The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ia64/ia64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003,2004 Marcel Moolenaar
    3  * Copyright (c) 2000,2001 Doug Rabson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/10.0/sys/ia64/ia64/machdep.c 248084 2013-03-09 02:32:23Z attilio $");
   30 
   31 #include "opt_compat.h"
   32 #include "opt_ddb.h"
   33 #include "opt_kstack_pages.h"
   34 #include "opt_sched.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/proc.h>
   38 #include <sys/systm.h>
   39 #include <sys/bio.h>
   40 #include <sys/buf.h>
   41 #include <sys/bus.h>
   42 #include <sys/cons.h>
   43 #include <sys/cpu.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/exec.h>
   46 #include <sys/imgact.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/linker.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mbuf.h>
   53 #include <sys/msgbuf.h>
   54 #include <sys/pcpu.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/random.h>
   57 #include <sys/reboot.h>
   58 #include <sys/rwlock.h>
   59 #include <sys/sched.h>
   60 #include <sys/signalvar.h>
   61 #include <sys/syscall.h>
   62 #include <sys/syscallsubr.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/sysproto.h>
   65 #include <sys/ucontext.h>
   66 #include <sys/uio.h>
   67 #include <sys/uuid.h>
   68 #include <sys/vmmeter.h>
   69 #include <sys/vnode.h>
   70 
   71 #include <ddb/ddb.h>
   72 
   73 #include <net/netisr.h>
   74 
   75 #include <vm/vm.h>
   76 #include <vm/vm_extern.h>
   77 #include <vm/vm_kern.h>
   78 #include <vm/vm_page.h>
   79 #include <vm/vm_map.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_pager.h>
   82 
   83 #include <machine/bootinfo.h>
   84 #include <machine/cpu.h>
   85 #include <machine/efi.h>
   86 #include <machine/elf.h>
   87 #include <machine/fpu.h>
   88 #include <machine/intr.h>
   89 #include <machine/mca.h>
   90 #include <machine/md_var.h>
   91 #include <machine/pal.h>
   92 #include <machine/pcb.h>
   93 #include <machine/reg.h>
   94 #include <machine/sal.h>
   95 #include <machine/sigframe.h>
   96 #ifdef SMP
   97 #include <machine/smp.h>
   98 #endif
   99 #include <machine/unwind.h>
  100 #include <machine/vmparam.h>
  101 
  102 /*
  103  * For atomicity reasons, we demand that pc_curthread is the first
  104  * field in the struct pcpu. It allows us to read the pointer with
  105  * a single atomic instruction:
  106  *      ld8 %curthread = [r13]
  107  * Otherwise we would first have to calculate the load address and
  108  * store the result in a temporary register and that for the load:
  109  *      add %temp = %offsetof(struct pcpu), r13
  110  *      ld8 %curthread = [%temp]
  111  * A context switch inbetween the add and the ld8 could have the
  112  * thread migrate to a different core. In that case,  %curthread
  113  * would be the thread running on the original core and not actually
  114  * the current thread.
  115  */
  116 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  117 
  118 static SYSCTL_NODE(_hw, OID_AUTO, freq, CTLFLAG_RD, 0, "");
  119 static SYSCTL_NODE(_machdep, OID_AUTO, cpu, CTLFLAG_RD, 0, "");
  120 
  121 static u_int bus_freq;
  122 SYSCTL_UINT(_hw_freq, OID_AUTO, bus, CTLFLAG_RD, &bus_freq, 0,
  123     "Bus clock frequency");
  124 
  125 static u_int cpu_freq;
  126 SYSCTL_UINT(_hw_freq, OID_AUTO, cpu, CTLFLAG_RD, &cpu_freq, 0,
  127     "CPU clock frequency");
  128 
  129 static u_int itc_freq;
  130 SYSCTL_UINT(_hw_freq, OID_AUTO, itc, CTLFLAG_RD, &itc_freq, 0,
  131     "ITC frequency");
  132 
  133 int cold = 1;
  134 
  135 struct bootinfo *bootinfo;
  136 
  137 struct pcpu pcpu0;
  138 
  139 extern u_int64_t kernel_text[], _end[];
  140 
  141 extern u_int64_t ia64_gateway_page[];
  142 extern u_int64_t break_sigtramp[];
  143 extern u_int64_t epc_sigtramp[];
  144 
  145 struct fpswa_iface *fpswa_iface;
  146 
  147 vm_size_t ia64_pal_size;
  148 vm_paddr_t ia64_pal_base;
  149 vm_offset_t ia64_port_base;
  150 
  151 u_int64_t ia64_lapic_addr = PAL_PIB_DEFAULT_ADDR;
  152 
  153 struct ia64_pib *ia64_pib;
  154 
  155 static int ia64_sync_icache_needed;
  156 
  157 char machine[] = MACHINE;
  158 SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
  159 
  160 static char cpu_model[64];
  161 SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0,
  162     "The CPU model name");
  163 
  164 static char cpu_family[64];
  165 SYSCTL_STRING(_hw, OID_AUTO, family, CTLFLAG_RD, cpu_family, 0,
  166     "The CPU family name");
  167 
  168 #ifdef DDB
  169 extern vm_offset_t ksym_start, ksym_end;
  170 #endif
  171 
  172 struct msgbuf *msgbufp = NULL;
  173 
  174 /* Other subsystems (e.g., ACPI) can hook this later. */
  175 void (*cpu_idle_hook)(sbintime_t) = NULL;
  176 
  177 struct kva_md_info kmi;
  178 
  179 #define Mhz     1000000L
  180 #define Ghz     (1000L*Mhz)
  181 
  182 static void
  183 identifycpu(void)
  184 {
  185         char vendor[17];
  186         char *family_name, *model_name;
  187         u_int64_t features, tmp;
  188         int number, revision, model, family, archrev;
  189 
  190         /*
  191          * Assumes little-endian.
  192          */
  193         *(u_int64_t *) &vendor[0] = ia64_get_cpuid(0);
  194         *(u_int64_t *) &vendor[8] = ia64_get_cpuid(1);
  195         vendor[16] = '\0';
  196 
  197         tmp = ia64_get_cpuid(3);
  198         number = (tmp >> 0) & 0xff;
  199         revision = (tmp >> 8) & 0xff;
  200         model = (tmp >> 16) & 0xff;
  201         family = (tmp >> 24) & 0xff;
  202         archrev = (tmp >> 32) & 0xff;
  203 
  204         family_name = model_name = "unknown";
  205         switch (family) {
  206         case 0x07:
  207                 family_name = "Itanium";
  208                 model_name = "Merced";
  209                 break;
  210         case 0x1f:
  211                 family_name = "Itanium 2";
  212                 switch (model) {
  213                 case 0x00:
  214                         model_name = "McKinley";
  215                         break;
  216                 case 0x01:
  217                         /*
  218                          * Deerfield is a low-voltage variant based on the
  219                          * Madison core. We need circumstantial evidence
  220                          * (i.e. the clock frequency) to identify those.
  221                          * Allow for roughly 1% error margin.
