The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/xen/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/9.0/sys/i386/xen/pmap.c 225418 2011-09-06 10:30:11Z kib $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_cpu.h"
  107 #include "opt_pmap.h"
  108 #include "opt_smp.h"
  109 #include "opt_xbox.h"
  110 
  111 #include <sys/param.h>
  112 #include <sys/systm.h>
  113 #include <sys/kernel.h>
  114 #include <sys/ktr.h>
  115 #include <sys/lock.h>
  116 #include <sys/malloc.h>
  117 #include <sys/mman.h>
  118 #include <sys/msgbuf.h>
  119 #include <sys/mutex.h>
  120 #include <sys/proc.h>
  121 #include <sys/sf_buf.h>
  122 #include <sys/sx.h>
  123 #include <sys/vmmeter.h>
  124 #include <sys/sched.h>
  125 #include <sys/sysctl.h>
  126 #ifdef SMP
  127 #include <sys/smp.h>
  128 #endif
  129 
  130 #include <vm/vm.h>
  131 #include <vm/vm_param.h>
  132 #include <vm/vm_kern.h>
  133 #include <vm/vm_page.h>
  134 #include <vm/vm_map.h>
  135 #include <vm/vm_object.h>
  136 #include <vm/vm_extern.h>
  137 #include <vm/vm_pageout.h>
  138 #include <vm/vm_pager.h>
  139 #include <vm/uma.h>
  140 
  141 #include <machine/cpu.h>
  142 #include <machine/cputypes.h>
  143 #include <machine/md_var.h>
  144 #include <machine/pcb.h>
  145 #include <machine/specialreg.h>
  146 #ifdef SMP
  147 #include <machine/smp.h>
  148 #endif
  149 
  150 #ifdef XBOX
  151 #include <machine/xbox.h>
  152 #endif
  153 
  154 #include <xen/interface/xen.h>
  155 #include <xen/hypervisor.h>
  156 #include <machine/xen/hypercall.h>
  157 #include <machine/xen/xenvar.h>
  158 #include <machine/xen/xenfunc.h>
  159 
  160 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  161 #define CPU_ENABLE_SSE
  162 #endif
  163 
  164 #ifndef PMAP_SHPGPERPROC
  165 #define PMAP_SHPGPERPROC 200
  166 #endif
  167 
  168 #define DIAGNOSTIC
  169 
  170 #if !defined(DIAGNOSTIC)
  171 #ifdef __GNUC_GNU_INLINE__
  172 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  173 #else
  174 #define PMAP_INLINE     extern inline
  175 #endif
  176 #else
  177 #define PMAP_INLINE
  178 #endif
  179 
  180 #define PV_STATS
  181 #ifdef PV_STATS
  182 #define PV_STAT(x)      do { x ; } while (0)
  183 #else
  184 #define PV_STAT(x)      do { } while (0)
  185 #endif
  186 
  187 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  188 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  189 
  190 /*
  191  * Get PDEs and PTEs for user/kernel address space
  192  */
  193 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  194 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  195 
  196 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  197 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  198 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  199 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  200 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  201 
  202 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  203 
  204 #define HAMFISTED_LOCKING
  205 #ifdef HAMFISTED_LOCKING
  206 static struct mtx createdelete_lock;
  207 #endif
  208 
  209 struct pmap kernel_pmap_store;
  210 LIST_HEAD(pmaplist, pmap);
  211 static struct pmaplist allpmaps;
  212 static struct mtx allpmaps_lock;
  213 
  214 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  215 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  216 int pgeflag = 0;                /* PG_G or-in */
  217 int pseflag = 0;                /* PG_PS or-in */
  218 
  219 int nkpt;
  220 vm_offset_t kernel_vm_end;
  221 extern u_int32_t KERNend;
  222 
  223 #ifdef PAE
  224 pt_entry_t pg_nx;
  225 #endif
  226 
  227 static int pat_works;                   /* Is page attribute table sane? */
  228 
  229 /*
  230  * Data for the pv entry allocation mechanism
  231  */
  232 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  233 static struct md_page *pv_table;
  234 static int shpgperproc = PMAP_SHPGPERPROC;
  235 
  236 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  237 int pv_maxchunks;                       /* How many chunks we have KVA for */
  238 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  239 
  240 /*
  241  * All those kernel PT submaps that BSD is so fond of
  242  */
  243 struct sysmaps {
  244         struct  mtx lock;
  245         pt_entry_t *CMAP1;
  246         pt_entry_t *CMAP2;
  247         caddr_t CADDR1;
  248         caddr_t CADDR2;
  249 };
  250 static struct sysmaps sysmaps_pcpu[MAXCPU];
  251 static pt_entry_t *CMAP3;
  252 caddr_t ptvmmap = 0;
  253 static caddr_t CADDR3;
  254 struct msgbuf *msgbufp = 0;
  255 
  256 /*
  257  * Crashdump maps.
  258  */
  259 static caddr_t crashdumpmap;
  260 
  261 static pt_entry_t *PMAP1 = 0, *PMAP2;
  262 static pt_entry_t *PADDR1 = 0, *PADDR2;
  263 #ifdef SMP
  264 static int PMAP1cpu;
  265 static int PMAP1changedcpu;
  266 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  267            &PMAP1changedcpu, 0,
  268            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  269 #endif
  270 static int PMAP1changed;
  271 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  272            &PMAP1changed, 0,
  273            "Number of times pmap_pte_quick changed PMAP1");
  274 static int PMAP1unchanged;
  275 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  276            &PMAP1unchanged, 0,
  277            "Number of times pmap_pte_quick didn't change PMAP1");
  278 static struct mtx PMAP2mutex;
  279 
  280 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  281 static int pg_ps_enabled;
  282 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
  283     "Are large page mappings enabled?");
  284 
  285 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  286         "Max number of PV entries");
  287 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  288         "Page share factor per proc");
  289 SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  290     "2/4MB page mapping counters");
  291 
  292 static u_long pmap_pde_mappings;
  293 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  294     &pmap_pde_mappings, 0, "2/4MB page mappings");
  295 
  296 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  297 static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
  298 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  299 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  300                     vm_offset_t va);
  301 
  302 static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
  303     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  304 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  305     vm_page_t *free);
  306 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  307     vm_page_t *free);
  308 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  309                                         vm_offset_t va);
  310 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  311     vm_page_t m);
  312 
  313 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  314 
  315 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  316 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
  317 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  318 static void pmap_pte_release(pt_entry_t *pte);
  319 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  320 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  321 static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
  322 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  323 
  324 static __inline void pagezero(void *page);
  325 
  326 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  327 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  328 
  329 /*
  330  * If you get an error here, then you set KVA_PAGES wrong! See the
  331  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  332  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  333  */
  334 CTASSERT(KERNBASE % (1 << 24) == 0);
  335 
  336 
  337 
  338 void 
  339 pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
  340 {
  341         vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
  342         
  343         switch (type) {
  344         case SH_PD_SET_VA:
  345 #if 0           
  346                 xen_queue_pt_update(shadow_pdir_ma,
  347                                     xpmap_ptom(val & ~(PG_RW)));
  348 #endif          
  349                 xen_queue_pt_update(pdir_ma,
  350                                     xpmap_ptom(val));   
  351                 break;
  352         case SH_PD_SET_VA_MA:
  353 #if 0           
  354                 xen_queue_pt_update(shadow_pdir_ma,
  355                                     val & ~(PG_RW));
  356 #endif          
  357                 xen_queue_pt_update(pdir_ma, val);      
  358                 break;
  359         case SH_PD_SET_VA_CLEAR:
  360 #if 0
  361                 xen_queue_pt_update(shadow_pdir_ma, 0);
  362 #endif          
  363                 xen_queue_pt_update(pdir_ma, 0);        
  364                 break;
  365         }
  366 }
  367 
  368 /*
  369  * Move the kernel virtual free pointer to the next
  370  * 4MB.  This is used to help improve performance
  371  * by using a large (4MB) page for much of the kernel
  372  * (.text, .data, .bss)
  373  */
  374 static vm_offset_t
  375 pmap_kmem_choose(vm_offset_t addr)
  376 {
  377         vm_offset_t newaddr = addr;
  378 
  379 #ifndef DISABLE_PSE
  380         if (cpu_feature & CPUID_PSE)
  381                 newaddr = (addr + PDRMASK) & ~PDRMASK;
  382 #endif
  383         return newaddr;
  384 }
  385 
  386 /*
  387  *      Bootstrap the system enough to run with virtual memory.
  388  *
  389  *      On the i386 this is called after mapping has already been enabled
  390  *      and just syncs the pmap module with what has already been done.
  391  *      [We can't call it easily with mapping off since the kernel is not
  392  *      mapped with PA == VA, hence we would have to relocate every address
  393  *      from the linked base (virtual) address "KERNBASE" to the actual
  394  *      (physical) address starting relative to 0]
  395  */
  396 void
  397 pmap_bootstrap(vm_paddr_t firstaddr)
  398 {
  399         vm_offset_t va;
  400         pt_entry_t *pte, *unused;
  401         struct sysmaps *sysmaps;
  402         int i;
  403 
  404         /*
  405          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  406          * large. It should instead be correctly calculated in locore.s and
  407          * not based on 'first' (which is a physical address, not a virtual
  408          * address, for the start of unused physical memory). The kernel
  409          * page tables are NOT double mapped and thus should not be included
  410          * in this calculation.
  411          */
  412         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  413         virtual_avail = pmap_kmem_choose(virtual_avail);
  414 
  415         virtual_end = VM_MAX_KERNEL_ADDRESS;
  416 
  417         /*
  418          * Initialize the kernel pmap (which is statically allocated).
  419          */
  420         PMAP_LOCK_INIT(kernel_pmap);
  421         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  422 #ifdef PAE
  423         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  424 #endif
  425         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  426         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  427         LIST_INIT(&allpmaps);
  428         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  429         mtx_lock_spin(&allpmaps_lock);
  430         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  431         mtx_unlock_spin(&allpmaps_lock);
  432         if (nkpt == 0)
  433                 nkpt = NKPT;
  434 
  435         /*
  436          * Reserve some special page table entries/VA space for temporary
  437          * mapping of pages.
  438          */
  439 #define SYSMAP(c, p, v, n)      \
  440         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  441 
  442         va = virtual_avail;
  443         pte = vtopte(va);
  444 
  445         /*
  446          * CMAP1/CMAP2 are used for zeroing and copying pages.
  447          * CMAP3 is used for the idle process page zeroing.
  448          */
  449         for (i = 0; i < MAXCPU; i++) {
  450                 sysmaps = &sysmaps_pcpu[i];
  451                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  452                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  453                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  454                 PT_SET_MA(sysmaps->CADDR1, 0);
  455                 PT_SET_MA(sysmaps->CADDR2, 0);
  456         }
  457         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  458         PT_SET_MA(CADDR3, 0);
  459 
  460         /*
  461          * Crashdump maps.
  462          */
  463         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  464 
  465         /*
  466          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  467          */
  468         SYSMAP(caddr_t, unused, ptvmmap, 1)
  469 
  470         /*
  471          * msgbufp is used to map the system message buffer.
  472          */
  473         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  474 
  475         /*
  476          * ptemap is used for pmap_pte_quick
  477          */
  478         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
  479         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
  480 
  481         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  482 
  483         virtual_avail = va;
  484 
  485         /*
  486          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  487          * physical memory region that is used by the ACPI wakeup code.  This
  488          * mapping must not have PG_G set. 
  489          */
  490 #ifndef XEN
  491         /*
  492          * leave here deliberately to show that this is not supported
  493          */
  494 #ifdef XBOX
  495         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  496          * an early stadium, we cannot yet neatly map video memory ... :-(
  497          * Better fixes are very welcome! */
  498         if (!arch_i386_is_xbox)
  499 #endif
  500         for (i = 1; i < NKPT; i++)
  501                 PTD[i] = 0;
  502 
  503         /* Initialize the PAT MSR if present. */
  504         pmap_init_pat();
  505 
  506         /* Turn on PG_G on kernel page(s) */
  507         pmap_set_pg();
  508 #endif
  509 
  510 #ifdef HAMFISTED_LOCKING
  511         mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
  512 #endif
  513 }
  514 
  515 /*
  516  * Setup the PAT MSR.
  517  */
  518 void
  519 pmap_init_pat(void)
  520 {
  521         uint64_t pat_msr;
  522 
  523         /* Bail if this CPU doesn't implement PAT. */
  524         if (!(cpu_feature & CPUID_PAT))
  525                 return;
  526 
  527         if (cpu_vendor_id != CPU_VENDOR_INTEL ||
  528             (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
  529                 /*
  530                  * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
  531                  * Program 4 and 5 as WP and WC.
  532                  * Leave 6 and 7 as UC and UC-.
  533                  */
  534                 pat_msr = rdmsr(MSR_PAT);
  535                 pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
  536                 pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
  537                     PAT_VALUE(5, PAT_WRITE_COMBINING);
  538                 pat_works = 1;
  539         } else {
  540                 /*
  541                  * Due to some Intel errata, we can only safely use the lower 4
  542                  * PAT entries.  Thus, just replace PAT Index 2 with WC instead
  543                  * of UC-.
  544                  *
  545                  *   Intel Pentium III Processor Specification Update
  546                  * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  547                  * or Mode C Paging)
  548                  *
  549                  *   Intel Pentium IV  Processor Specification Update
  550                  * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  551                  */
  552                 pat_msr = rdmsr(MSR_PAT);
  553                 pat_msr &= ~PAT_MASK(2);
  554                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  555                 pat_works = 0;
  556         }
  557         wrmsr(MSR_PAT, pat_msr);
  558 }
  559 
  560 /*
  561  * Initialize a vm_page's machine-dependent fields.
  562  */
  563 void
  564 pmap_page_init(vm_page_t m)
  565 {
  566 
  567         TAILQ_INIT(&m->md.pv_list);
  568         m->md.pat_mode = PAT_WRITE_BACK;
  569 }
  570 
  571 /*
  572  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  573  * Requirements:
  574  *  - Must deal with pages in order to ensure that none of the PG_* bits
  575  *    are ever set, PG_V in particular.
  576  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  577  *    on PAE systems.  This should be ok.
  578  *  - Assumes nothing will ever test these addresses for 0 to indicate
  579  *    no mapping instead of correctly checking PG_V.
  580  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  581  * Because PG_V is never set, there can be no mappings to invalidate.
  582  */
  583 static int ptelist_count = 0;
  584 static vm_offset_t
  585 pmap_ptelist_alloc(vm_offset_t *head)
  586 {
  587         vm_offset_t va;
  588         vm_offset_t *phead = (vm_offset_t *)*head;
  589         
  590         if (ptelist_count == 0) {
  591                 printf("out of memory!!!!!!\n");
  592                 return (0);     /* Out of memory */
  593         }
  594         ptelist_count--;
  595         va = phead[ptelist_count];
  596         return (va);
  597 }
  598 
  599 static void
  600 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  601 {
  602         vm_offset_t *phead = (vm_offset_t *)*head;
  603 
  604         phead[ptelist_count++] = va;
  605 }
  606 
  607 static void
  608 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  609 {
  610         int i, nstackpages;
  611         vm_offset_t va;
  612         vm_page_t m;
  613         
  614         nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
  615         for (i = 0; i < nstackpages; i++) {
  616                 va = (vm_offset_t)base + i * PAGE_SIZE;
  617                 m = vm_page_alloc(NULL, i,
  618                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
  619                     VM_ALLOC_ZERO);
  620                 pmap_qenter(va, &m, 1);
  621         }
  622 
  623         *head = (vm_offset_t)base;
  624         for (i = npages - 1; i >= nstackpages; i--) {
  625                 va = (vm_offset_t)base + i * PAGE_SIZE;
  626                 pmap_ptelist_free(head, va);
  627         }
  628 }
  629 
  630 
  631 /*
  632  *      Initialize the pmap module.
  633  *      Called by vm_init, to initialize any structures that the pmap
  634  *      system needs to map virtual memory.
  635  */
  636 void
  637 pmap_init(void)
  638 {
  639         vm_page_t mpte;
  640         vm_size_t s;
  641         int i, pv_npg;
  642 
  643         /*
  644          * Initialize the vm page array entries for the kernel pmap's
  645          * page table pages.
  646          */ 
  647         for (i = 0; i < nkpt; i++) {
  648                 mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
  649                 KASSERT(mpte >= vm_page_array &&
  650                     mpte < &vm_page_array[vm_page_array_size],
  651                     ("pmap_init: page table page is out of range"));
  652                 mpte->pindex = i + KPTDI;
  653                 mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
  654         }
  655 
  656         /*
  657          * Initialize the address space (zone) for the pv entries.  Set a
  658          * high water mark so that the system can recover from excessive
  659          * numbers of pv entries.
  660          */
  661         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  662         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  663         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  664         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  665         pv_entry_high_water = 9 * (pv_entry_max / 10);
  666 
  667         /*
  668          * Are large page mappings enabled?
  669          */
  670         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  671 
  672         /*
  673          * Calculate the size of the pv head table for superpages.
