3181                         ptepindex += 1;
 3182                 }
 3183                 pmap_invalidate_all(pmap);
 3184                 critical_exit();
 3185 out:
 3186                 PMAP_UNLOCK(pmap);
 3187         }
 3188 }
 3189 
 3190 /*
 3191  *      Routine:        pmap_change_wiring
 3192  *      Function:       Change the wiring attribute for a map/virtual-address
 3193  *                      pair.
 3194  *      In/out conditions:
 3195  *                      The mapping must already exist in the pmap.
 3196  */
 3197 void
 3198 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 3199 {
 3200         pt_entry_t *pte;
 3201 
 3202         vm_page_lock_queues();
 3203         PMAP_LOCK(pmap);
 3204         pte = pmap_pte(pmap, va);
 3205 
 3206         if (wired && !pmap_pte_w(pte)) {
 3207                 PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
 3208                 pmap->pm_stats.wired_count++;
 3209         } else if (!wired && pmap_pte_w(pte)) {
 3210                 PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
 3211                 pmap->pm_stats.wired_count--;
 3212         }
 3213         
 3214         /*
 3215          * Wiring is not a hardware characteristic so there is no need to
 3216          * invalidate TLB.
 3217          */
 3218         pmap_pte_release(pte);
 3219         PMAP_UNLOCK(pmap);
 3220         vm_page_unlock_queues();
 3221 }
 3222 
 3223 
 3224 
 3225 /*
 3226  *      Copy the range specified by src_addr/len
 3227  *      from the source map to the range dst_addr/len
 3228  *      in the destination map.
 3229  *
 3230  *      This routine is only advisory and need not do anything.
 3231  */
 3232 
 3233 void
 3234 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 3235           vm_offset_t src_addr)
 3236 {
 3237         vm_page_t   free;
 3238         vm_offset_t addr;
 3239         vm_offset_t end_addr = src_addr + len;
 3240         vm_offset_t pdnxt;
 3241 
 3242         if (dst_addr != src_addr)
 3243                 return;
 3244 
 3245         if (!pmap_is_current(src_pmap)) {
 3246                 CTR2(KTR_PMAP,
 3247                     "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
 3248                     (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
 3249                 
 3250                 return;
 3251         }
 3252         CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
 3253             dst_pmap, src_pmap, dst_addr, len, src_addr);
 3254         
 3255         vm_page_lock_queues();
 3256         if (dst_pmap < src_pmap) {
 3257                 PMAP_LOCK(dst_pmap);
 3258                 PMAP_LOCK(src_pmap);
 3259         } else {
 3260                 PMAP_LOCK(src_pmap);
 3261                 PMAP_LOCK(dst_pmap);
 3262         }
 3263         sched_pin();
 3264         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 3265                 pt_entry_t *src_pte, *dst_pte;
 3266                 vm_page_t dstmpte, srcmpte;
 3267                 pd_entry_t srcptepaddr;
 3268                 unsigned ptepindex;
 3269 
 3270                 if (addr >= UPT_MIN_ADDRESS)
 3271                         panic("pmap_copy: invalid to pmap_copy page tables");
 3272 
 3273                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 3274                 ptepindex = addr >> PDRSHIFT;
 3275 
 3276                 srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
 3277                 if (srcptepaddr == 0)
 3278                         continue;
 3279                         
 3280                 if (srcptepaddr & PG_PS) {
 3281                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 3282                                 PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
 3283                                 dst_pmap->pm_stats.resident_count +=
 3284                                     NBPDR / PAGE_SIZE;
 3285                         }
 3286                         continue;
 3287                 }
 3288 
 3289                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 3290                 if (srcmpte->wire_count == 0)
 3291                         panic("pmap_copy: source page table page is unused");
 3292 
 3293                 if (pdnxt > end_addr)
 3294                         pdnxt = end_addr;
 3295 
 3296                 src_pte = vtopte(addr);
 3297                 while (addr < pdnxt) {
 3298                         pt_entry_t ptetemp;
 3299                         ptetemp = *src_pte;
 3300                         /*
 3301                          * we only virtual copy managed pages
 3302                          */
 3303                         if ((ptetemp & PG_MANAGED) != 0) {
 3304                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 3305                                     M_NOWAIT);
 3306                                 if (dstmpte == NULL)
 3307                                         break;
 3308                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 3309                                 if (*dst_pte == 0 &&
 3310                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 3311                                     PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
 3312                                         /*
 3313                                          * Clear the wired, modified, and
 3314                                          * accessed (referenced) bits
 3315                                          * during the copy.