  222                          */
  223                         if (cpu_freq > 990 && cpu_freq < 1010)
  224                                 model_name = "Deerfield";
  225                         else
  226                                 model_name = "Madison";
  227                         break;
  228                 case 0x02:
  229                         model_name = "Madison II";
  230                         break;
  231                 }
  232                 break;
  233         case 0x20:
  234                 ia64_sync_icache_needed = 1;
  235 
  236                 family_name = "Itanium 2";
  237                 switch (model) {
  238                 case 0x00:
  239                         model_name = "Montecito";
  240                         break;
  241                 case 0x01:
  242                         model_name = "Montvale";
  243                         break;
  244                 }
  245                 break;
  246         }
  247         snprintf(cpu_family, sizeof(cpu_family), "%s", family_name);
  248         snprintf(cpu_model, sizeof(cpu_model), "%s", model_name);
  249 
  250         features = ia64_get_cpuid(4);
  251 
  252         printf("CPU: %s (", model_name);
  253         if (cpu_freq)
  254                 printf("%u MHz ", cpu_freq);
  255         printf("%s)\n", family_name);
  256         printf("  Origin = \"%s\"  Revision = %d\n", vendor, revision);
  257         printf("  Features = 0x%b\n", (u_int32_t) features,
  258             "\020"
  259             "\001LB"    /* long branch (brl) instruction. */
  260             "\002SD"    /* Spontaneous deferral. */
  261             "\003AO"    /* 16-byte atomic operations (ld, st, cmpxchg). */ );
  262 }
  263 
  264 static void
  265 cpu_startup(void *dummy)
  266 {
  267         char nodename[16];
  268         struct pcpu *pc;
  269         struct pcpu_stats *pcs;
  270 
  271         /*
  272          * Good {morning,afternoon,evening,night}.
  273          */
  274         identifycpu();
  275 
  276 #ifdef PERFMON
  277         perfmon_init();
  278 #endif
  279         printf("real memory  = %ld (%ld MB)\n", ptoa(realmem),
  280             ptoa(realmem) / 1048576);
  281 
  282         vm_ksubmap_init(&kmi);
  283 
  284         printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
  285             ptoa(cnt.v_free_count) / 1048576);
  286  
  287         if (fpswa_iface == NULL)
  288                 printf("Warning: no FPSWA package supplied\n");
  289         else
  290                 printf("FPSWA Revision = 0x%lx, Entry = %p\n",
  291                     (long)fpswa_iface->if_rev, (void *)fpswa_iface->if_fpswa);
  292 
  293         /*
  294          * Set up buffers, so they can be used to read disk labels.
  295          */
  296         bufinit();
  297         vm_pager_bufferinit();
  298 
  299         /*
  300          * Traverse the MADT to discover IOSAPIC and Local SAPIC
  301          * information.
  302          */
  303         ia64_probe_sapics();
  304         ia64_pib = pmap_mapdev(ia64_lapic_addr, sizeof(*ia64_pib));
  305 
  306         ia64_mca_init();
  307 
  308         /*
  309          * Create sysctl tree for per-CPU information.
  310          */
  311         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
  312                 snprintf(nodename, sizeof(nodename), "%u", pc->pc_cpuid);
  313                 sysctl_ctx_init(&pc->pc_md.sysctl_ctx);
  314                 pc->pc_md.sysctl_tree = SYSCTL_ADD_NODE(&pc->pc_md.sysctl_ctx,
  315                     SYSCTL_STATIC_CHILDREN(_machdep_cpu), OID_AUTO, nodename,
  316                     CTLFLAG_RD, NULL, "");
  317                 if (pc->pc_md.sysctl_tree == NULL)
  318                         continue;
  319 
  320                 pcs = &pc->pc_md.stats;
  321 
  322                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  323                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  324                     "nasts", CTLFLAG_RD, &pcs->pcs_nasts,
  325                     "Number of IPI_AST interrupts");
  326 
  327                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  328                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  329                     "nclks", CTLFLAG_RD, &pcs->pcs_nclks,
  330                     "Number of clock interrupts");
  331 
  332                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  333                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  334                     "nextints", CTLFLAG_RD, &pcs->pcs_nextints,
  335                     "Number of ExtINT interrupts");
  336 
  337                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  338                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  339                     "nhardclocks", CTLFLAG_RD, &pcs->pcs_nhardclocks,
  340                     "Number of IPI_HARDCLOCK interrupts");
  341 
  342                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  343                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  344                     "nhighfps", CTLFLAG_RD, &pcs->pcs_nhighfps,
  345                     "Number of IPI_HIGH_FP interrupts");
  346 
  347                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  348                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  349                     "nhwints", CTLFLAG_RD, &pcs->pcs_nhwints,
  350                     "Number of hardware (device) interrupts");
  351 
  352                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  353                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  354                     "npreempts", CTLFLAG_RD, &pcs->pcs_npreempts,
  355                     "Number of IPI_PREEMPT interrupts");
  356 
  357                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  358                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  359                     "nrdvs", CTLFLAG_RD, &pcs->pcs_nrdvs,
  360                     "Number of IPI_RENDEZVOUS interrupts");
  361 
  362                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  363                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  364                     "nstops", CTLFLAG_RD, &pcs->pcs_nstops,
  365                     "Number of IPI_STOP interrupts");
  366 
  367                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  368                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  369                     "nstrays", CTLFLAG_RD, &pcs->pcs_nstrays,
  370                     "Number of stray interrupts");
  371         }
  372 }
  373 SYSINIT(cpu_startup, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  374 
  375 void
  376 cpu_flush_dcache(void *ptr, size_t len)
  377 {
  378         vm_offset_t lim, va;
  379 
  380         va = (uintptr_t)ptr & ~31;
  381         lim = (uintptr_t)ptr + len;
  382         while (va < lim) {
  383                 ia64_fc(va);
  384                 va += 32;
  385         }
  386 
  387         ia64_srlz_d();
  388 }
  389 
  390 /* Get current clock frequency for the given cpu id. */
  391 int
  392 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  393 {
  394 
  395         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  396                 return (EINVAL);
