The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/xen/xen_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *
    3  * Copyright (c) 2004 Christian Limpach.
    4  * Copyright (c) 2004-2006,2008 Kip Macy
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Christian Limpach.
   18  * 4. The name of the author may not be used to endorse or promote products
   19  *    derived from this software without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/ktr.h>
   40 #include <sys/lock.h>
   41 #include <sys/mount.h>
   42 #include <sys/malloc.h>
   43 #include <sys/mutex.h>
   44 #include <sys/kernel.h>
   45 #include <sys/proc.h>
   46 #include <sys/reboot.h>
   47 #include <sys/sysproto.h>
   48 
   49 #include <machine/xen/xen-os.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/pmap.h>
   53 #include <machine/segments.h>
   54 #include <machine/pcb.h>
   55 #include <machine/stdarg.h>
   56 #include <machine/vmparam.h>
   57 #include <machine/cpu.h>
   58 #include <machine/intr_machdep.h>
   59 #include <machine/md_var.h>
   60 #include <machine/asmacros.h>
   61 
   62 
   63 
   64 #include <xen/hypervisor.h>
   65 #include <machine/xen/xenvar.h>
   66 #include <machine/xen/xenfunc.h>
   67 #include <machine/xen/xenpmap.h>
   68 #include <machine/xen/xenfunc.h>
   69 #include <xen/interface/memory.h>
   70 #include <machine/xen/features.h>
   71 #ifdef SMP
   72 #include <machine/privatespace.h>
   73 #endif
   74 
   75 
   76 #include <vm/vm_page.h>
   77 
   78 
   79 #define IDTVEC(name)    __CONCAT(X,name)
   80 
   81 extern inthand_t
   82 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
   83         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
   84         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
   85         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
   86         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
   87 
   88 
   89 int xendebug_flags; 
   90 start_info_t *xen_start_info;
   91 shared_info_t *HYPERVISOR_shared_info;
   92 xen_pfn_t *xen_machine_phys = machine_to_phys_mapping;
   93 xen_pfn_t *xen_phys_machine;
   94 xen_pfn_t *xen_pfn_to_mfn_frame_list[16];
   95 xen_pfn_t *xen_pfn_to_mfn_frame_list_list;
   96 int preemptable, init_first;
   97 extern unsigned int avail_space;
   98 
   99 void ni_cli(void);
  100 void ni_sti(void);
  101 
  102 
  103 void
  104 ni_cli(void)
  105 {
  106         CTR0(KTR_SPARE2, "ni_cli disabling interrupts");
  107         __asm__("pushl %edx;"
  108                 "pushl %eax;"
  109                 );
  110         __cli();
  111         __asm__("popl %eax;"
  112                 "popl %edx;"
  113                 );
  114 }
  115 
  116 
  117 void
  118 ni_sti(void)
  119 {
  120         __asm__("pushl %edx;"
  121                 "pushl %esi;"
  122                 "pushl %eax;"
  123                 );
  124         __sti();
  125         __asm__("popl %eax;"
  126                 "popl %esi;"
  127                 "popl %edx;"
  128                 );
  129 }
  130 
  131 /*
  132  * Modify the cmd_line by converting ',' to NULLs so that it is in a  format 
  133  * suitable for the static env vars.
  134  */
  135 char *
  136 xen_setbootenv(char *cmd_line)
  137 {
  138         char *cmd_line_next;
  139     
  140         /* Skip leading spaces */
  141         for (; *cmd_line == ' '; cmd_line++);
  142 
  143         printk("xen_setbootenv(): cmd_line='%s'\n", cmd_line);
  144 
  145         for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;);
  146         return cmd_line;
  147 }
  148 
  149 static struct 
  150 {
  151         const char      *ev;
  152         int             mask;
  153 } howto_names[] = {
  154         {"boot_askname",        RB_ASKNAME},
  155         {"boot_single", RB_SINGLE},
  156         {"boot_nosync", RB_NOSYNC},
  157         {"boot_halt",   RB_ASKNAME},
  158         {"boot_serial", RB_SERIAL},
  159         {"boot_cdrom",  RB_CDROM},
  160         {"boot_gdb",    RB_GDB},
  161         {"boot_gdb_pause",      RB_RESERVED1},
  162         {"boot_verbose",        RB_VERBOSE},
  163         {"boot_multicons",      RB_MULTIPLE},
  164         {NULL,  0}
  165 };
  166 
  167 int 
  168 xen_boothowto(char *envp)
  169 {
  170         int i, howto = 0;
  171 
  172         /* get equivalents from the environment */
  173         for (i = 0; howto_names[i].ev != NULL; i++)
  174                 if (getenv(howto_names[i].ev) != NULL)
  175                         howto |= howto_names[i].mask;
  176         return howto;
  177 }
  178 
  179 #define PRINTK_BUFSIZE 1024
  180 void
  181 printk(const char *fmt, ...)
