The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/xen/xen_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *
    3  * Copyright (c) 2004 Christian Limpach.
    4  * Copyright (c) 2004-2006,2008 Kip Macy
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Christian Limpach.
   18  * 4. The name of the author may not be used to endorse or promote products
   19  *    derived from this software without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.1/sys/i386/xen/xen_machdep.c 216963 2011-01-04 16:29:07Z cperciva $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/ktr.h>
   40 #include <sys/lock.h>
   41 #include <sys/mount.h>
   42 #include <sys/malloc.h>
   43 #include <sys/mutex.h>
   44 #include <sys/kernel.h>
   45 #include <sys/proc.h>
   46 #include <sys/reboot.h>
   47 #include <sys/sysproto.h>
   48 
   49 #include <machine/xen/xen-os.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/pmap.h>
   53 #include <machine/segments.h>
   54 #include <machine/pcb.h>
   55 #include <machine/stdarg.h>
   56 #include <machine/vmparam.h>
   57 #include <machine/cpu.h>
   58 #include <machine/intr_machdep.h>
   59 #include <machine/md_var.h>
   60 #include <machine/asmacros.h>
   61 
   62 
   63 
   64 #include <xen/hypervisor.h>
   65 #include <machine/xen/xenvar.h>
   66 #include <machine/xen/xenfunc.h>
   67 #include <machine/xen/xenpmap.h>
   68 #include <machine/xen/xenfunc.h>
   69 #include <xen/interface/memory.h>
   70 #include <machine/xen/features.h>
   71 #ifdef SMP
   72 #include <machine/privatespace.h>
   73 #endif
   74 
   75 
   76 #include <vm/vm_page.h>
   77 
   78 
   79 #define IDTVEC(name)    __CONCAT(X,name)
   80 
   81 extern inthand_t
   82 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
   83         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
   84         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
   85         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
   86         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
   87 
   88 
   89 int xendebug_flags; 
   90 start_info_t *xen_start_info;
   91 shared_info_t *HYPERVISOR_shared_info;
   92 xen_pfn_t *xen_machine_phys = machine_to_phys_mapping;
   93 xen_pfn_t *xen_phys_machine;
   94 xen_pfn_t *xen_pfn_to_mfn_frame_list[16];
   95 xen_pfn_t *xen_pfn_to_mfn_frame_list_list;
   96 int preemptable, init_first;
   97 extern unsigned int avail_space;
   98 
   99 void ni_cli(void);
  100 void ni_sti(void);
  101 
  102 
  103 void
  104 ni_cli(void)
  105 {
  106         CTR0(KTR_SPARE2, "ni_cli disabling interrupts");
  107         __asm__("pushl %edx;"
  108                 "pushl %eax;"
  109                 );
  110         __cli();
  111         __asm__("popl %eax;"
  112                 "popl %edx;"
  113                 );
  114 }
  115 
  116 
  117 void
  118 ni_sti(void)
  119 {
  120         __asm__("pushl %edx;"
  121                 "pushl %esi;"
  122                 "pushl %eax;"
  123                 );
  124         __sti();
  125         __asm__("popl %eax;"
  126                 "popl %esi;"
  127                 "popl %edx;"
  128                 );
  129 }
  130 
  131 /*
  132  * Modify the cmd_line by converting ',' to NULLs so that it is in a  format 
  133  * suitable for the static env vars.
  134  */
  135 char *
  136 xen_setbootenv(char *cmd_line)
  137 {
  138         char *cmd_line_next;
  139     
  140         /* Skip leading spaces */
  141         for (; *cmd_line == ' '; cmd_line++);
  142 
  143         printk("xen_setbootenv(): cmd_line='%s'\n", cmd_line);
  144 
  145         for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;);
  146         return cmd_line;
  147 }
  148 
  149 static struct 
  150 {
  151         const char      *ev;
  152         int             mask;
  153 } howto_names[] = {
  154         {"boot_askname",        RB_ASKNAME},
  155         {"boot_single", RB_SINGLE},
  156         {"boot_nosync", RB_NOSYNC},
  157         {"boot_halt",   RB_ASKNAME},
  158         {"boot_serial", RB_SERIAL},
  159         {"boot_cdrom",  RB_CDROM},
  160         {"boot_gdb",    RB_GDB},
  161         {"boot_gdb_pause",      RB_RESERVED1},
  162         {"boot_verbose",        RB_VERBOSE},
  163         {"boot_multicons",      RB_MULTIPLE},
  164         {NULL,  0}
  165 };
  166 
  167 int 
  168 xen_boothowto(char *envp)
  169 {
  170         int i, howto = 0;
  171 
  172         /* get equivalents from the environment */
  173         for (i = 0; howto_names[i].ev != NULL; i++)
  174                 if (getenv(howto_names[i].ev) != NULL)
  175                         howto |= howto_names[i].mask;
  176         return howto;
  177 }
  178 
  179 #define PRINTK_BUFSIZE 1024
  180 void
  181 printk(const char *fmt, ...)