  674          */
  675         for (i = 0; phys_avail[i + 1]; i += 2);
  676         pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
  677 
  678         /*
  679          * Allocate memory for the pv head table for superpages.
  680          */
  681         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  682         s = round_page(s);
  683         pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
  684         for (i = 0; i < pv_npg; i++)
  685                 TAILQ_INIT(&pv_table[i].pv_list);
  686 
  687         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  688         pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
  689             PAGE_SIZE * pv_maxchunks);
  690         if (pv_chunkbase == NULL)
  691                 panic("pmap_init: not enough kvm for pv chunks");
  692         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  693 }
  694 
  695 
  696 /***************************************************
  697  * Low level helper routines.....
  698  ***************************************************/
  699 
  700 /*
  701  * Determine the appropriate bits to set in a PTE or PDE for a specified
  702  * caching mode.
  703  */
  704 int
  705 pmap_cache_bits(int mode, boolean_t is_pde)
  706 {
  707         int pat_flag, pat_index, cache_bits;
  708 
  709         /* The PAT bit is different for PTE's and PDE's. */
  710         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  711 
  712         /* If we don't support PAT, map extended modes to older ones. */
  713         if (!(cpu_feature & CPUID_PAT)) {
  714                 switch (mode) {
  715                 case PAT_UNCACHEABLE:
  716                 case PAT_WRITE_THROUGH:
  717                 case PAT_WRITE_BACK:
  718                         break;
  719                 case PAT_UNCACHED:
  720                 case PAT_WRITE_COMBINING:
  721                 case PAT_WRITE_PROTECTED:
  722                         mode = PAT_UNCACHEABLE;
  723                         break;
  724                 }
  725         }
  726         
  727         /* Map the caching mode to a PAT index. */
  728         if (pat_works) {
  729                 switch (mode) {
  730                         case PAT_UNCACHEABLE:
  731                                 pat_index = 3;
  732                                 break;
  733                         case PAT_WRITE_THROUGH:
  734                                 pat_index = 1;
  735                                 break;
  736                         case PAT_WRITE_BACK:
  737                                 pat_index = 0;
  738                                 break;
  739                         case PAT_UNCACHED:
  740                                 pat_index = 2;
  741                                 break;
  742                         case PAT_WRITE_COMBINING:
  743                                 pat_index = 5;
  744                                 break;
  745                         case PAT_WRITE_PROTECTED:
  746                                 pat_index = 4;
  747                                 break;
  748                         default:
  749                                 panic("Unknown caching mode %d\n", mode);
  750                 }
  751         } else {
  752                 switch (mode) {
  753                         case PAT_UNCACHED:
  754                         case PAT_UNCACHEABLE:
  755                         case PAT_WRITE_PROTECTED:
  756                                 pat_index = 3;
  757                                 break;
  758                         case PAT_WRITE_THROUGH:
  759                                 pat_index = 1;
  760                                 break;
  761                         case PAT_WRITE_BACK:
  762                                 pat_index = 0;
  763                                 break;
  764                         case PAT_WRITE_COMBINING:
  765                                 pat_index = 2;
  766                                 break;
  767                         default:
  768                                 panic("Unknown caching mode %d\n", mode);
  769                 }
  770         }       
  771 
  772         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  773         cache_bits = 0;
  774         if (pat_index & 0x4)
  775                 cache_bits |= pat_flag;
  776         if (pat_index & 0x2)
  777                 cache_bits |= PG_NC_PCD;
  778         if (pat_index & 0x1)
  779                 cache_bits |= PG_NC_PWT;
  780         return (cache_bits);
  781 }
  782 #ifdef SMP
  783 /*
  784  * For SMP, these functions have to use the IPI mechanism for coherence.
  785  *
  786  * N.B.: Before calling any of the following TLB invalidation functions,
  787  * the calling processor must ensure that all stores updating a non-
  788  * kernel page table are globally performed.  Otherwise, another
  789  * processor could cache an old, pre-update entry without being
  790  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  791  * active on another processor after its pm_active field is checked by
  792  * one of the following functions but before a store updating the page
  793  * table is globally performed. (2) The pmap becomes active on another
  794  * processor before its pm_active field is checked but due to
  795  * speculative loads one of the following functions stills reads the
  796  * pmap as inactive on the other processor.
  797  * 
  798  * The kernel page table is exempt because its pm_active field is
  799  * immutable.  The kernel page table is always active on every
  800  * processor.
  801  */
  802 void
  803 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  804 {
  805         cpuset_t other_cpus;
  806         u_int cpuid;
  807 
  808         CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
  809             pmap, va);
  810         
  811         sched_pin();
  812         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  813                 invlpg(va);
  814                 smp_invlpg(va);
  815         } else {
  816                 cpuid = PCPU_GET(cpuid);
  817                 other_cpus = all_cpus;
  818                 CPU_CLR(cpuid, &other_cpus);
  819                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  820                         invlpg(va);
  821                 CPU_AND(&other_cpus, &pmap->pm_active);
  822                 if (!CPU_EMPTY(&other_cpus))
  823                         smp_masked_invlpg(other_cpus, va);
  824         }
  825         sched_unpin();
  826         PT_UPDATES_FLUSH();
  827 }
  828 
  829 void
  830 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  831 {
  832         cpuset_t other_cpus;
  833         vm_offset_t addr;
  834         u_int cpuid;
  835 
  836         CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
  837             pmap, sva, eva);
  838 
  839         sched_pin();
  840         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  841                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  842                         invlpg(addr);
  843                 smp_invlpg_range(sva, eva);
  844         } else {
  845                 cpuid = PCPU_GET(cpuid);
  846                 other_cpus = all_cpus;
  847                 CPU_CLR(cpuid, &other_cpus);
  848                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  849                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  850                                 invlpg(addr);
  851                 CPU_AND(&other_cpus, &pmap->pm_active);
  852                 if (!CPU_EMPTY(&other_cpus))
  853                         smp_masked_invlpg_range(other_cpus, sva, eva);
  854         }
  855         sched_unpin();
  856         PT_UPDATES_FLUSH();
  857 }
  858 
  859 void
  860 pmap_invalidate_all(pmap_t pmap)
  861 {
  862         cpuset_t other_cpus;
  863         u_int cpuid;
  864 
  865         CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
  866 
  867         sched_pin();
  868         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  869                 invltlb();
  870                 smp_invltlb();
  871         } else {
  872                 cpuid = PCPU_GET(cpuid);
  873                 other_cpus = all_cpus;
  874                 CPU_CLR(cpuid, &other_cpus);
  875                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  876                         invltlb();
  877                 CPU_AND(&other_cpus, &pmap->pm_active);
  878                 if (!CPU_EMPTY(&other_cpus))
  879                         smp_masked_invltlb(other_cpus);
  880         }
  881         sched_unpin();
  882 }
  883 
  884 void
  885 pmap_invalidate_cache(void)
  886 {
  887 
  888         sched_pin();
  889         wbinvd();
  890         smp_cache_flush();
  891         sched_unpin();
  892 }
  893 #else /* !SMP */
  894 /*
  895  * Normal, non-SMP, 486+ invalidation functions.
  896  * We inline these within pmap.c for speed.
  897  */
  898 PMAP_INLINE void
  899 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  900 {
  901         CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
  902             pmap, va);
  903 
  904         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
  905                 invlpg(va);
  906         PT_UPDATES_FLUSH();
  907 }
  908 
  909 PMAP_INLINE void
  910 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  911 {
  912         vm_offset_t addr;
  913 
  914         if (eva - sva > PAGE_SIZE)
  915                 CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
  916                     pmap, sva, eva);
  917 
  918         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
  919                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  920                         invlpg(addr);
  921         PT_UPDATES_FLUSH();
  922 }
  923 
  924 PMAP_INLINE void
  925 pmap_invalidate_all(pmap_t pmap)
  926 {
  927 
  928         CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
  929         
  930         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
  931                 invltlb();
  932 }
  933 
  934 PMAP_INLINE void
  935 pmap_invalidate_cache(void)
  936 {
  937 
  938         wbinvd();
  939 }
  940 #endif /* !SMP */
  941 
  942 void
  943 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
  944 {
  945 
  946         KASSERT((sva & PAGE_MASK) == 0,
  947             ("pmap_invalidate_cache_range: sva not page-aligned"));
  948         KASSERT((eva & PAGE_MASK) == 0,
  949             ("pmap_invalidate_cache_range: eva not page-aligned"));
  950 
  951         if (cpu_feature & CPUID_SS)
  952                 ; /* If "Self Snoop" is supported, do nothing. */
  953         else if (cpu_feature & CPUID_CLFSH) {
  954 
  955                 /*
  956                  * Otherwise, do per-cache line flush.  Use the mfence
  957                  * instruction to insure that previous stores are
  958                  * included in the write-back.  The processor
  959                  * propagates flush to other processors in the cache
  960                  * coherence domain.
  961                  */
  962                 mfence();
  963                 for (; sva < eva; sva += cpu_clflush_line_size)
  964                         clflush(sva);
  965                 mfence();
  966         } else {
  967 
  968                 /*
  969                  * No targeted cache flush methods are supported by CPU,
  970                  * globally invalidate cache as a last resort.
  971                  */
  972                 pmap_invalidate_cache();
  973         }
  974 }
  975 
  976 /*
  977  * Are we current address space or kernel?  N.B. We return FALSE when
  978  * a pmap's page table is in use because a kernel thread is borrowing
  979  * it.  The borrowed page table can change spontaneously, making any
  980  * dependence on its continued use subject to a race condition.
  981  */
  982 static __inline int
  983 pmap_is_current(pmap_t pmap)
  984 {
  985 
  986         return (pmap == kernel_pmap ||
  987             (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
  988                 (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
  989 }
  990 
  991 /*
  992  * If the given pmap is not the current or kernel pmap, the returned pte must
  993  * be released by passing it to pmap_pte_release().
  994  */
  995 pt_entry_t *
  996 pmap_pte(pmap_t pmap, vm_offset_t va)
  997 {
  998         pd_entry_t newpf;
  999         pd_entry_t *pde;
 1000 
 1001         pde = pmap_pde(pmap, va);
 1002         if (*pde & PG_PS)
 1003                 return (pde);
 1004         if (*pde != 0) {
 1005                 /* are we current address space or kernel? */
 1006                 if (pmap_is_current(pmap))
 1007                         return (vtopte(va));
 1008                 mtx_lock(&PMAP2mutex);
 1009                 newpf = *pde & PG_FRAME;
 1010                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1011                         vm_page_lock_queues();
 1012                         PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
 1013                         vm_page_unlock_queues();
 1014                         CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
 1015                             pmap, va, (*PMAP2 & 0xffffffff));
 1016                 }
 1017                 
 1018                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1019         }
 1020         return (0);
 1021 }
 1022 
 1023 /*
 1024  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1025  * being NULL.
 1026  */
 1027 static __inline void
 1028 pmap_pte_release(pt_entry_t *pte)
 1029 {
 1030 
 1031         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
 1032                 CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
 1033                     *PMAP2);
 1034                 vm_page_lock_queues();
 1035                 PT_SET_VA(PMAP2, 0, TRUE);
 1036                 vm_page_unlock_queues();
 1037                 mtx_unlock(&PMAP2mutex);
 1038         }
 1039 }
 1040 
 1041 static __inline void
 1042 invlcaddr(void *caddr)
 1043 {
 1044 
 1045         invlpg((u_int)caddr);
 1046         PT_UPDATES_FLUSH();
 1047 }
 1048 
 1049 /*
 1050  * Super fast pmap_pte routine best used when scanning
 1051  * the pv lists.  This eliminates many coarse-grained
 1052  * invltlb calls.  Note that many of the pv list
 1053  * scans are across different pmaps.  It is very wasteful
 1054  * to do an entire invltlb for checking a single mapping.
 1055  *
 1056  * If the given pmap is not the current pmap, vm_page_queue_mtx
 1057  * must be held and curthread pinned to a CPU.
 1058  */
 1059 static pt_entry_t *
 1060 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1061 {
 1062         pd_entry_t newpf;
 1063         pd_entry_t *pde;
 1064 
 1065         pde = pmap_pde(pmap, va);
 1066         if (*pde & PG_PS)
 1067                 return (pde);
 1068         if (*pde != 0) {
 1069                 /* are we current address space or kernel? */
 1070                 if (pmap_is_current(pmap))
 1071                         return (vtopte(va));
 1072                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1073                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1074                 newpf = *pde & PG_FRAME;
 1075                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1076                         PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
 1077                         CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
 1078                             pmap, va, (u_long)*PMAP1);
 1079                         
 1080 #ifdef SMP
 1081                         PMAP1cpu = PCPU_GET(cpuid);
 1082 #endif
 1083                         PMAP1changed++;
 1084                 } else
 1085 #ifdef SMP
 1086                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1087                         PMAP1cpu = PCPU_GET(cpuid);
 1088                         invlcaddr(PADDR1);
 1089                         PMAP1changedcpu++;
 1090                 } else
 1091 #endif
 1092                         PMAP1unchanged++;
 1093                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1094         }
 1095         return (0);
 1096 }
 1097 
 1098 /*
 1099  *      Routine:        pmap_extract
 1100  *      Function:
 1101  *              Extract the physical page address associated
 1102  *              with the given map/virtual_address pair.
 1103  */
 1104 vm_paddr_t 
 1105 pmap_extract(pmap_t pmap, vm_offset_t va)
 1106 {
 1107         vm_paddr_t rtval;
 1108         pt_entry_t *pte;
 1109         pd_entry_t pde;
 1110         pt_entry_t pteval;
 1111         
 1112         rtval = 0;
 1113         PMAP_LOCK(pmap);
 1114         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1115         if (pde != 0) {
 1116                 if ((pde & PG_PS) != 0) {
 1117                         rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
 1118                         PMAP_UNLOCK(pmap);
 1119                         return rtval;
 1120                 }
 1121                 pte = pmap_pte(pmap, va);
 1122                 pteval = *pte ? xpmap_mtop(*pte) : 0;
 1123                 rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
 1124                 pmap_pte_release(pte);
 1125         }
 1126         PMAP_UNLOCK(pmap);
 1127         return (rtval);
 1128 }
 1129 
 1130 /*
 1131  *      Routine:        pmap_extract_ma
 1132  *      Function:
 1133  *              Like pmap_extract, but returns machine address
 1134  */
 1135 vm_paddr_t 
 1136 pmap_extract_ma(pmap_t pmap, vm_offset_t va)
 1137 {
 1138         vm_paddr_t rtval;
 1139         pt_entry_t *pte;
 1140         pd_entry_t pde;
 1141 
 1142         rtval = 0;
 1143         PMAP_LOCK(pmap);
 1144         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1145         if (pde != 0) {
 1146                 if ((pde & PG_PS) != 0) {
 1147                         rtval = (pde & ~PDRMASK) | (va & PDRMASK);
 1148                         PMAP_UNLOCK(pmap);
 1149                         return rtval;
 1150                 }
 1151                 pte = pmap_pte(pmap, va);
 1152                 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1153                 pmap_pte_release(pte);
 1154         }
 1155         PMAP_UNLOCK(pmap);
 1156         return (rtval);
 1157 }
 1158 
 1159 /*
 1160  *      Routine:        pmap_extract_and_hold
 1161  *      Function:
 1162  *              Atomically extract and hold the physical page
 1163  *              with the given pmap and virtual address pair
 1164  *              if that mapping permits the given protection.
 1165  */
 1166 vm_page_t
 1167 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1168 {
 1169         pd_entry_t pde;
 1170         pt_entry_t pte;
 1171         vm_page_t m;
 1172         vm_paddr_t pa;
 1173 
 1174         pa = 0;
 1175         m = NULL;
 1176         PMAP_LOCK(pmap);
 1177 retry:
 1178         pde = PT_GET(pmap_pde(pmap, va));
 1179         if (pde != 0) {
 1180                 if (pde & PG_PS) {
 1181                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1182                                 if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
 1183                                        (va & PDRMASK), &pa))
 1184                                         goto retry;
 1185                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1186                                     (va & PDRMASK));
 1187                                 vm_page_hold(m);
 1188                         }
 1189                 } else {
 1190                         sched_pin();
 1191                         pte = PT_GET(pmap_pte_quick(pmap, va));
 1192                         if (*PMAP1)
 1193                                 PT_SET_MA(PADDR1, 0);
 1194                         if ((pte & PG_V) &&
 1195                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1196                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
 1197                                         goto retry;
 1198                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1199                                 vm_page_hold(m);
 1200                         }
 1201                         sched_unpin();
 1202                 }
 1203         }
 1204         PA_UNLOCK_COND(pa);
 1205         PMAP_UNLOCK(pmap);
 1206         return (m);
 1207 }
 1208 
 1209 /***************************************************
 1210  * Low level mapping routines.....
 1211  ***************************************************/
 1212 
 1213 /*
 1214  * Add a wired page to the kva.
 1215  * Note: not SMP coherent.
 1216  */
 1217 void 
 1218 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1219 {
 1220         PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
 1221 }
 1222 
 1223 void 
 1224 pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
 1225 {
 1226         pt_entry_t *pte;
 1227 
 1228         pte = vtopte(va);
 1229         pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
 1230 }
 1231 
 1232 
 1233 static __inline void 
 1234 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1235 {
 1236         PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1237 }
 1238 
 1239 /*
 1240  * Remove a page from the kernel pagetables.