  182 {
  183         __va_list ap;
  184         int retval;
  185         static char buf[PRINTK_BUFSIZE];
  186 
  187         va_start(ap, fmt);
  188         retval = vsnprintf(buf, PRINTK_BUFSIZE - 1, fmt, ap);
  189         va_end(ap);
  190         buf[retval] = 0;
  191         (void)HYPERVISOR_console_write(buf, retval);
  192 }
  193 
  194 
  195 #define XPQUEUE_SIZE 128
  196 
  197 struct mmu_log {
  198         char *file;
  199         int line;
  200 };
  201 
  202 #ifdef SMP
  203 /* per-cpu queues and indices */
  204 #ifdef INVARIANTS
  205 static struct mmu_log xpq_queue_log[MAX_VIRT_CPUS][XPQUEUE_SIZE];
  206 #endif
  207 
  208 static int xpq_idx[MAX_VIRT_CPUS];  
  209 static mmu_update_t xpq_queue[MAX_VIRT_CPUS][XPQUEUE_SIZE];
  210 
  211 #define XPQ_QUEUE_LOG xpq_queue_log[vcpu]
  212 #define XPQ_QUEUE xpq_queue[vcpu]
  213 #define XPQ_IDX xpq_idx[vcpu]
  214 #define SET_VCPU() int vcpu = smp_processor_id()
  215 #else
  216         
  217 static mmu_update_t xpq_queue[XPQUEUE_SIZE];
  218 #ifdef INVARIANTS
  219 static struct mmu_log xpq_queue_log[XPQUEUE_SIZE];
  220 #endif
  221 static int xpq_idx = 0;
  222 
  223 #define XPQ_QUEUE_LOG xpq_queue_log
  224 #define XPQ_QUEUE xpq_queue
  225 #define XPQ_IDX xpq_idx
  226 #define SET_VCPU()
  227 #endif /* !SMP */
  228 
  229 #define XPQ_IDX_INC atomic_add_int(&XPQ_IDX, 1);
  230 
  231 #if 0
  232 static void
  233 xen_dump_queue(void)
  234 {
  235         int _xpq_idx = XPQ_IDX;
  236         int i;
  237 
  238         if (_xpq_idx <= 1)
  239                 return;
  240 
  241         printk("xen_dump_queue(): %u entries\n", _xpq_idx);
  242         for (i = 0; i < _xpq_idx; i++) {
  243                 printk(" val: %llx ptr: %llx\n", XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
  244         }
  245 }
  246 #endif
  247 
  248 
  249 static __inline void
  250 _xen_flush_queue(void)
  251 {
  252         SET_VCPU();
  253         int _xpq_idx = XPQ_IDX;
  254         int error, i;
  255 
  256 #ifdef INVARIANTS
  257         if (__predict_true(gdtset))
  258                 CRITICAL_ASSERT(curthread);
  259 #endif
  260 
  261         XPQ_IDX = 0;
  262         /* Make sure index is cleared first to avoid double updates. */
  263         error = HYPERVISOR_mmu_update((mmu_update_t *)&XPQ_QUEUE,
  264                                       _xpq_idx, NULL, DOMID_SELF);
  265     
  266 #if 0
  267         if (__predict_true(gdtset))
  268         for (i = _xpq_idx; i > 0;) {
  269                 if (i >= 3) {
  270                         CTR6(KTR_PMAP, "mmu:val: %lx ptr: %lx val: %lx "
  271                             "ptr: %lx val: %lx ptr: %lx",
  272                             (XPQ_QUEUE[i-1].val & 0xffffffff),
  273                             (XPQ_QUEUE[i-1].ptr & 0xffffffff),
  274                             (XPQ_QUEUE[i-2].val & 0xffffffff),
  275                             (XPQ_QUEUE[i-2].ptr & 0xffffffff),
  276                             (XPQ_QUEUE[i-3].val & 0xffffffff),
  277                             (XPQ_QUEUE[i-3].ptr & 0xffffffff));
  278                             i -= 3;
  279                 } else if (i == 2) {
  280                         CTR4(KTR_PMAP, "mmu: val: %lx ptr: %lx val: %lx ptr: %lx",
  281                             (XPQ_QUEUE[i-1].val & 0xffffffff),
  282                             (XPQ_QUEUE[i-1].ptr & 0xffffffff),
  283                             (XPQ_QUEUE[i-2].val & 0xffffffff),
  284                             (XPQ_QUEUE[i-2].ptr & 0xffffffff));
  285                         i = 0;
  286                 } else {
  287                         CTR2(KTR_PMAP, "mmu: val: %lx ptr: %lx", 
  288                             (XPQ_QUEUE[i-1].val & 0xffffffff),
  289                             (XPQ_QUEUE[i-1].ptr & 0xffffffff));
  290                         i = 0;
  291                 }
  292         }
  293 #endif  
  294         if (__predict_false(error < 0)) {
  295                 for (i = 0; i < _xpq_idx; i++)
  296                         printf("val: %llx ptr: %llx\n",
  297                             XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
  298                 panic("Failed to execute MMU updates: %d", error);
  299         }
  300 
  301 }
  302 
  303 void
  304 xen_flush_queue(void)
  305 {
  306         SET_VCPU();
  307 
  308         if (__predict_true(gdtset))
  309                 critical_enter();
  310         if (XPQ_IDX != 0) _xen_flush_queue();
  311         if (__predict_true(gdtset))
  312                 critical_exit();
  313 }
  314 
  315 static __inline void
  316 xen_increment_idx(void)
  317 {
  318         SET_VCPU();
  319 
  320         XPQ_IDX++;
  321         if (__predict_false(XPQ_IDX == XPQUEUE_SIZE))
  322                 xen_flush_queue();
  323 }
  324 
  325 void
  326 xen_check_queue(void)
  327 {
  328 #ifdef INVARIANTS
  329         SET_VCPU();
  330         
  331         KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
  332 #endif
  333 }
  334 
  335 void
  336 xen_invlpg(vm_offset_t va)
  337 {
  338         struct mmuext_op op;
  339         op.cmd = MMUEXT_INVLPG_ALL;
  340         op.arg1.linear_addr = va & ~PAGE_MASK;
  341         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  342 }
  343 
  344 void
  345 xen_load_cr3(u_int val)
  346 {
  347         struct mmuext_op op;
  348 #ifdef INVARIANTS
  349         SET_VCPU();
  350         
  351         KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
  352 #endif
  353         op.cmd = MMUEXT_NEW_BASEPTR;