  182 {
  183         __va_list ap;
  184         int retval;
  185         static char buf[PRINTK_BUFSIZE];
  186 
  187         va_start(ap, fmt);
  188         retval = vsnprintf(buf, PRINTK_BUFSIZE - 1, fmt, ap);
  189         va_end(ap);
  190         buf[retval] = 0;
  191         (void)HYPERVISOR_console_write(buf, retval);
  192 }
  193 
  194 
  195 #define XPQUEUE_SIZE 128
  196 
  197 struct mmu_log {
  198         char *file;
  199         int line;
  200 };
  201 
  202 #ifdef SMP
  203 /* per-cpu queues and indices */
  204 #ifdef INVARIANTS
  205 static struct mmu_log xpq_queue_log[MAX_VIRT_CPUS][XPQUEUE_SIZE];
  206 #endif
  207 
  208 static int xpq_idx[MAX_VIRT_CPUS];  
  209 static mmu_update_t xpq_queue[MAX_VIRT_CPUS][XPQUEUE_SIZE];
  210 
  211 #define XPQ_QUEUE_LOG xpq_queue_log[vcpu]
  212 #define XPQ_QUEUE xpq_queue[vcpu]
  213 #define XPQ_IDX xpq_idx[vcpu]
  214 #define SET_VCPU() int vcpu = smp_processor_id()
  215 #else
  216         
  217 static mmu_update_t xpq_queue[XPQUEUE_SIZE];
  218 static struct mmu_log xpq_queue_log[XPQUEUE_SIZE];
  219 static int xpq_idx = 0;
  220 
  221 #define XPQ_QUEUE_LOG xpq_queue_log
  222 #define XPQ_QUEUE xpq_queue
  223 #define XPQ_IDX xpq_idx
  224 #define SET_VCPU()
  225 #endif /* !SMP */
  226 
  227 #define XPQ_IDX_INC atomic_add_int(&XPQ_IDX, 1);
  228 
  229 #if 0
  230 static void
  231 xen_dump_queue(void)
  232 {
  233         int _xpq_idx = XPQ_IDX;
  234         int i;
  235 
  236         if (_xpq_idx <= 1)
  237                 return;
  238 
  239         printk("xen_dump_queue(): %u entries\n", _xpq_idx);
  240         for (i = 0; i < _xpq_idx; i++) {
  241                 printk(" val: %llx ptr: %llx\n", XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
  242         }
  243 }
  244 #endif
  245 
  246 
  247 static __inline void
  248 _xen_flush_queue(void)
  249 {
  250         SET_VCPU();
  251         int _xpq_idx = XPQ_IDX;
  252         int error, i;
  253 
  254 #ifdef INVARIANTS
  255         if (__predict_true(gdtset))
  256                 CRITICAL_ASSERT(curthread);
  257 #endif
  258 
  259         XPQ_IDX = 0;
  260         /* Make sure index is cleared first to avoid double updates. */
  261         error = HYPERVISOR_mmu_update((mmu_update_t *)&XPQ_QUEUE,
  262                                       _xpq_idx, NULL, DOMID_SELF);
  263     
  264 #if 0
  265         if (__predict_true(gdtset))
  266         for (i = _xpq_idx; i > 0;) {
  267                 if (i >= 3) {
  268                         CTR6(KTR_PMAP, "mmu:val: %lx ptr: %lx val: %lx "
  269                             "ptr: %lx val: %lx ptr: %lx",
  270                             (XPQ_QUEUE[i-1].val & 0xffffffff),
  271                             (XPQ_QUEUE[i-1].ptr & 0xffffffff),
  272                             (XPQ_QUEUE[i-2].val & 0xffffffff),
  273                             (XPQ_QUEUE[i-2].ptr & 0xffffffff),
  274                             (XPQ_QUEUE[i-3].val & 0xffffffff),
  275                             (XPQ_QUEUE[i-3].ptr & 0xffffffff));
  276                             i -= 3;
  277                 } else if (i == 2) {
  278                         CTR4(KTR_PMAP, "mmu: val: %lx ptr: %lx val: %lx ptr: %lx",
  279                             (XPQ_QUEUE[i-1].val & 0xffffffff),
  280                             (XPQ_QUEUE[i-1].ptr & 0xffffffff),
  281                             (XPQ_QUEUE[i-2].val & 0xffffffff),
  282                             (XPQ_QUEUE[i-2].ptr & 0xffffffff));
  283                         i = 0;
  284                 } else {
  285                         CTR2(KTR_PMAP, "mmu: val: %lx ptr: %lx", 
  286                             (XPQ_QUEUE[i-1].val & 0xffffffff),
  287                             (XPQ_QUEUE[i-1].ptr & 0xffffffff));
  288                         i = 0;
  289                 }
  290         }
  291 #endif  
  292         if (__predict_false(error < 0)) {
  293                 for (i = 0; i < _xpq_idx; i++)
  294                         printf("val: %llx ptr: %llx\n",
  295                             XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
  296                 panic("Failed to execute MMU updates: %d", error);
  297         }
  298 
  299 }
  300 
  301 void
  302 xen_flush_queue(void)
  303 {
  304         SET_VCPU();
  305 
  306         if (__predict_true(gdtset))
  307                 critical_enter();
  308         if (XPQ_IDX != 0) _xen_flush_queue();
  309         if (__predict_true(gdtset))
  310                 critical_exit();
  311 }
  312 
  313 static __inline void
  314 xen_increment_idx(void)
  315 {
  316         SET_VCPU();
  317 
  318         XPQ_IDX++;
  319         if (__predict_false(XPQ_IDX == XPQUEUE_SIZE))
  320                 xen_flush_queue();
  321 }
  322 
  323 void
  324 xen_check_queue(void)
  325 {
  326 #ifdef INVARIANTS
  327         SET_VCPU();
  328         
  329         KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
  330 #endif
  331 }
  332 
  333 void
  334 xen_invlpg(vm_offset_t va)
  335 {
  336         struct mmuext_op op;
  337         op.cmd = MMUEXT_INVLPG_ALL;
  338         op.arg1.linear_addr = va & ~PAGE_MASK;
  339         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  340 }
  341 
  342 void
  343 xen_load_cr3(u_int val)
  344 {
  345         struct mmuext_op op;
  346 #ifdef INVARIANTS
  347         SET_VCPU();
  348         
  349         KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
  350 #endif
  351         op.cmd = MMUEXT_NEW_BASEPTR;
  352         op.arg1.mfn = xpmap_ptom(val) >> PAGE_SHIFT;