 1241  * Note: not SMP coherent.
 1242  */
 1243 PMAP_INLINE void
 1244 pmap_kremove(vm_offset_t va)
 1245 {
 1246         pt_entry_t *pte;
 1247 
 1248         pte = vtopte(va);
 1249         PT_CLEAR_VA(pte, FALSE);
 1250 }
 1251 
 1252 /*
 1253  *      Used to map a range of physical addresses into kernel
 1254  *      virtual address space.
 1255  *
 1256  *      The value passed in '*virt' is a suggested virtual address for
 1257  *      the mapping. Architectures which can support a direct-mapped
 1258  *      physical to virtual region can return the appropriate address
 1259  *      within that region, leaving '*virt' unchanged. Other
 1260  *      architectures should map the pages starting at '*virt' and
 1261  *      update '*virt' with the first usable address after the mapped
 1262  *      region.
 1263  */
 1264 vm_offset_t
 1265 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1266 {
 1267         vm_offset_t va, sva;
 1268 
 1269         va = sva = *virt;
 1270         CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
 1271             va, start, end, prot);
 1272         while (start < end) {
 1273                 pmap_kenter(va, start);
 1274                 va += PAGE_SIZE;
 1275                 start += PAGE_SIZE;
 1276         }
 1277         pmap_invalidate_range(kernel_pmap, sva, va);
 1278         *virt = va;
 1279         return (sva);
 1280 }
 1281 
 1282 
 1283 /*
 1284  * Add a list of wired pages to the kva
 1285  * this routine is only used for temporary
 1286  * kernel mappings that do not need to have
 1287  * page modification or references recorded.
 1288  * Note that old mappings are simply written
 1289  * over.  The page *must* be wired.
 1290  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1291  */
 1292 void
 1293 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1294 {
 1295         pt_entry_t *endpte, *pte;
 1296         vm_paddr_t pa;
 1297         vm_offset_t va = sva;
 1298         int mclcount = 0;
 1299         multicall_entry_t mcl[16];
 1300         multicall_entry_t *mclp = mcl;
 1301         int error;
 1302 
 1303         CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
 1304         pte = vtopte(sva);
 1305         endpte = pte + count;
 1306         while (pte < endpte) {
 1307                 pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
 1308 
 1309                 mclp->op = __HYPERVISOR_update_va_mapping;
 1310                 mclp->args[0] = va;
 1311                 mclp->args[1] = (uint32_t)(pa & 0xffffffff);
 1312                 mclp->args[2] = (uint32_t)(pa >> 32);
 1313                 mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
 1314         
 1315                 va += PAGE_SIZE;
 1316                 pte++;
 1317                 ma++;
 1318                 mclp++;
 1319                 mclcount++;
 1320                 if (mclcount == 16) {
 1321                         error = HYPERVISOR_multicall(mcl, mclcount);
 1322                         mclp = mcl;
 1323                         mclcount = 0;
 1324                         KASSERT(error == 0, ("bad multicall %d", error));
 1325                 }               
 1326         }
 1327         if (mclcount) {
 1328                 error = HYPERVISOR_multicall(mcl, mclcount);
 1329                 KASSERT(error == 0, ("bad multicall %d", error));
 1330         }
 1331         
 1332 #ifdef INVARIANTS
 1333         for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
 1334                 KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
 1335 #endif  
 1336 }
 1337 
 1338 
 1339 /*
 1340  * This routine tears out page mappings from the
 1341  * kernel -- it is meant only for temporary mappings.
 1342  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1343  */
 1344 void
 1345 pmap_qremove(vm_offset_t sva, int count)
 1346 {
 1347         vm_offset_t va;
 1348 
 1349         CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
 1350         va = sva;
 1351         vm_page_lock_queues();
 1352         critical_enter();
 1353         while (count-- > 0) {
 1354                 pmap_kremove(va);
 1355                 va += PAGE_SIZE;
 1356         }
 1357         PT_UPDATES_FLUSH();
 1358         pmap_invalidate_range(kernel_pmap, sva, va);
 1359         critical_exit();
 1360         vm_page_unlock_queues();
 1361 }
 1362 
 1363 /***************************************************
 1364  * Page table page management routines.....
 1365  ***************************************************/
 1366 static __inline void
 1367 pmap_free_zero_pages(vm_page_t free)
 1368 {
 1369         vm_page_t m;
 1370 
 1371         while (free != NULL) {
 1372                 m = free;
 1373                 free = m->right;
 1374                 vm_page_free_zero(m);
 1375         }
 1376 }
 1377 
 1378 /*
 1379  * This routine unholds page table pages, and if the hold count
 1380  * drops to zero, then it decrements the wire count.
 1381  */
 1382 static __inline int
 1383 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1384 {
 1385 
 1386         --m->wire_count;
 1387         if (m->wire_count == 0)
 1388                 return _pmap_unwire_pte_hold(pmap, m, free);
 1389         else
 1390                 return 0;
 1391 }
 1392 
 1393 static int 
 1394 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1395 {
 1396         vm_offset_t pteva;
 1397 
 1398         PT_UPDATES_FLUSH();
 1399         /*
 1400          * unmap the page table page
 1401          */
 1402         xen_pt_unpin(pmap->pm_pdir[m->pindex]);
 1403         /*
 1404          * page *might* contain residual mapping :-/  
 1405          */
 1406         PD_CLEAR_VA(pmap, m->pindex, TRUE);
 1407         pmap_zero_page(m);
 1408         --pmap->pm_stats.resident_count;
 1409 
 1410         /*
 1411          * This is a release store so that the ordinary store unmapping
 1412          * the page table page is globally performed before TLB shoot-
 1413          * down is begun.
 1414          */
 1415         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1416 
 1417         /*
 1418          * Do an invltlb to make the invalidated mapping
 1419          * take effect immediately.
 1420          */
 1421         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1422         pmap_invalidate_page(pmap, pteva);
 1423 
 1424         /* 
 1425          * Put page on a list so that it is released after
 1426          * *ALL* TLB shootdown is done
 1427          */
 1428         m->right = *free;
 1429         *free = m;
 1430 
 1431         return 1;
 1432 }
 1433 
 1434 /*
 1435  * After removing a page table entry, this routine is used to
 1436  * conditionally free the page, and manage the hold/wire counts.
 1437  */
 1438 static int
 1439 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1440 {
 1441         pd_entry_t ptepde;
 1442         vm_page_t mpte;
 1443 
 1444         if (va >= VM_MAXUSER_ADDRESS)
 1445                 return 0;
 1446         ptepde = PT_GET(pmap_pde(pmap, va));
 1447         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1448         return pmap_unwire_pte_hold(pmap, mpte, free);
 1449 }
 1450 
 1451 void
 1452 pmap_pinit0(pmap_t pmap)
 1453 {
 1454 
 1455         PMAP_LOCK_INIT(pmap);
 1456         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1457 #ifdef PAE
 1458         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1459 #endif
 1460         CPU_ZERO(&pmap->pm_active);
 1461         PCPU_SET(curpmap, pmap);
 1462         TAILQ_INIT(&pmap->pm_pvchunk);
 1463         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1464         mtx_lock_spin(&allpmaps_lock);
 1465         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1466         mtx_unlock_spin(&allpmaps_lock);
 1467 }
 1468 
 1469 /*
 1470  * Initialize a preallocated and zeroed pmap structure,
 1471  * such as one in a vmspace structure.
 1472  */
 1473 int
 1474 pmap_pinit(pmap_t pmap)
 1475 {
 1476         vm_page_t m, ptdpg[NPGPTD + 1];
 1477         int npgptd = NPGPTD + 1;
 1478         static int color;
 1479         int i;
 1480 
 1481 #ifdef HAMFISTED_LOCKING
 1482         mtx_lock(&createdelete_lock);
 1483 #endif
 1484 
 1485         PMAP_LOCK_INIT(pmap);
 1486 
 1487         /*
 1488          * No need to allocate page table space yet but we do need a valid
 1489          * page directory table.
 1490          */
 1491         if (pmap->pm_pdir == NULL) {
 1492                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1493                     NBPTD);
 1494                 if (pmap->pm_pdir == NULL) {
 1495                         PMAP_LOCK_DESTROY(pmap);
 1496 #ifdef HAMFISTED_LOCKING
 1497                         mtx_unlock(&createdelete_lock);
 1498 #endif
 1499                         return (0);
 1500                 }
 1501 #ifdef PAE
 1502                 pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
 1503 #endif
 1504         }
 1505 
 1506         /*
 1507          * allocate the page directory page(s)
 1508          */
 1509         for (i = 0; i < npgptd;) {
 1510                 m = vm_page_alloc(NULL, color++,
 1511                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1512                     VM_ALLOC_ZERO);
 1513                 if (m == NULL)
 1514                         VM_WAIT;
 1515                 else {
 1516                         ptdpg[i++] = m;
 1517                 }
 1518         }
 1519         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1520         for (i = 0; i < NPGPTD; i++) {
 1521                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1522                         pagezero(&pmap->pm_pdir[i*NPTEPG]);
 1523         }
 1524 
 1525         mtx_lock_spin(&allpmaps_lock);
 1526         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1527         mtx_unlock_spin(&allpmaps_lock);
 1528         /* Wire in kernel global address entries. */
 1529 
 1530         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1531 #ifdef PAE
 1532         pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
 1533         if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
 1534                 bzero(pmap->pm_pdpt, PAGE_SIZE);
 1535         for (i = 0; i < NPGPTD; i++) {
 1536                 vm_paddr_t ma;
 1537                 
 1538                 ma = VM_PAGE_TO_MACH(ptdpg[i]);
 1539                 pmap->pm_pdpt[i] = ma | PG_V;
 1540 
 1541         }
 1542 #endif  
 1543         for (i = 0; i < NPGPTD; i++) {
 1544                 pt_entry_t *pd;
 1545                 vm_paddr_t ma;
 1546                 
 1547                 ma = VM_PAGE_TO_MACH(ptdpg[i]);
 1548                 pd = pmap->pm_pdir + (i * NPDEPG);
 1549                 PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
 1550 #if 0           
 1551                 xen_pgd_pin(ma);
 1552 #endif          
 1553         }
 1554         
 1555 #ifdef PAE      
 1556         PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
 1557 #endif
 1558         vm_page_lock_queues();
 1559         xen_flush_queue();
 1560         xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
 1561         for (i = 0; i < NPGPTD; i++) {
 1562                 vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
 1563                 PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
 1564         }
 1565         xen_flush_queue();
 1566         vm_page_unlock_queues();
 1567         CPU_ZERO(&pmap->pm_active);
 1568         TAILQ_INIT(&pmap->pm_pvchunk);
 1569         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1570 
 1571 #ifdef HAMFISTED_LOCKING
 1572         mtx_unlock(&createdelete_lock);
 1573 #endif
 1574         return (1);
 1575 }
 1576 
 1577 /*
 1578  * this routine is called if the page table page is not
 1579  * mapped correctly.
 1580  */
 1581 static vm_page_t
 1582 _pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
 1583 {
 1584         vm_paddr_t ptema;
 1585         vm_page_t m;
 1586 
 1587         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1588             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1589             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1590 
 1591         /*
 1592          * Allocate a page table page.
 1593          */
 1594         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1595             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1596                 if (flags & M_WAITOK) {
 1597                         PMAP_UNLOCK(pmap);
 1598                         vm_page_unlock_queues();
 1599                         VM_WAIT;
 1600                         vm_page_lock_queues();
 1601                         PMAP_LOCK(pmap);
 1602                 }
 1603 
 1604                 /*
 1605                  * Indicate the need to retry.  While waiting, the page table
 1606                  * page may have been allocated.
 1607                  */
 1608                 return (NULL);
 1609         }
 1610         if ((m->flags & PG_ZERO) == 0)
 1611                 pmap_zero_page(m);
 1612 
 1613         /*
 1614          * Map the pagetable page into the process address space, if
 1615          * it isn't already there.
 1616          */
 1617         pmap->pm_stats.resident_count++;
 1618 
 1619         ptema = VM_PAGE_TO_MACH(m);
 1620         xen_pt_pin(ptema);
 1621         PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
 1622                 (ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
 1623         
 1624         KASSERT(pmap->pm_pdir[ptepindex],
 1625             ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
 1626         return (m);
 1627 }
 1628 
 1629 static vm_page_t
 1630 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1631 {
 1632         unsigned ptepindex;
 1633         pd_entry_t ptema;
 1634         vm_page_t m;
 1635 
 1636         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1637             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1638             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1639 
 1640         /*
 1641          * Calculate pagetable page index
 1642          */
 1643         ptepindex = va >> PDRSHIFT;
 1644 retry:
 1645         /*
 1646          * Get the page directory entry
 1647          */
 1648         ptema = pmap->pm_pdir[ptepindex];
 1649 
 1650         /*
 1651          * This supports switching from a 4MB page to a
 1652          * normal 4K page.
 1653          */
 1654         if (ptema & PG_PS) {
 1655                 /*
 1656                  * XXX 
 1657                  */
 1658                 pmap->pm_pdir[ptepindex] = 0;
 1659                 ptema = 0;
 1660                 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1661                 pmap_invalidate_all(kernel_pmap);
 1662         }
 1663 
 1664         /*
 1665          * If the page table page is mapped, we just increment the
 1666          * hold count, and activate it.
 1667          */
 1668         if (ptema & PG_V) {
 1669                 m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
 1670                 m->wire_count++;
 1671         } else {
 1672                 /*
 1673                  * Here if the pte page isn't mapped, or if it has
 1674                  * been deallocated. 
 1675                  */
 1676                 CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
 1677                     pmap, va, flags);
 1678                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1679                 if (m == NULL && (flags & M_WAITOK))
 1680                         goto retry;
 1681 
 1682                 KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
 1683         }
 1684         return (m);
 1685 }
 1686 
 1687 
 1688 /***************************************************
 1689 * Pmap allocation/deallocation routines.
 1690  ***************************************************/
 1691 
 1692 #ifdef SMP
 1693 /*
 1694  * Deal with a SMP shootdown of other users of the pmap that we are
 1695  * trying to dispose of.  This can be a bit hairy.
 1696  */
 1697 static cpuset_t *lazymask;
 1698 static u_int lazyptd;
 1699 static volatile u_int lazywait;
 1700 
 1701 void pmap_lazyfix_action(void);
 1702 
 1703 void
 1704 pmap_lazyfix_action(void)
 1705 {
 1706 
 1707 #ifdef COUNT_IPIS
 1708         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1709 #endif
 1710         if (rcr3() == lazyptd)
 1711                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1712         CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
 1713         atomic_store_rel_int(&lazywait, 1);
 1714 }
 1715 
 1716 static void
 1717 pmap_lazyfix_self(u_int cpuid)
 1718 {
 1719 
 1720         if (rcr3() == lazyptd)
 1721                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1722         CPU_CLR_ATOMIC(cpuid, lazymask);
 1723 }
 1724 
 1725 
 1726 static void
 1727 pmap_lazyfix(pmap_t pmap)
 1728 {
 1729         cpuset_t mymask, mask;
 1730         u_int cpuid, spins;
 1731         int lsb;
 1732 
 1733         mask = pmap->pm_active;
 1734         while (!CPU_EMPTY(&mask)) {
 1735                 spins = 50000000;
 1736 
 1737                 /* Find least significant set bit. */
 1738                 lsb = cpusetobj_ffs(&mask);
 1739                 MPASS(lsb != 0);
 1740                 lsb--;
 1741                 CPU_SETOF(lsb, &mask);
 1742                 mtx_lock_spin(&smp_ipi_mtx);
 1743 #ifdef PAE
 1744                 lazyptd = vtophys(pmap->pm_pdpt);
 1745 #else
 1746                 lazyptd = vtophys(pmap->pm_pdir);
 1747 #endif
 1748                 cpuid = PCPU_GET(cpuid);
 1749 
 1750                 /* Use a cpuset just for having an easy check. */
 1751                 CPU_SETOF(cpuid, &mymask);
 1752                 if (!CPU_CMP(&mask, &mymask)) {
 1753                         lazymask = &pmap->pm_active;
 1754                         pmap_lazyfix_self(cpuid);
 1755                 } else {
 1756                         atomic_store_rel_int((u_int *)&lazymask,
 1757                             (u_int)&pmap->pm_active);
 1758                         atomic_store_rel_int(&lazywait, 0);
 1759                         ipi_selected(mask, IPI_LAZYPMAP);
 1760                         while (lazywait == 0) {
 1761                                 ia32_pause();
 1762                                 if (--spins == 0)
 1763                                         break;
 1764                         }
 1765                 }
 1766                 mtx_unlock_spin(&smp_ipi_mtx);
 1767                 if (spins == 0)
 1768                         printf("pmap_lazyfix: spun for 50000000\n");
 1769                 mask = pmap->pm_active;
 1770         }
 1771 }
 1772 
 1773 #else   /* SMP */
 1774 
 1775 /*
 1776  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1777  * unlikely to have to even execute this code, including the fact
 1778  * that the cleanup is deferred until the parent does a wait(2), which
 1779  * means that another userland process has run.