  354         op.arg1.mfn = xpmap_ptom(val) >> PAGE_SHIFT;
  355         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  356 }
  357 
  358 #ifdef KTR
  359 static __inline u_int
  360 rebp(void)
  361 {
  362         u_int   data;
  363 
  364         __asm __volatile("movl 4(%%ebp),%0" : "=r" (data));     
  365         return (data);
  366 }
  367 #endif
  368 
  369 u_int
  370 read_eflags(void)
  371 {
  372         vcpu_info_t *_vcpu;
  373         u_int eflags;
  374 
  375         eflags = _read_eflags();
  376         _vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; 
  377         if (_vcpu->evtchn_upcall_mask)
  378                 eflags &= ~PSL_I;
  379 
  380         return (eflags);
  381 }
  382 
  383 void
  384 write_eflags(u_int eflags)
  385 {
  386         u_int intr;
  387 
  388         CTR2(KTR_SPARE2, "%x xen_restore_flags eflags %x", rebp(), eflags);
  389         intr = ((eflags & PSL_I) == 0);
  390         __restore_flags(intr);
  391         _write_eflags(eflags);
  392 }
  393 
  394 void
  395 xen_cli(void)
  396 {
  397         CTR1(KTR_SPARE2, "%x xen_cli disabling interrupts", rebp());
  398         __cli();
  399 }
  400 
  401 void
  402 xen_sti(void)
  403 {
  404         CTR1(KTR_SPARE2, "%x xen_sti enabling interrupts", rebp());
  405         __sti();
  406 }
  407 
  408 u_int
  409 xen_rcr2(void)
  410 {
  411 
  412         return (HYPERVISOR_shared_info->vcpu_info[curcpu].arch.cr2);
  413 }
  414 
  415 void
  416 _xen_machphys_update(vm_paddr_t mfn, vm_paddr_t pfn, char *file, int line)
  417 {
  418         SET_VCPU();
  419         
  420         if (__predict_true(gdtset))
  421                 critical_enter();
  422         XPQ_QUEUE[XPQ_IDX].ptr = (mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE;
  423         XPQ_QUEUE[XPQ_IDX].val = pfn;
  424 #ifdef INVARIANTS
  425         XPQ_QUEUE_LOG[XPQ_IDX].file = file;
  426         XPQ_QUEUE_LOG[XPQ_IDX].line = line;     
  427 #endif          
  428         xen_increment_idx();
  429         if (__predict_true(gdtset))
  430                 critical_exit();
  431 }
  432 
  433 void
  434 _xen_queue_pt_update(vm_paddr_t ptr, vm_paddr_t val, char *file, int line)
  435 {
  436         SET_VCPU();
  437 
  438         if (__predict_true(gdtset))     
  439                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  440 
  441         KASSERT((ptr & 7) == 0, ("misaligned update"));
  442         
  443         if (__predict_true(gdtset))
  444                 critical_enter();
  445         
  446         XPQ_QUEUE[XPQ_IDX].ptr = ((uint64_t)ptr) | MMU_NORMAL_PT_UPDATE;
  447         XPQ_QUEUE[XPQ_IDX].val = (uint64_t)val;
  448 #ifdef INVARIANTS
  449         XPQ_QUEUE_LOG[XPQ_IDX].file = file;
  450         XPQ_QUEUE_LOG[XPQ_IDX].line = line;     
  451 #endif  
  452         xen_increment_idx();
  453         if (__predict_true(gdtset))
  454                 critical_exit();
  455 }
  456 
  457 void 
  458 xen_pgdpt_pin(vm_paddr_t ma)
  459 {
  460         struct mmuext_op op;
  461         op.cmd = MMUEXT_PIN_L3_TABLE;
  462         op.arg1.mfn = ma >> PAGE_SHIFT;
  463         xen_flush_queue();
  464         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  465 }
  466 
  467 void 
  468 xen_pgd_pin(vm_paddr_t ma)
  469 {
  470         struct mmuext_op op;
  471         op.cmd = MMUEXT_PIN_L2_TABLE;
  472         op.arg1.mfn = ma >> PAGE_SHIFT;
  473         xen_flush_queue();
  474         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  475 }
  476 
  477 void 
  478 xen_pgd_unpin(vm_paddr_t ma)
  479 {
  480         struct mmuext_op op;
  481         op.cmd = MMUEXT_UNPIN_TABLE;
  482         op.arg1.mfn = ma >> PAGE_SHIFT;
  483         xen_flush_queue();
  484         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  485 }
  486 
  487 void 
  488 xen_pt_pin(vm_paddr_t ma)
  489 {
  490         struct mmuext_op op;
  491         op.cmd = MMUEXT_PIN_L1_TABLE;
  492         op.arg1.mfn = ma >> PAGE_SHIFT;
  493         xen_flush_queue();
  494         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  495 }
  496 
  497 void 
  498 xen_pt_unpin(vm_paddr_t ma)
  499 {
  500         struct mmuext_op op;
  501         op.cmd = MMUEXT_UNPIN_TABLE;
  502         op.arg1.mfn = ma >> PAGE_SHIFT;
  503         xen_flush_queue();
  504         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  505 }
  506 
  507 void 
  508 xen_set_ldt(vm_paddr_t ptr, unsigned long len)
  509 {
  510         struct mmuext_op op;
  511         op.cmd = MMUEXT_SET_LDT;
  512         op.arg1.linear_addr = ptr;
  513         op.arg2.nr_ents = len;
  514         xen_flush_queue();
  515         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  516 }
  517 
  518 void xen_tlb_flush(void)
  519 {
  520         struct mmuext_op op;
  521         op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
  522         xen_flush_queue();
  523         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
  524 }
  525 
  526 void
  527 xen_update_descriptor(union descriptor *table, union descriptor *entry)
  528 {
  529         vm_paddr_t pa;
  530         pt_entry_t *ptp;
  531 
  532         ptp = vtopte((vm_offset_t)table);
  533         pa = (*ptp & PG_FRAME) | ((vm_offset_t)table & PAGE_MASK);
  534         if (HYPERVISOR_update_descriptor(pa, *(uint64_t *)entry))
  535                 panic("HYPERVISOR_update_descriptor failed\n");
  536 }
  537 
  538 
  539 #if 0
  540 /*
  541  * Bitmap is indexed by page number. If bit is set, the page is part of a
  542  * xen_create_contiguous_region() area of memory.