  397         *rate = (u_long)cpu_freq * 1000000ul;
  398         return (0);
  399 }
  400 
  401 void
  402 cpu_halt()
  403 {
  404 
  405         efi_reset_system();
  406 }
  407 
  408 void
  409 cpu_idle(int busy)
  410 {
  411         register_t ie;
  412         sbintime_t sbt = -1;
  413 
  414         if (!busy) {
  415                 critical_enter();
  416                 sbt = cpu_idleclock();
  417         }
  418 
  419         ie = intr_disable();
  420         KASSERT(ie != 0, ("%s called with interrupts disabled\n", __func__));
  421 
  422         if (sched_runnable())
  423                 ia64_enable_intr();
  424         else if (cpu_idle_hook != NULL) {
  425                 (*cpu_idle_hook)(sbt);
  426                 /* The hook must enable interrupts! */
  427         } else {
  428                 ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
  429                 ia64_enable_intr();
  430         }
  431 
  432         if (!busy) {
  433                 cpu_activeclock();
  434                 critical_exit();
  435         }
  436 }
  437 
  438 int
  439 cpu_idle_wakeup(int cpu)
  440 {
  441 
  442         return (0);
  443 }
  444 
  445 void
  446 cpu_reset()
  447 {
  448 
  449         efi_reset_system();
  450 }
  451 
  452 void
  453 cpu_switch(struct thread *old, struct thread *new, struct mtx *mtx)
  454 {
  455         struct pcb *oldpcb, *newpcb;
  456 
  457         oldpcb = old->td_pcb;
  458 #ifdef COMPAT_FREEBSD32
  459         ia32_savectx(oldpcb);
  460 #endif
  461         if (PCPU_GET(fpcurthread) == old)
  462                 old->td_frame->tf_special.psr |= IA64_PSR_DFH;
  463         if (!savectx(oldpcb)) {
  464                 newpcb = new->td_pcb;
  465                 oldpcb->pcb_current_pmap =
  466                     pmap_switch(newpcb->pcb_current_pmap);
  467 
  468                 atomic_store_rel_ptr(&old->td_lock, mtx);
  469 
  470 #if defined(SCHED_ULE) && defined(SMP)
  471                 while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
  472                         cpu_spinwait();
  473 #endif
  474 
  475                 PCPU_SET(curthread, new);
  476 
  477 #ifdef COMPAT_FREEBSD32
  478                 ia32_restorectx(newpcb);
  479 #endif
  480 
  481                 if (PCPU_GET(fpcurthread) == new)
  482                         new->td_frame->tf_special.psr &= ~IA64_PSR_DFH;
  483                 restorectx(newpcb);
  484                 /* We should not get here. */
  485                 panic("cpu_switch: restorectx() returned");
  486                 /* NOTREACHED */
  487         }
  488 }
  489 
  490 void
  491 cpu_throw(struct thread *old __unused, struct thread *new)
  492 {
  493         struct pcb *newpcb;
  494 
  495         newpcb = new->td_pcb;
  496         (void)pmap_switch(newpcb->pcb_current_pmap);
  497 
  498 #if defined(SCHED_ULE) && defined(SMP)
  499         while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
  500                 cpu_spinwait();
  501 #endif
  502 
  503         PCPU_SET(curthread, new);
  504 
  505 #ifdef COMPAT_FREEBSD32
  506         ia32_restorectx(newpcb);
  507 #endif
  508 
  509         restorectx(newpcb);
  510         /* We should not get here. */
  511         panic("cpu_throw: restorectx() returned");
  512         /* NOTREACHED */
  513 }
  514 
  515 void
  516 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  517 {
  518 
  519         /*
  520          * Set pc_acpi_id to "uninitialized".
  521          * See sys/dev/acpica/acpi_cpu.c
  522          */
  523         pcpu->pc_acpi_id = 0xffffffff;
  524 }
  525 
  526 void
  527 cpu_pcpu_setup(struct pcpu *pc, u_int acpi_id, u_int sapic_id)
  528 {
  529 
  530         pc->pc_acpi_id = acpi_id;
  531         pc->pc_md.lid = IA64_LID_SET_SAPIC_ID(sapic_id);
  532 }
  533  
  534 void
  535 spinlock_enter(void)
  536 {
  537         struct thread *td;
  538         int intr;
  539 
  540         td = curthread;
  541         if (td->td_md.md_spinlock_count == 0) {
  542                 intr = intr_disable();
  543                 td->td_md.md_spinlock_count = 1;
  544                 td->td_md.md_saved_intr = intr;
  545         } else
  546                 td->td_md.md_spinlock_count++;
  547         critical_enter();
  548 }
  549 
  550 void
  551 spinlock_exit(void)
  552 {
  553         struct thread *td;
  554         int intr;
  555 
  556         td = curthread;
  557         critical_exit();
  558         intr = td->td_md.md_saved_intr;
  559         td->td_md.md_spinlock_count--;
  560         if (td->td_md.md_spinlock_count == 0)
  561                 intr_restore(intr);
  562 }
  563 
  564 void
  565 map_vhpt(uintptr_t vhpt)
  566 {
  567         pt_entry_t pte;
  568         uint64_t psr;
  569 
  570         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
  571             PTE_PL_KERN | PTE_AR_RW;
  572         pte |= vhpt & PTE_PPN_MASK;
  573 
  574         __asm __volatile("ptr.d %0,%1" :: "r"(vhpt),
  575             "r"(pmap_vhpt_log2size << 2));
  576 
  577         __asm __volatile("mov   %0=psr" : "=r"(psr));
  578         __asm __volatile("rsm   psr.ic|psr.i");
  579         ia64_srlz_i();
  580         ia64_set_ifa(vhpt);
  581         ia64_set_itir(pmap_vhpt_log2size << 2);
  582         ia64_srlz_d();
  583         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(3), "r"(pte));
  584         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
  585         ia64_srlz_i();
  586 }
  587 
  588 void
  589 map_pal_code(void)
  590 {
  591         pt_entry_t pte;
  592         vm_offset_t va;
  593         vm_size_t sz;
  594         uint64_t psr;
  595         u_int shft;
  596 
  597         if (ia64_pal_size == 0)
  598                 return;
  599 
  600         va = IA64_PHYS_TO_RR7(ia64_pal_base);
  601 
  602         sz = ia64_pal_size;
  603         shft = 0;
  604         while (sz > 1) {
  605                 shft++;
  606                 sz >>= 1;
  607         }
  608 
  609         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
  610             PTE_PL_KERN | PTE_AR_RWX;
  611         pte |= ia64_pal_base & PTE_PPN_MASK;
  612 
  613         __asm __volatile("ptr.d %0,%1; ptr.i %0,%1" :: "r"(va), "r"(shft<<2));
  614 
  615         __asm __volatile("mov   %0=psr" : "=r"(psr));
  616         __asm __volatile("rsm   psr.ic|psr.i");
  617         ia64_srlz_i();
  618         ia64_set_ifa(va);
  619         ia64_set_itir(shft << 2);
  620         ia64_srlz_d();
  621         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(4), "r"(pte));
  622         ia64_srlz_d();
  623         __asm __volatile("itr.i itr[%0]=%1" :: "r"(1), "r"(pte));
  624         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
  625         ia64_srlz_i();
  626 }
  627 
  628 void
  629 map_gateway_page(void)
  630 {
  631         pt_entry_t pte;
  632         uint64_t psr;
  633 
  634         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
  635             PTE_PL_KERN | PTE_AR_X_RX;
  636         pte |= ia64_tpa((uint64_t)ia64_gateway_page) & PTE_PPN_MASK;
  637 
  638         __asm __volatile("ptr.d %0,%1; ptr.i %0,%1" ::
  639             "r"(VM_MAXUSER_ADDRESS), "r"(PAGE_SHIFT << 2));
  640 
  641         __asm __volatile("mov   %0=psr" : "=r"(psr));