 1780  */
 1781 static void
 1782 pmap_lazyfix(pmap_t pmap)
 1783 {
 1784         u_int cr3;
 1785 
 1786         cr3 = vtophys(pmap->pm_pdir);
 1787         if (cr3 == rcr3()) {
 1788                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1789                 CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
 1790         }
 1791 }
 1792 #endif  /* SMP */
 1793 
 1794 /*
 1795  * Release any resources held by the given physical map.
 1796  * Called when a pmap initialized by pmap_pinit is being released.
 1797  * Should only be called if the map contains no valid mappings.
 1798  */
 1799 void
 1800 pmap_release(pmap_t pmap)
 1801 {
 1802         vm_page_t m, ptdpg[2*NPGPTD+1];
 1803         vm_paddr_t ma;
 1804         int i;
 1805 #ifdef PAE      
 1806         int npgptd = NPGPTD + 1;
 1807 #else
 1808         int npgptd = NPGPTD;
 1809 #endif
 1810         KASSERT(pmap->pm_stats.resident_count == 0,
 1811             ("pmap_release: pmap resident count %ld != 0",
 1812             pmap->pm_stats.resident_count));
 1813         PT_UPDATES_FLUSH();
 1814 
 1815 #ifdef HAMFISTED_LOCKING
 1816         mtx_lock(&createdelete_lock);
 1817 #endif
 1818 
 1819         pmap_lazyfix(pmap);
 1820         mtx_lock_spin(&allpmaps_lock);
 1821         LIST_REMOVE(pmap, pm_list);
 1822         mtx_unlock_spin(&allpmaps_lock);
 1823 
 1824         for (i = 0; i < NPGPTD; i++)
 1825                 ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
 1826         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1827 #ifdef PAE
 1828         ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
 1829 #endif  
 1830 
 1831         for (i = 0; i < npgptd; i++) {
 1832                 m = ptdpg[i];
 1833                 ma = VM_PAGE_TO_MACH(m);
 1834                 /* unpinning L1 and L2 treated the same */
 1835 #if 0
 1836                 xen_pgd_unpin(ma);
 1837 #else
 1838                 if (i == NPGPTD)
 1839                         xen_pgd_unpin(ma);
 1840 #endif
 1841 #ifdef PAE
 1842                 if (i < NPGPTD)
 1843                         KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 1844                             ("pmap_release: got wrong ptd page"));
 1845 #endif
 1846                 m->wire_count--;
 1847                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1848                 vm_page_free(m);
 1849         }
 1850 #ifdef PAE
 1851         pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
 1852 #endif
 1853         PMAP_LOCK_DESTROY(pmap);
 1854 
 1855 #ifdef HAMFISTED_LOCKING
 1856         mtx_unlock(&createdelete_lock);
 1857 #endif
 1858 }
 1859 
 1860 static int
 1861 kvm_size(SYSCTL_HANDLER_ARGS)
 1862 {
 1863         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1864 
 1865         return sysctl_handle_long(oidp, &ksize, 0, req);
 1866 }
 1867 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1868     0, 0, kvm_size, "IU", "Size of KVM");
 1869 
 1870 static int
 1871 kvm_free(SYSCTL_HANDLER_ARGS)
 1872 {
 1873         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1874 
 1875         return sysctl_handle_long(oidp, &kfree, 0, req);
 1876 }
 1877 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1878     0, 0, kvm_free, "IU", "Amount of KVM free");
 1879 
 1880 /*
 1881  * grow the number of kernel page table entries, if needed
 1882  */
 1883 void
 1884 pmap_growkernel(vm_offset_t addr)
 1885 {
 1886         struct pmap *pmap;
 1887         vm_paddr_t ptppaddr;
 1888         vm_page_t nkpg;
 1889         pd_entry_t newpdir;
 1890 
 1891         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1892         if (kernel_vm_end == 0) {
 1893                 kernel_vm_end = KERNBASE;
 1894                 nkpt = 0;
 1895                 while (pdir_pde(PTD, kernel_vm_end)) {
 1896                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1897                         nkpt++;
 1898                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1899                                 kernel_vm_end = kernel_map->max_offset;
 1900                                 break;
 1901                         }
 1902                 }
 1903         }
 1904         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1905         if (addr - 1 >= kernel_map->max_offset)
 1906                 addr = kernel_map->max_offset;
 1907         while (kernel_vm_end < addr) {
 1908                 if (pdir_pde(PTD, kernel_vm_end)) {
 1909                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1910                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1911                                 kernel_vm_end = kernel_map->max_offset;
 1912                                 break;
 1913                         }
 1914                         continue;
 1915                 }
 1916 
 1917                 /*
 1918                  * This index is bogus, but out of the way
 1919                  */
 1920                 nkpg = vm_page_alloc(NULL, nkpt,
 1921                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1922                 if (!nkpg)
 1923                         panic("pmap_growkernel: no memory to grow kernel");
 1924 
 1925                 nkpt++;
 1926 
 1927                 pmap_zero_page(nkpg);
 1928                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1929                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1930                 vm_page_lock_queues();
 1931                 PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
 1932                 mtx_lock_spin(&allpmaps_lock);
 1933                 LIST_FOREACH(pmap, &allpmaps, pm_list)
 1934                         PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
 1935 
 1936                 mtx_unlock_spin(&allpmaps_lock);
 1937                 vm_page_unlock_queues();
 1938 
 1939                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1940                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1941                         kernel_vm_end = kernel_map->max_offset;
 1942                         break;
 1943                 }
 1944         }
 1945 }
 1946 
 1947 
 1948 /***************************************************
 1949  * page management routines.
 1950  ***************************************************/
 1951 
 1952 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1953 CTASSERT(_NPCM == 11);
 1954 
 1955 static __inline struct pv_chunk *
 1956 pv_to_chunk(pv_entry_t pv)
 1957 {
 1958 
 1959         return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
 1960 }
 1961 
 1962 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1963 
 1964 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1965 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1966 
 1967 static uint32_t pc_freemask[11] = {
 1968         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1969         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1970         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1971         PC_FREE0_9, PC_FREE10
 1972 };
 1973 
 1974 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1975         "Current number of pv entries");
 1976 
 1977 #ifdef PV_STATS
 1978 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1979 
 1980 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 1981         "Current number of pv entry chunks");
 1982 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 1983         "Current number of pv entry chunks allocated");
 1984 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 1985         "Current number of pv entry chunks frees");
 1986 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 1987         "Number of times tried to get a chunk page but failed.");
 1988 
 1989 static long pv_entry_frees, pv_entry_allocs;
 1990 static int pv_entry_spare;
 1991 
 1992 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 1993         "Current number of pv entry frees");
 1994 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 1995         "Current number of pv entry allocs");
 1996 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 1997         "Current number of spare pv entries");
 1998 
 1999 static int pmap_collect_inactive, pmap_collect_active;
 2000 
 2001 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
 2002         "Current number times pmap_collect called on inactive queue");
 2003 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
 2004         "Current number times pmap_collect called on active queue");
 2005 #endif
 2006 
 2007 /*
 2008  * We are in a serious low memory condition.  Resort to
 2009  * drastic measures to free some pages so we can allocate
 2010  * another pv entry chunk.  This is normally called to
 2011  * unmap inactive pages, and if necessary, active pages.
 2012  */
 2013 static void
 2014 pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
 2015 {
 2016         pmap_t pmap;
 2017         pt_entry_t *pte, tpte;
 2018         pv_entry_t next_pv, pv;
 2019         vm_offset_t va;
 2020         vm_page_t m, free;
 2021 
 2022         sched_pin();
 2023         TAILQ_FOREACH(m, &vpq->pl, pageq) {
 2024                 if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
 2025                         continue;
 2026                 TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
 2027                         va = pv->pv_va;
 2028                         pmap = PV_PMAP(pv);
 2029                         /* Avoid deadlock and lock recursion. */
 2030                         if (pmap > locked_pmap)
 2031                                 PMAP_LOCK(pmap);
 2032                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
 2033                                 continue;
 2034                         pmap->pm_stats.resident_count--;
 2035                         pte = pmap_pte_quick(pmap, va);
 2036                         tpte = pte_load_clear(pte);
 2037                         KASSERT((tpte & PG_W) == 0,
 2038                             ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
 2039                         if (tpte & PG_A)
 2040                                 vm_page_aflag_set(m, PGA_REFERENCED);
 2041                         if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2042                                 vm_page_dirty(m);
 2043                         free = NULL;
 2044                         pmap_unuse_pt(pmap, va, &free);
 2045                         pmap_invalidate_page(pmap, va);
 2046                         pmap_free_zero_pages(free);
 2047                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2048                         free_pv_entry(pmap, pv);
 2049                         if (pmap != locked_pmap)
 2050                                 PMAP_UNLOCK(pmap);
 2051                 }
 2052                 if (TAILQ_EMPTY(&m->md.pv_list))
 2053                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2054         }
 2055         sched_unpin();
 2056 }
 2057 
 2058 
 2059 /*
 2060  * free the pv_entry back to the free list
 2061  */
 2062 static void
 2063 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2064 {
 2065         vm_page_t m;
 2066         struct pv_chunk *pc;
 2067         int idx, field, bit;
 2068 
 2069         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2070         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2071         PV_STAT(pv_entry_frees++);
 2072         PV_STAT(pv_entry_spare++);
 2073         pv_entry_count--;
 2074         pc = pv_to_chunk(pv);
 2075         idx = pv - &pc->pc_pventry[0];
 2076         field = idx / 32;
 2077         bit = idx % 32;
 2078         pc->pc_map[field] |= 1ul << bit;
 2079         /* move to head of list */
 2080         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2081         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2082         for (idx = 0; idx < _NPCM; idx++)
 2083                 if (pc->pc_map[idx] != pc_freemask[idx])
 2084                         return;
 2085         PV_STAT(pv_entry_spare -= _NPCPV);
 2086         PV_STAT(pc_chunk_count--);
 2087         PV_STAT(pc_chunk_frees++);
 2088         /* entire chunk is free, return it */
 2089         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2090         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2091         pmap_qremove((vm_offset_t)pc, 1);
 2092         vm_page_unwire(m, 0);
 2093         vm_page_free(m);
 2094         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2095 }
 2096 
 2097 /*
 2098  * get a new pv_entry, allocating a block from the system
 2099  * when needed.
 2100  */
 2101 static pv_entry_t
 2102 get_pv_entry(pmap_t pmap, int try)
 2103 {
 2104         static const struct timeval printinterval = { 60, 0 };
 2105         static struct timeval lastprint;
 2106         static vm_pindex_t colour;
 2107         struct vpgqueues *pq;
 2108         int bit, field;
 2109         pv_entry_t pv;
 2110         struct pv_chunk *pc;
 2111         vm_page_t m;
 2112 
 2113         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2114         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2115         PV_STAT(pv_entry_allocs++);
 2116         pv_entry_count++;
 2117         if (pv_entry_count > pv_entry_high_water)
 2118                 if (ratecheck(&lastprint, &printinterval))
 2119                         printf("Approaching the limit on PV entries, consider "
 2120                             "increasing either the vm.pmap.shpgperproc or the "
 2121                             "vm.pmap.pv_entry_max tunable.\n");
 2122         pq = NULL;
 2123 retry:
 2124         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2125         if (pc != NULL) {
 2126                 for (field = 0; field < _NPCM; field++) {
 2127                         if (pc->pc_map[field]) {
 2128                                 bit = bsfl(pc->pc_map[field]);
 2129                                 break;
 2130                         }
 2131                 }
 2132                 if (field < _NPCM) {
 2133                         pv = &pc->pc_pventry[field * 32 + bit];
 2134                         pc->pc_map[field] &= ~(1ul << bit);
 2135                         /* If this was the last item, move it to tail */
 2136                         for (field = 0; field < _NPCM; field++)
 2137                                 if (pc->pc_map[field] != 0) {
 2138                                         PV_STAT(pv_entry_spare--);
 2139                                         return (pv);    /* not full, return */
 2140                                 }
 2141                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2142                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2143                         PV_STAT(pv_entry_spare--);
 2144                         return (pv);
 2145                 }
 2146         }
 2147         /*
 2148          * Access to the ptelist "pv_vafree" is synchronized by the page
 2149          * queues lock.  If "pv_vafree" is currently non-empty, it will
 2150          * remain non-empty until pmap_ptelist_alloc() completes.
 2151          */
 2152         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
 2153             &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
 2154             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2155                 if (try) {
 2156                         pv_entry_count--;
 2157                         PV_STAT(pc_chunk_tryfail++);
 2158                         return (NULL);
 2159                 }
 2160                 /*
 2161                  * Reclaim pv entries: At first, destroy mappings to
 2162                  * inactive pages.  After that, if a pv chunk entry
 2163                  * is still needed, destroy mappings to active pages.
 2164                  */
 2165                 if (pq == NULL) {
 2166                         PV_STAT(pmap_collect_inactive++);
 2167                         pq = &vm_page_queues[PQ_INACTIVE];
 2168                 } else if (pq == &vm_page_queues[PQ_INACTIVE]) {
 2169                         PV_STAT(pmap_collect_active++);
 2170                         pq = &vm_page_queues[PQ_ACTIVE];
 2171                 } else
 2172                         panic("get_pv_entry: increase vm.pmap.shpgperproc");
 2173                 pmap_collect(pmap, pq);
 2174                 goto retry;
 2175         }
 2176         PV_STAT(pc_chunk_count++);
 2177         PV_STAT(pc_chunk_allocs++);
 2178         colour++;
 2179         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2180         pmap_qenter((vm_offset_t)pc, &m, 1);
 2181         if ((m->flags & PG_ZERO) == 0)
 2182                 pagezero(pc);
 2183         pc->pc_pmap = pmap;
 2184         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2185         for (field = 1; field < _NPCM; field++)
 2186                 pc->pc_map[field] = pc_freemask[field];
 2187         pv = &pc->pc_pventry[0];
 2188         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2189         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2190         return (pv);
 2191 }
 2192 
 2193 static __inline pv_entry_t
 2194 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2195 {
 2196         pv_entry_t pv;
 2197 
 2198         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2199         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 2200                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2201                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 2202                         break;
 2203                 }
 2204         }
 2205         return (pv);
 2206 }
 2207 
 2208 static void
 2209 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2210 {
 2211         pv_entry_t pv;
 2212 
 2213         pv = pmap_pvh_remove(pvh, pmap, va);
 2214         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2215         free_pv_entry(pmap, pv);
 2216 }
 2217 
 2218 static void
 2219 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2220 {
 2221 
 2222         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2223         pmap_pvh_free(&m->md, pmap, va);
 2224         if (TAILQ_EMPTY(&m->md.pv_list))
 2225                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2226 }
 2227 
 2228 /*
 2229  * Conditionally create a pv entry.
 2230  */
 2231 static boolean_t
 2232 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2233 {
 2234         pv_entry_t pv;
 2235 
 2236         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2237         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2238         if (pv_entry_count < pv_entry_high_water && 
 2239             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2240                 pv->pv_va = va;
 2241                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2242                 return (TRUE);
 2243         } else
 2244                 return (FALSE);
 2245 }
 2246 
 2247 /*
 2248  * pmap_remove_pte: do the things to unmap a page in a process
 2249  */
 2250 static int
 2251 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 2252 {
 2253         pt_entry_t oldpte;
 2254         vm_page_t m;
 2255 
 2256         CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
 2257             pmap, (u_long)*ptq, va);
 2258         
 2259         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2260         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2261         oldpte = *ptq;
 2262         PT_SET_VA_MA(ptq, 0, TRUE);
 2263         if (oldpte & PG_W)
 2264                 pmap->pm_stats.wired_count -= 1;
 2265         /*
 2266          * Machines that don't support invlpg, also don't support
 2267          * PG_G.
 2268          */
 2269         if (oldpte & PG_G)
 2270                 pmap_invalidate_page(kernel_pmap, va);
 2271         pmap->pm_stats.resident_count -= 1;
 2272         if (oldpte & PG_MANAGED) {
 2273                 m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
 2274                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2275                         vm_page_dirty(m);
 2276                 if (oldpte & PG_A)
 2277                         vm_page_aflag_set(m, PGA_REFERENCED);
 2278                 pmap_remove_entry(pmap, m, va);
 2279         }
 2280         return (pmap_unuse_pt(pmap, va, free));
 2281 }
 2282 
 2283 /*
 2284  * Remove a single page from a process address space
 2285  */
 2286 static void
 2287 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 2288 {
 2289         pt_entry_t *pte;
 2290 
 2291         CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
 2292             pmap, va);
 2293         
 2294         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2295         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2296         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2297         if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
 2298                 return;
 2299         pmap_remove_pte(pmap, pte, va, free);
 2300         pmap_invalidate_page(pmap, va);
 2301         if (*PMAP1)
 2302                 PT_SET_MA(PADDR1, 0);
 2303 
 2304 }
 2305 
 2306 /*
 2307  *      Remove the given range of addresses from the specified map.
 2308  *
 2309  *      It is assumed that the start and end are properly
 2310  *      rounded to the page size.