  353         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  354 }
  355 
  356 #ifdef KTR
  357 static __inline u_int
  358 rebp(void)
  359 {
  360         u_int   data;
  361 
  362         __asm __volatile("movl 4(%%ebp),%0" : "=r" (data));     
  363         return (data);
  364 }
  365 #endif
  366 
  367 u_int
  368 read_eflags(void)
  369 {
  370         vcpu_info_t *_vcpu;
  371         u_int eflags;
  372 
  373         eflags = _read_eflags();
  374         _vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; 
  375         if (_vcpu->evtchn_upcall_mask)
  376                 eflags &= ~PSL_I;
  377 
  378         return (eflags);
  379 }
  380 
  381 void
  382 write_eflags(u_int eflags)
  383 {
  384         u_int intr;
  385 
  386         CTR2(KTR_SPARE2, "%x xen_restore_flags eflags %x", rebp(), eflags);
  387         intr = ((eflags & PSL_I) == 0);
  388         __restore_flags(intr);
  389         _write_eflags(eflags);
  390 }
  391 
  392 void
  393 xen_cli(void)
  394 {
  395         CTR1(KTR_SPARE2, "%x xen_cli disabling interrupts", rebp());
  396         __cli();
  397 }
  398 
  399 void
  400 xen_sti(void)
  401 {
  402         CTR1(KTR_SPARE2, "%x xen_sti enabling interrupts", rebp());
  403         __sti();
  404 }
  405 
  406 u_int
  407 xen_rcr2(void)
  408 {
  409 
  410         return (HYPERVISOR_shared_info->vcpu_info[curcpu].arch.cr2);
  411 }
  412 
  413 void
  414 _xen_machphys_update(vm_paddr_t mfn, vm_paddr_t pfn, char *file, int line)
  415 {
  416         SET_VCPU();
  417         
  418         if (__predict_true(gdtset))
  419                 critical_enter();
  420         XPQ_QUEUE[XPQ_IDX].ptr = (mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE;
  421         XPQ_QUEUE[XPQ_IDX].val = pfn;
  422 #ifdef INVARIANTS
  423         XPQ_QUEUE_LOG[XPQ_IDX].file = file;
  424         XPQ_QUEUE_LOG[XPQ_IDX].line = line;     
  425 #endif          
  426         xen_increment_idx();
  427         if (__predict_true(gdtset))
  428                 critical_exit();
  429 }
  430 
  431 void
  432 _xen_queue_pt_update(vm_paddr_t ptr, vm_paddr_t val, char *file, int line)
  433 {
  434         SET_VCPU();
  435 
  436         if (__predict_true(gdtset))     
  437                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  438 
  439         KASSERT((ptr & 7) == 0, ("misaligned update"));
  440         
  441         if (__predict_true(gdtset))
  442                 critical_enter();
  443         
  444         XPQ_QUEUE[XPQ_IDX].ptr = ((uint64_t)ptr) | MMU_NORMAL_PT_UPDATE;
  445         XPQ_QUEUE[XPQ_IDX].val = (uint64_t)val;
  446 #ifdef INVARIANTS
  447         XPQ_QUEUE_LOG[XPQ_IDX].file = file;
  448         XPQ_QUEUE_LOG[XPQ_IDX].line = line;     
  449 #endif  
  450         xen_increment_idx();
  451         if (__predict_true(gdtset))
  452                 critical_exit();
  453 }
  454 
  455 void 
  456 xen_pgdpt_pin(vm_paddr_t ma)
  457 {
  458         struct mmuext_op op;
  459         op.cmd = MMUEXT_PIN_L3_TABLE;
  460         op.arg1.mfn = ma >> PAGE_SHIFT;
  461         xen_flush_queue();
  462         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  463 }
  464 
  465 void 
  466 xen_pgd_pin(vm_paddr_t ma)
  467 {
  468         struct mmuext_op op;
  469         op.cmd = MMUEXT_PIN_L2_TABLE;
  470         op.arg1.mfn = ma >> PAGE_SHIFT;
  471         xen_flush_queue();
  472         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  473 }
  474 
  475 void 
  476 xen_pgd_unpin(vm_paddr_t ma)
  477 {
  478         struct mmuext_op op;
  479         op.cmd = MMUEXT_UNPIN_TABLE;
  480         op.arg1.mfn = ma >> PAGE_SHIFT;
  481         xen_flush_queue();
  482         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  483 }
  484 
  485 void 
  486 xen_pt_pin(vm_paddr_t ma)
  487 {
  488         struct mmuext_op op;
  489         op.cmd = MMUEXT_PIN_L1_TABLE;
  490         op.arg1.mfn = ma >> PAGE_SHIFT;
  491         xen_flush_queue();
  492         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  493 }
  494 
  495 void 
  496 xen_pt_unpin(vm_paddr_t ma)
  497 {
  498         struct mmuext_op op;
  499         op.cmd = MMUEXT_UNPIN_TABLE;
  500         op.arg1.mfn = ma >> PAGE_SHIFT;
  501         xen_flush_queue();
  502         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  503 }
  504 
  505 void 
  506 xen_set_ldt(vm_paddr_t ptr, unsigned long len)
  507 {
  508         struct mmuext_op op;
  509         op.cmd = MMUEXT_SET_LDT;
  510         op.arg1.linear_addr = ptr;
  511         op.arg2.nr_ents = len;
  512         xen_flush_queue();
  513         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  514 }
  515 
  516 void xen_tlb_flush(void)
  517 {
  518         struct mmuext_op op;
  519         op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
  520         xen_flush_queue();
  521         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  522 }
  523 
  524 void
  525 xen_update_descriptor(union descriptor *table, union descriptor *entry)
  526 {
  527         vm_paddr_t pa;
  528         pt_entry_t *ptp;
  529 
  530         ptp = vtopte((vm_offset_t)table);
  531         pa = (*ptp & PG_FRAME) | ((vm_offset_t)table & PAGE_MASK);
  532         if (HYPERVISOR_update_descriptor(pa, *(uint64_t *)entry))
  533                 panic("HYPERVISOR_update_descriptor failed\n");
  534 }
  535 
  536 
  537 #if 0
  538 /*
  539  * Bitmap is indexed by page number. If bit is set, the page is part of a
  540  * xen_create_contiguous_region() area of memory.