  642         __asm __volatile("rsm   psr.ic|psr.i");
  643         ia64_srlz_i();
  644         ia64_set_ifa(VM_MAXUSER_ADDRESS);
  645         ia64_set_itir(PAGE_SHIFT << 2);
  646         ia64_srlz_d();
  647         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(5), "r"(pte));
  648         ia64_srlz_d();
  649         __asm __volatile("itr.i itr[%0]=%1" :: "r"(2), "r"(pte));
  650         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
  651         ia64_srlz_i();
  652 
  653         /* Expose the mapping to userland in ar.k5 */
  654         ia64_set_k5(VM_MAXUSER_ADDRESS);
  655 }
  656 
  657 static u_int
  658 freq_ratio(u_long base, u_long ratio)
  659 {
  660         u_long f;
  661 
  662         f = (base * (ratio >> 32)) / (ratio & 0xfffffffful);
  663         return ((f + 500000) / 1000000);
  664 }
  665 
  666 static void
  667 calculate_frequencies(void)
  668 {
  669         struct ia64_sal_result sal;
  670         struct ia64_pal_result pal;
  671         register_t ie;
  672 
  673         ie = intr_disable();
  674         sal = ia64_sal_entry(SAL_FREQ_BASE, 0, 0, 0, 0, 0, 0, 0);
  675         pal = ia64_call_pal_static(PAL_FREQ_RATIOS, 0, 0, 0);
  676         intr_restore(ie);
  677 
  678         if (sal.sal_status == 0 && pal.pal_status == 0) {
  679                 if (bootverbose) {
  680                         printf("Platform clock frequency %ld Hz\n",
  681                                sal.sal_result[0]);
  682                         printf("Processor ratio %ld/%ld, Bus ratio %ld/%ld, "
  683                                "ITC ratio %ld/%ld\n",
  684                                pal.pal_result[0] >> 32,
  685                                pal.pal_result[0] & ((1L << 32) - 1),
  686                                pal.pal_result[1] >> 32,
  687                                pal.pal_result[1] & ((1L << 32) - 1),
  688                                pal.pal_result[2] >> 32,
  689                                pal.pal_result[2] & ((1L << 32) - 1));
  690                 }
  691                 cpu_freq = freq_ratio(sal.sal_result[0], pal.pal_result[0]);
  692                 bus_freq = freq_ratio(sal.sal_result[0], pal.pal_result[1]);
  693                 itc_freq = freq_ratio(sal.sal_result[0], pal.pal_result[2]);
  694         }
  695 }
  696 
  697 struct ia64_init_return
  698 ia64_init(void)
  699 {
  700         struct ia64_init_return ret;
  701         struct efi_md *md;
  702         pt_entry_t *pbvm_pgtbl_ent, *pbvm_pgtbl_lim;
  703         char *p;
  704         vm_size_t mdlen;
  705         int metadata_missing;
  706 
  707         /*
  708          * NO OUTPUT ALLOWED UNTIL FURTHER NOTICE.
  709          */
  710 
  711         ia64_set_fpsr(IA64_FPSR_DEFAULT);
  712 
  713         /*
  714          * Region 6 is direct mapped UC and region 7 is direct mapped
  715          * WC. The details of this is controlled by the Alt {I,D}TLB
  716          * handlers. Here we just make sure that they have the largest
  717          * possible page size to minimise TLB usage.
  718          */
  719         ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (PAGE_SHIFT << 2));
  720         ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (PAGE_SHIFT << 2));
  721         ia64_srlz_d();
  722 
  723         /* Initialize/setup physical memory datastructures */
  724         ia64_physmem_init();
  725 
  726         /*
  727          * Process the memory map. This gives us the PAL locations,
  728          * the I/O port base address, the available memory regions
  729          * for initializing the physical memory map.
  730          */
  731         for (md = efi_md_first(); md != NULL; md = efi_md_next(md)) {
  732                 mdlen = md->md_pages * EFI_PAGE_SIZE;
  733                 switch (md->md_type) {
  734                 case EFI_MD_TYPE_IOPORT:
  735                         ia64_port_base = (uintptr_t)pmap_mapdev(md->md_phys,
  736                             mdlen);
  737                         break;
  738                 case EFI_MD_TYPE_PALCODE:
  739                         ia64_pal_base = md->md_phys;
  740                         ia64_pal_size = mdlen;
  741                         /*FALLTHROUGH*/
  742                 case EFI_MD_TYPE_BAD:
  743                 case EFI_MD_TYPE_FIRMWARE:
  744                 case EFI_MD_TYPE_RECLAIM:
  745                 case EFI_MD_TYPE_RT_CODE:
  746                 case EFI_MD_TYPE_RT_DATA:
  747                         /* Don't use these memory regions. */
  748                         ia64_physmem_track(md->md_phys, mdlen);
  749                         break;
  750                 case EFI_MD_TYPE_BS_CODE:
  751                 case EFI_MD_TYPE_BS_DATA:
  752                 case EFI_MD_TYPE_CODE:
  753                 case EFI_MD_TYPE_DATA:
  754                 case EFI_MD_TYPE_FREE:
  755                         /* These are ok to use. */
  756                         ia64_physmem_add(md->md_phys, mdlen);
  757                         break;
  758                 }
  759         }
  760 
  761         /*
  762          * Remove the PBVM and its page table from phys_avail. The loader
  763          * passes the physical address of the page table to us. The virtual
  764          * address of the page table is fixed.
  765          * Track and the PBVM limit for later use.
  766          */
  767         ia64_physmem_delete(bootinfo->bi_pbvm_pgtbl, bootinfo->bi_pbvm_pgtblsz);
  768         pbvm_pgtbl_ent = (void *)IA64_PBVM_PGTBL;
  769         pbvm_pgtbl_lim = (void *)(IA64_PBVM_PGTBL + bootinfo->bi_pbvm_pgtblsz);
  770         while (pbvm_pgtbl_ent < pbvm_pgtbl_lim) {
  771                 if ((*pbvm_pgtbl_ent & PTE_PRESENT) == 0)
  772                         break;
  773                 ia64_physmem_delete(*pbvm_pgtbl_ent & PTE_PPN_MASK,
  774                     IA64_PBVM_PAGE_SIZE);
  775                 pbvm_pgtbl_ent++;
  776         }
  777 
  778         /* Finalize physical memory datastructures */
  779         ia64_physmem_fini();
  780 
  781         metadata_missing = 0;
  782         if (bootinfo->bi_modulep)
  783                 preload_metadata = (caddr_t)bootinfo->bi_modulep;
  784         else
  785                 metadata_missing = 1;
  786 
  787         if (envmode == 0 && bootinfo->bi_envp)
  788                 kern_envp = (caddr_t)bootinfo->bi_envp;
  789         else
  790                 kern_envp = static_env;
  791 
  792         /*
  793          * Look at arguments passed to us and compute boothowto.
  794          */
  795         boothowto = bootinfo->bi_boothowto;
  796 
  797         if (boothowto & RB_VERBOSE)
  798                 bootverbose = 1;
  799 
  800         /*
  801          * Wire things up so we can call the firmware.
  802          */
  803         map_pal_code();
  804         efi_boot_minimal(bootinfo->bi_systab);
  805         ia64_xiv_init();
  806         ia64_sal_init();
  807         calculate_frequencies();
  808 
  809         set_cputicker(ia64_get_itc, (u_long)itc_freq * 1000000, 0);
  810 
  811         /*
  812          * Setup the PCPU data for the bootstrap processor. It is needed
  813          * by printf(). Also, since printf() has critical sections, we
  814          * need to initialize at least pc_curthread.