 2311  */
 2312 void
 2313 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2314 {
 2315         vm_offset_t pdnxt;
 2316         pd_entry_t ptpaddr;
 2317         pt_entry_t *pte;
 2318         vm_page_t free = NULL;
 2319         int anyvalid;
 2320         
 2321         CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
 2322             pmap, sva, eva);
 2323         
 2324         /*
 2325          * Perform an unsynchronized read.  This is, however, safe.
 2326          */
 2327         if (pmap->pm_stats.resident_count == 0)
 2328                 return;
 2329 
 2330         anyvalid = 0;
 2331 
 2332         vm_page_lock_queues();
 2333         sched_pin();
 2334         PMAP_LOCK(pmap);
 2335 
 2336         /*
 2337          * special handling of removing one page.  a very
 2338          * common operation and easy to short circuit some
 2339          * code.
 2340          */
 2341         if ((sva + PAGE_SIZE == eva) && 
 2342             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2343                 pmap_remove_page(pmap, sva, &free);
 2344                 goto out;
 2345         }
 2346 
 2347         for (; sva < eva; sva = pdnxt) {
 2348                 unsigned pdirindex;
 2349 
 2350                 /*
 2351                  * Calculate index for next page table.
 2352                  */
 2353                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2354                 if (pmap->pm_stats.resident_count == 0)
 2355                         break;
 2356 
 2357                 pdirindex = sva >> PDRSHIFT;
 2358                 ptpaddr = pmap->pm_pdir[pdirindex];
 2359 
 2360                 /*
 2361                  * Weed out invalid mappings. Note: we assume that the page
 2362                  * directory table is always allocated, and in kernel virtual.
 2363                  */
 2364                 if (ptpaddr == 0)
 2365                         continue;
 2366 
 2367                 /*
 2368                  * Check for large page.
 2369                  */
 2370                 if ((ptpaddr & PG_PS) != 0) {
 2371                         PD_CLEAR_VA(pmap, pdirindex, TRUE);
 2372                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2373                         anyvalid = 1;
 2374                         continue;
 2375                 }
 2376 
 2377                 /*
 2378                  * Limit our scan to either the end of the va represented
 2379                  * by the current page table page, or to the end of the
 2380                  * range being removed.
 2381                  */
 2382                 if (pdnxt > eva)
 2383                         pdnxt = eva;
 2384 
 2385                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2386                     sva += PAGE_SIZE) {
 2387                         if ((*pte & PG_V) == 0)
 2388                                 continue;
 2389 
 2390                         /*
 2391                          * The TLB entry for a PG_G mapping is invalidated
 2392                          * by pmap_remove_pte().
 2393                          */
 2394                         if ((*pte & PG_G) == 0)
 2395                                 anyvalid = 1;
 2396                         if (pmap_remove_pte(pmap, pte, sva, &free))
 2397                                 break;
 2398                 }
 2399         }
 2400         PT_UPDATES_FLUSH();
 2401         if (*PMAP1)
 2402                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2403 out:
 2404         if (anyvalid)
 2405                 pmap_invalidate_all(pmap);
 2406         sched_unpin();
 2407         vm_page_unlock_queues();
 2408         PMAP_UNLOCK(pmap);
 2409         pmap_free_zero_pages(free);
 2410 }
 2411 
 2412 /*
 2413  *      Routine:        pmap_remove_all
 2414  *      Function:
 2415  *              Removes this physical page from
 2416  *              all physical maps in which it resides.
 2417  *              Reflects back modify bits to the pager.
 2418  *
 2419  *      Notes:
 2420  *              Original versions of this routine were very
 2421  *              inefficient because they iteratively called
 2422  *              pmap_remove (slow...)
 2423  */
 2424 
 2425 void
 2426 pmap_remove_all(vm_page_t m)
 2427 {
 2428         pv_entry_t pv;
 2429         pmap_t pmap;
 2430         pt_entry_t *pte, tpte;
 2431         vm_page_t free;
 2432 
 2433         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2434             ("pmap_remove_all: page %p is not managed", m));
 2435         free = NULL;
 2436         vm_page_lock_queues();
 2437         sched_pin();
 2438         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2439                 pmap = PV_PMAP(pv);
 2440                 PMAP_LOCK(pmap);
 2441                 pmap->pm_stats.resident_count--;
 2442                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2443 
 2444                 tpte = *pte;
 2445                 PT_SET_VA_MA(pte, 0, TRUE);
 2446                 if (tpte & PG_W)
 2447                         pmap->pm_stats.wired_count--;
 2448                 if (tpte & PG_A)
 2449                         vm_page_aflag_set(m, PGA_REFERENCED);
 2450 
 2451                 /*
 2452                  * Update the vm_page_t clean and reference bits.
 2453                  */
 2454                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2455                         vm_page_dirty(m);
 2456                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2457                 pmap_invalidate_page(pmap, pv->pv_va);
 2458                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2459                 free_pv_entry(pmap, pv);
 2460                 PMAP_UNLOCK(pmap);
 2461         }
 2462         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2463         PT_UPDATES_FLUSH();
 2464         if (*PMAP1)
 2465                 PT_SET_MA(PADDR1, 0);
 2466         sched_unpin();
 2467         vm_page_unlock_queues();
 2468         pmap_free_zero_pages(free);
 2469 }
 2470 
 2471 /*
 2472  *      Set the physical protection on the
 2473  *      specified range of this map as requested.
 2474  */
 2475 void
 2476 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 2477 {
 2478         vm_offset_t pdnxt;
 2479         pd_entry_t ptpaddr;
 2480         pt_entry_t *pte;
 2481         int anychanged;
 2482 
 2483         CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
 2484             pmap, sva, eva, prot);
 2485         
 2486         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 2487                 pmap_remove(pmap, sva, eva);
 2488                 return;
 2489         }
 2490 
 2491 #ifdef PAE
 2492         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 2493             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 2494                 return;
 2495 #else
 2496         if (prot & VM_PROT_WRITE)
 2497                 return;
 2498 #endif
 2499 
 2500         anychanged = 0;
 2501 
 2502         vm_page_lock_queues();
 2503         sched_pin();
 2504         PMAP_LOCK(pmap);
 2505         for (; sva < eva; sva = pdnxt) {
 2506                 pt_entry_t obits, pbits;
 2507                 unsigned pdirindex;
 2508 
 2509                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2510 
 2511                 pdirindex = sva >> PDRSHIFT;
 2512                 ptpaddr = pmap->pm_pdir[pdirindex];
 2513 
 2514                 /*
 2515                  * Weed out invalid mappings. Note: we assume that the page
 2516                  * directory table is always allocated, and in kernel virtual.
 2517                  */
 2518                 if (ptpaddr == 0)
 2519                         continue;
 2520 
 2521                 /*
 2522                  * Check for large page.
 2523                  */
 2524                 if ((ptpaddr & PG_PS) != 0) {
 2525                         if ((prot & VM_PROT_WRITE) == 0)
 2526                                 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 2527 #ifdef PAE
 2528                         if ((prot & VM_PROT_EXECUTE) == 0)
 2529                                 pmap->pm_pdir[pdirindex] |= pg_nx;
 2530 #endif
 2531                         anychanged = 1;
 2532                         continue;
 2533                 }
 2534 
 2535                 if (pdnxt > eva)
 2536                         pdnxt = eva;
 2537 
 2538                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2539                     sva += PAGE_SIZE) {
 2540                         vm_page_t m;
 2541 
 2542 retry:
 2543                         /*
 2544                          * Regardless of whether a pte is 32 or 64 bits in
 2545                          * size, PG_RW, PG_A, and PG_M are among the least
 2546                          * significant 32 bits.
 2547                          */
 2548                         obits = pbits = *pte;
 2549                         if ((pbits & PG_V) == 0)
 2550                                 continue;
 2551 
 2552                         if ((prot & VM_PROT_WRITE) == 0) {
 2553                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 2554                                     (PG_MANAGED | PG_M | PG_RW)) {
 2555                                         m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
 2556                                             PG_FRAME);
 2557                                         vm_page_dirty(m);
 2558                                 }
 2559                                 pbits &= ~(PG_RW | PG_M);
 2560                         }
 2561 #ifdef PAE
 2562                         if ((prot & VM_PROT_EXECUTE) == 0)
 2563                                 pbits |= pg_nx;
 2564 #endif
 2565 
 2566                         if (pbits != obits) {
 2567                                 obits = *pte;
 2568                                 PT_SET_VA_MA(pte, pbits, TRUE);
 2569                                 if (*pte != pbits)
 2570                                         goto retry;
 2571                                 if (obits & PG_G)
 2572                                         pmap_invalidate_page(pmap, sva);
 2573                                 else
 2574                                         anychanged = 1;
 2575                         }
 2576                 }
 2577         }
 2578         PT_UPDATES_FLUSH();
 2579         if (*PMAP1)
 2580                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2581         if (anychanged)
 2582                 pmap_invalidate_all(pmap);
 2583         sched_unpin();
 2584         vm_page_unlock_queues();
 2585         PMAP_UNLOCK(pmap);
 2586 }
 2587 
 2588 /*
 2589  *      Insert the given physical page (p) at
 2590  *      the specified virtual address (v) in the
 2591  *      target physical map with the protection requested.
 2592  *
 2593  *      If specified, the page will be wired down, meaning
 2594  *      that the related pte can not be reclaimed.
 2595  *
 2596  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2597  *      or lose information.  That is, this routine must actually
 2598  *      insert this page into the given map NOW.
 2599  */
 2600 void
 2601 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 2602     vm_prot_t prot, boolean_t wired)
 2603 {
 2604         pd_entry_t *pde;
 2605         pt_entry_t *pte;
 2606         pt_entry_t newpte, origpte;
 2607         pv_entry_t pv;
 2608         vm_paddr_t opa, pa;
 2609         vm_page_t mpte, om;
 2610         boolean_t invlva;
 2611 
 2612         CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
 2613             pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
 2614         va = trunc_page(va);
 2615         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 2616         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 2617             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 2618             va));
 2619         KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
 2620             ("pmap_enter: page %p is not busy", m));
 2621 
 2622         mpte = NULL;
 2623 
 2624         vm_page_lock_queues();
 2625         PMAP_LOCK(pmap);
 2626         sched_pin();
 2627 
 2628         /*
 2629          * In the case that a page table page is not
 2630          * resident, we are creating it here.
 2631          */
 2632         if (va < VM_MAXUSER_ADDRESS) {
 2633                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 2634         }
 2635 
 2636         pde = pmap_pde(pmap, va);
 2637         if ((*pde & PG_PS) != 0)
 2638                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2639         pte = pmap_pte_quick(pmap, va);
 2640 
 2641         /*
 2642          * Page Directory table entry not valid, we need a new PT page
 2643          */
 2644         if (pte == NULL) {
 2645                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 2646                         (uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
 2647         }
 2648 
 2649         pa = VM_PAGE_TO_PHYS(m);
 2650         om = NULL;
 2651         opa = origpte = 0;
 2652 
 2653 #if 0
 2654         KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
 2655                 pte, *pte));
 2656 #endif
 2657         origpte = *pte;
 2658         if (origpte)
 2659                 origpte = xpmap_mtop(origpte);
 2660         opa = origpte & PG_FRAME;
 2661 
 2662         /*
 2663          * Mapping has not changed, must be protection or wiring change.
 2664          */
 2665         if (origpte && (opa == pa)) {
 2666                 /*
 2667                  * Wiring change, just update stats. We don't worry about
 2668                  * wiring PT pages as they remain resident as long as there
 2669                  * are valid mappings in them. Hence, if a user page is wired,
 2670                  * the PT page will be also.
 2671                  */
 2672                 if (wired && ((origpte & PG_W) == 0))
 2673                         pmap->pm_stats.wired_count++;
 2674                 else if (!wired && (origpte & PG_W))
 2675                         pmap->pm_stats.wired_count--;
 2676 
 2677                 /*
 2678                  * Remove extra pte reference
 2679                  */
 2680                 if (mpte)
 2681                         mpte->wire_count--;
 2682 
 2683                 if (origpte & PG_MANAGED) {
 2684                         om = m;
 2685                         pa |= PG_MANAGED;
 2686                 }
 2687                 goto validate;
 2688         } 
 2689 
 2690         pv = NULL;
 2691 
 2692         /*
 2693          * Mapping has changed, invalidate old range and fall through to
 2694          * handle validating new mapping.
 2695          */
 2696         if (opa) {
 2697                 if (origpte & PG_W)
 2698                         pmap->pm_stats.wired_count--;
 2699                 if (origpte & PG_MANAGED) {
 2700                         om = PHYS_TO_VM_PAGE(opa);
 2701                         pv = pmap_pvh_remove(&om->md, pmap, va);
 2702                 } else if (va < VM_MAXUSER_ADDRESS) 
 2703                         printf("va=0x%x is unmanaged :-( \n", va);
 2704                         
 2705                 if (mpte != NULL) {
 2706                         mpte->wire_count--;
 2707                         KASSERT(mpte->wire_count > 0,
 2708                             ("pmap_enter: missing reference to page table page,"
 2709                              " va: 0x%x", va));
 2710                 }
 2711         } else
 2712                 pmap->pm_stats.resident_count++;
 2713 
 2714         /*
 2715          * Enter on the PV list if part of our managed memory.
 2716          */
 2717         if ((m->oflags & VPO_UNMANAGED) == 0) {
 2718                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 2719                     ("pmap_enter: managed mapping within the clean submap"));
 2720                 if (pv == NULL)
 2721                         pv = get_pv_entry(pmap, FALSE);
 2722                 pv->pv_va = va;
 2723                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2724                 pa |= PG_MANAGED;
 2725         } else if (pv != NULL)
 2726                 free_pv_entry(pmap, pv);
 2727 
 2728         /*
 2729          * Increment counters
 2730          */
 2731         if (wired)
 2732                 pmap->pm_stats.wired_count++;
 2733 
 2734 validate:
 2735         /*
 2736          * Now validate mapping with desired protection/wiring.
 2737          */
 2738         newpte = (pt_entry_t)(pa | PG_V);
 2739         if ((prot & VM_PROT_WRITE) != 0) {
 2740                 newpte |= PG_RW;
 2741                 if ((newpte & PG_MANAGED) != 0)
 2742                         vm_page_aflag_set(m, PGA_WRITEABLE);
 2743         }
 2744 #ifdef PAE
 2745         if ((prot & VM_PROT_EXECUTE) == 0)
 2746                 newpte |= pg_nx;
 2747 #endif
 2748         if (wired)
 2749                 newpte |= PG_W;
 2750         if (va < VM_MAXUSER_ADDRESS)
 2751                 newpte |= PG_U;
 2752         if (pmap == kernel_pmap)
 2753                 newpte |= pgeflag;
 2754 
 2755         critical_enter();
 2756         /*
 2757          * if the mapping or permission bits are different, we need
 2758          * to update the pte.
 2759          */
 2760         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2761                 if (origpte) {
 2762                         invlva = FALSE;
 2763                         origpte = *pte;
 2764                         PT_SET_VA(pte, newpte | PG_A, FALSE);
 2765                         if (origpte & PG_A) {
 2766                                 if (origpte & PG_MANAGED)
 2767                                         vm_page_aflag_set(om, PGA_REFERENCED);
 2768                                 if (opa != VM_PAGE_TO_PHYS(m))
 2769                                         invlva = TRUE;
 2770 #ifdef PAE
 2771                                 if ((origpte & PG_NX) == 0 &&
 2772                                     (newpte & PG_NX) != 0)
 2773                                         invlva = TRUE;
 2774 #endif
 2775                         }
 2776                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 2777                                 if ((origpte & PG_MANAGED) != 0)
 2778                                         vm_page_dirty(om);
 2779                                 if ((prot & VM_PROT_WRITE) == 0)
 2780                                         invlva = TRUE;
 2781                         }
 2782                         if ((origpte & PG_MANAGED) != 0 &&
 2783                             TAILQ_EMPTY(&om->md.pv_list))
 2784                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2785                         if (invlva)
 2786                                 pmap_invalidate_page(pmap, va);
 2787                 } else{
 2788                         PT_SET_VA(pte, newpte | PG_A, FALSE);
 2789                 }
 2790                 
 2791         }
 2792         PT_UPDATES_FLUSH();
 2793         critical_exit();
 2794         if (*PMAP1)
 2795                 PT_SET_VA_MA(PMAP1, 0, TRUE);
 2796         sched_unpin();
 2797         vm_page_unlock_queues();
 2798         PMAP_UNLOCK(pmap);
 2799 }
 2800 
 2801 /*
 2802  * Maps a sequence of resident pages belonging to the same object.
 2803  * The sequence begins with the given page m_start.  This page is
 2804  * mapped at the given virtual address start.  Each subsequent page is
 2805  * mapped at a virtual address that is offset from start by the same
 2806  * amount as the page is offset from m_start within the object.  The
 2807  * last page in the sequence is the page with the largest offset from
 2808  * m_start that can be mapped at a virtual address less than the given
 2809  * virtual address end.  Not every virtual page between start and end
 2810  * is mapped; only those for which a resident page exists with the
 2811  * corresponding offset from m_start are mapped.