  543  */
  544 unsigned long *contiguous_bitmap;
  545 
  546 static void 
  547 contiguous_bitmap_set(unsigned long first_page, unsigned long nr_pages)
  548 {
  549         unsigned long start_off, end_off, curr_idx, end_idx;
  550 
  551         curr_idx  = first_page / BITS_PER_LONG;
  552         start_off = first_page & (BITS_PER_LONG-1);
  553         end_idx   = (first_page + nr_pages) / BITS_PER_LONG;
  554         end_off   = (first_page + nr_pages) & (BITS_PER_LONG-1);
  555 
  556         if (curr_idx == end_idx) {
  557                 contiguous_bitmap[curr_idx] |=
  558                         ((1UL<<end_off)-1) & -(1UL<<start_off);
  559         } else {
  560                 contiguous_bitmap[curr_idx] |= -(1UL<<start_off);
  561                 while ( ++curr_idx < end_idx )
  562                         contiguous_bitmap[curr_idx] = ~0UL;
  563                 contiguous_bitmap[curr_idx] |= (1UL<<end_off)-1;
  564         }
  565 }
  566 
  567 static void 
  568 contiguous_bitmap_clear(unsigned long first_page, unsigned long nr_pages)
  569 {
  570         unsigned long start_off, end_off, curr_idx, end_idx;
  571 
  572         curr_idx  = first_page / BITS_PER_LONG;
  573         start_off = first_page & (BITS_PER_LONG-1);
  574         end_idx   = (first_page + nr_pages) / BITS_PER_LONG;
  575         end_off   = (first_page + nr_pages) & (BITS_PER_LONG-1);
  576 
  577         if (curr_idx == end_idx) {
  578                 contiguous_bitmap[curr_idx] &=
  579                         -(1UL<<end_off) | ((1UL<<start_off)-1);
  580         } else {
  581                 contiguous_bitmap[curr_idx] &= (1UL<<start_off)-1;
  582                 while ( ++curr_idx != end_idx )
  583                         contiguous_bitmap[curr_idx] = 0;
  584                 contiguous_bitmap[curr_idx] &= -(1UL<<end_off);
  585         }
  586 }
  587 #endif
  588 
  589 /* Ensure multi-page extents are contiguous in machine memory. */
  590 int 
  591 xen_create_contiguous_region(vm_page_t pages, int npages)
  592 {
  593         unsigned long  mfn, i, flags;
  594         int order;
  595         struct xen_memory_reservation reservation = {
  596                 .nr_extents   = 1,
  597                 .extent_order = 0,
  598                 .domid        = DOMID_SELF
  599         };
  600         set_xen_guest_handle(reservation.extent_start, &mfn);
  601         
  602         balloon_lock(flags);
  603 
  604         /* can currently only handle power of two allocation */
  605         PANIC_IF(ffs(npages) != fls(npages));
  606 
  607         /* 0. determine order */
  608         order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
  609         
  610         /* 1. give away machine pages. */
  611         for (i = 0; i < (1 << order); i++) {
  612                 int pfn;
  613                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
  614                 mfn = PFNTOMFN(pfn);
  615                 PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
  616                 PANIC_IF(HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation) != 1);
  617         }
  618 
  619 
  620         /* 2. Get a new contiguous memory extent. */
  621         reservation.extent_order = order;
  622         /* xenlinux hardcodes this because of aacraid - maybe set to 0 if we're not 
  623          * running with a broxen driver XXXEN
  624          */
  625         reservation.address_bits = 31; 
  626         if (HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1)
  627                 goto fail;
  628 
  629         /* 3. Map the new extent in place of old pages. */
  630         for (i = 0; i < (1 << order); i++) {
  631                 int pfn;
  632                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
  633                 xen_machphys_update(mfn+i, pfn);
  634                 PFNTOMFN(pfn) = mfn+i;
  635         }
  636 
  637         xen_tlb_flush();
  638 
  639 #if 0
  640         contiguous_bitmap_set(VM_PAGE_TO_PHYS(&pages[0]) >> PAGE_SHIFT, 1UL << order);
  641 #endif
  642 
  643         balloon_unlock(flags);
  644 
  645         return 0;
  646 
  647  fail:
  648         reservation.extent_order = 0;
  649         reservation.address_bits = 0;
  650 
  651         for (i = 0; i < (1 << order); i++) {
  652                 int pfn;
  653                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
  654                 PANIC_IF(HYPERVISOR_memory_op(
  655                         XENMEM_increase_reservation, &reservation) != 1);
  656                 xen_machphys_update(mfn, pfn);
  657                 PFNTOMFN(pfn) = mfn;
  658         }
  659 
  660         xen_tlb_flush();
  661 
  662         balloon_unlock(flags);
  663 
  664         return ENOMEM;
  665 }
  666 
  667 void 
  668 xen_destroy_contiguous_region(void *addr, int npages)
  669 {
  670         unsigned long  mfn, i, flags, order, pfn0;
  671         struct xen_memory_reservation reservation = {
  672                 .nr_extents   = 1,
  673                 .extent_order = 0,
  674                 .domid        = DOMID_SELF
  675         };
  676         set_xen_guest_handle(reservation.extent_start, &mfn);
  677         
  678         pfn0 = vtophys(addr) >> PAGE_SHIFT;
  679 #if 0
  680         scrub_pages(vstart, 1 << order);
  681 #endif
  682         /* can currently only handle power of two allocation */
  683         PANIC_IF(ffs(npages) != fls(npages));
  684 
  685         /* 0. determine order */