  541  */
  542 unsigned long *contiguous_bitmap;
  543 
  544 static void 
  545 contiguous_bitmap_set(unsigned long first_page, unsigned long nr_pages)
  546 {
  547         unsigned long start_off, end_off, curr_idx, end_idx;
  548 
  549         curr_idx  = first_page / BITS_PER_LONG;
  550         start_off = first_page & (BITS_PER_LONG-1);
  551         end_idx   = (first_page + nr_pages) / BITS_PER_LONG;
  552         end_off   = (first_page + nr_pages) & (BITS_PER_LONG-1);
  553 
  554         if (curr_idx == end_idx) {
  555                 contiguous_bitmap[curr_idx] |=
  556                         ((1UL<<end_off)-1) & -(1UL<<start_off);
  557         } else {
  558                 contiguous_bitmap[curr_idx] |= -(1UL<<start_off);
  559                 while ( ++curr_idx < end_idx )
  560                         contiguous_bitmap[curr_idx] = ~0UL;
  561                 contiguous_bitmap[curr_idx] |= (1UL<<end_off)-1;
  562         }
  563 }
  564 
  565 static void 
  566 contiguous_bitmap_clear(unsigned long first_page, unsigned long nr_pages)
  567 {
  568         unsigned long start_off, end_off, curr_idx, end_idx;
  569 
  570         curr_idx  = first_page / BITS_PER_LONG;
  571         start_off = first_page & (BITS_PER_LONG-1);
  572         end_idx   = (first_page + nr_pages) / BITS_PER_LONG;
  573         end_off   = (first_page + nr_pages) & (BITS_PER_LONG-1);
  574 
  575         if (curr_idx == end_idx) {
  576                 contiguous_bitmap[curr_idx] &=
  577                         -(1UL<<end_off) | ((1UL<<start_off)-1);
  578         } else {
  579                 contiguous_bitmap[curr_idx] &= (1UL<<start_off)-1;
  580                 while ( ++curr_idx != end_idx )
  581                         contiguous_bitmap[curr_idx] = 0;
  582                 contiguous_bitmap[curr_idx] &= -(1UL<<end_off);
  583         }
  584 }
  585 #endif
  586 
  587 /* Ensure multi-page extents are contiguous in machine memory. */
  588 int 
  589 xen_create_contiguous_region(vm_page_t pages, int npages)
  590 {
  591         unsigned long  mfn, i, flags;
  592         int order;
  593         struct xen_memory_reservation reservation = {
  594                 .nr_extents   = 1,
  595                 .extent_order = 0,
  596                 .domid        = DOMID_SELF
  597         };
  598         set_xen_guest_handle(reservation.extent_start, &mfn);
  599         
  600         balloon_lock(flags);
  601 
  602         /* can currently only handle power of two allocation */
  603         PANIC_IF(ffs(npages) != fls(npages));
  604 
  605         /* 0. determine order */
  606         order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
  607         
  608         /* 1. give away machine pages. */
  609         for (i = 0; i < (1 << order); i++) {
  610                 int pfn;
  611                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
  612                 mfn = PFNTOMFN(pfn);
  613                 PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
  614                 PANIC_IF(HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation) != 1);
  615         }
  616 
  617 
  618         /* 2. Get a new contiguous memory extent. */
  619         reservation.extent_order = order;
  620         /* xenlinux hardcodes this because of aacraid - maybe set to 0 if we're not 
  621          * running with a broxen driver XXXEN
  622          */
  623         reservation.address_bits = 31; 
  624         if (HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1)
  625                 goto fail;
  626 
  627         /* 3. Map the new extent in place of old pages. */
  628         for (i = 0; i < (1 << order); i++) {
  629                 int pfn;
  630                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
  631                 xen_machphys_update(mfn+i, pfn);
  632                 PFNTOMFN(pfn) = mfn+i;
  633         }
  634 
  635         xen_tlb_flush();
  636 
  637 #if 0
  638         contiguous_bitmap_set(VM_PAGE_TO_PHYS(&pages[0]) >> PAGE_SHIFT, 1UL << order);
  639 #endif
  640 
  641         balloon_unlock(flags);
  642 
  643         return 0;
  644 
  645  fail:
  646         reservation.extent_order = 0;
  647         reservation.address_bits = 0;
  648 
  649         for (i = 0; i < (1 << order); i++) {
  650                 int pfn;
  651                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
  652                 PANIC_IF(HYPERVISOR_memory_op(
  653                         XENMEM_increase_reservation, &reservation) != 1);
  654                 xen_machphys_update(mfn, pfn);
  655                 PFNTOMFN(pfn) = mfn;
  656         }
  657 
  658         xen_tlb_flush();
  659 
  660         balloon_unlock(flags);
  661 
  662         return ENOMEM;
  663 }
  664 
  665 void 
  666 xen_destroy_contiguous_region(void *addr, int npages)
  667 {
  668         unsigned long  mfn, i, flags, order, pfn0;
  669         struct xen_memory_reservation reservation = {
  670                 .nr_extents   = 1,
  671                 .extent_order = 0,
  672                 .domid        = DOMID_SELF
  673         };
  674         set_xen_guest_handle(reservation.extent_start, &mfn);
  675         
  676         pfn0 = vtophys(addr) >> PAGE_SHIFT;
  677 #if 0
  678         scrub_pages(vstart, 1 << order);
  679 #endif
  680         /* can currently only handle power of two allocation */
  681         PANIC_IF(ffs(npages) != fls(npages));
  682 
  683         /* 0. determine order */