 3316                                          */
 3317                                         KASSERT(ptetemp != 0, ("src_pte not set"));
 3318                                         PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
 3319                                         KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
 3320                                             ("no pmap copy expected: 0x%jx saw: 0x%jx",
 3321                                                 ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
 3322                                         dst_pmap->pm_stats.resident_count++;
 3323                                 } else {
 3324                                         free = NULL;
 3325                                         if (pmap_unwire_pte_hold(dst_pmap,
 3326                                             dstmpte, &free)) {
 3327                                                 pmap_invalidate_page(dst_pmap,
 3328                                                     addr);
 3329                                                 pmap_free_zero_pages(free);
 3330                                         }
 3331                                 }
 3332                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 3333                                         break;
 3334                         }
 3335                         addr += PAGE_SIZE;
 3336                         src_pte++;
 3337                 }
 3338         }
 3339         PT_UPDATES_FLUSH();
 3340         sched_unpin();
 3341         vm_page_unlock_queues();
 3342         PMAP_UNLOCK(src_pmap);
 3343         PMAP_UNLOCK(dst_pmap);
 3344 }       
 3345 
 3346 /*
 3347  *      pmap_zero_page zeros the specified hardware page by mapping 
 3348  *      the page into KVM and using bzero to clear its contents.
 3349  */
 3350 void
 3351 pmap_zero_page(vm_page_t m)
 3352 {
 3353         struct sysmaps *sysmaps;
 3354 
 3355         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3356         mtx_lock(&sysmaps->lock);
 3357         if (*sysmaps->CMAP2)
 3358                 panic("pmap_zero_page: CMAP2 busy");
 3359         sched_pin();
 3360         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
 3361         pagezero(sysmaps->CADDR2);
 3362         PT_SET_MA(sysmaps->CADDR2, 0);
 3363         sched_unpin();
 3364         mtx_unlock(&sysmaps->lock);
 3365 }
 3366 
 3367 /*
 3368  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 3369  *      the page into KVM and using bzero to clear its contents.
 3370  *
 3371  *      off and size may not cover an area beyond a single hardware page.
 3372  */
 3373 void
 3374 pmap_zero_page_area(vm_page_t m, int off, int size)
 3375 {
 3376         struct sysmaps *sysmaps;
 3377 
 3378         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3379         mtx_lock(&sysmaps->lock);
 3380         if (*sysmaps->CMAP2)
 3381                 panic("pmap_zero_page: CMAP2 busy");
 3382         sched_pin();
 3383         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
 3384 
 3385         if (off == 0 && size == PAGE_SIZE) 
 3386                 pagezero(sysmaps->CADDR2);
 3387         else
 3388                 bzero((char *)sysmaps->CADDR2 + off, size);
 3389         PT_SET_MA(sysmaps->CADDR2, 0);
 3390         sched_unpin();
 3391         mtx_unlock(&sysmaps->lock);
 3392 }
 3393 
 3394 /*
 3395  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 3396  *      the page into KVM and using bzero to clear its contents.  This
 3397  *      is intended to be called from the vm_pagezero process only and
 3398  *      outside of Giant.
 3399  */
 3400 void
 3401 pmap_zero_page_idle(vm_page_t m)
 3402 {
 3403 
 3404         if (*CMAP3)
 3405                 panic("pmap_zero_page: CMAP3 busy");
 3406         sched_pin();
 3407         PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
 3408         pagezero(CADDR3);
 3409         PT_SET_MA(CADDR3, 0);
 3410         sched_unpin();
 3411 }
 3412 
 3413 /*
 3414  *      pmap_copy_page copies the specified (machine independent)
 3415  *      page by mapping the page into virtual memory and using
 3416  *      bcopy to copy the page, one machine dependent page at a
 3417  *      time.
 3418  */
 3419 void
 3420 pmap_copy_page(vm_page_t src, vm_page_t dst)
 3421 {
 3422         struct sysmaps *sysmaps;
 3423 
 3424         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3425         mtx_lock(&sysmaps->lock);
 3426         if (*sysmaps->CMAP1)
 3427                 panic("pmap_copy_page: CMAP1 busy");
 3428         if (*sysmaps->CMAP2)
 3429                 panic("pmap_copy_page: CMAP2 busy");
 3430         sched_pin();
 3431         PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
 3432         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
 3433         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 3434         PT_SET_MA(sysmaps->CADDR1, 0);
 3435         PT_SET_MA(sysmaps->CADDR2, 0);
 3436         sched_unpin();
 3437         mtx_unlock(&sysmaps->lock);
 3438 }
 3439 
 3440 /*
 3441  * Returns true if the pmap's pv is one of the first
 3442  * 16 pvs linked to from this page.  This count may
 3443  * be changed upwards or downwards in the future; it
 3444  * is only necessary that true be returned for a small
 3445  * subset of pmaps for proper page aging.
 3446  */
 3447 boolean_t
 3448 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 3449 {
 3450         pv_entry_t pv;
 3451         int loops = 0;
 3452 
 3453         if (m->flags & PG_FICTITIOUS)
 3454                 return (FALSE);
 3455 
 3456         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3457         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3458                 if (PV_PMAP(pv) == pmap) {
 3459                         return TRUE;
 3460                 }
 3461                 loops++;
 3462                 if (loops >= 16)
 3463                         break;
 3464         }
 3465         return (FALSE);
 3466 }
 3467 
 3468 /*
 3469  *      pmap_page_wired_mappings:
 3470  *
 3471  *      Return the number of managed mappings to the given physical page
 3472  *      that are wired.