  686         order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
  687 
  688         balloon_lock(flags);
  689 
  690 #if 0
  691         contiguous_bitmap_clear(vtophys(addr) >> PAGE_SHIFT, 1UL << order);
  692 #endif
  693 
  694         /* 1. Zap current PTEs, giving away the underlying pages. */
  695         for (i = 0; i < (1 << order); i++) {
  696                 int pfn;
  697                 uint64_t new_val = 0;
  698                 pfn = vtomach((char *)addr + i*PAGE_SIZE) >> PAGE_SHIFT;
  699 
  700                 PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)((char *)addr + (i * PAGE_SIZE)), new_val, 0));
  701                 PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
  702                 PANIC_IF(HYPERVISOR_memory_op(
  703                         XENMEM_decrease_reservation, &reservation) != 1);
  704         }
  705 
  706         /* 2. Map new pages in place of old pages. */
  707         for (i = 0; i < (1 << order); i++) {
  708                 int pfn;
  709                 uint64_t new_val;
  710                 pfn = pfn0 + i;
  711                 PANIC_IF(HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1);
  712                 
  713                 new_val = mfn << PAGE_SHIFT;
  714                 PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)addr + (i * PAGE_SIZE), 
  715                                                       new_val, PG_KERNEL));
  716                 xen_machphys_update(mfn, pfn);
  717                 PFNTOMFN(pfn) = mfn;
  718         }
  719 
  720         xen_tlb_flush();
  721 
  722         balloon_unlock(flags);
  723 }
  724 
  725 extern  vm_offset_t     proc0kstack;
  726 extern int vm86paddr, vm86phystk;
  727 char *bootmem_start, *bootmem_current, *bootmem_end;
  728 
  729 pteinfo_t *pteinfo_list;
  730 void initvalues(start_info_t *startinfo);
  731 
  732 struct xenstore_domain_interface;
  733 extern struct xenstore_domain_interface *xen_store;
  734 
  735 char *console_page;
  736 
  737 void *
  738 bootmem_alloc(unsigned int size) 
  739 {
  740         char *retptr;
  741         
  742         retptr = bootmem_current;
  743         PANIC_IF(retptr + size > bootmem_end);
  744         bootmem_current += size;
  745 
  746         return retptr;
  747 }
  748 
  749 void 
  750 bootmem_free(void *ptr, unsigned int size) 
  751 {
  752         char *tptr;
  753         
  754         tptr = ptr;
  755         PANIC_IF(tptr != bootmem_current - size ||
  756                 bootmem_current - size < bootmem_start);        
  757 
  758         bootmem_current -= size;
  759 }
  760 
  761 #if 0
  762 static vm_paddr_t
  763 xpmap_mtop2(vm_paddr_t mpa)
  764 {
  765         return ((machine_to_phys_mapping[mpa >> PAGE_SHIFT] << PAGE_SHIFT)
  766             ) | (mpa & ~PG_FRAME);
  767 }
  768 
  769 static pd_entry_t 
  770 xpmap_get_bootpde(vm_paddr_t va)
  771 {
  772 
  773         return ((pd_entry_t *)xen_start_info->pt_base)[va >> 22];
  774 }
  775 
  776 static pd_entry_t
  777 xpmap_get_vbootpde(vm_paddr_t va)
  778 {
  779         pd_entry_t pde;
  780 
  781         pde = xpmap_get_bootpde(va);
  782         if ((pde & PG_V) == 0)
  783                 return (pde & ~PG_FRAME);
  784         return (pde & ~PG_FRAME) |
  785                 (xpmap_mtop2(pde & PG_FRAME) + KERNBASE);
  786 }
  787 
  788 static pt_entry_t 8*
  789 xpmap_get_bootptep(vm_paddr_t va)
  790 {
  791         pd_entry_t pde;
  792 
  793         pde = xpmap_get_vbootpde(va);
  794         if ((pde & PG_V) == 0)
  795                 return (void *)-1;
  796 #define PT_MASK         0x003ff000      /* page table address bits */
  797         return &(((pt_entry_t *)(pde & PG_FRAME))[(va & PT_MASK) >> PAGE_SHIFT]);
  798 }
  799 
  800 static pt_entry_t
  801 xpmap_get_bootpte(vm_paddr_t va)
  802 {
  803 
  804         return xpmap_get_bootptep(va)[0];
  805 }
  806 #endif
  807 
  808 
  809 #ifdef ADD_ISA_HOLE
  810 static void
  811 shift_phys_machine(unsigned long *phys_machine, int nr_pages)
  812 {
  813 
  814         unsigned long *tmp_page, *current_page, *next_page;
  815         int i;
  816 
  817         tmp_page = bootmem_alloc(PAGE_SIZE);
  818         current_page = phys_machine + nr_pages - (PAGE_SIZE/sizeof(unsigned long));  
  819         next_page = current_page - (PAGE_SIZE/sizeof(unsigned long));  
  820         bcopy(phys_machine, tmp_page, PAGE_SIZE);
  821 
  822         while (current_page > phys_machine) { 
  823                 /*  save next page */
  824                 bcopy(next_page, tmp_page, PAGE_SIZE);
  825                 /* shift down page */
  826                 bcopy(current_page, next_page, PAGE_SIZE);
  827                 /*  finish swap */
  828                 bcopy(tmp_page, current_page, PAGE_SIZE);
  829           
  830                 current_page -= (PAGE_SIZE/sizeof(unsigned long));
  831                 next_page -= (PAGE_SIZE/sizeof(unsigned long));
  832         }
  833         bootmem_free(tmp_page, PAGE_SIZE);      
  834         
  835         for (i = 0; i < nr_pages; i++) {
  836                 xen_machphys_update(phys_machine[i], i);
  837         }
  838         memset(phys_machine, INVALID_P2M_ENTRY, PAGE_SIZE);
  839 
  840 }
  841 #endif /* ADD_ISA_HOLE */
  842 
  843 /*
  844  * Build a directory of the pages that make up our Physical to Machine
  845  * mapping table. The Xen suspend/restore code uses this to find our
  846  * mapping table.