  684         order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
  685 
  686         balloon_lock(flags);
  687 
  688 #if 0
  689         contiguous_bitmap_clear(vtophys(addr) >> PAGE_SHIFT, 1UL << order);
  690 #endif
  691 
  692         /* 1. Zap current PTEs, giving away the underlying pages. */
  693         for (i = 0; i < (1 << order); i++) {
  694                 int pfn;
  695                 uint64_t new_val = 0;
  696                 pfn = vtomach((char *)addr + i*PAGE_SIZE) >> PAGE_SHIFT;
  697 
  698                 PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)((char *)addr + (i * PAGE_SIZE)), new_val, 0));
  699                 PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
  700                 PANIC_IF(HYPERVISOR_memory_op(
  701                         XENMEM_decrease_reservation, &reservation) != 1);
  702         }
  703 
  704         /* 2. Map new pages in place of old pages. */
  705         for (i = 0; i < (1 << order); i++) {
  706                 int pfn;
  707                 uint64_t new_val;
  708                 pfn = pfn0 + i;
  709                 PANIC_IF(HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1);
  710                 
  711                 new_val = mfn << PAGE_SHIFT;
  712                 PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)addr + (i * PAGE_SIZE), 
  713                                                       new_val, PG_KERNEL));
  714                 xen_machphys_update(mfn, pfn);
  715                 PFNTOMFN(pfn) = mfn;
  716         }
  717 
  718         xen_tlb_flush();
  719 
  720         balloon_unlock(flags);
  721 }
  722 
  723 extern  vm_offset_t     proc0kstack;
  724 extern int vm86paddr, vm86phystk;
  725 char *bootmem_start, *bootmem_current, *bootmem_end;
  726 
  727 pteinfo_t *pteinfo_list;
  728 void initvalues(start_info_t *startinfo);
  729 
  730 struct xenstore_domain_interface;
  731 extern struct xenstore_domain_interface *xen_store;
  732 
  733 char *console_page;
  734 
  735 void *
  736 bootmem_alloc(unsigned int size) 
  737 {
  738         char *retptr;
  739         
  740         retptr = bootmem_current;
  741         PANIC_IF(retptr + size > bootmem_end);
  742         bootmem_current += size;
  743 
  744         return retptr;
  745 }
  746 
  747 void 
  748 bootmem_free(void *ptr, unsigned int size) 
  749 {
  750         char *tptr;
  751         
  752         tptr = ptr;
  753         PANIC_IF(tptr != bootmem_current - size ||
  754                 bootmem_current - size < bootmem_start);        
  755 
  756         bootmem_current -= size;
  757 }
  758 
  759 #if 0
  760 static vm_paddr_t
  761 xpmap_mtop2(vm_paddr_t mpa)
  762 {
  763         return ((machine_to_phys_mapping[mpa >> PAGE_SHIFT] << PAGE_SHIFT)
  764             ) | (mpa & ~PG_FRAME);
  765 }
  766 
  767 static pd_entry_t 
  768 xpmap_get_bootpde(vm_paddr_t va)
  769 {
  770 
  771         return ((pd_entry_t *)xen_start_info->pt_base)[va >> 22];
  772 }
  773 
  774 static pd_entry_t
  775 xpmap_get_vbootpde(vm_paddr_t va)
  776 {
  777         pd_entry_t pde;
  778 
  779         pde = xpmap_get_bootpde(va);
  780         if ((pde & PG_V) == 0)
  781                 return (pde & ~PG_FRAME);
  782         return (pde & ~PG_FRAME) |
  783                 (xpmap_mtop2(pde & PG_FRAME) + KERNBASE);
  784 }
  785 
  786 static pt_entry_t 8*
  787 xpmap_get_bootptep(vm_paddr_t va)
  788 {
  789         pd_entry_t pde;
  790 
  791         pde = xpmap_get_vbootpde(va);
  792         if ((pde & PG_V) == 0)
  793                 return (void *)-1;
  794 #define PT_MASK         0x003ff000      /* page table address bits */
  795         return &(((pt_entry_t *)(pde & PG_FRAME))[(va & PT_MASK) >> PAGE_SHIFT]);
  796 }
  797 
  798 static pt_entry_t
  799 xpmap_get_bootpte(vm_paddr_t va)
  800 {
  801 
  802         return xpmap_get_bootptep(va)[0];
  803 }
  804 #endif
  805 
  806 
  807 #ifdef ADD_ISA_HOLE
  808 static void
  809 shift_phys_machine(unsigned long *phys_machine, int nr_pages)
  810 {
  811 
  812         unsigned long *tmp_page, *current_page, *next_page;
  813         int i;
  814 
  815         tmp_page = bootmem_alloc(PAGE_SIZE);
  816         current_page = phys_machine + nr_pages - (PAGE_SIZE/sizeof(unsigned long));  
  817         next_page = current_page - (PAGE_SIZE/sizeof(unsigned long));  
  818         bcopy(phys_machine, tmp_page, PAGE_SIZE);
  819 
  820         while (current_page > phys_machine) { 
  821                 /*  save next page */
  822                 bcopy(next_page, tmp_page, PAGE_SIZE);
  823                 /* shift down page */
  824                 bcopy(current_page, next_page, PAGE_SIZE);
  825                 /*  finish swap */
  826                 bcopy(tmp_page, current_page, PAGE_SIZE);
  827           
  828                 current_page -= (PAGE_SIZE/sizeof(unsigned long));
  829                 next_page -= (PAGE_SIZE/sizeof(unsigned long));
  830         }
  831         bootmem_free(tmp_page, PAGE_SIZE);      
  832         
  833         for (i = 0; i < nr_pages; i++) {
  834                 xen_machphys_update(phys_machine[i], i);
  835         }
  836         memset(phys_machine, INVALID_P2M_ENTRY, PAGE_SIZE);
  837 
  838 }
  839 #endif /* ADD_ISA_HOLE */
  840 
  841 /*
  842  * Build a directory of the pages that make up our Physical to Machine
  843  * mapping table. The Xen suspend/restore code uses this to find our
  844  * mapping table.