 3473  */
 3474 int
 3475 pmap_page_wired_mappings(vm_page_t m)
 3476 {
 3477         pv_entry_t pv;
 3478         pt_entry_t *pte;
 3479         pmap_t pmap;
 3480         int count;
 3481 
 3482         count = 0;
 3483         if ((m->flags & PG_FICTITIOUS) != 0)
 3484                 return (count);
 3485         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3486         sched_pin();
 3487         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3488                 pmap = PV_PMAP(pv);
 3489                 PMAP_LOCK(pmap);
 3490                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3491                 if ((*pte & PG_W) != 0)
 3492                         count++;
 3493                 PMAP_UNLOCK(pmap);
 3494         }
 3495         sched_unpin();
 3496         return (count);
 3497 }
 3498 
 3499 /*
 3500  * Returns TRUE if the given page is mapped individually or as part of
 3501  * a 4mpage.  Otherwise, returns FALSE.
 3502  */
 3503 boolean_t
 3504 pmap_page_is_mapped(vm_page_t m)
 3505 {
 3506         struct md_page *pvh;
 3507 
 3508         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 3509                 return (FALSE);
 3510         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3511         if (TAILQ_EMPTY(&m->md.pv_list)) {
 3512                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 3513                 return (!TAILQ_EMPTY(&pvh->pv_list));
 3514         } else
 3515                 return (TRUE);
 3516 }
 3517 
 3518 /*
 3519  * Remove all pages from specified address space
 3520  * this aids process exit speeds.  Also, this code
 3521  * is special cased for current process only, but
 3522  * can have the more generic (and slightly slower)
 3523  * mode enabled.  This is much faster than pmap_remove
 3524  * in the case of running down an entire address space.
 3525  */
 3526 void
 3527 pmap_remove_pages(pmap_t pmap)
 3528 {
 3529         pt_entry_t *pte, tpte;
 3530         vm_page_t m, free = NULL;
 3531         pv_entry_t pv;
 3532         struct pv_chunk *pc, *npc;
 3533         int field, idx;
 3534         int32_t bit;
 3535         uint32_t inuse, bitmask;
 3536         int allfree;
 3537 
 3538         CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
 3539         
 3540         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 3541                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 3542                 return;
 3543         }
 3544         vm_page_lock_queues();
 3545         KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
 3546         PMAP_LOCK(pmap);
 3547         sched_pin();
 3548         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 3549                 allfree = 1;
 3550                 for (field = 0; field < _NPCM; field++) {
 3551                         inuse = (~(pc->pc_map[field])) & pc_freemask[field];
 3552                         while (inuse != 0) {
 3553                                 bit = bsfl(inuse);
 3554                                 bitmask = 1UL << bit;
 3555                                 idx = field * 32 + bit;
 3556                                 pv = &pc->pc_pventry[idx];
 3557                                 inuse &= ~bitmask;
 3558 
 3559                                 pte = vtopte(pv->pv_va);
 3560                                 tpte = *pte ? xpmap_mtop(*pte) : 0;
 3561 
 3562                                 if (tpte == 0) {
 3563                                         printf(
 3564                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 3565                                             pte, pv->pv_va);
 3566                                         panic("bad pte");
 3567                                 }
 3568 
 3569 /*
 3570  * We cannot remove wired pages from a process' mapping at this time
 3571  */
 3572                                 if (tpte & PG_W) {
 3573                                         allfree = 0;
 3574                                         continue;
 3575                                 }
 3576 
 3577                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 3578                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 3579                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 3580                                     m, (uintmax_t)m->phys_addr,
 3581                                     (uintmax_t)tpte));
 3582 
 3583                                 KASSERT(m < &vm_page_array[vm_page_array_size],
 3584                                         ("pmap_remove_pages: bad tpte %#jx",
 3585                                         (uintmax_t)tpte));
 3586 
 3587 
 3588                                 PT_CLEAR_VA(pte, FALSE);
 3589                                 
 3590                                 /*
 3591                                  * Update the vm_page_t clean/reference bits.
 3592                                  */
 3593                                 if (tpte & PG_M)
 3594                                         vm_page_dirty(m);
 3595 
 3596                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3597                                 if (TAILQ_EMPTY(&m->md.pv_list))
 3598                                         vm_page_flag_clear(m, PG_WRITEABLE);
 3599 
 3600                                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3601 
 3602                                 /* Mark free */
 3603                                 PV_STAT(pv_entry_frees++);
 3604                                 PV_STAT(pv_entry_spare++);
 3605                                 pv_entry_count--;
 3606                                 pc->pc_map[field] |= bitmask;
 3607                                 pmap->pm_stats.resident_count--;                        
 3608                         }
 3609                 }
 3610                 PT_UPDATES_FLUSH();
 3611                 if (allfree) {
 3612                         PV_STAT(pv_entry_spare -= _NPCPV);
 3613                         PV_STAT(pc_chunk_count--);
 3614                         PV_STAT(pc_chunk_frees++);
 3615                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 3616                         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 3617                         pmap_qremove((vm_offset_t)pc, 1);
 3618                         vm_page_unwire(m, 0);
 3619                         vm_page_free(m);
 3620                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 3621                 }
 3622         }
 3623         PT_UPDATES_FLUSH();
 3624         if (*PMAP1)
 3625                 PT_SET_MA(PADDR1, 0);
 3626 
 3627         sched_unpin();
 3628         pmap_invalidate_all(pmap);
 3629         vm_page_unlock_queues();
 3630         PMAP_UNLOCK(pmap);
 3631         pmap_free_zero_pages(free);
 3632 }
 3633 
 3634 /*
 3635  *      pmap_is_modified:
 3636  *
 3637  *      Return whether or not the specified physical page was modified
 3638  *      in any physical maps.