  815          */
  816         pcpup = &pcpu0;
  817         ia64_set_k4((u_int64_t)pcpup);
  818         pcpu_init(pcpup, 0, sizeof(pcpu0));
  819         dpcpu_init(ia64_physmem_alloc(DPCPU_SIZE, PAGE_SIZE), 0);
  820         cpu_pcpu_setup(pcpup, ~0U, ia64_get_lid());
  821         PCPU_SET(curthread, &thread0);
  822 
  823         /*
  824          * Initialize the console before we print anything out.
  825          */
  826         cninit();
  827 
  828         /* OUTPUT NOW ALLOWED */
  829 
  830         if (metadata_missing)
  831                 printf("WARNING: loader(8) metadata is missing!\n");
  832 
  833         /* Get FPSWA interface */
  834         fpswa_iface = (bootinfo->bi_fpswa == 0) ? NULL :
  835             (struct fpswa_iface *)IA64_PHYS_TO_RR7(bootinfo->bi_fpswa);
  836 
  837         /* Init basic tunables, including hz */
  838         init_param1();
  839 
  840         p = getenv("kernelname");
  841         if (p != NULL) {
  842                 strlcpy(kernelname, p, sizeof(kernelname));
  843                 freeenv(p);
  844         }
  845 
  846         init_param2(physmem);
  847 
  848         /*
  849          * Initialize error message buffer (at end of core).
  850          */
  851         msgbufp = ia64_physmem_alloc(msgbufsize, PAGE_SIZE);
  852         msgbufinit(msgbufp, msgbufsize);
  853 
  854         proc_linkup0(&proc0, &thread0);
  855         /*
  856          * Init mapping for kernel stack for proc 0
  857          */
  858         p = ia64_physmem_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
  859         thread0.td_kstack = (uintptr_t)p;
  860         thread0.td_kstack_pages = KSTACK_PAGES;
  861 
  862         mutex_init();
  863 
  864         /*
  865          * Initialize the rest of proc 0's PCB.
  866          *
  867          * Set the kernel sp, reserving space for an (empty) trapframe,
  868          * and make proc0's trapframe pointer point to it for sanity.
  869          * Initialise proc0's backing store to start after u area.
  870          */
  871         cpu_thread_alloc(&thread0);
  872         thread0.td_frame->tf_flags = FRAME_SYSCALL;
  873         thread0.td_pcb->pcb_special.sp =
  874             (u_int64_t)thread0.td_frame - 16;
  875         thread0.td_pcb->pcb_special.bspstore = thread0.td_kstack;
  876 
  877         /*
  878          * Initialize the virtual memory system.
  879          */
  880         pmap_bootstrap();
  881 
  882         /*
  883          * Initialize debuggers, and break into them if appropriate.
  884          */
  885 #ifdef DDB
  886         ksym_start = bootinfo->bi_symtab;
  887         ksym_end = bootinfo->bi_esymtab;
  888 #endif
  889 
  890         kdb_init();
  891 
  892 #ifdef KDB
  893         if (boothowto & RB_KDB)
  894                 kdb_enter(KDB_WHY_BOOTFLAGS,
  895                     "Boot flags requested debugger\n");
  896 #endif
  897 
  898         ia64_set_tpr(0);
  899         ia64_srlz_d();
  900 
  901         ret.bspstore = thread0.td_pcb->pcb_special.bspstore;
  902         ret.sp = thread0.td_pcb->pcb_special.sp;
  903         return (ret);
  904 }
  905 
  906 uint64_t
  907 ia64_get_hcdp(void)
  908 {
  909 
  910         return (bootinfo->bi_hcdp);
  911 }
  912 
  913 void
  914 bzero(void *buf, size_t len)
  915 {
  916         caddr_t p = buf;
  917 
  918         while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
  919                 *p++ = 0;
  920                 len--;
  921         }
  922         while (len >= sizeof(u_long) * 8) {
  923                 *(u_long*) p = 0;
  924                 *((u_long*) p + 1) = 0;
  925                 *((u_long*) p + 2) = 0;
  926                 *((u_long*) p + 3) = 0;
  927                 len -= sizeof(u_long) * 8;
  928                 *((u_long*) p + 4) = 0;
  929                 *((u_long*) p + 5) = 0;
  930                 *((u_long*) p + 6) = 0;
  931                 *((u_long*) p + 7) = 0;
  932                 p += sizeof(u_long) * 8;
  933         }
  934         while (len >= sizeof(u_long)) {
  935                 *(u_long*) p = 0;
  936                 len -= sizeof(u_long);
  937                 p += sizeof(u_long);
  938         }
  939         while (len) {
  940                 *p++ = 0;
  941                 len--;
  942         }
  943 }
  944 
  945 u_int
  946 ia64_itc_freq(void)
  947 {
  948 
  949         return (itc_freq);
  950 }
  951 
  952 void
  953 DELAY(int n)
  954 {
  955         u_int64_t start, end, now;
  956 
  957         sched_pin();
  958 
  959         start = ia64_get_itc();
  960         end = start + itc_freq * n;
  961         /* printf("DELAY from 0x%lx to 0x%lx\n", start, end); */
  962         do {
  963                 now = ia64_get_itc();
  964         } while (now < end || (now > start && end < start));
  965 
  966         sched_unpin();
  967 }
  968 
  969 /*
  970  * Send an interrupt (signal) to a process.
  971  */
  972 void
  973 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  974 {
  975         struct proc *p;
  976         struct thread *td;
  977         struct trapframe *tf;
  978         struct sigacts *psp;
  979         struct sigframe sf, *sfp;
  980         u_int64_t sbs, sp;
  981         int oonstack;
  982         int sig;
  983         u_long code;
  984 
  985         td = curthread;
  986         p = td->td_proc;
  987         PROC_LOCK_ASSERT(p, MA_OWNED);
  988         sig = ksi->ksi_signo;
  989         code = ksi->ksi_code;
  990         psp = p->p_sigacts;
  991         mtx_assert(&psp->ps_mtx, MA_OWNED);
  992         tf = td->td_frame;
  993         sp = tf->tf_special.sp;
  994         oonstack = sigonstack(sp);
  995         sbs = 0;
  996 
  997         /* save user context */
  998         bzero(&sf, sizeof(struct sigframe));
  999         sf.sf_uc.uc_sigmask = *mask;
 1000         sf.sf_uc.uc_stack = td->td_sigstk;
 1001         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1002             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1003 
 1004         /*
 1005          * Allocate and validate space for the signal handler
 1006          * context. Note that if the stack is in P0 space, the
 1007          * call to grow() is a nop, and the useracc() check
 1008          * will fail if the process has not already allocated
 1009          * the space with a `brk'.