  845  */
  846 static void
  847 init_frame_list_list(void *arg)
  848 {
  849         unsigned long nr_pages = xen_start_info->nr_pages;
  850 #define FPP     (PAGE_SIZE/sizeof(xen_pfn_t))
  851         int i, j, k;
  852 
  853         xen_pfn_to_mfn_frame_list_list = malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
  854         for (i = 0, j = 0, k = -1; i < nr_pages;
  855              i += FPP, j++) {
  856                 if ((j & (FPP - 1)) == 0) {
  857                         k++;
  858                         xen_pfn_to_mfn_frame_list[k] =
  859                                 malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
  860                         xen_pfn_to_mfn_frame_list_list[k] =
  861                                 VTOMFN(xen_pfn_to_mfn_frame_list[k]);
  862                         j = 0;
  863                 }
  864                 xen_pfn_to_mfn_frame_list[k][j] = 
  865                         VTOMFN(&xen_phys_machine[i]);
  866         }
  867 
  868         HYPERVISOR_shared_info->arch.max_pfn = nr_pages;
  869         HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list
  870                 = VTOMFN(xen_pfn_to_mfn_frame_list_list);
  871 }       
  872 SYSINIT(init_fll, SI_SUB_DEVFS, SI_ORDER_ANY, init_frame_list_list, NULL);
  873 
  874 extern unsigned long physfree;
  875 
  876 int pdir, curoffset;
  877 extern int nkpt;
  878 
  879 extern uint32_t kernbase;
  880 
  881 void
  882 initvalues(start_info_t *startinfo)
  883 { 
  884         vm_offset_t cur_space, cur_space_pt;
  885         struct physdev_set_iopl set_iopl;
  886         
  887         int l3_pages, l2_pages, l1_pages, offset;
  888         vm_paddr_t console_page_ma, xen_store_ma;
  889         vm_offset_t tmpva;
  890         vm_paddr_t shinfo;
  891 #ifdef PAE
  892         vm_paddr_t IdlePDPTma, IdlePDPTnewma;
  893         vm_paddr_t IdlePTDnewma[4];
  894         pd_entry_t *IdlePDPTnew, *IdlePTDnew;
  895         vm_paddr_t IdlePTDma[4];
  896 #else
  897         vm_paddr_t IdlePTDma[1];
  898 #endif
  899         unsigned long i;
  900         int ncpus = MAXCPU;
  901 
  902         nkpt = min(
  903                 min(
  904                         max((startinfo->nr_pages >> NPGPTD_SHIFT), nkpt),
  905                     NPGPTD*NPDEPG - KPTDI),
  906                     (HYPERVISOR_VIRT_START - KERNBASE) >> PDRSHIFT);
  907 
  908         HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);      
  909 #ifdef notyet
  910         /*
  911          * need to install handler
  912          */
  913         HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments_notify);       
  914 #endif  
  915         xen_start_info = startinfo;
  916         xen_phys_machine = (xen_pfn_t *)startinfo->mfn_list;
  917 
  918         IdlePTD = (pd_entry_t *)((uint8_t *)startinfo->pt_base + PAGE_SIZE);
  919         l1_pages = 0;
  920         
  921 #ifdef PAE
  922         l3_pages = 1;
  923         l2_pages = 0;
  924         IdlePDPT = (pd_entry_t *)startinfo->pt_base;
  925         IdlePDPTma = VTOM(startinfo->pt_base);
  926         for (i = (KERNBASE >> 30);
  927              (i < 4) && (IdlePDPT[i] != 0); i++)
  928                         l2_pages++;
  929         /*
  930          * Note that only one page directory has been allocated at this point.
  931          * Thus, if KERNBASE
  932          */
  933         for (i = 0; i < l2_pages; i++)
  934                 IdlePTDma[i] = VTOM(IdlePTD + i*PAGE_SIZE);
  935 
  936         l2_pages = (l2_pages == 0) ? 1 : l2_pages;
  937 #else   
  938         l3_pages = 0;
  939         l2_pages = 1;
  940 #endif
  941         for (i = (((KERNBASE>>18) & PAGE_MASK)>>PAGE_SHIFT);
  942              (i<l2_pages*NPDEPG) && (i<(VM_MAX_KERNEL_ADDRESS>>PDRSHIFT)); i++) {
  943                 
  944                 if (IdlePTD[i] == 0)
  945                         break;
  946                 l1_pages++;
  947         }
  948 
  949         /* number of pages allocated after the pts + 1*/;
  950         cur_space = xen_start_info->pt_base +
  951             (l3_pages + l2_pages + l1_pages + 1)*PAGE_SIZE;
  952 
  953         printk("initvalues(): wooh - availmem=%x,%x\n", avail_space, cur_space);
  954 
  955         printk("KERNBASE=%x,pt_base=%x, VTOPFN(base)=%x, nr_pt_frames=%x\n",
  956             KERNBASE,xen_start_info->pt_base, VTOPFN(xen_start_info->pt_base),
  957             xen_start_info->nr_pt_frames);
  958         xendebug_flags = 0; /* 0xffffffff; */
  959 
  960 #ifdef ADD_ISA_HOLE
  961         shift_phys_machine(xen_phys_machine, xen_start_info->nr_pages);
  962 #endif
  963         XENPRINTF("IdlePTD %p\n", IdlePTD);
  964         XENPRINTF("nr_pages: %ld shared_info: 0x%lx flags: 0x%lx pt_base: 0x%lx "
  965                   "mod_start: 0x%lx mod_len: 0x%lx\n",
  966                   xen_start_info->nr_pages, xen_start_info->shared_info, 
  967                   xen_start_info->flags, xen_start_info->pt_base, 
  968                   xen_start_info->mod_start, xen_start_info->mod_len);
  969 
  970 #ifdef PAE
  971         IdlePDPTnew = (pd_entry_t *)cur_space; cur_space += PAGE_SIZE;
  972         bzero(IdlePDPTnew, PAGE_SIZE);
  973 
  974         IdlePDPTnewma =  VTOM(IdlePDPTnew);
  975         IdlePTDnew = (pd_entry_t *)cur_space; cur_space += 4*PAGE_SIZE;
  976         bzero(IdlePTDnew, 4*PAGE_SIZE);
  977 
  978         for (i = 0; i < 4; i++) 
  979                 IdlePTDnewma[i] = VTOM((uint8_t *)IdlePTDnew + i*PAGE_SIZE);
  980         /*
  981          * L3
  982          *
  983          * Copy the 4 machine addresses of the new PTDs in to the PDPT
  984          * 