 3639  */
 3640 boolean_t
 3641 pmap_is_modified(vm_page_t m)
 3642 {
 3643         pv_entry_t pv;
 3644         pt_entry_t *pte;
 3645         pmap_t pmap;
 3646         boolean_t rv;
 3647 
 3648         rv = FALSE;
 3649         if (m->flags & PG_FICTITIOUS)
 3650                 return (rv);
 3651 
 3652         sched_pin();
 3653         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3654         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3655                 pmap = PV_PMAP(pv);
 3656                 PMAP_LOCK(pmap);
 3657                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3658                 rv = (*pte & PG_M) != 0;
 3659                 PMAP_UNLOCK(pmap);
 3660                 if (rv)
 3661                         break;
 3662         }
 3663         if (*PMAP1)
 3664                 PT_SET_MA(PADDR1, 0);
 3665         sched_unpin();
 3666         return (rv);
 3667 }
 3668 
 3669 /*
 3670  *      pmap_is_prefaultable:
 3671  *
 3672  *      Return whether or not the specified virtual address is elgible
 3673  *      for prefault.
 3674  */
 3675 static boolean_t
 3676 pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
 3677 {
 3678         pt_entry_t *pte;
 3679         boolean_t rv = FALSE;
 3680 
 3681         return (rv);
 3682         
 3683         if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
 3684                 pte = vtopte(addr);
 3685                 rv = (*pte == 0);
 3686         }
 3687         return (rv);
 3688 }
 3689 
 3690 boolean_t
 3691 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 3692 {
 3693         boolean_t rv;
 3694         
 3695         PMAP_LOCK(pmap);
 3696         rv = pmap_is_prefaultable_locked(pmap, addr);
 3697         PMAP_UNLOCK(pmap);
 3698         return (rv);
 3699 }
 3700 
 3701 void
 3702 pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
 3703 {
 3704         int i, npages = round_page(len) >> PAGE_SHIFT;
 3705         for (i = 0; i < npages; i++) {
 3706                 pt_entry_t *pte;
 3707                 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
 3708                 pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
 3709                 PMAP_MARK_PRIV(xpmap_mtop(*pte));
 3710                 pmap_pte_release(pte);
 3711         }
 3712 }
 3713 
 3714 void
 3715 pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
 3716 {
 3717         int i, npages = round_page(len) >> PAGE_SHIFT;
 3718         for (i = 0; i < npages; i++) {
 3719                 pt_entry_t *pte;
 3720                 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
 3721                 PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
 3722                 pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
 3723                 pmap_pte_release(pte);
 3724         }
 3725 }
 3726 
 3727 /*
 3728  * Clear the write and modified bits in each of the given page's mappings.
 3729  */
 3730 void
 3731 pmap_remove_write(vm_page_t m)
 3732 {
 3733         pv_entry_t pv;
 3734         pmap_t pmap;
 3735         pt_entry_t oldpte, *pte;
 3736 
 3737         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3738         if ((m->flags & PG_FICTITIOUS) != 0 ||
 3739             (m->flags & PG_WRITEABLE) == 0)
 3740                 return;
 3741         sched_pin();
 3742         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3743                 pmap = PV_PMAP(pv);
 3744                 PMAP_LOCK(pmap);
 3745                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3746 retry:
 3747                 oldpte = *pte;
 3748                 if ((oldpte & PG_RW) != 0) {
 3749                         vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
 3750                         
 3751                         /*
 3752                          * Regardless of whether a pte is 32 or 64 bits
 3753                          * in size, PG_RW and PG_M are among the least
 3754                          * significant 32 bits.
 3755                          */
 3756                         PT_SET_VA_MA(pte, newpte, TRUE);
 3757                         if (*pte != newpte)
 3758                                 goto retry;
 3759                         
 3760                         if ((oldpte & PG_M) != 0)
 3761                                 vm_page_dirty(m);
 3762                         pmap_invalidate_page(pmap, pv->pv_va);
 3763                 }
 3764                 PMAP_UNLOCK(pmap);
 3765         }
 3766         vm_page_flag_clear(m, PG_WRITEABLE);
 3767         PT_UPDATES_FLUSH();
 3768         if (*PMAP1)
 3769                 PT_SET_MA(PADDR1, 0);
 3770         sched_unpin();
 3771 }
 3772 
 3773 /*
 3774  *      pmap_ts_referenced:
 3775  *
 3776  *      Return a count of reference bits for a page, clearing those bits.