  847  */
  848 static void
  849 init_frame_list_list(void *arg)
  850 {
  851         unsigned long nr_pages = xen_start_info->nr_pages;
  852 #define FPP     (PAGE_SIZE/sizeof(xen_pfn_t))
  853         int i, j, k;
  854 
  855         xen_pfn_to_mfn_frame_list_list = malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
  856         for (i = 0, j = 0, k = -1; i < nr_pages;
  857              i += FPP, j++) {
  858                 if ((j & (FPP - 1)) == 0) {
  859                         k++;
  860                         xen_pfn_to_mfn_frame_list[k] =
  861                                 malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
  862                         xen_pfn_to_mfn_frame_list_list[k] =
  863                                 VTOMFN(xen_pfn_to_mfn_frame_list[k]);
  864                         j = 0;
  865                 }
  866                 xen_pfn_to_mfn_frame_list[k][j] = 
  867                         VTOMFN(&xen_phys_machine[i]);
  868         }
  869 
  870         HYPERVISOR_shared_info->arch.max_pfn = nr_pages;
  871         HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list
  872                 = VTOMFN(xen_pfn_to_mfn_frame_list_list);
  873 }       
  874 SYSINIT(init_fll, SI_SUB_DEVFS, SI_ORDER_ANY, init_frame_list_list, NULL);
  875 
  876 extern unsigned long physfree;
  877 
  878 int pdir, curoffset;
  879 extern int nkpt;
  880 
  881 extern uint32_t kernbase;
  882 
  883 void
  884 initvalues(start_info_t *startinfo)
  885 { 
  886         vm_offset_t cur_space, cur_space_pt;
  887         struct physdev_set_iopl set_iopl;
  888         
  889         int l3_pages, l2_pages, l1_pages, offset;
  890         vm_paddr_t console_page_ma, xen_store_ma;
  891         vm_offset_t tmpva;
  892         vm_paddr_t shinfo;
  893 #ifdef PAE
  894         vm_paddr_t IdlePDPTma, IdlePDPTnewma;
  895         vm_paddr_t IdlePTDnewma[4];
  896         pd_entry_t *IdlePDPTnew, *IdlePTDnew;
  897         vm_paddr_t IdlePTDma[4];
  898 #else
  899         vm_paddr_t IdlePTDma[1];
  900 #endif
  901         unsigned long i;
  902         int ncpus = MAXCPU;
  903 
  904         nkpt = min(
  905                 min(
  906                         max((startinfo->nr_pages >> NPGPTD_SHIFT), nkpt),
  907                     NPGPTD*NPDEPG - KPTDI),
  908                     (HYPERVISOR_VIRT_START - KERNBASE) >> PDRSHIFT);
  909 
  910         HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);      
  911 #ifdef notyet
  912         /*
  913          * need to install handler
  914          */
  915         HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments_notify);       
  916 #endif  
  917         xen_start_info = startinfo;
  918         xen_phys_machine = (xen_pfn_t *)startinfo->mfn_list;
  919 
  920         IdlePTD = (pd_entry_t *)((uint8_t *)startinfo->pt_base + PAGE_SIZE);
  921         l1_pages = 0;
  922         
  923 #ifdef PAE
  924         l3_pages = 1;
  925         l2_pages = 0;
  926         IdlePDPT = (pd_entry_t *)startinfo->pt_base;
  927         IdlePDPTma = VTOM(startinfo->pt_base);
  928         for (i = (KERNBASE >> 30);
  929              (i < 4) && (IdlePDPT[i] != 0); i++)
  930                         l2_pages++;
  931         /*
  932          * Note that only one page directory has been allocated at this point.
  933          * Thus, if KERNBASE
  934          */
  935         for (i = 0; i < l2_pages; i++)
  936                 IdlePTDma[i] = VTOM(IdlePTD + i*PAGE_SIZE);
  937 
  938         l2_pages = (l2_pages == 0) ? 1 : l2_pages;
  939 #else   
  940         l3_pages = 0;
  941         l2_pages = 1;
  942 #endif
  943         for (i = (((KERNBASE>>18) & PAGE_MASK)>>PAGE_SHIFT);
  944              (i<l2_pages*NPDEPG) && (i<(VM_MAX_KERNEL_ADDRESS>>PDRSHIFT)); i++) {
  945                 
  946                 if (IdlePTD[i] == 0)
  947                         break;
  948                 l1_pages++;
  949         }
  950 
  951         /* number of pages allocated after the pts + 1*/;
  952         cur_space = xen_start_info->pt_base +
  953             (l3_pages + l2_pages + l1_pages + 1)*PAGE_SIZE;
  954 
  955         printk("initvalues(): wooh - availmem=%x,%x\n", avail_space, cur_space);
  956 
  957         printk("KERNBASE=%x,pt_base=%x, VTOPFN(base)=%x, nr_pt_frames=%x\n",
  958             KERNBASE,xen_start_info->pt_base, VTOPFN(xen_start_info->pt_base),
  959             xen_start_info->nr_pt_frames);
  960         xendebug_flags = 0; /* 0xffffffff; */
  961 
  962 #ifdef ADD_ISA_HOLE
  963         shift_phys_machine(xen_phys_machine, xen_start_info->nr_pages);
  964 #endif
  965         XENPRINTF("IdlePTD %p\n", IdlePTD);
  966         XENPRINTF("nr_pages: %ld shared_info: 0x%lx flags: 0x%lx pt_base: 0x%lx "
  967                   "mod_start: 0x%lx mod_len: 0x%lx\n",
  968                   xen_start_info->nr_pages, xen_start_info->shared_info, 
  969                   xen_start_info->flags, xen_start_info->pt_base, 
  970                   xen_start_info->mod_start, xen_start_info->mod_len);
  971 
  972 #ifdef PAE
  973         IdlePDPTnew = (pd_entry_t *)cur_space; cur_space += PAGE_SIZE;
  974         bzero(IdlePDPTnew, PAGE_SIZE);
  975 
  976         IdlePDPTnewma =  VTOM(IdlePDPTnew);
  977         IdlePTDnew = (pd_entry_t *)cur_space; cur_space += 4*PAGE_SIZE;
  978         bzero(IdlePTDnew, 4*PAGE_SIZE);
  979 
  980         for (i = 0; i < 4; i++) 
  981                 IdlePTDnewma[i] = VTOM((uint8_t *)IdlePTDnew + i*PAGE_SIZE);
  982         /*
  983          * L3
  984          *
  985          * Copy the 4 machine addresses of the new PTDs in to the PDPT
  986          * 