  985          */
  986         for (i = 0; i < 4; i++)
  987                 IdlePDPTnew[i] = IdlePTDnewma[i] | PG_V;
  988 
  989         __asm__("nop;");
  990         /*
  991          *
  992          * re-map the new PDPT read-only
  993          */
  994         PT_SET_MA(IdlePDPTnew, IdlePDPTnewma | PG_V);
  995         /*
  996          * 
  997          * Unpin the current PDPT
  998          */
  999         xen_pt_unpin(IdlePDPTma);
 1000 
 1001 #endif  /* PAE */
 1002 
 1003         /* Map proc0's KSTACK */
 1004         proc0kstack = cur_space; cur_space += (KSTACK_PAGES * PAGE_SIZE);
 1005         printk("proc0kstack=%u\n", proc0kstack);
 1006 
 1007         /* vm86/bios stack */
 1008         cur_space += PAGE_SIZE;
 1009 
 1010         /* Map space for the vm86 region */
 1011         vm86paddr = (vm_offset_t)cur_space;
 1012         cur_space += (PAGE_SIZE * 3);
 1013 
 1014         /* allocate 4 pages for bootmem allocator */
 1015         bootmem_start = bootmem_current = (char *)cur_space;
 1016         cur_space += (4 * PAGE_SIZE);
 1017         bootmem_end = (char *)cur_space;
 1018         
 1019         /* allocate pages for gdt */
 1020         gdt = (union descriptor *)cur_space;
 1021         cur_space += PAGE_SIZE*ncpus;
 1022 
 1023         /* allocate page for ldt */
 1024         ldt = (union descriptor *)cur_space; cur_space += PAGE_SIZE;
 1025         cur_space += PAGE_SIZE;
 1026         
 1027         /* unmap remaining pages from initial chunk
 1028          *
 1029          */
 1030         for (tmpva = cur_space; tmpva < (((uint32_t)&kernbase) + (l1_pages<<PDRSHIFT));
 1031              tmpva += PAGE_SIZE) {
 1032                 bzero((char *)tmpva, PAGE_SIZE);
 1033                 PT_SET_MA(tmpva, (vm_paddr_t)0);
 1034         }
 1035 
 1036         PT_UPDATES_FLUSH();
 1037 
 1038         memcpy(((uint8_t *)IdlePTDnew) + ((unsigned int)(KERNBASE >> 18)),
 1039             ((uint8_t *)IdlePTD) + ((KERNBASE >> 18) & PAGE_MASK),
 1040             l1_pages*sizeof(pt_entry_t));
 1041 
 1042         for (i = 0; i < 4; i++) {
 1043                 PT_SET_MA((uint8_t *)IdlePTDnew + i*PAGE_SIZE,
 1044                     IdlePTDnewma[i] | PG_V);
 1045         }
 1046         xen_load_cr3(VTOP(IdlePDPTnew));
 1047         xen_pgdpt_pin(VTOM(IdlePDPTnew));
 1048 
 1049         /* allocate remainder of nkpt pages */
 1050         cur_space_pt = cur_space;
 1051         for (offset = (KERNBASE >> PDRSHIFT), i = l1_pages; i < nkpt;
 1052              i++, cur_space += PAGE_SIZE) {
 1053                 pdir = (offset + i) / NPDEPG;
 1054                 curoffset = ((offset + i) % NPDEPG);
 1055                 if (((offset + i) << PDRSHIFT) == VM_MAX_KERNEL_ADDRESS)
 1056                         break;
 1057 
 1058                 /*
 1059                  * make sure that all the initial page table pages
 1060                  * have been zeroed
 1061                  */
 1062                 PT_SET_MA(cur_space, VTOM(cur_space) | PG_V | PG_RW);
 1063                 bzero((char *)cur_space, PAGE_SIZE);
 1064                 PT_SET_MA(cur_space, (vm_paddr_t)0);
 1065                 xen_pt_pin(VTOM(cur_space));
 1066                 xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
 1067                         curoffset*sizeof(vm_paddr_t)), 
 1068                     VTOM(cur_space) | PG_KERNEL);
 1069                 PT_UPDATES_FLUSH();
 1070         }
 1071         
 1072         for (i = 0; i < 4; i++) {
 1073                 pdir = (PTDPTDI + i) / NPDEPG;
 1074                 curoffset = (PTDPTDI + i) % NPDEPG;
 1075 
 1076                 xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
 1077                         curoffset*sizeof(vm_paddr_t)), 
 1078                     IdlePTDnewma[i] | PG_V);
 1079         }
 1080 
 1081         PT_UPDATES_FLUSH();
 1082         
 1083         IdlePTD = IdlePTDnew;
 1084         IdlePDPT = IdlePDPTnew;
 1085         IdlePDPTma = IdlePDPTnewma;
 1086         
 1087         HYPERVISOR_shared_info = (shared_info_t *)cur_space;
 1088         cur_space += PAGE_SIZE;
 1089 
 1090         xen_store = (struct xenstore_domain_interface *)cur_space;
 1091         cur_space += PAGE_SIZE;
 1092 
 1093         console_page = (char *)cur_space;
 1094         cur_space += PAGE_SIZE;
 1095         
 1096         /*
 1097          * shared_info is an unsigned long so this will randomly break if
 1098          * it is allocated above 4GB - I guess people are used to that
 1099          * sort of thing with Xen ... sigh
 1100          */
 1101         shinfo = xen_start_info->shared_info;
 1102         PT_SET_MA(HYPERVISOR_shared_info, shinfo | PG_KERNEL);
 1103         
 1104         printk("#4\n");
 1105 
 1106         xen_store_ma = (((vm_paddr_t)xen_start_info->store_mfn) << PAGE_SHIFT);
 1107         PT_SET_MA(xen_store, xen_store_ma | PG_KERNEL);
 1108         console_page_ma = (((vm_paddr_t)xen_start_info->console.domU.mfn) << PAGE_SHIFT);
 1109         PT_SET_MA(console_page, console_page_ma | PG_KERNEL);
 1110 
 1111         printk("#5\n");
 1112 
 1113         set_iopl.iopl = 1;
 1114         PANIC_IF(HYPERVISOR_physdev_op(PHYSDEVOP_SET_IOPL, &set_iopl));
 1115         printk("#6\n");
 1116 #if 0
 1117         /* add page table for KERNBASE */
 1118         xen_queue_pt_update(IdlePTDma + KPTDI*sizeof(vm_paddr_t), 
 1119                             VTOM(cur_space) | PG_KERNEL);
 1120         xen_flush_queue();
 1121 #ifdef PAE      
 1122         xen_queue_pt_update(pdir_shadow_ma[3] + KPTDI*sizeof(vm_paddr_t), 
 1123                             VTOM(cur_space) | PG_V | PG_A);
 1124 #else