 3777  *      It is not necessary for every reference bit to be cleared, but it
 3778  *      is necessary that 0 only be returned when there are truly no
 3779  *      reference bits set.
 3780  *
 3781  *      XXX: The exact number of bits to check and clear is a matter that
 3782  *      should be tested and standardized at some point in the future for
 3783  *      optimal aging of shared pages.
 3784  */
 3785 int
 3786 pmap_ts_referenced(vm_page_t m)
 3787 {
 3788         pv_entry_t pv, pvf, pvn;
 3789         pmap_t pmap;
 3790         pt_entry_t *pte;
 3791         int rtval = 0;
 3792 
 3793         if (m->flags & PG_FICTITIOUS)
 3794                 return (rtval);
 3795         sched_pin();
 3796         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3797         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3798                 pvf = pv;
 3799                 do {
 3800                         pvn = TAILQ_NEXT(pv, pv_list);
 3801                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3802                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 3803                         pmap = PV_PMAP(pv);
 3804                         PMAP_LOCK(pmap);
 3805                         pte = pmap_pte_quick(pmap, pv->pv_va);
 3806                         if ((*pte & PG_A) != 0) {
 3807                                 PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
 3808                                 pmap_invalidate_page(pmap, pv->pv_va);
 3809                                 rtval++;
 3810                                 if (rtval > 4)
 3811                                         pvn = NULL;
 3812                         }
 3813                         PMAP_UNLOCK(pmap);
 3814                 } while ((pv = pvn) != NULL && pv != pvf);
 3815         }
 3816         PT_UPDATES_FLUSH();
 3817         if (*PMAP1)
 3818                 PT_SET_MA(PADDR1, 0);
 3819 
 3820         sched_unpin();
 3821         return (rtval);
 3822 }
 3823 
 3824 /*
 3825  *      Clear the modify bits on the specified physical page.
 3826  */
 3827 void
 3828 pmap_clear_modify(vm_page_t m)
 3829 {
 3830         pv_entry_t pv;
 3831         pmap_t pmap;
 3832         pt_entry_t *pte;
 3833 
 3834         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3835         if ((m->flags & PG_FICTITIOUS) != 0)
 3836                 return;
 3837         sched_pin();
 3838         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3839                 pmap = PV_PMAP(pv);
 3840                 PMAP_LOCK(pmap);
 3841                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3842                 if ((*pte & PG_M) != 0) {
 3843                         /*
 3844                          * Regardless of whether a pte is 32 or 64 bits
 3845                          * in size, PG_M is among the least significant
 3846                          * 32 bits. 
 3847                          */
 3848                         PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
 3849                         pmap_invalidate_page(pmap, pv->pv_va);
 3850                 }
 3851                 PMAP_UNLOCK(pmap);
 3852         }
 3853         sched_unpin();
 3854 }
 3855 
 3856 /*
 3857  *      pmap_clear_reference:
 3858  *
 3859  *      Clear the reference bit on the specified physical page.
 3860  */
 3861 void
 3862 pmap_clear_reference(vm_page_t m)
 3863 {
 3864         pv_entry_t pv;
 3865         pmap_t pmap;
 3866         pt_entry_t *pte;
 3867 
 3868         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3869         if ((m->flags & PG_FICTITIOUS) != 0)
 3870                 return;
 3871         sched_pin();
 3872         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3873                 pmap = PV_PMAP(pv);
 3874                 PMAP_LOCK(pmap);
 3875                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3876                 if ((*pte & PG_A) != 0) {
 3877                         /*
 3878                          * Regardless of whether a pte is 32 or 64 bits
 3879                          * in size, PG_A is among the least significant
 3880                          * 32 bits. 
 3881                          */
 3882                         PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
 3883                         pmap_invalidate_page(pmap, pv->pv_va);
 3884                 }
 3885                 PMAP_UNLOCK(pmap);
 3886         }
 3887         sched_unpin();
 3888 }
 3889 
 3890 /*
 3891  * Miscellaneous support routines follow
 3892  */
 3893 
 3894 /*
 3895  * Map a set of physical memory pages into the kernel virtual
 3896  * address space. Return a pointer to where it is mapped. This
 3897  * routine is intended to be used for mapping device memory,
 3898  * NOT real memory.