 2812  */
 2813 void
 2814 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2815     vm_page_t m_start, vm_prot_t prot)
 2816 {
 2817         vm_page_t m, mpte;
 2818         vm_pindex_t diff, psize;
 2819         multicall_entry_t mcl[16];
 2820         multicall_entry_t *mclp = mcl;
 2821         int error, count = 0;
 2822         
 2823         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2824         psize = atop(end - start);
 2825             
 2826         mpte = NULL;
 2827         m = m_start;
 2828         vm_page_lock_queues();
 2829         PMAP_LOCK(pmap);
 2830         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2831                 mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
 2832                     prot, mpte);
 2833                 m = TAILQ_NEXT(m, listq);
 2834                 if (count == 16) {
 2835                         error = HYPERVISOR_multicall(mcl, count);
 2836                         KASSERT(error == 0, ("bad multicall %d", error));
 2837                         mclp = mcl;
 2838                         count = 0;
 2839                 }
 2840         }
 2841         if (count) {
 2842                 error = HYPERVISOR_multicall(mcl, count);
 2843                 KASSERT(error == 0, ("bad multicall %d", error));
 2844         }
 2845         vm_page_unlock_queues();
 2846         PMAP_UNLOCK(pmap);
 2847 }
 2848 
 2849 /*
 2850  * this code makes some *MAJOR* assumptions:
 2851  * 1. Current pmap & pmap exists.
 2852  * 2. Not wired.
 2853  * 3. Read access.
 2854  * 4. No page table pages.
 2855  * but is *MUCH* faster than pmap_enter...
 2856  */
 2857 
 2858 void
 2859 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2860 {
 2861         multicall_entry_t mcl, *mclp;
 2862         int count = 0;
 2863         mclp = &mcl;
 2864         
 2865         CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
 2866             pmap, va, m, prot);
 2867         
 2868         vm_page_lock_queues();
 2869         PMAP_LOCK(pmap);
 2870         (void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
 2871         if (count)
 2872                 HYPERVISOR_multicall(&mcl, count);
 2873         vm_page_unlock_queues();
 2874         PMAP_UNLOCK(pmap);
 2875 }
 2876 
 2877 #ifdef notyet
 2878 void
 2879 pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
 2880 {
 2881         int i, error, index = 0;
 2882         multicall_entry_t mcl[16];
 2883         multicall_entry_t *mclp = mcl;
 2884                 
 2885         PMAP_LOCK(pmap);
 2886         for (i = 0; i < count; i++, addrs++, pages++, prots++) {
 2887                 if (!pmap_is_prefaultable_locked(pmap, *addrs))
 2888                         continue;
 2889 
 2890                 (void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
 2891                 if (index == 16) {
 2892                         error = HYPERVISOR_multicall(mcl, index);
 2893                         mclp = mcl;
 2894                         index = 0;
 2895                         KASSERT(error == 0, ("bad multicall %d", error));
 2896                 }
 2897         }
 2898         if (index) {
 2899                 error = HYPERVISOR_multicall(mcl, index);
 2900                 KASSERT(error == 0, ("bad multicall %d", error));
 2901         }
 2902         
 2903         PMAP_UNLOCK(pmap);
 2904 }
 2905 #endif
 2906 
 2907 static vm_page_t
 2908 pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
 2909     vm_prot_t prot, vm_page_t mpte)
 2910 {
 2911         pt_entry_t *pte;
 2912         vm_paddr_t pa;
 2913         vm_page_t free;
 2914         multicall_entry_t *mcl = *mclpp;
 2915         
 2916         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2917             (m->oflags & VPO_UNMANAGED) != 0,
 2918             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2919         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2920         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2921 
 2922         /*
 2923          * In the case that a page table page is not
 2924          * resident, we are creating it here.
 2925          */
 2926         if (va < VM_MAXUSER_ADDRESS) {
 2927                 unsigned ptepindex;
 2928                 pd_entry_t ptema;
 2929 
 2930                 /*
 2931                  * Calculate pagetable page index
 2932                  */
 2933                 ptepindex = va >> PDRSHIFT;
 2934                 if (mpte && (mpte->pindex == ptepindex)) {
 2935                         mpte->wire_count++;
 2936                 } else {
 2937                         /*
 2938                          * Get the page directory entry
 2939                          */
 2940                         ptema = pmap->pm_pdir[ptepindex];
 2941 
 2942                         /*
 2943                          * If the page table page is mapped, we just increment
 2944                          * the hold count, and activate it.
 2945                          */
 2946                         if (ptema & PG_V) {
 2947                                 if (ptema & PG_PS)
 2948                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2949                                 mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
 2950                                 mpte->wire_count++;
 2951                         } else {
 2952                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2953                                     M_NOWAIT);
 2954                                 if (mpte == NULL)
 2955                                         return (mpte);
 2956                         }
 2957                 }
 2958         } else {
 2959                 mpte = NULL;
 2960         }
 2961 
 2962         /*
 2963          * This call to vtopte makes the assumption that we are
 2964          * entering the page into the current pmap.  In order to support
 2965          * quick entry into any pmap, one would likely use pmap_pte_quick.
 2966          * But that isn't as quick as vtopte.
 2967          */
 2968         KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
 2969         pte = vtopte(va);
 2970         if (*pte & PG_V) {
 2971                 if (mpte != NULL) {
 2972                         mpte->wire_count--;
 2973                         mpte = NULL;
 2974                 }
 2975                 return (mpte);
 2976         }
 2977 
 2978         /*
 2979          * Enter on the PV list if part of our managed memory.
 2980          */
 2981         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 2982             !pmap_try_insert_pv_entry(pmap, va, m)) {
 2983                 if (mpte != NULL) {
 2984                         free = NULL;
 2985                         if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
 2986                                 pmap_invalidate_page(pmap, va);
 2987                                 pmap_free_zero_pages(free);
 2988                         }
 2989                         
 2990                         mpte = NULL;
 2991                 }
 2992                 return (mpte);
 2993         }
 2994 
 2995         /*
 2996          * Increment counters
 2997          */
 2998         pmap->pm_stats.resident_count++;
 2999 
 3000         pa = VM_PAGE_TO_PHYS(m);
 3001 #ifdef PAE
 3002         if ((prot & VM_PROT_EXECUTE) == 0)
 3003                 pa |= pg_nx;
 3004 #endif
 3005 
 3006 #if 0
 3007         /*
 3008          * Now validate mapping with RO protection
 3009          */
 3010         if ((m->oflags & VPO_UNMANAGED) != 0)
 3011                 pte_store(pte, pa | PG_V | PG_U);
 3012         else
 3013                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3014 #else
 3015         /*
 3016          * Now validate mapping with RO protection
 3017          */
 3018         if ((m->oflags & VPO_UNMANAGED) != 0)
 3019                 pa =    xpmap_ptom(pa | PG_V | PG_U);
 3020         else
 3021                 pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
 3022 
 3023         mcl->op = __HYPERVISOR_update_va_mapping;
 3024         mcl->args[0] = va;
 3025         mcl->args[1] = (uint32_t)(pa & 0xffffffff);
 3026         mcl->args[2] = (uint32_t)(pa >> 32);
 3027         mcl->args[3] = 0;
 3028         *mclpp = mcl + 1;
 3029         *count = *count + 1;
 3030 #endif  
 3031         return mpte;
 3032 }
 3033 
 3034 /*
 3035  * Make a temporary mapping for a physical address.  This is only intended
 3036  * to be used for panic dumps.
 3037  */
 3038 void *
 3039 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3040 {
 3041         vm_offset_t va;
 3042         vm_paddr_t ma = xpmap_ptom(pa);
 3043 
 3044         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3045         PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
 3046         invlpg(va);
 3047         return ((void *)crashdumpmap);
 3048 }
 3049 
 3050 /*
 3051  * This code maps large physical mmap regions into the
 3052  * processor address space.  Note that some shortcuts
 3053  * are taken, but the code works.
 3054  */
 3055 void
 3056 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 3057                     vm_object_t object, vm_pindex_t pindex,
 3058                     vm_size_t size)
 3059 {
 3060         pd_entry_t *pde;
 3061         vm_paddr_t pa, ptepa;
 3062         vm_page_t p;
 3063         int pat_mode;
 3064 
 3065         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 3066         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3067             ("pmap_object_init_pt: non-device object"));
 3068         if (pseflag && 
 3069             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3070                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3071                         return;
 3072                 p = vm_page_lookup(object, pindex);
 3073                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3074                     ("pmap_object_init_pt: invalid page %p", p));
 3075                 pat_mode = p->md.pat_mode;
 3076                 /*
 3077                  * Abort the mapping if the first page is not physically
 3078                  * aligned to a 2/4MB page boundary.
 3079                  */
 3080                 ptepa = VM_PAGE_TO_PHYS(p);
 3081                 if (ptepa & (NBPDR - 1))
 3082                         return;
 3083                 /*
 3084                  * Skip the first page.  Abort the mapping if the rest of
 3085                  * the pages are not physically contiguous or have differing
 3086                  * memory attributes.
 3087                  */
 3088                 p = TAILQ_NEXT(p, listq);
 3089                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3090                     pa += PAGE_SIZE) {
 3091                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3092                             ("pmap_object_init_pt: invalid page %p", p));
 3093                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3094                             pat_mode != p->md.pat_mode)
 3095                                 return;
 3096                         p = TAILQ_NEXT(p, listq);
 3097                 }
 3098                 /* Map using 2/4MB pages. */
 3099                 PMAP_LOCK(pmap);
 3100                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3101                     size; pa += NBPDR) {
 3102                         pde = pmap_pde(pmap, addr);
 3103                         if (*pde == 0) {
 3104                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3105                                     PG_U | PG_RW | PG_V);
 3106                                 pmap->pm_stats.resident_count += NBPDR /
 3107                                     PAGE_SIZE;
 3108                                 pmap_pde_mappings++;
 3109                         }
 3110                         /* Else continue on if the PDE is already valid. */
 3111                         addr += NBPDR;
 3112                 }
 3113                 PMAP_UNLOCK(pmap);
 3114         }
 3115 }
 3116 
 3117 /*
 3118  *      Routine:        pmap_change_wiring
 3119  *      Function:       Change the wiring attribute for a map/virtual-address
 3120  *                      pair.
 3121  *      In/out conditions:
 3122  *                      The mapping must already exist in the pmap.
 3123  */
 3124 void
 3125 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 3126 {
 3127         pt_entry_t *pte;
 3128 
 3129         vm_page_lock_queues();
 3130         PMAP_LOCK(pmap);
 3131         pte = pmap_pte(pmap, va);
 3132 
 3133         if (wired && !pmap_pte_w(pte)) {
 3134                 PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
 3135                 pmap->pm_stats.wired_count++;
 3136         } else if (!wired && pmap_pte_w(pte)) {
 3137                 PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
 3138                 pmap->pm_stats.wired_count--;
 3139         }
 3140         
 3141         /*
 3142          * Wiring is not a hardware characteristic so there is no need to
 3143          * invalidate TLB.
 3144          */
 3145         pmap_pte_release(pte);
 3146         PMAP_UNLOCK(pmap);
 3147         vm_page_unlock_queues();
 3148 }
 3149 
 3150 
 3151 
 3152 /*
 3153  *      Copy the range specified by src_addr/len
 3154  *      from the source map to the range dst_addr/len
 3155  *      in the destination map.
 3156  *
 3157  *      This routine is only advisory and need not do anything.
 3158  */
 3159 
 3160 void
 3161 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 3162           vm_offset_t src_addr)
 3163 {
 3164         vm_page_t   free;
 3165         vm_offset_t addr;
 3166         vm_offset_t end_addr = src_addr + len;
 3167         vm_offset_t pdnxt;
 3168 
 3169         if (dst_addr != src_addr)
 3170                 return;
 3171 
 3172         if (!pmap_is_current(src_pmap)) {
 3173                 CTR2(KTR_PMAP,
 3174                     "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
 3175                     (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
 3176                 
 3177                 return;
 3178         }
 3179         CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
 3180             dst_pmap, src_pmap, dst_addr, len, src_addr);
 3181         
 3182 #ifdef HAMFISTED_LOCKING
 3183         mtx_lock(&createdelete_lock);
 3184 #endif
 3185 
 3186         vm_page_lock_queues();
 3187         if (dst_pmap < src_pmap) {
 3188                 PMAP_LOCK(dst_pmap);
 3189                 PMAP_LOCK(src_pmap);
 3190         } else {
 3191                 PMAP_LOCK(src_pmap);
 3192                 PMAP_LOCK(dst_pmap);
 3193         }
 3194         sched_pin();
 3195         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 3196                 pt_entry_t *src_pte, *dst_pte;
 3197                 vm_page_t dstmpte, srcmpte;
 3198                 pd_entry_t srcptepaddr;
 3199                 unsigned ptepindex;
 3200 
 3201                 KASSERT(addr < UPT_MIN_ADDRESS,
 3202                     ("pmap_copy: invalid to pmap_copy page tables"));
 3203 
 3204                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 3205                 ptepindex = addr >> PDRSHIFT;
 3206 
 3207                 srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
 3208                 if (srcptepaddr == 0)
 3209                         continue;
 3210                         
 3211                 if (srcptepaddr & PG_PS) {
 3212                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 3213                                 PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
 3214                                 dst_pmap->pm_stats.resident_count +=
 3215                                     NBPDR / PAGE_SIZE;
 3216                         }
 3217                         continue;
 3218                 }
 3219 
 3220                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 3221                 KASSERT(srcmpte->wire_count > 0,
 3222                     ("pmap_copy: source page table page is unused"));
 3223 
 3224                 if (pdnxt > end_addr)
 3225                         pdnxt = end_addr;
 3226 
 3227                 src_pte = vtopte(addr);
 3228                 while (addr < pdnxt) {
 3229                         pt_entry_t ptetemp;
 3230                         ptetemp = *src_pte;
 3231                         /*
 3232                          * we only virtual copy managed pages
 3233                          */
 3234                         if ((ptetemp & PG_MANAGED) != 0) {
 3235                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 3236                                     M_NOWAIT);
 3237                                 if (dstmpte == NULL)
 3238                                         break;
 3239                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 3240                                 if (*dst_pte == 0 &&
 3241                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 3242                                     PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
 3243                                         /*
 3244                                          * Clear the wired, modified, and
 3245                                          * accessed (referenced) bits
 3246                                          * during the copy.
 3247                                          */
 3248                                         KASSERT(ptetemp != 0, ("src_pte not set"));
 3249                                         PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
 3250                                         KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
 3251                                             ("no pmap copy expected: 0x%jx saw: 0x%jx",
 3252                                                 ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
 3253                                         dst_pmap->pm_stats.resident_count++;
 3254                                 } else {
 3255                                         free = NULL;
 3256                                         if (pmap_unwire_pte_hold(dst_pmap,
 3257                                             dstmpte, &free)) {
 3258                                                 pmap_invalidate_page(dst_pmap,
 3259                                                     addr);
 3260                                                 pmap_free_zero_pages(free);
 3261                                         }
 3262                                 }
 3263                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 3264                                         break;
 3265                         }
 3266                         addr += PAGE_SIZE;
 3267                         src_pte++;
 3268                 }
 3269         }
 3270         PT_UPDATES_FLUSH();
 3271         sched_unpin();
 3272         vm_page_unlock_queues();
 3273         PMAP_UNLOCK(src_pmap);
 3274         PMAP_UNLOCK(dst_pmap);
 3275 
 3276 #ifdef HAMFISTED_LOCKING
 3277         mtx_unlock(&createdelete_lock);
 3278 #endif
 3279 }       
 3280 
 3281 static __inline void
 3282 pagezero(void *page)
 3283 {
 3284 #if defined(I686_CPU)
 3285         if (cpu_class == CPUCLASS_686) {
 3286 #if defined(CPU_ENABLE_SSE)
 3287                 if (cpu_feature & CPUID_SSE2)
 3288                         sse2_pagezero(page);
 3289                 else
 3290 #endif
 3291                         i686_pagezero(page);
 3292         } else
 3293 #endif
 3294                 bzero(page, PAGE_SIZE);
 3295 }
 3296 
 3297 /*
 3298  *      pmap_zero_page zeros the specified hardware page by mapping 
 3299  *      the page into KVM and using bzero to clear its contents.
 3300  */
 3301 void
 3302 pmap_zero_page(vm_page_t m)
 3303 {
 3304         struct sysmaps *sysmaps;
 3305 
 3306         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3307         mtx_lock(&sysmaps->lock);
 3308         if (*sysmaps->CMAP2)
 3309                 panic("pmap_zero_page: CMAP2 busy");
 3310         sched_pin();
 3311         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
 3312         pagezero(sysmaps->CADDR2);
 3313         PT_SET_MA(sysmaps->CADDR2, 0);
 3314         sched_unpin();
 3315         mtx_unlock(&sysmaps->lock);
 3316 }
 3317 
 3318 /*
 3319  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 3320  *      the page into KVM and using bzero to clear its contents.
 3321  *
 3322  *      off and size may not cover an area beyond a single hardware page.