 1125         xen_queue_pt_update(pdir_shadow_ma + KPTDI*sizeof(vm_paddr_t), 
 1126                             VTOM(cur_space) | PG_V | PG_A);
 1127 #endif  
 1128         xen_flush_queue();
 1129         cur_space += PAGE_SIZE;
 1130         printk("#6\n");
 1131 #endif /* 0 */  
 1132 #ifdef notyet
 1133         if (xen_start_info->flags & SIF_INITDOMAIN) {
 1134                 /* Map first megabyte */
 1135                 for (i = 0; i < (256 << PAGE_SHIFT); i += PAGE_SIZE) 
 1136                         PT_SET_MA(KERNBASE + i, i | PG_KERNEL | PG_NC_PCD);
 1137                 xen_flush_queue();
 1138         }
 1139 #endif
 1140         /*
 1141          * re-map kernel text read-only
 1142          *
 1143          */
 1144         for (i = (((vm_offset_t)&btext) & ~PAGE_MASK);
 1145              i < (((vm_offset_t)&etext) & ~PAGE_MASK); i += PAGE_SIZE)
 1146                 PT_SET_MA(i, VTOM(i) | PG_V | PG_A);
 1147         
 1148         printk("#7\n");
 1149         physfree = VTOP(cur_space);
 1150         init_first = physfree >> PAGE_SHIFT;
 1151         IdlePTD = (pd_entry_t *)VTOP(IdlePTD);
 1152         IdlePDPT = (pd_entry_t *)VTOP(IdlePDPT);
 1153         setup_xen_features();
 1154         printk("#8, proc0kstack=%u\n", proc0kstack);
 1155 }
 1156 
 1157 
 1158 trap_info_t trap_table[] = {
 1159         { 0,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(div)},
 1160         { 1,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dbg)},
 1161         { 3,   3|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bpt)},
 1162         { 4,   3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ofl)},
 1163         /* This is UPL on Linux and KPL on BSD */
 1164         { 5,   3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bnd)},
 1165         { 6,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ill)},
 1166         { 7,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dna)},
 1167         /*
 1168          * { 8,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(XXX)},
 1169          *   no handler for double fault
 1170          */
 1171         { 9,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpusegm)},
 1172         {10,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(tss)},
 1173         {11,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(missing)},
 1174         {12,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(stk)},
 1175         {13,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(prot)},
 1176         {14,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(page)},
 1177         {15,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(rsvd)},
 1178         {16,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpu)},
 1179         {17,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(align)},
 1180         {18,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(mchk)},
 1181         {19,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(xmm)},
 1182         {0x80, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(int0x80_syscall)},
 1183         {  0, 0,           0, 0 }
 1184 };
 1185 
 1186 /* Perform a multicall and check that individual calls succeeded. */
 1187 int
 1188 HYPERVISOR_multicall(struct multicall_entry * call_list, int nr_calls)
 1189 {
 1190         int ret = 0;
 1191         int i;
 1192 
 1193         /* Perform the multicall. */
 1194         PANIC_IF(_HYPERVISOR_multicall(call_list, nr_calls));
 1195 
 1196         /* Check the results of individual hypercalls. */
 1197         for (i = 0; i < nr_calls; i++)
 1198                 if (unlikely(call_list[i].result < 0))
 1199                         ret++;
 1200         if (unlikely(ret > 0))
 1201                 panic("%d multicall(s) failed: cpu %d\n",
 1202                     ret, smp_processor_id());
 1203 
 1204         /* If we didn't panic already, everything succeeded. */
 1205         return (0);
 1206 }
 1207 
 1208 /********** CODE WORTH KEEPING ABOVE HERE *****************/ 
 1209 
 1210 void xen_failsafe_handler(void);
 1211 
 1212 void
 1213 xen_failsafe_handler(void)
 1214 {
 1215 
 1216         panic("xen_failsafe_handler called!\n");
 1217 }
 1218 
 1219 void xen_handle_thread_switch(struct pcb *pcb);
 1220 
 1221 /* This is called by cpu_switch() when switching threads. */
 1222 /* The pcb arg refers to the process control block of the */
 1223 /* next thread which is to run */
 1224 void
 1225 xen_handle_thread_switch(struct pcb *pcb)
 1226 {
 1227     uint32_t *a = (uint32_t *)&PCPU_GET(fsgs_gdt)[0];
 1228     uint32_t *b = (uint32_t *)&pcb->pcb_fsd;
 1229     multicall_entry_t mcl[3];
 1230     int i = 0;
 1231 
 1232     /* Notify Xen of task switch */
 1233     mcl[i].op = __HYPERVISOR_stack_switch;
 1234     mcl[i].args[0] = GSEL(GDATA_SEL, SEL_KPL);
 1235     mcl[i++].args[1] = (unsigned long)pcb;
 1236 
 1237     /* Check for update of fsd */
 1238     if (*a != *b || *(a+1) != *(b+1)) {
 1239         mcl[i].op = __HYPERVISOR_update_descriptor;
 1240         *(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
 1241         *(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
 1242     }    
 1243 
 1244     a += 2;
 1245     b += 2;
 1246 
 1247     /* Check for update of gsd */
 1248     if (*a != *b || *(a+1) != *(b+1)) {
 1249         mcl[i].op = __HYPERVISOR_update_descriptor;
 1250         *(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
 1251         *(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
 1252     }    
 1253 
 1254     (void)HYPERVISOR_multicall(mcl, i);
 1255 }

Cache object: 226f3363fc810d1247fdda66c36e1045


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.