 3899  */
 3900 void *
 3901 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 3902 {
 3903         vm_offset_t va, offset;
 3904         vm_size_t tmpsize;
 3905 
 3906         offset = pa & PAGE_MASK;
 3907         size = roundup(offset + size, PAGE_SIZE);
 3908         pa = pa & PG_FRAME;
 3909 
 3910         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 3911                 va = KERNBASE + pa;
 3912         else
 3913                 va = kmem_alloc_nofault(kernel_map, size);
 3914         if (!va)
 3915                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3916 
 3917         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 3918                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 3919         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 3920         pmap_invalidate_cache_range(va, va + size);
 3921         return ((void *)(va + offset));
 3922 }
 3923 
 3924 void *
 3925 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3926 {
 3927 
 3928         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 3929 }
 3930 
 3931 void *
 3932 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 3933 {
 3934 
 3935         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 3936 }
 3937 
 3938 void
 3939 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 3940 {
 3941         vm_offset_t base, offset, tmpva;
 3942 
 3943         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 3944                 return;
 3945         base = trunc_page(va);
 3946         offset = va & PAGE_MASK;
 3947         size = roundup(offset + size, PAGE_SIZE);
 3948         critical_enter();
 3949         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 3950                 pmap_kremove(tmpva);
 3951         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3952         critical_exit();
 3953         kmem_free(kernel_map, base, size);
 3954 }
 3955 
 3956 /*
 3957  * Sets the memory attribute for the specified page.
 3958  */
 3959 void
 3960 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 3961 {
 3962         struct sysmaps *sysmaps;
 3963         vm_offset_t sva, eva;
 3964 
 3965         m->md.pat_mode = ma;
 3966         if ((m->flags & PG_FICTITIOUS) != 0)
 3967                 return;
 3968 
 3969         /*
 3970          * If "m" is a normal page, flush it from the cache.
 3971          * See pmap_invalidate_cache_range().
 3972          *
 3973          * First, try to find an existing mapping of the page by sf
 3974          * buffer. sf_buf_invalidate_cache() modifies mapping and
 3975          * flushes the cache.
 3976          */    
 3977         if (sf_buf_invalidate_cache(m))
 3978                 return;
 3979 
 3980         /*
 3981          * If page is not mapped by sf buffer, but CPU does not
 3982          * support self snoop, map the page transient and do
 3983          * invalidation. In the worst case, whole cache is flushed by
 3984          * pmap_invalidate_cache_range().
 3985          */
 3986         if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
 3987                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3988                 mtx_lock(&sysmaps->lock);
 3989                 if (*sysmaps->CMAP2)
 3990                         panic("pmap_page_set_memattr: CMAP2 busy");
 3991                 sched_pin();
 3992                 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
 3993                     xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
 3994                     pmap_cache_bits(m->md.pat_mode, 0));
 3995                 invlcaddr(sysmaps->CADDR2);
 3996                 sva = (vm_offset_t)sysmaps->CADDR2;
 3997                 eva = sva + PAGE_SIZE;
 3998         } else
 3999                 sva = eva = 0; /* gcc */
 4000         pmap_invalidate_cache_range(sva, eva);
 4001         if (sva != 0) {
 4002                 PT_SET_MA(sysmaps->CADDR2, 0);
 4003                 sched_unpin();
 4004                 mtx_unlock(&sysmaps->lock);
 4005         }
 4006 }
 4007 
 4008 int
 4009 pmap_change_attr(va, size, mode)
 4010         vm_offset_t va;
 4011         vm_size_t size;
 4012         int mode;
 4013 {
 4014         vm_offset_t base, offset, tmpva;
 4015         pt_entry_t *pte;
 4016         u_int opte, npte;
 4017         pd_entry_t *pde;
 4018         boolean_t changed;
 4019 
 4020         base = trunc_page(va);
 4021         offset = va & PAGE_MASK;
 4022         size = roundup(offset + size, PAGE_SIZE);
 4023 
 4024         /* Only supported on kernel virtual addresses. */
 4025         if (base <= VM_MAXUSER_ADDRESS)
 4026                 return (EINVAL);
 4027 
 4028         /* 4MB pages and pages that aren't mapped aren't supported. */
 4029         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 4030                 pde = pmap_pde(kernel_pmap, tmpva);
 4031                 if (*pde & PG_PS)
 4032                         return (EINVAL);
 4033                 if ((*pde & PG_V) == 0)
 4034                         return (EINVAL);
 4035                 pte = vtopte(va);
 4036                 if ((*pte & PG_V) == 0)
 4037                         return (EINVAL);
 4038         }
 4039 
 4040         changed = FALSE;
 4041 
 4042         /*
 4043          * Ok, all the pages exist and are 4k, so run through them updating
 4044          * their cache mode.
 4045          */
 4046         for (tmpva = base; size > 0; ) {
 4047                 pte = vtopte(tmpva);
 4048 
 4049                 /*
 4050                  * The cache mode bits are all in the low 32-bits of the
 4051                  * PTE, so we can just spin on updating the low 32-bits.
 4052                  */
 4053                 do {
 4054                         opte = *(u_int *)pte;
 4055                         npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
 4056                         npte |= pmap_cache_bits(mode, 0);
 4057                         PT_SET_VA_MA(pte, npte, TRUE);
 4058                 } while (npte != opte && (*pte != npte));
 4059                 if (npte != opte)
 4060                         changed = TRUE;
 4061                 tmpva += PAGE_SIZE;
 4062                 size -= PAGE_SIZE;
 4063         }
 4064 
 4065         /*
 4066          * Flush CPU caches to make sure any data isn't cached that shouldn't
 4067          * be, etc.