 3323  */
 3324 void
 3325 pmap_zero_page_area(vm_page_t m, int off, int size)
 3326 {
 3327         struct sysmaps *sysmaps;
 3328 
 3329         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3330         mtx_lock(&sysmaps->lock);
 3331         if (*sysmaps->CMAP2)
 3332                 panic("pmap_zero_page: CMAP2 busy");
 3333         sched_pin();
 3334         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
 3335 
 3336         if (off == 0 && size == PAGE_SIZE) 
 3337                 pagezero(sysmaps->CADDR2);
 3338         else
 3339                 bzero((char *)sysmaps->CADDR2 + off, size);
 3340         PT_SET_MA(sysmaps->CADDR2, 0);
 3341         sched_unpin();
 3342         mtx_unlock(&sysmaps->lock);
 3343 }
 3344 
 3345 /*
 3346  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 3347  *      the page into KVM and using bzero to clear its contents.  This
 3348  *      is intended to be called from the vm_pagezero process only and
 3349  *      outside of Giant.
 3350  */
 3351 void
 3352 pmap_zero_page_idle(vm_page_t m)
 3353 {
 3354 
 3355         if (*CMAP3)
 3356                 panic("pmap_zero_page: CMAP3 busy");
 3357         sched_pin();
 3358         PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
 3359         pagezero(CADDR3);
 3360         PT_SET_MA(CADDR3, 0);
 3361         sched_unpin();
 3362 }
 3363 
 3364 /*
 3365  *      pmap_copy_page copies the specified (machine independent)
 3366  *      page by mapping the page into virtual memory and using
 3367  *      bcopy to copy the page, one machine dependent page at a
 3368  *      time.
 3369  */
 3370 void
 3371 pmap_copy_page(vm_page_t src, vm_page_t dst)
 3372 {
 3373         struct sysmaps *sysmaps;
 3374 
 3375         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 3376         mtx_lock(&sysmaps->lock);
 3377         if (*sysmaps->CMAP1)
 3378                 panic("pmap_copy_page: CMAP1 busy");
 3379         if (*sysmaps->CMAP2)
 3380                 panic("pmap_copy_page: CMAP2 busy");
 3381         sched_pin();
 3382         PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
 3383         PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
 3384         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 3385         PT_SET_MA(sysmaps->CADDR1, 0);
 3386         PT_SET_MA(sysmaps->CADDR2, 0);
 3387         sched_unpin();
 3388         mtx_unlock(&sysmaps->lock);
 3389 }
 3390 
 3391 /*
 3392  * Returns true if the pmap's pv is one of the first
 3393  * 16 pvs linked to from this page.  This count may
 3394  * be changed upwards or downwards in the future; it
 3395  * is only necessary that true be returned for a small
 3396  * subset of pmaps for proper page aging.
 3397  */
 3398 boolean_t
 3399 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 3400 {
 3401         pv_entry_t pv;
 3402         int loops = 0;
 3403         boolean_t rv;
 3404 
 3405         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3406             ("pmap_page_exists_quick: page %p is not managed", m));
 3407         rv = FALSE;
 3408         vm_page_lock_queues();
 3409         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3410                 if (PV_PMAP(pv) == pmap) {
 3411                         rv = TRUE;
 3412                         break;
 3413                 }
 3414                 loops++;
 3415                 if (loops >= 16)
 3416                         break;
 3417         }
 3418         vm_page_unlock_queues();
 3419         return (rv);
 3420 }
 3421 
 3422 /*
 3423  *      pmap_page_wired_mappings:
 3424  *
 3425  *      Return the number of managed mappings to the given physical page
 3426  *      that are wired.
 3427  */
 3428 int
 3429 pmap_page_wired_mappings(vm_page_t m)
 3430 {
 3431         pv_entry_t pv;
 3432         pt_entry_t *pte;
 3433         pmap_t pmap;
 3434         int count;
 3435 
 3436         count = 0;
 3437         if ((m->oflags & VPO_UNMANAGED) != 0)
 3438                 return (count);
 3439         vm_page_lock_queues();
 3440         sched_pin();
 3441         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3442                 pmap = PV_PMAP(pv);
 3443                 PMAP_LOCK(pmap);
 3444                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3445                 if ((*pte & PG_W) != 0)
 3446                         count++;
 3447                 PMAP_UNLOCK(pmap);
 3448         }
 3449         sched_unpin();
 3450         vm_page_unlock_queues();
 3451         return (count);
 3452 }
 3453 
 3454 /*
 3455  * Returns TRUE if the given page is mapped individually or as part of
 3456  * a 4mpage.  Otherwise, returns FALSE.
 3457  */
 3458 boolean_t
 3459 pmap_page_is_mapped(vm_page_t m)
 3460 {
 3461         boolean_t rv;
 3462 
 3463         if ((m->oflags & VPO_UNMANAGED) != 0)
 3464                 return (FALSE);
 3465         vm_page_lock_queues();
 3466         rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 3467             !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
 3468         vm_page_unlock_queues();
 3469         return (rv);
 3470 }
 3471 
 3472 /*
 3473  * Remove all pages from specified address space
 3474  * this aids process exit speeds.  Also, this code
 3475  * is special cased for current process only, but
 3476  * can have the more generic (and slightly slower)
 3477  * mode enabled.  This is much faster than pmap_remove
 3478  * in the case of running down an entire address space.
 3479  */
 3480 void
 3481 pmap_remove_pages(pmap_t pmap)
 3482 {
 3483         pt_entry_t *pte, tpte;
 3484         vm_page_t m, free = NULL;
 3485         pv_entry_t pv;
 3486         struct pv_chunk *pc, *npc;
 3487         int field, idx;
 3488         int32_t bit;
 3489         uint32_t inuse, bitmask;
 3490         int allfree;
 3491 
 3492         CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
 3493         
 3494         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 3495                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 3496                 return;
 3497         }
 3498         vm_page_lock_queues();
 3499         KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
 3500         PMAP_LOCK(pmap);
 3501         sched_pin();
 3502         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 3503                 allfree = 1;
 3504                 for (field = 0; field < _NPCM; field++) {
 3505                         inuse = (~(pc->pc_map[field])) & pc_freemask[field];
 3506                         while (inuse != 0) {
 3507                                 bit = bsfl(inuse);
 3508                                 bitmask = 1UL << bit;
 3509                                 idx = field * 32 + bit;
 3510                                 pv = &pc->pc_pventry[idx];
 3511                                 inuse &= ~bitmask;
 3512 
 3513                                 pte = vtopte(pv->pv_va);
 3514                                 tpte = *pte ? xpmap_mtop(*pte) : 0;
 3515 
 3516                                 if (tpte == 0) {
 3517                                         printf(
 3518                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 3519                                             pte, pv->pv_va);
 3520                                         panic("bad pte");
 3521                                 }
 3522 
 3523 /*
 3524  * We cannot remove wired pages from a process' mapping at this time
 3525  */
 3526                                 if (tpte & PG_W) {
 3527                                         allfree = 0;
 3528                                         continue;
 3529                                 }
 3530 
 3531                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 3532                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 3533                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 3534                                     m, (uintmax_t)m->phys_addr,
 3535                                     (uintmax_t)tpte));
 3536 
 3537                                 KASSERT(m < &vm_page_array[vm_page_array_size],
 3538                                         ("pmap_remove_pages: bad tpte %#jx",
 3539                                         (uintmax_t)tpte));
 3540 
 3541 
 3542                                 PT_CLEAR_VA(pte, FALSE);
 3543                                 
 3544                                 /*
 3545                                  * Update the vm_page_t clean/reference bits.
 3546                                  */
 3547                                 if (tpte & PG_M)
 3548                                         vm_page_dirty(m);
 3549 
 3550                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3551                                 if (TAILQ_EMPTY(&m->md.pv_list))
 3552                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3553 
 3554                                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3555 
 3556                                 /* Mark free */
 3557                                 PV_STAT(pv_entry_frees++);
 3558                                 PV_STAT(pv_entry_spare++);
 3559                                 pv_entry_count--;
 3560                                 pc->pc_map[field] |= bitmask;
 3561                                 pmap->pm_stats.resident_count--;                        
 3562                         }
 3563                 }
 3564                 PT_UPDATES_FLUSH();
 3565                 if (allfree) {
 3566                         PV_STAT(pv_entry_spare -= _NPCPV);
 3567                         PV_STAT(pc_chunk_count--);
 3568                         PV_STAT(pc_chunk_frees++);
 3569                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 3570                         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 3571                         pmap_qremove((vm_offset_t)pc, 1);
 3572                         vm_page_unwire(m, 0);
 3573                         vm_page_free(m);
 3574                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 3575                 }
 3576         }
 3577         PT_UPDATES_FLUSH();
 3578         if (*PMAP1)
 3579                 PT_SET_MA(PADDR1, 0);
 3580 
 3581         sched_unpin();
 3582         pmap_invalidate_all(pmap);
 3583         vm_page_unlock_queues();
 3584         PMAP_UNLOCK(pmap);
 3585         pmap_free_zero_pages(free);
 3586 }
 3587 
 3588 /*
 3589  *      pmap_is_modified:
 3590  *
 3591  *      Return whether or not the specified physical page was modified
 3592  *      in any physical maps.
 3593  */
 3594 boolean_t
 3595 pmap_is_modified(vm_page_t m)
 3596 {
 3597         pv_entry_t pv;
 3598         pt_entry_t *pte;
 3599         pmap_t pmap;
 3600         boolean_t rv;
 3601 
 3602         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3603             ("pmap_is_modified: page %p is not managed", m));
 3604         rv = FALSE;
 3605 
 3606         /*
 3607          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
 3608          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 3609          * is clear, no PTEs can have PG_M set.
 3610          */
 3611         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 3612         if ((m->oflags & VPO_BUSY) == 0 &&
 3613             (m->aflags & PGA_WRITEABLE) == 0)
 3614                 return (rv);
 3615         vm_page_lock_queues();
 3616         sched_pin();
 3617         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3618                 pmap = PV_PMAP(pv);
 3619                 PMAP_LOCK(pmap);
 3620                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3621                 rv = (*pte & PG_M) != 0;
 3622                 PMAP_UNLOCK(pmap);
 3623                 if (rv)
 3624                         break;
 3625         }
 3626         if (*PMAP1)
 3627                 PT_SET_MA(PADDR1, 0);
 3628         sched_unpin();
 3629         vm_page_unlock_queues();
 3630         return (rv);
 3631 }
 3632 
 3633 /*
 3634  *      pmap_is_prefaultable:
 3635  *
 3636  *      Return whether or not the specified virtual address is elgible
 3637  *      for prefault.
 3638  */
 3639 static boolean_t
 3640 pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
 3641 {
 3642         pt_entry_t *pte;
 3643         boolean_t rv = FALSE;
 3644 
 3645         return (rv);
 3646         
 3647         if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
 3648                 pte = vtopte(addr);
 3649                 rv = (*pte == 0);
 3650         }
 3651         return (rv);
 3652 }
 3653 
 3654 boolean_t
 3655 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 3656 {
 3657         boolean_t rv;
 3658         
 3659         PMAP_LOCK(pmap);
 3660         rv = pmap_is_prefaultable_locked(pmap, addr);
 3661         PMAP_UNLOCK(pmap);
 3662         return (rv);
 3663 }
 3664 
 3665 boolean_t
 3666 pmap_is_referenced(vm_page_t m)
 3667 {
 3668         pv_entry_t pv;
 3669         pt_entry_t *pte;
 3670         pmap_t pmap;
 3671         boolean_t rv;
 3672 
 3673         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3674             ("pmap_is_referenced: page %p is not managed", m));
 3675         rv = FALSE;
 3676         vm_page_lock_queues();
 3677         sched_pin();
 3678         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3679                 pmap = PV_PMAP(pv);
 3680                 PMAP_LOCK(pmap);
 3681                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3682                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 3683                 PMAP_UNLOCK(pmap);
 3684                 if (rv)
 3685                         break;
 3686         }
 3687         if (*PMAP1)
 3688                 PT_SET_MA(PADDR1, 0);
 3689         sched_unpin();
 3690         vm_page_unlock_queues();
 3691         return (rv);
 3692 }
 3693 
 3694 void
 3695 pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
 3696 {
 3697         int i, npages = round_page(len) >> PAGE_SHIFT;
 3698         for (i = 0; i < npages; i++) {
 3699                 pt_entry_t *pte;
 3700                 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
 3701                 vm_page_lock_queues();
 3702                 pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
 3703                 vm_page_unlock_queues();
 3704                 PMAP_MARK_PRIV(xpmap_mtop(*pte));
 3705                 pmap_pte_release(pte);
 3706         }
 3707 }
 3708 
 3709 void
 3710 pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
 3711 {
 3712         int i, npages = round_page(len) >> PAGE_SHIFT;
 3713         for (i = 0; i < npages; i++) {
 3714                 pt_entry_t *pte;
 3715                 pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
 3716                 PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
 3717                 vm_page_lock_queues();
 3718                 pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
 3719                 vm_page_unlock_queues();
 3720                 pmap_pte_release(pte);
 3721         }
 3722 }
 3723 
 3724 /*
 3725  * Clear the write and modified bits in each of the given page's mappings.
 3726  */
 3727 void
 3728 pmap_remove_write(vm_page_t m)
 3729 {
 3730         pv_entry_t pv;
 3731         pmap_t pmap;
 3732         pt_entry_t oldpte, *pte;
 3733 
 3734         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3735             ("pmap_remove_write: page %p is not managed", m));
 3736 
 3737         /*
 3738          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
 3739          * another thread while the object is locked.  Thus, if PGA_WRITEABLE
 3740          * is clear, no page table entries need updating.
 3741          */
 3742         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 3743         if ((m->oflags & VPO_BUSY) == 0 &&
 3744             (m->aflags & PGA_WRITEABLE) == 0)
 3745                 return;
 3746         vm_page_lock_queues();
 3747         sched_pin();
 3748         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3749                 pmap = PV_PMAP(pv);
 3750                 PMAP_LOCK(pmap);
 3751                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3752 retry:
 3753                 oldpte = *pte;
 3754                 if ((oldpte & PG_RW) != 0) {
 3755                         vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
 3756                         
 3757                         /*
 3758                          * Regardless of whether a pte is 32 or 64 bits
 3759                          * in size, PG_RW and PG_M are among the least
 3760                          * significant 32 bits.
 3761                          */
 3762                         PT_SET_VA_MA(pte, newpte, TRUE);
 3763                         if (*pte != newpte)
 3764                                 goto retry;
 3765                         
 3766                         if ((oldpte & PG_M) != 0)
 3767                                 vm_page_dirty(m);
 3768                         pmap_invalidate_page(pmap, pv->pv_va);
 3769                 }
 3770                 PMAP_UNLOCK(pmap);
 3771         }
 3772         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3773         PT_UPDATES_FLUSH();
 3774         if (*PMAP1)
 3775                 PT_SET_MA(PADDR1, 0);
 3776         sched_unpin();
 3777         vm_page_unlock_queues();
 3778 }
 3779 
 3780 /*
 3781  *      pmap_ts_referenced:
 3782  *
 3783  *      Return a count of reference bits for a page, clearing those bits.
 3784  *      It is not necessary for every reference bit to be cleared, but it
 3785  *      is necessary that 0 only be returned when there are truly no
 3786  *      reference bits set.
 3787  *
 3788  *      XXX: The exact number of bits to check and clear is a matter that
 3789  *      should be tested and standardized at some point in the future for
 3790  *      optimal aging of shared pages.
 3791  */
 3792 int
 3793 pmap_ts_referenced(vm_page_t m)
 3794 {
 3795         pv_entry_t pv, pvf, pvn;
 3796         pmap_t pmap;
 3797         pt_entry_t *pte;
 3798         int rtval = 0;
 3799 
 3800         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3801             ("pmap_ts_referenced: page %p is not managed", m));
 3802         vm_page_lock_queues();
 3803         sched_pin();
 3804         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3805                 pvf = pv;
 3806                 do {
 3807                         pvn = TAILQ_NEXT(pv, pv_list);
 3808                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3809                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 3810                         pmap = PV_PMAP(pv);
 3811                         PMAP_LOCK(pmap);
 3812                         pte = pmap_pte_quick(pmap, pv->pv_va);
 3813                         if ((*pte & PG_A) != 0) {
 3814                                 PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
 3815                                 pmap_invalidate_page(pmap, pv->pv_va);
 3816                                 rtval++;
 3817                                 if (rtval > 4)
 3818                                         pvn = NULL;
 3819                         }
 3820                         PMAP_UNLOCK(pmap);
 3821                 } while ((pv = pvn) != NULL && pv != pvf);
 3822         }
 3823         PT_UPDATES_FLUSH();
 3824         if (*PMAP1)
 3825                 PT_SET_MA(PADDR1, 0);
 3826 
 3827         sched_unpin();
 3828         vm_page_unlock_queues();
 3829         return (rtval);
 3830 }
 3831 
 3832 /*
 3833  *      Clear the modify bits on the specified physical page.