 1010          */
 1011         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
 1012             SIGISMEMBER(psp->ps_sigonstack, sig)) {
 1013                 sbs = (u_int64_t)td->td_sigstk.ss_sp;
 1014                 sbs = (sbs + 15) & ~15;
 1015                 sfp = (struct sigframe *)(sbs + td->td_sigstk.ss_size);
 1016 #if defined(COMPAT_43)
 1017                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1018 #endif
 1019         } else
 1020                 sfp = (struct sigframe *)sp;
 1021         sfp = (struct sigframe *)((u_int64_t)(sfp - 1) & ~15);
 1022 
 1023         /* Fill in the siginfo structure for POSIX handlers. */
 1024         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
 1025                 sf.sf_si = ksi->ksi_info;
 1026                 sf.sf_si.si_signo = sig;
 1027                 /*
 1028                  * XXX this shouldn't be here after code in trap.c
 1029                  * is fixed
 1030                  */
 1031                 sf.sf_si.si_addr = (void*)tf->tf_special.ifa;
 1032                 code = (u_int64_t)&sfp->sf_si;
 1033         }
 1034 
 1035         mtx_unlock(&psp->ps_mtx);
 1036         PROC_UNLOCK(p);
 1037 
 1038         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
 1039 
 1040         /* Copy the frame out to userland. */
 1041         if (copyout(&sf, sfp, sizeof(sf)) != 0) {
 1042                 /*
 1043                  * Process has trashed its stack; give it an illegal
 1044                  * instruction to halt it in its tracks.
 1045                  */
 1046                 PROC_LOCK(p);
 1047                 sigexit(td, SIGILL);
 1048                 return;
 1049         }
 1050 
 1051         if ((tf->tf_flags & FRAME_SYSCALL) == 0) {
 1052                 tf->tf_special.psr &= ~IA64_PSR_RI;
 1053                 tf->tf_special.iip = ia64_get_k5() +
 1054                     ((uint64_t)break_sigtramp - (uint64_t)ia64_gateway_page);
 1055         } else
 1056                 tf->tf_special.iip = ia64_get_k5() +
 1057                     ((uint64_t)epc_sigtramp - (uint64_t)ia64_gateway_page);
 1058 
 1059         /*
 1060          * Setup the trapframe to return to the signal trampoline. We pass
 1061          * information to the trampoline in the following registers:
 1062          *
 1063          *      gp      new backing store or NULL
 1064          *      r8      signal number
 1065          *      r9      signal code or siginfo pointer
 1066          *      r10     signal handler (function descriptor)
 1067          */
 1068         tf->tf_special.sp = (u_int64_t)sfp - 16;
 1069         tf->tf_special.gp = sbs;
 1070         tf->tf_special.bspstore = sf.sf_uc.uc_mcontext.mc_special.bspstore;
 1071         tf->tf_special.ndirty = 0;
 1072         tf->tf_special.rnat = sf.sf_uc.uc_mcontext.mc_special.rnat;
 1073         tf->tf_scratch.gr8 = sig;
 1074         tf->tf_scratch.gr9 = code;
 1075         tf->tf_scratch.gr10 = (u_int64_t)catcher;
 1076 
 1077         PROC_LOCK(p);
 1078         mtx_lock(&psp->ps_mtx);
 1079 }
 1080 
 1081 /*
 1082  * System call to cleanup state after a signal
 1083  * has been taken.  Reset signal mask and
 1084  * stack state from context left by sendsig (above).
 1085  * Return to previous pc and psl as specified by
 1086  * context left by sendsig. Check carefully to
 1087  * make sure that the user has not modified the
 1088  * state to gain improper privileges.
 1089  *
 1090  * MPSAFE
 1091  */
 1092 int
 1093 sys_sigreturn(struct thread *td,
 1094         struct sigreturn_args /* {
 1095                 ucontext_t *sigcntxp;
 1096         } */ *uap)
 1097 {
 1098         ucontext_t uc;
 1099         struct trapframe *tf;
 1100         struct pcb *pcb;
 1101 
 1102         tf = td->td_frame;
 1103         pcb = td->td_pcb;
 1104 
 1105         /*
 1106          * Fetch the entire context structure at once for speed.
 1107          * We don't use a normal argument to simplify RSE handling.
 1108          */
 1109         if (copyin(uap->sigcntxp, (caddr_t)&uc, sizeof(uc)))
 1110                 return (EFAULT);
 1111 
 1112         set_mcontext(td, &uc.uc_mcontext);
 1113 
 1114 #if defined(COMPAT_43)
 1115         if (sigonstack(tf->tf_special.sp))
 1116                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1117         else
 1118                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1119 #endif
 1120         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
 1121 
 1122         return (EJUSTRETURN);
 1123 }
 1124 
 1125 #ifdef COMPAT_FREEBSD4
 1126 int
 1127 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
 1128 {
 1129 
 1130         return sys_sigreturn(td, (struct sigreturn_args *)uap);
 1131 }
 1132 #endif
 1133 
 1134 /*
 1135  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1136  * we want to start a backtrace from the function that caused us to enter
 1137  * the debugger. We have the context in the trapframe, but base the trace
 1138  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1139  * enough for a backtrace.
 1140  */
 1141 void
 1142 makectx(struct trapframe *tf, struct pcb *pcb)
 1143 {
 1144 
 1145         pcb->pcb_special = tf->tf_special;
 1146         pcb->pcb_special.__spare = ~0UL;        /* XXX see unwind.c */
 1147         save_callee_saved(&pcb->pcb_preserved);
 1148         save_callee_saved_fp(&pcb->pcb_preserved_fp);
 1149 }
 1150 
 1151 int
 1152 ia64_flush_dirty(struct thread *td, struct _special *r)
 1153 {
 1154         struct iovec iov;
 1155         struct uio uio;
 1156         uint64_t bspst, kstk, rnat;
 1157         int error, locked;
 1158 
 1159         if (r->ndirty == 0)
 1160                 return (0);
 1161 
 1162         kstk = td->td_kstack + (r->bspstore & 0x1ffUL);
 1163         if (td == curthread) {
 1164                 __asm __volatile("mov   ar.rsc=0;;");
 1165                 __asm __volatile("mov   %0=ar.bspstore" : "=r"(bspst));
 1166                 /* Make sure we have all the user registers written out. */
 1167                 if (bspst - kstk < r->ndirty) {
 1168                         __asm __volatile("flushrs;;");
 1169                         __asm __volatile("mov   %0=ar.bspstore" : "=r"(bspst));
 1170                 }
 1171                 __asm __volatile("mov   %0=ar.rnat;;" : "=r"(rnat));
 1172                 __asm __volatile("mov   ar.rsc=3");
 1173                 error = copyout((void*)kstk, (void*)r->bspstore, r->ndirty);
 1174                 kstk += r->ndirty;
 1175                 r->rnat = (bspst > kstk && (bspst & 0x1ffL) < (kstk & 0x1ffL))
 1176                     ? *(uint64_t*)(kstk | 0x1f8L) : rnat;
 1177         } else {
 1178                 locked = PROC_LOCKED(td->td_proc);
 1179                 if (!locked)
 1180                         PHOLD(td->td_proc);
 1181                 iov.iov_base = (void*)(uintptr_t)kstk;
 1182                 iov.iov_len = r->ndirty;
 1183                 uio.uio_iov = &iov;
 1184                 uio.uio_iovcnt = 1;
 1185                 uio.uio_offset = r->bspstore;
 1186                 uio.uio_resid = r->ndirty;
 1187                 uio.uio_segflg = UIO_SYSSPACE;
 1188                 uio.uio_rw = UIO_WRITE;
 1189                 uio.uio_td = td;
 1190                 error = proc_rwmem(td->td_proc, &uio);
 1191                 /*
 1192                  * XXX proc_rwmem() doesn't currently return ENOSPC,
 1193                  * so I think it can bogusly return 0. Neither do
 1194                  * we allow short writes.