 4068          */
 4069         if (changed) {
 4070                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 4071                 pmap_invalidate_cache_range(base, tmpva);
 4072         }
 4073         return (0);
 4074 }
 4075 
 4076 /*
 4077  * perform the pmap work for mincore
 4078  */
 4079 int
 4080 pmap_mincore(pmap_t pmap, vm_offset_t addr)
 4081 {
 4082         pt_entry_t *ptep, pte;
 4083         vm_page_t m;
 4084         int val = 0;
 4085         
 4086         PMAP_LOCK(pmap);
 4087         ptep = pmap_pte(pmap, addr);
 4088         pte = (ptep != NULL) ? PT_GET(ptep) : 0;
 4089         pmap_pte_release(ptep);
 4090         PMAP_UNLOCK(pmap);
 4091 
 4092         if (pte != 0) {
 4093                 vm_paddr_t pa;
 4094 
 4095                 val = MINCORE_INCORE;
 4096                 if ((pte & PG_MANAGED) == 0)
 4097                         return val;
 4098 
 4099                 pa = pte & PG_FRAME;
 4100 
 4101                 m = PHYS_TO_VM_PAGE(pa);
 4102 
 4103                 /*
 4104                  * Modified by us
 4105                  */
 4106                 if (pte & PG_M)
 4107                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 4108                 else {
 4109                         /*
 4110                          * Modified by someone else
 4111                          */
 4112                         vm_page_lock_queues();
 4113                         if (m->dirty || pmap_is_modified(m))
 4114                                 val |= MINCORE_MODIFIED_OTHER;
 4115                         vm_page_unlock_queues();
 4116                 }
 4117                 /*
 4118                  * Referenced by us
 4119                  */
 4120                 if (pte & PG_A)
 4121                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 4122                 else {
 4123                         /*
 4124                          * Referenced by someone else
 4125                          */
 4126                         vm_page_lock_queues();
 4127                         if ((m->flags & PG_REFERENCED) ||
 4128                             pmap_ts_referenced(m)) {
 4129                                 val |= MINCORE_REFERENCED_OTHER;
 4130                                 vm_page_flag_set(m, PG_REFERENCED);
 4131                         }
 4132                         vm_page_unlock_queues();
 4133                 }
 4134         } 
 4135         return val;
 4136 }
 4137 
 4138 void
 4139 pmap_activate(struct thread *td)
 4140 {
 4141         pmap_t  pmap, oldpmap;
 4142         u_int32_t  cr3;
 4143 
 4144         critical_enter();
 4145         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 4146         oldpmap = PCPU_GET(curpmap);
 4147 #if defined(SMP)
 4148         atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
 4149         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 4150 #else
 4151         oldpmap->pm_active &= ~1;
 4152         pmap->pm_active |= 1;
 4153 #endif
 4154 #ifdef PAE
 4155         cr3 = vtophys(pmap->pm_pdpt);
 4156 #else
 4157         cr3 = vtophys(pmap->pm_pdir);
 4158 #endif
 4159         /*
 4160          * pmap_activate is for the current thread on the current cpu
 4161          */
 4162         td->td_pcb->pcb_cr3 = cr3;
 4163         PT_UPDATES_FLUSH();
 4164         load_cr3(cr3);
 4165                 
 4166         PCPU_SET(curpmap, pmap);
 4167         critical_exit();
 4168 }
 4169 
 4170 /*
 4171  *      Increase the starting virtual address of the given mapping if a
 4172  *      different alignment might result in more superpage mappings.
 4173  */
 4174 void
 4175 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 4176     vm_offset_t *addr, vm_size_t size)
 4177 {
 4178         vm_offset_t superpage_offset;
 4179 
 4180         if (size < NBPDR)
 4181                 return;
 4182         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 4183                 offset += ptoa(object->pg_color);
 4184         superpage_offset = offset & PDRMASK;
 4185         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 4186             (*addr & PDRMASK) == superpage_offset)
 4187                 return;
 4188         if ((*addr & PDRMASK) < superpage_offset)
 4189                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 4190         else
 4191                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 4192 }
 4193 
 4194 #ifdef XEN
 4195 
 4196 void
 4197 pmap_suspend()
 4198 {
 4199         pmap_t pmap;
 4200         int i, pdir, offset;
 4201         vm_paddr_t pdirma;
 4202         mmu_update_t mu[4];
 4203 
 4204         /*
 4205          * We need to remove the recursive mapping structure from all
 4206          * our pmaps so that Xen doesn't get confused when it restores
 4207          * the page tables. The recursive map lives at page directory
 4208          * index PTDPTDI. We assume that the suspend code has stopped
 4209          * the other vcpus (if any).