  987          */
  988         for (i = 0; i < 4; i++)
  989                 IdlePDPTnew[i] = IdlePTDnewma[i] | PG_V;
  990 
  991         __asm__("nop;");
  992         /*
  993          *
  994          * re-map the new PDPT read-only
  995          */
  996         PT_SET_MA(IdlePDPTnew, IdlePDPTnewma | PG_V);
  997         /*
  998          * 
  999          * Unpin the current PDPT
 1000          */
 1001         xen_pt_unpin(IdlePDPTma);
 1002 
 1003 #endif  /* PAE */
 1004 
 1005         /* Map proc0's KSTACK */
 1006         proc0kstack = cur_space; cur_space += (KSTACK_PAGES * PAGE_SIZE);
 1007         printk("proc0kstack=%u\n", proc0kstack);
 1008 
 1009         /* vm86/bios stack */
 1010         cur_space += PAGE_SIZE;
 1011 
 1012         /* Map space for the vm86 region */
 1013         vm86paddr = (vm_offset_t)cur_space;
 1014         cur_space += (PAGE_SIZE * 3);
 1015 
 1016         /* allocate 4 pages for bootmem allocator */
 1017         bootmem_start = bootmem_current = (char *)cur_space;
 1018         cur_space += (4 * PAGE_SIZE);
 1019         bootmem_end = (char *)cur_space;
 1020         
 1021         /* allocate pages for gdt */
 1022         gdt = (union descriptor *)cur_space;
 1023         cur_space += PAGE_SIZE*ncpus;
 1024 
 1025         /* allocate page for ldt */
 1026         ldt = (union descriptor *)cur_space; cur_space += PAGE_SIZE;
 1027         cur_space += PAGE_SIZE;
 1028         
 1029         /* unmap remaining pages from initial chunk
 1030          *
 1031          */
 1032         for (tmpva = cur_space; tmpva < (((uint32_t)&kernbase) + (l1_pages<<PDRSHIFT));
 1033              tmpva += PAGE_SIZE) {
 1034                 bzero((char *)tmpva, PAGE_SIZE);
 1035                 PT_SET_MA(tmpva, (vm_paddr_t)0);
 1036         }
 1037 
 1038         PT_UPDATES_FLUSH();
 1039 
 1040         memcpy(((uint8_t *)IdlePTDnew) + ((unsigned int)(KERNBASE >> 18)),
 1041             ((uint8_t *)IdlePTD) + ((KERNBASE >> 18) & PAGE_MASK),
 1042             l1_pages*sizeof(pt_entry_t));
 1043 
 1044         for (i = 0; i < 4; i++) {
 1045                 PT_SET_MA((uint8_t *)IdlePTDnew + i*PAGE_SIZE,
 1046                     IdlePTDnewma[i] | PG_V);
 1047         }
 1048         xen_load_cr3(VTOP(IdlePDPTnew));
 1049         xen_pgdpt_pin(VTOM(IdlePDPTnew));
 1050 
 1051         /* allocate remainder of nkpt pages */
 1052         cur_space_pt = cur_space;
 1053         for (offset = (KERNBASE >> PDRSHIFT), i = l1_pages; i < nkpt;
 1054              i++, cur_space += PAGE_SIZE) {
 1055                 pdir = (offset + i) / NPDEPG;
 1056                 curoffset = ((offset + i) % NPDEPG);
 1057                 if (((offset + i) << PDRSHIFT) == VM_MAX_KERNEL_ADDRESS)
 1058                         break;
 1059 
 1060                 /*
 1061                  * make sure that all the initial page table pages
 1062                  * have been zeroed
 1063                  */
 1064                 PT_SET_MA(cur_space, VTOM(cur_space) | PG_V | PG_RW);
 1065                 bzero((char *)cur_space, PAGE_SIZE);
 1066                 PT_SET_MA(cur_space, (vm_paddr_t)0);
 1067                 xen_pt_pin(VTOM(cur_space));
 1068                 xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
 1069                         curoffset*sizeof(vm_paddr_t)), 
 1070                     VTOM(cur_space) | PG_KERNEL);
 1071                 PT_UPDATES_FLUSH();
 1072         }
 1073         
 1074         for (i = 0; i < 4; i++) {
 1075                 pdir = (PTDPTDI + i) / NPDEPG;
 1076                 curoffset = (PTDPTDI + i) % NPDEPG;
 1077 
 1078                 xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
 1079                         curoffset*sizeof(vm_paddr_t)), 
 1080                     IdlePTDnewma[i] | PG_V);
 1081         }
 1082 
 1083         PT_UPDATES_FLUSH();
 1084         
 1085         IdlePTD = IdlePTDnew;
 1086         IdlePDPT = IdlePDPTnew;
 1087         IdlePDPTma = IdlePDPTnewma;
 1088         
 1089         HYPERVISOR_shared_info = (shared_info_t *)cur_space;
 1090         cur_space += PAGE_SIZE;
 1091 
 1092         xen_store = (struct xenstore_domain_interface *)cur_space;
 1093         cur_space += PAGE_SIZE;
 1094 
 1095         console_page = (char *)cur_space;
 1096         cur_space += PAGE_SIZE;
 1097         
 1098         /*
 1099          * shared_info is an unsigned long so this will randomly break if
 1100          * it is allocated above 4GB - I guess people are used to that
 1101          * sort of thing with Xen ... sigh
 1102          */
 1103         shinfo = xen_start_info->shared_info;
 1104         PT_SET_MA(HYPERVISOR_shared_info, shinfo | PG_KERNEL);
 1105         
 1106         printk("#4\n");
 1107 
 1108         xen_store_ma = (((vm_paddr_t)xen_start_info->store_mfn) << PAGE_SHIFT);
 1109         PT_SET_MA(xen_store, xen_store_ma | PG_KERNEL);
 1110         console_page_ma = (((vm_paddr_t)xen_start_info->console.domU.mfn) << PAGE_SHIFT);
 1111         PT_SET_MA(console_page, console_page_ma | PG_KERNEL);
 1112 
 1113         printk("#5\n");
 1114 
 1115         set_iopl.iopl = 1;
 1116         PANIC_IF(HYPERVISOR_physdev_op(PHYSDEVOP_SET_IOPL, &set_iopl));
 1117         printk("#6\n");
 1118 #if 0
 1119         /* add page table for KERNBASE */
 1120         xen_queue_pt_update(IdlePTDma + KPTDI*sizeof(vm_paddr_t), 
 1121                             VTOM(cur_space) | PG_KERNEL);
 1122         xen_flush_queue();
 1123 #ifdef PAE      
 1124         xen_queue_pt_update(pdir_shadow_ma[3] + KPTDI*sizeof(vm_paddr_t), 
 1125                             VTOM(cur_space) | PG_V | PG_A);
 1126 #else