 3834  */
 3835 void
 3836 pmap_clear_modify(vm_page_t m)
 3837 {
 3838         pv_entry_t pv;
 3839         pmap_t pmap;
 3840         pt_entry_t *pte;
 3841 
 3842         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3843             ("pmap_clear_modify: page %p is not managed", m));
 3844         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 3845         KASSERT((m->oflags & VPO_BUSY) == 0,
 3846             ("pmap_clear_modify: page %p is busy", m));
 3847 
 3848         /*
 3849          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 3850          * If the object containing the page is locked and the page is not
 3851          * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
 3852          */
 3853         if ((m->aflags & PGA_WRITEABLE) == 0)
 3854                 return;
 3855         vm_page_lock_queues();
 3856         sched_pin();
 3857         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3858                 pmap = PV_PMAP(pv);
 3859                 PMAP_LOCK(pmap);
 3860                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3861                 if ((*pte & PG_M) != 0) {
 3862                         /*
 3863                          * Regardless of whether a pte is 32 or 64 bits
 3864                          * in size, PG_M is among the least significant
 3865                          * 32 bits. 
 3866                          */
 3867                         PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
 3868                         pmap_invalidate_page(pmap, pv->pv_va);
 3869                 }
 3870                 PMAP_UNLOCK(pmap);
 3871         }
 3872         sched_unpin();
 3873         vm_page_unlock_queues();
 3874 }
 3875 
 3876 /*
 3877  *      pmap_clear_reference:
 3878  *
 3879  *      Clear the reference bit on the specified physical page.
 3880  */
 3881 void
 3882 pmap_clear_reference(vm_page_t m)
 3883 {
 3884         pv_entry_t pv;
 3885         pmap_t pmap;
 3886         pt_entry_t *pte;
 3887 
 3888         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3889             ("pmap_clear_reference: page %p is not managed", m));
 3890         vm_page_lock_queues();
 3891         sched_pin();
 3892         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3893                 pmap = PV_PMAP(pv);
 3894                 PMAP_LOCK(pmap);
 3895                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3896                 if ((*pte & PG_A) != 0) {
 3897                         /*
 3898                          * Regardless of whether a pte is 32 or 64 bits
 3899                          * in size, PG_A is among the least significant
 3900                          * 32 bits. 
 3901                          */
 3902                         PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
 3903                         pmap_invalidate_page(pmap, pv->pv_va);
 3904                 }
 3905                 PMAP_UNLOCK(pmap);
 3906         }
 3907         sched_unpin();
 3908         vm_page_unlock_queues();
 3909 }
 3910 
 3911 /*
 3912  * Miscellaneous support routines follow
 3913  */
 3914 
 3915 /*
 3916  * Map a set of physical memory pages into the kernel virtual
 3917  * address space. Return a pointer to where it is mapped. This
 3918  * routine is intended to be used for mapping device memory,
 3919  * NOT real memory.
 3920  */
 3921 void *
 3922 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 3923 {
 3924         vm_offset_t va, offset;
 3925         vm_size_t tmpsize;
 3926 
 3927         offset = pa & PAGE_MASK;
 3928         size = roundup(offset + size, PAGE_SIZE);
 3929         pa = pa & PG_FRAME;
 3930 
 3931         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 3932                 va = KERNBASE + pa;
 3933         else
 3934                 va = kmem_alloc_nofault(kernel_map, size);
 3935         if (!va)
 3936                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3937 
 3938         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 3939                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 3940         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 3941         pmap_invalidate_cache_range(va, va + size);
 3942         return ((void *)(va + offset));
 3943 }
 3944 
 3945 void *
 3946 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3947 {
 3948 
 3949         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 3950 }
 3951 
 3952 void *
 3953 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 3954 {
 3955 
 3956         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 3957 }
 3958 
 3959 void
 3960 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 3961 {
 3962         vm_offset_t base, offset, tmpva;
 3963 
 3964         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 3965                 return;
 3966         base = trunc_page(va);
 3967         offset = va & PAGE_MASK;
 3968         size = roundup(offset + size, PAGE_SIZE);
 3969         critical_enter();
 3970         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 3971                 pmap_kremove(tmpva);
 3972         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3973         critical_exit();
 3974         kmem_free(kernel_map, base, size);
 3975 }
 3976 
 3977 /*
 3978  * Sets the memory attribute for the specified page.
 3979  */
 3980 void
 3981 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 3982 {
 3983         struct sysmaps *sysmaps;
 3984         vm_offset_t sva, eva;
 3985 
 3986         m->md.pat_mode = ma;
 3987         if ((m->flags & PG_FICTITIOUS) != 0)
 3988                 return;
 3989 
 3990         /*
 3991          * If "m" is a normal page, flush it from the cache.
 3992          * See pmap_invalidate_cache_range().
 3993          *
 3994          * First, try to find an existing mapping of the page by sf
 3995          * buffer. sf_buf_invalidate_cache() modifies mapping and
 3996          * flushes the cache.
 3997          */    
 3998         if (sf_buf_invalidate_cache(m))
 3999                 return;
 4000 
 4001         /*
 4002          * If page is not mapped by sf buffer, but CPU does not
 4003          * support self snoop, map the page transient and do
 4004          * invalidation. In the worst case, whole cache is flushed by
 4005          * pmap_invalidate_cache_range().
 4006          */
 4007         if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
 4008                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4009                 mtx_lock(&sysmaps->lock);
 4010                 if (*sysmaps->CMAP2)
 4011                         panic("pmap_page_set_memattr: CMAP2 busy");
 4012                 sched_pin();
 4013                 PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
 4014                     VM_PAGE_TO_MACH(m) | PG_A | PG_M |
 4015                     pmap_cache_bits(m->md.pat_mode, 0));
 4016                 invlcaddr(sysmaps->CADDR2);
 4017                 sva = (vm_offset_t)sysmaps->CADDR2;
 4018                 eva = sva + PAGE_SIZE;
 4019         } else
 4020                 sva = eva = 0; /* gcc */
 4021         pmap_invalidate_cache_range(sva, eva);
 4022         if (sva != 0) {
 4023                 PT_SET_MA(sysmaps->CADDR2, 0);
 4024                 sched_unpin();
 4025                 mtx_unlock(&sysmaps->lock);
 4026         }
 4027 }
 4028 
 4029 int
 4030 pmap_change_attr(va, size, mode)
 4031         vm_offset_t va;
 4032         vm_size_t size;
 4033         int mode;
 4034 {
 4035         vm_offset_t base, offset, tmpva;
 4036         pt_entry_t *pte;
 4037         u_int opte, npte;
 4038         pd_entry_t *pde;
 4039         boolean_t changed;
 4040 
 4041         base = trunc_page(va);
 4042         offset = va & PAGE_MASK;
 4043         size = roundup(offset + size, PAGE_SIZE);
 4044 
 4045         /* Only supported on kernel virtual addresses. */
 4046         if (base <= VM_MAXUSER_ADDRESS)
 4047                 return (EINVAL);
 4048 
 4049         /* 4MB pages and pages that aren't mapped aren't supported. */
 4050         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 4051                 pde = pmap_pde(kernel_pmap, tmpva);
 4052                 if (*pde & PG_PS)
 4053                         return (EINVAL);
 4054                 if ((*pde & PG_V) == 0)
 4055                         return (EINVAL);
 4056                 pte = vtopte(va);
 4057                 if ((*pte & PG_V) == 0)
 4058                         return (EINVAL);
 4059         }
 4060 
 4061         changed = FALSE;
 4062 
 4063         /*
 4064          * Ok, all the pages exist and are 4k, so run through them updating
 4065          * their cache mode.
 4066          */
 4067         for (tmpva = base; size > 0; ) {
 4068                 pte = vtopte(tmpva);
 4069 
 4070                 /*
 4071                  * The cache mode bits are all in the low 32-bits of the
 4072                  * PTE, so we can just spin on updating the low 32-bits.
 4073                  */
 4074                 do {
 4075                         opte = *(u_int *)pte;
 4076                         npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
 4077                         npte |= pmap_cache_bits(mode, 0);
 4078                         PT_SET_VA_MA(pte, npte, TRUE);
 4079                 } while (npte != opte && (*pte != npte));
 4080                 if (npte != opte)
 4081                         changed = TRUE;
 4082                 tmpva += PAGE_SIZE;
 4083                 size -= PAGE_SIZE;
 4084         }
 4085 
 4086         /*
 4087          * Flush CPU caches to make sure any data isn't cached that shouldn't
 4088          * be, etc.
 4089          */
 4090         if (changed) {
 4091                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 4092                 pmap_invalidate_cache_range(base, tmpva);
 4093         }
 4094         return (0);
 4095 }
 4096 
 4097 /*
 4098  * perform the pmap work for mincore
 4099  */
 4100 int
 4101 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 4102 {
 4103         pt_entry_t *ptep, pte;
 4104         vm_paddr_t pa;
 4105         int val;
 4106         
 4107         PMAP_LOCK(pmap);
 4108 retry:
 4109         ptep = pmap_pte(pmap, addr);
 4110         pte = (ptep != NULL) ? PT_GET(ptep) : 0;
 4111         pmap_pte_release(ptep);
 4112         val = 0;
 4113         if ((pte & PG_V) != 0) {
 4114                 val |= MINCORE_INCORE;
 4115                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 4116                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 4117                 if ((pte & PG_A) != 0)
 4118                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 4119         }
 4120         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 4121             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 4122             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 4123                 pa = pte & PG_FRAME;
 4124                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 4125                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 4126                         goto retry;
 4127         } else
 4128                 PA_UNLOCK_COND(*locked_pa);
 4129         PMAP_UNLOCK(pmap);
 4130         return (val);
 4131 }
 4132 
 4133 void
 4134 pmap_activate(struct thread *td)
 4135 {
 4136         pmap_t  pmap, oldpmap;
 4137         u_int   cpuid;
 4138         u_int32_t  cr3;
 4139 
 4140         critical_enter();
 4141         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 4142         oldpmap = PCPU_GET(curpmap);
 4143         cpuid = PCPU_GET(cpuid);
 4144 #if defined(SMP)
 4145         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 4146         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 4147 #else
 4148         CPU_CLR(cpuid, &oldpmap->pm_active);
 4149         CPU_SET(cpuid, &pmap->pm_active);
 4150 #endif
 4151 #ifdef PAE
 4152         cr3 = vtophys(pmap->pm_pdpt);
 4153 #else
 4154         cr3 = vtophys(pmap->pm_pdir);
 4155 #endif
 4156         /*
 4157          * pmap_activate is for the current thread on the current cpu
 4158          */
 4159         td->td_pcb->pcb_cr3 = cr3;
 4160         PT_UPDATES_FLUSH();
 4161         load_cr3(cr3);
 4162         PCPU_SET(curpmap, pmap);
 4163         critical_exit();
 4164 }
 4165 
 4166 void
 4167 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 4168 {
 4169 }
 4170 
 4171 /*
 4172  *      Increase the starting virtual address of the given mapping if a
 4173  *      different alignment might result in more superpage mappings.
 4174  */
 4175 void
 4176 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 4177     vm_offset_t *addr, vm_size_t size)
 4178 {
 4179         vm_offset_t superpage_offset;
 4180 
 4181         if (size < NBPDR)
 4182                 return;
 4183         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 4184                 offset += ptoa(object->pg_color);
 4185         superpage_offset = offset & PDRMASK;
 4186         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 4187             (*addr & PDRMASK) == superpage_offset)
 4188                 return;
 4189         if ((*addr & PDRMASK) < superpage_offset)
 4190                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 4191         else
 4192                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 4193 }
 4194 
 4195 void
 4196 pmap_suspend()
 4197 {
 4198         pmap_t pmap;
 4199         int i, pdir, offset;
 4200         vm_paddr_t pdirma;
 4201         mmu_update_t mu[4];
 4202 
 4203         /*
 4204          * We need to remove the recursive mapping structure from all
 4205          * our pmaps so that Xen doesn't get confused when it restores
 4206          * the page tables. The recursive map lives at page directory
 4207          * index PTDPTDI. We assume that the suspend code has stopped
 4208          * the other vcpus (if any).
 4209          */
 4210         LIST_FOREACH(pmap, &allpmaps, pm_list) {
 4211                 for (i = 0; i < 4; i++) {
 4212                         /*
 4213                          * Figure out which page directory (L2) page
 4214                          * contains this bit of the recursive map and
 4215                          * the offset within that page of the map
 4216                          * entry
 4217                          */
 4218                         pdir = (PTDPTDI + i) / NPDEPG;
 4219                         offset = (PTDPTDI + i) % NPDEPG;
 4220                         pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
 4221                         mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
 4222                         mu[i].val = 0;
 4223                 }
 4224                 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
 4225         }
 4226 }
 4227 
 4228 void
 4229 pmap_resume()
 4230 {
 4231         pmap_t pmap;
 4232         int i, pdir, offset;
 4233         vm_paddr_t pdirma;
 4234         mmu_update_t mu[4];
 4235 
 4236         /*
 4237          * Restore the recursive map that we removed on suspend.
 4238          */
 4239         LIST_FOREACH(pmap, &allpmaps, pm_list) {
 4240                 for (i = 0; i < 4; i++) {
 4241                         /*
 4242                          * Figure out which page directory (L2) page
 4243                          * contains this bit of the recursive map and
 4244                          * the offset within that page of the map
 4245                          * entry
 4246                          */
 4247                         pdir = (PTDPTDI + i) / NPDEPG;
 4248                         offset = (PTDPTDI + i) % NPDEPG;
 4249                         pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
 4250                         mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
 4251                         mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
 4252                 }
 4253                 HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
 4254         }
 4255 }
 4256 
 4257 #if defined(PMAP_DEBUG)
 4258 pmap_pid_dump(int pid)
 4259 {
 4260         pmap_t pmap;
 4261         struct proc *p;
 4262         int npte = 0;
 4263         int index;
 4264 
 4265         sx_slock(&allproc_lock);
 4266         FOREACH_PROC_IN_SYSTEM(p) {
 4267                 if (p->p_pid != pid)
 4268                         continue;
 4269 
 4270                 if (p->p_vmspace) {
 4271                         int i,j;
 4272                         index = 0;
 4273                         pmap = vmspace_pmap(p->p_vmspace);
 4274                         for (i = 0; i < NPDEPTD; i++) {
 4275                                 pd_entry_t *pde;
 4276                                 pt_entry_t *pte;
 4277                                 vm_offset_t base = i << PDRSHIFT;
 4278                                 
 4279                                 pde = &pmap->pm_pdir[i];
 4280                                 if (pde && pmap_pde_v(pde)) {
 4281                                         for (j = 0; j < NPTEPG; j++) {
 4282                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 4283                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 4284                                                         if (index) {
 4285                                                                 index = 0;
 4286                                                                 printf("\n");
 4287                                                         }
 4288                                                         sx_sunlock(&allproc_lock);
 4289                                                         return npte;
 4290                                                 }
 4291                                                 pte = pmap_pte(pmap, va);
 4292                                                 if (pte && pmap_pte_v(pte)) {
 4293                                                         pt_entry_t pa;
 4294                                                         vm_page_t m;
 4295                                                         pa = PT_GET(pte);
 4296                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 4297                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 4298                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 4299                                                         npte++;
 4300                                                         index++;
 4301                                                         if (index >= 2) {
 4302                                                                 index = 0;
 4303                                                                 printf("\n");
 4304                                                         } else {
 4305                                                                 printf(" ");
 4306                                                         }
 4307                                                 }
 4308                                         }
 4309                                 }
 4310                         }
 4311                 }
 4312         }
 4313         sx_sunlock(&allproc_lock);
 4314         return npte;
 4315 }
 4316 #endif
 4317 
 4318 #if defined(DEBUG)
 4319 
 4320 static void     pads(pmap_t pm);
 4321 void            pmap_pvdump(vm_paddr_t pa);
 4322 
 4323 /* print address space of pmap*/
 4324 static void
 4325 pads(pmap_t pm)
 4326 {
 4327         int i, j;
 4328         vm_paddr_t va;
 4329         pt_entry_t *ptep;
 4330 
 4331         if (pm == kernel_pmap)
 4332                 return;
 4333         for (i = 0; i < NPDEPTD; i++)
 4334                 if (pm->pm_pdir[i])
 4335                         for (j = 0; j < NPTEPG; j++) {
 4336                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 4337                                 if (pm == kernel_pmap && va < KERNBASE)
 4338                                         continue;
 4339                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 4340                                         continue;
 4341                                 ptep = pmap_pte(pm, va);
 4342                                 if (pmap_pte_v(ptep))
 4343                                         printf("%x:%x ", va, *ptep);
 4344                         };
 4345 
 4346 }
 4347 
 4348 void
 4349 pmap_pvdump(vm_paddr_t pa)
 4350 {
 4351         pv_entry_t pv;
 4352         pmap_t pmap;
 4353         vm_page_t m;
 4354 
 4355         printf("pa %x", pa);
 4356         m = PHYS_TO_VM_PAGE(pa);
 4357         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4358                 pmap = PV_PMAP(pv);
 4359                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 4360                 pads(pmap);
 4361         }
 4362         printf(" ");
 4363 }
 4364 #endif

Cache object: 7622e27044ab419b928fb70c20267401


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.