 1195                  */
 1196                 if (uio.uio_resid != 0 && error == 0)
 1197                         error = ENOSPC;
 1198                 if (!locked)
 1199                         PRELE(td->td_proc);
 1200         }
 1201 
 1202         r->bspstore += r->ndirty;
 1203         r->ndirty = 0;
 1204         return (error);
 1205 }
 1206 
 1207 int
 1208 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
 1209 {
 1210         struct trapframe *tf;
 1211         int error;
 1212 
 1213         tf = td->td_frame;
 1214         bzero(mc, sizeof(*mc));
 1215         mc->mc_special = tf->tf_special;
 1216         error = ia64_flush_dirty(td, &mc->mc_special);
 1217         if (tf->tf_flags & FRAME_SYSCALL) {
 1218                 mc->mc_flags |= _MC_FLAGS_SYSCALL_CONTEXT;
 1219                 mc->mc_scratch = tf->tf_scratch;
 1220                 if (flags & GET_MC_CLEAR_RET) {
 1221                         mc->mc_scratch.gr8 = 0;
 1222                         mc->mc_scratch.gr9 = 0;
 1223                         mc->mc_scratch.gr10 = 0;
 1224                         mc->mc_scratch.gr11 = 0;
 1225                 }
 1226         } else {
 1227                 mc->mc_flags |= _MC_FLAGS_ASYNC_CONTEXT;
 1228                 mc->mc_scratch = tf->tf_scratch;
 1229                 mc->mc_scratch_fp = tf->tf_scratch_fp;
 1230                 /*
 1231                  * XXX If the thread never used the high FP registers, we
 1232                  * probably shouldn't waste time saving them.
 1233                  */
 1234                 ia64_highfp_save(td);
 1235                 mc->mc_flags |= _MC_FLAGS_HIGHFP_VALID;
 1236                 mc->mc_high_fp = td->td_pcb->pcb_high_fp;
 1237         }
 1238         save_callee_saved(&mc->mc_preserved);
 1239         save_callee_saved_fp(&mc->mc_preserved_fp);
 1240         return (error);
 1241 }
 1242 
 1243 int
 1244 set_mcontext(struct thread *td, const mcontext_t *mc)
 1245 {
 1246         struct _special s;
 1247         struct trapframe *tf;
 1248         uint64_t psrmask;
 1249 
 1250         tf = td->td_frame;
 1251 
 1252         KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
 1253             ("Whoa there! We have more than 8KB of dirty registers!"));
 1254 
 1255         s = mc->mc_special;
 1256         /*
 1257          * Only copy the user mask and the restart instruction bit from
 1258          * the new context.
 1259          */
 1260         psrmask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
 1261             IA64_PSR_MFH | IA64_PSR_RI;
 1262         s.psr = (tf->tf_special.psr & ~psrmask) | (s.psr & psrmask);
 1263         /* We don't have any dirty registers of the new context. */
 1264         s.ndirty = 0;
 1265         if (mc->mc_flags & _MC_FLAGS_ASYNC_CONTEXT) {
 1266                 /*
 1267                  * We can get an async context passed to us while we
 1268                  * entered the kernel through a syscall: sigreturn(2)
 1269                  * takes contexts that could previously be the result of
 1270                  * a trap or interrupt.
 1271                  * Hence, we cannot assert that the trapframe is not
 1272                  * a syscall frame, but we can assert that it's at
 1273                  * least an expected syscall.
 1274                  */
 1275                 if (tf->tf_flags & FRAME_SYSCALL) {
 1276                         KASSERT(tf->tf_scratch.gr15 == SYS_sigreturn, ("foo"));
 1277                         tf->tf_flags &= ~FRAME_SYSCALL;
 1278                 }
 1279                 tf->tf_scratch = mc->mc_scratch;
 1280                 tf->tf_scratch_fp = mc->mc_scratch_fp;
 1281                 if (mc->mc_flags & _MC_FLAGS_HIGHFP_VALID)
 1282                         td->td_pcb->pcb_high_fp = mc->mc_high_fp;
 1283         } else {
 1284                 KASSERT((tf->tf_flags & FRAME_SYSCALL) != 0, ("foo"));
 1285                 if ((mc->mc_flags & _MC_FLAGS_SYSCALL_CONTEXT) == 0) {
 1286                         s.cfm = tf->tf_special.cfm;
 1287                         s.iip = tf->tf_special.iip;
 1288                         tf->tf_scratch.gr15 = 0;        /* Clear syscall nr. */
 1289                 } else
 1290                         tf->tf_scratch = mc->mc_scratch;
 1291         }
 1292         tf->tf_special = s;
 1293         restore_callee_saved(&mc->mc_preserved);
 1294         restore_callee_saved_fp(&mc->mc_preserved_fp);
 1295 
 1296         return (0);
 1297 }
 1298 
 1299 /*
 1300  * Clear registers on exec.
 1301  */
 1302 void
 1303 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1304 {
 1305         struct trapframe *tf;
 1306         uint64_t *ksttop, *kst;
 1307 
 1308         tf = td->td_frame;
 1309         ksttop = (uint64_t*)(td->td_kstack + tf->tf_special.ndirty +
 1310             (tf->tf_special.bspstore & 0x1ffUL));
 1311 
 1312         /*
 1313          * We can ignore up to 8KB of dirty registers by masking off the
 1314          * lower 13 bits in exception_restore() or epc_syscall(). This
 1315          * should be enough for a couple of years, but if there are more
 1316          * than 8KB of dirty registers, we lose track of the bottom of
 1317          * the kernel stack. The solution is to copy the active part of
 1318          * the kernel stack down 1 page (or 2, but not more than that)
 1319          * so that we always have less than 8KB of dirty registers.
 1320          */
 1321         KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
 1322             ("Whoa there! We have more than 8KB of dirty registers!"));
 1323 
 1324         bzero(&tf->tf_special, sizeof(tf->tf_special));
 1325         if ((tf->tf_flags & FRAME_SYSCALL) == 0) {      /* break syscalls. */
 1326                 bzero(&tf->tf_scratch, sizeof(tf->tf_scratch));
 1327                 bzero(&tf->tf_scratch_fp, sizeof(tf->tf_scratch_fp));
 1328                 tf->tf_special.cfm = (1UL<<63) | (3UL<<7) | 3UL;
 1329                 tf->tf_special.bspstore = IA64_BACKINGSTORE;
 1330                 /*
 1331                  * Copy the arguments onto the kernel register stack so that
 1332                  * they get loaded by the loadrs instruction. Skip over the
 1333                  * NaT collection points.