 1127         xen_queue_pt_update(pdir_shadow_ma + KPTDI*sizeof(vm_paddr_t), 
 1128                             VTOM(cur_space) | PG_V | PG_A);
 1129 #endif  
 1130         xen_flush_queue();
 1131         cur_space += PAGE_SIZE;
 1132         printk("#6\n");
 1133 #endif /* 0 */  
 1134 #ifdef notyet
 1135         if (xen_start_info->flags & SIF_INITDOMAIN) {
 1136                 /* Map first megabyte */
 1137                 for (i = 0; i < (256 << PAGE_SHIFT); i += PAGE_SIZE) 
 1138                         PT_SET_MA(KERNBASE + i, i | PG_KERNEL | PG_NC_PCD);
 1139                 xen_flush_queue();
 1140         }
 1141 #endif
 1142         /*
 1143          * re-map kernel text read-only
 1144          *
 1145          */
 1146         for (i = (((vm_offset_t)&btext) & ~PAGE_MASK);
 1147              i < (((vm_offset_t)&etext) & ~PAGE_MASK); i += PAGE_SIZE)
 1148                 PT_SET_MA(i, VTOM(i) | PG_V | PG_A);
 1149         
 1150         printk("#7\n");
 1151         physfree = VTOP(cur_space);
 1152         init_first = physfree >> PAGE_SHIFT;
 1153         IdlePTD = (pd_entry_t *)VTOP(IdlePTD);
 1154         IdlePDPT = (pd_entry_t *)VTOP(IdlePDPT);
 1155         setup_xen_features();
 1156         printk("#8, proc0kstack=%u\n", proc0kstack);
 1157 }
 1158 
 1159 
 1160 trap_info_t trap_table[] = {
 1161         { 0,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(div)},
 1162         { 1,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dbg)},
 1163         { 3,   3|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bpt)},
 1164         { 4,   3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ofl)},
 1165         /* This is UPL on Linux and KPL on BSD */
 1166         { 5,   3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bnd)},
 1167         { 6,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ill)},
 1168         { 7,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dna)},
 1169         /*
 1170          * { 8,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(XXX)},
 1171          *   no handler for double fault
 1172          */
 1173         { 9,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpusegm)},
 1174         {10,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(tss)},
 1175         {11,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(missing)},
 1176         {12,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(stk)},
 1177         {13,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(prot)},
 1178         {14,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(page)},
 1179         {15,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(rsvd)},
 1180         {16,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpu)},
 1181         {17,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(align)},
 1182         {18,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(mchk)},
 1183         {19,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(xmm)},
 1184         {0x80, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(int0x80_syscall)},
 1185         {  0, 0,           0, 0 }
 1186 };
 1187 
 1188 /* Perform a multicall and check that individual calls succeeded. */
 1189 int
 1190 HYPERVISOR_multicall(struct multicall_entry * call_list, int nr_calls)
 1191 {
 1192         int ret = 0;
 1193         int i;
 1194 
 1195         /* Perform the multicall. */
 1196         PANIC_IF(_HYPERVISOR_multicall(call_list, nr_calls));
 1197 
 1198         /* Check the results of individual hypercalls. */
 1199         for (i = 0; i < nr_calls; i++)
 1200                 if (unlikely(call_list[i].result < 0))
 1201                         ret++;
 1202         if (unlikely(ret > 0))
 1203                 panic("%d multicall(s) failed: cpu %d\n",
 1204                     ret, smp_processor_id());
 1205 
 1206         /* If we didn't panic already, everything succeeded. */
 1207         return (0);
 1208 }
 1209 
 1210 /********** CODE WORTH KEEPING ABOVE HERE *****************/ 
 1211 
 1212 void xen_failsafe_handler(void);
 1213 
 1214 void
 1215 xen_failsafe_handler(void)
 1216 {
 1217 
 1218         panic("xen_failsafe_handler called!\n");
 1219 }
 1220 
 1221 void xen_handle_thread_switch(struct pcb *pcb);
 1222 
 1223 /* This is called by cpu_switch() when switching threads. */
 1224 /* The pcb arg refers to the process control block of the */
 1225 /* next thread which is to run */
 1226 void
 1227 xen_handle_thread_switch(struct pcb *pcb)
 1228 {
 1229     uint32_t *a = (uint32_t *)&PCPU_GET(fsgs_gdt)[0];
 1230     uint32_t *b = (uint32_t *)&pcb->pcb_fsd;
 1231     multicall_entry_t mcl[3];
 1232     int i = 0;
 1233 
 1234     /* Notify Xen of task switch */
 1235     mcl[i].op = __HYPERVISOR_stack_switch;
 1236     mcl[i].args[0] = GSEL(GDATA_SEL, SEL_KPL);
 1237     mcl[i++].args[1] = (unsigned long)pcb;
 1238 
 1239     /* Check for update of fsd */
 1240     if (*a != *b || *(a+1) != *(b+1)) {
 1241         mcl[i].op = __HYPERVISOR_update_descriptor;
 1242         *(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
 1243         *(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
 1244     }    
 1245 
 1246     a += 2;
 1247     b += 2;
 1248 
 1249     /* Check for update of gsd */
 1250     if (*a != *b || *(a+1) != *(b+1)) {
 1251         mcl[i].op = __HYPERVISOR_update_descriptor;
 1252         *(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
 1253         *(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
 1254     }    
 1255 
 1256     (void)HYPERVISOR_multicall(mcl, i);
 1257 }

Cache object: 271f8facdced64613381f801352361ce


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.