 4210          */
 4211         LIST_FOREACH(pmap, &allpmaps, pm_list) {
 4212                 for (i = 0; i < 4; i++) {
 4213                         /*
 4214                          * Figure out which page directory (L2) page
 4215                          * contains this bit of the recursive map and
 4216                          * the offset within that page of the map
 4217                          * entry
 4218                          */
 4219                         pdir = (PTDPTDI + i) / NPDEPG;
 4220                         offset = (PTDPTDI + i) % NPDEPG;
 4221                         pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
 4222                         mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
 4223                         mu[i].val = 0;
 4224                 }
 4225                 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
 4226         }
 4227 }
 4228 
 4229 void
 4230 pmap_resume()
 4231 {
 4232         pmap_t pmap;
 4233         int i, pdir, offset;
 4234         vm_paddr_t pdirma;
 4235         mmu_update_t mu[4];
 4236 
 4237         /*
 4238          * Restore the recursive map that we removed on suspend.
 4239          */
 4240         LIST_FOREACH(pmap, &allpmaps, pm_list) {
 4241                 for (i = 0; i < 4; i++) {
 4242                         /*
 4243                          * Figure out which page directory (L2) page
 4244                          * contains this bit of the recursive map and
 4245                          * the offset within that page of the map
 4246                          * entry
 4247                          */
 4248                         pdir = (PTDPTDI + i) / NPDEPG;
 4249                         offset = (PTDPTDI + i) % NPDEPG;
 4250                         pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
 4251                         mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
 4252                         mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
 4253                 }
 4254                 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
 4255         }
 4256 }
 4257 
 4258 #endif
 4259 
 4260 #if defined(PMAP_DEBUG)
 4261 pmap_pid_dump(int pid)
 4262 {
 4263         pmap_t pmap;
 4264         struct proc *p;
 4265         int npte = 0;
 4266         int index;
 4267 
 4268         sx_slock(&allproc_lock);
 4269         FOREACH_PROC_IN_SYSTEM(p) {
 4270                 if (p->p_pid != pid)
 4271                         continue;
 4272 
 4273                 if (p->p_vmspace) {
 4274                         int i,j;
 4275                         index = 0;
 4276                         pmap = vmspace_pmap(p->p_vmspace);
 4277                         for (i = 0; i < NPDEPTD; i++) {
 4278                                 pd_entry_t *pde;
 4279                                 pt_entry_t *pte;
 4280                                 vm_offset_t base = i << PDRSHIFT;
 4281                                 
 4282                                 pde = &pmap->pm_pdir[i];
 4283                                 if (pde && pmap_pde_v(pde)) {
 4284                                         for (j = 0; j < NPTEPG; j++) {
 4285                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 4286                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 4287                                                         if (index) {
 4288                                                                 index = 0;
 4289                                                                 printf("\n");
 4290                                                         }
 4291                                                         sx_sunlock(&allproc_lock);
 4292                                                         return npte;
 4293                                                 }
 4294                                                 pte = pmap_pte(pmap, va);
 4295                                                 if (pte && pmap_pte_v(pte)) {
 4296                                                         pt_entry_t pa;
 4297                                                         vm_page_t m;
 4298                                                         pa = PT_GET(pte);
 4299                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 4300                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 4301                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 4302                                                         npte++;
 4303                                                         index++;
 4304                                                         if (index >= 2) {
 4305                                                                 index = 0;
 4306                                                                 printf("\n");
 4307                                                         } else {
 4308                                                                 printf(" ");
 4309                                                         }
 4310                                                 }
 4311                                         }
 4312                                 }
 4313                         }
 4314                 }
 4315         }
 4316         sx_sunlock(&allproc_lock);
 4317         return npte;
 4318 }
 4319 #endif
 4320 
 4321 #if defined(DEBUG)
 4322 
 4323 static void     pads(pmap_t pm);
 4324 void            pmap_pvdump(vm_paddr_t pa);
 4325 
 4326 /* print address space of pmap*/
 4327 static void
 4328 pads(pmap_t pm)
 4329 {
 4330         int i, j;
 4331         vm_paddr_t va;
 4332         pt_entry_t *ptep;
 4333 
 4334         if (pm == kernel_pmap)
 4335                 return;
 4336         for (i = 0; i < NPDEPTD; i++)
 4337                 if (pm->pm_pdir[i])
 4338                         for (j = 0; j < NPTEPG; j++) {
 4339                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 4340                                 if (pm == kernel_pmap && va < KERNBASE)
 4341                                         continue;
 4342                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 4343                                         continue;
 4344                                 ptep = pmap_pte(pm, va);
 4345                                 if (pmap_pte_v(ptep))
 4346                                         printf("%x:%x ", va, *ptep);
 4347                         };
 4348 
 4349 }
 4350 
 4351 void
 4352 pmap_pvdump(vm_paddr_t pa)
 4353 {
 4354         pv_entry_t pv;
 4355         pmap_t pmap;
 4356         vm_page_t m;
 4357 
 4358         printf("pa %x", pa);
 4359         m = PHYS_TO_VM_PAGE(pa);
 4360         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4361                 pmap = PV_PMAP(pv);
 4362                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 4363                 pads(pmap);
 4364         }
 4365         printf(" ");
 4366 }
 4367 #endif

Cache object: e77c38aa57398f85ee0fae7aad07679d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.