 1334                  */
 1335                 kst = ksttop - 1;
 1336                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
 1337                         *kst-- = 0;
 1338                 *kst-- = 0;
 1339                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
 1340                         *kst-- = 0;
 1341                 *kst-- = imgp->ps_strings;
 1342                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
 1343                         *kst-- = 0;
 1344                 *kst = stack;
 1345                 tf->tf_special.ndirty = (ksttop - kst) << 3;
 1346         } else {                                /* epc syscalls (default). */
 1347                 tf->tf_special.cfm = (3UL<<62) | (3UL<<7) | 3UL;
 1348                 tf->tf_special.bspstore = IA64_BACKINGSTORE + 24;
 1349                 /*
 1350                  * Write values for out0, out1 and out2 to the user's backing
 1351                  * store and arrange for them to be restored into the user's
 1352                  * initial register frame.
 1353                  * Assumes that (bspstore & 0x1f8) < 0x1e0.
 1354                  */
 1355                 suword((caddr_t)tf->tf_special.bspstore - 24, stack);
 1356                 suword((caddr_t)tf->tf_special.bspstore - 16, imgp->ps_strings);
 1357                 suword((caddr_t)tf->tf_special.bspstore -  8, 0);
 1358         }
 1359 
 1360         tf->tf_special.iip = imgp->entry_addr;
 1361         tf->tf_special.sp = (stack & ~15) - 16;
 1362         tf->tf_special.rsc = 0xf;
 1363         tf->tf_special.fpsr = IA64_FPSR_DEFAULT;
 1364         tf->tf_special.psr = IA64_PSR_IC | IA64_PSR_I | IA64_PSR_IT |
 1365             IA64_PSR_DT | IA64_PSR_RT | IA64_PSR_DFH | IA64_PSR_BN |
 1366             IA64_PSR_CPL_USER;
 1367 }
 1368 
 1369 int
 1370 ptrace_set_pc(struct thread *td, unsigned long addr)
 1371 {
 1372         uint64_t slot;
 1373 
 1374         switch (addr & 0xFUL) {
 1375         case 0:
 1376                 slot = IA64_PSR_RI_0;
 1377                 break;
 1378         case 1:
 1379                 /* XXX we need to deal with MLX bundles here */
 1380                 slot = IA64_PSR_RI_1;
 1381                 break;
 1382         case 2:
 1383                 slot = IA64_PSR_RI_2;
 1384                 break;
 1385         default:
 1386                 return (EINVAL);
 1387         }
 1388 
 1389         td->td_frame->tf_special.iip = addr & ~0x0FULL;
 1390         td->td_frame->tf_special.psr =
 1391             (td->td_frame->tf_special.psr & ~IA64_PSR_RI) | slot;
 1392         return (0);
 1393 }
 1394 
 1395 int
 1396 ptrace_single_step(struct thread *td)
 1397 {
 1398         struct trapframe *tf;
 1399 
 1400         /*
 1401          * There's no way to set single stepping when we're leaving the
 1402          * kernel through the EPC syscall path. The way we solve this is
 1403          * by enabling the lower-privilege trap so that we re-enter the
 1404          * kernel as soon as the privilege level changes. See trap.c for
 1405          * how we proceed from there.
 1406          */
 1407         tf = td->td_frame;
 1408         if (tf->tf_flags & FRAME_SYSCALL)
 1409                 tf->tf_special.psr |= IA64_PSR_LP;
 1410         else
 1411                 tf->tf_special.psr |= IA64_PSR_SS;
 1412         return (0);
 1413 }
 1414 
 1415 int
 1416 ptrace_clear_single_step(struct thread *td)
 1417 {
 1418         struct trapframe *tf;
 1419 
 1420         /*
 1421          * Clear any and all status bits we may use to implement single
 1422          * stepping.
 1423          */
 1424         tf = td->td_frame;
 1425         tf->tf_special.psr &= ~IA64_PSR_SS;
 1426         tf->tf_special.psr &= ~IA64_PSR_LP;
 1427         tf->tf_special.psr &= ~IA64_PSR_TB;
 1428         return (0);
 1429 }
 1430 
 1431 int
 1432 fill_regs(struct thread *td, struct reg *regs)
 1433 {
 1434         struct trapframe *tf;
 1435 
 1436         tf = td->td_frame;
 1437         regs->r_special = tf->tf_special;
 1438         regs->r_scratch = tf->tf_scratch;
 1439         save_callee_saved(&regs->r_preserved);
 1440         return (0);
 1441 }
 1442 
 1443 int
 1444 set_regs(struct thread *td, struct reg *regs)
 1445 {
 1446         struct trapframe *tf;
 1447         int error;
 1448 
 1449         tf = td->td_frame;
 1450         error = ia64_flush_dirty(td, &tf->tf_special);
 1451         if (!error) {
 1452                 tf->tf_special = regs->r_special;
 1453                 tf->tf_special.bspstore += tf->tf_special.ndirty;
 1454                 tf->tf_special.ndirty = 0;
 1455                 tf->tf_scratch = regs->r_scratch;
 1456                 restore_callee_saved(&regs->r_preserved);
 1457         }
 1458         return (error);
 1459 }
 1460 
 1461 int
 1462 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1463 {
 1464 
 1465         return (ENOSYS);
 1466 }
 1467 
 1468 int
 1469 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1470 {
 1471 
 1472         return (ENOSYS);
 1473 }
 1474 
 1475 int
 1476 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1477 {
 1478         struct trapframe *frame = td->td_frame;
 1479         struct pcb *pcb = td->td_pcb;
 1480 
 1481         /* Save the high FP registers. */
 1482         ia64_highfp_save(td);
 1483 
 1484         fpregs->fpr_scratch = frame->tf_scratch_fp;
 1485         save_callee_saved_fp(&fpregs->fpr_preserved);
 1486         fpregs->fpr_high = pcb->pcb_high_fp;
 1487         return (0);
 1488 }
 1489 
 1490 int
 1491 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1492 {
 1493         struct trapframe *frame = td->td_frame;
 1494         struct pcb *pcb = td->td_pcb;
 1495 
 1496         /* Throw away the high FP registers (should be redundant). */
 1497         ia64_highfp_drop(td);
 1498 
 1499         frame->tf_scratch_fp = fpregs->fpr_scratch;
 1500         restore_callee_saved_fp(&fpregs->fpr_preserved);
 1501         pcb->pcb_high_fp = fpregs->fpr_high;
 1502         return (0);
 1503 }
 1504 
 1505 void
 1506 ia64_sync_icache(vm_offset_t va, vm_offset_t sz)
 1507 {
 1508         vm_offset_t lim;
 1509 
 1510         if (!ia64_sync_icache_needed)
 1511                 return;
 1512 
 1513         lim = va + sz;
 1514         while (va < lim) {
 1515                 ia64_fc_i(va);
 1516                 va += 32;       /* XXX */
 1517         }
 1518 
 1519         ia64_sync_i();
 1520         ia64_srlz_i();
 1521 }

Cache object: 032c0f1f9813a01cff98da4b779ba068


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.