The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ia64/ia64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003,2004 Marcel Moolenaar
    3  * Copyright (c) 2000,2001 Doug Rabson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/8.3/sys/ia64/ia64/machdep.c 219662 2011-03-15 08:20:59Z pluknet $");
   30 
   31 #include "opt_compat.h"
   32 #include "opt_ddb.h"
   33 #include "opt_kstack_pages.h"
   34 #include "opt_sched.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/proc.h>
   38 #include <sys/systm.h>
   39 #include <sys/bio.h>
   40 #include <sys/buf.h>
   41 #include <sys/bus.h>
   42 #include <sys/cons.h>
   43 #include <sys/cpu.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/exec.h>
   46 #include <sys/imgact.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/linker.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mbuf.h>
   53 #include <sys/msgbuf.h>
   54 #include <sys/pcpu.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/random.h>
   57 #include <sys/reboot.h>
   58 #include <sys/sched.h>
   59 #include <sys/signalvar.h>
   60 #include <sys/syscall.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/ucontext.h>
   64 #include <sys/uio.h>
   65 #include <sys/uuid.h>
   66 #include <sys/vmmeter.h>
   67 #include <sys/vnode.h>
   68 
   69 #include <ddb/ddb.h>
   70 
   71 #include <net/netisr.h>
   72 
   73 #include <vm/vm.h>
   74 #include <vm/vm_extern.h>
   75 #include <vm/vm_kern.h>
   76 #include <vm/vm_page.h>
   77 #include <vm/vm_map.h>
   78 #include <vm/vm_object.h>
   79 #include <vm/vm_pager.h>
   80 
   81 #include <machine/bootinfo.h>
   82 #include <machine/cpu.h>
   83 #include <machine/efi.h>
   84 #include <machine/elf.h>
   85 #include <machine/fpu.h>
   86 #include <machine/intr.h>
   87 #include <machine/mca.h>
   88 #include <machine/md_var.h>
   89 #include <machine/mutex.h>
   90 #include <machine/pal.h>
   91 #include <machine/pcb.h>
   92 #include <machine/reg.h>
   93 #include <machine/sal.h>
   94 #include <machine/sigframe.h>
   95 #ifdef SMP
   96 #include <machine/smp.h>
   97 #endif
   98 #include <machine/unwind.h>
   99 #include <machine/vmparam.h>
  100 
  101 SYSCTL_NODE(_hw, OID_AUTO, freq, CTLFLAG_RD, 0, "");
  102 SYSCTL_NODE(_machdep, OID_AUTO, cpu, CTLFLAG_RD, 0, "");
  103 
  104 static u_int bus_freq;
  105 SYSCTL_UINT(_hw_freq, OID_AUTO, bus, CTLFLAG_RD, &bus_freq, 0,
  106     "Bus clock frequency");
  107 
  108 static u_int cpu_freq;
  109 SYSCTL_UINT(_hw_freq, OID_AUTO, cpu, CTLFLAG_RD, &cpu_freq, 0,
  110     "CPU clock frequency");
  111 
  112 static u_int itc_freq;
  113 SYSCTL_UINT(_hw_freq, OID_AUTO, itc, CTLFLAG_RD, &itc_freq, 0,
  114     "ITC frequency");
  115 
  116 int cold = 1;
  117 
  118 u_int64_t pa_bootinfo;
  119 struct bootinfo bootinfo;
  120 
  121 struct pcpu pcpu0;
  122 
  123 extern u_int64_t kernel_text[], _end[];
  124 
  125 extern u_int64_t ia64_gateway_page[];
  126 extern u_int64_t break_sigtramp[];
  127 extern u_int64_t epc_sigtramp[];
  128 
  129 struct fpswa_iface *fpswa_iface;
  130 
  131 u_int64_t ia64_pal_base;
  132 u_int64_t ia64_port_base;
  133 
  134 u_int64_t ia64_lapic_addr = PAL_PIB_DEFAULT_ADDR;
  135 
  136 struct ia64_pib *ia64_pib;
  137 
  138 static int ia64_sync_icache_needed;
  139 
  140 char machine[] = MACHINE;
  141 SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
  142 
  143 static char cpu_model[64];
  144 SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0,
  145     "The CPU model name");
  146 
  147 static char cpu_family[64];
  148 SYSCTL_STRING(_hw, OID_AUTO, family, CTLFLAG_RD, cpu_family, 0,
  149     "The CPU family name");
  150 
  151 #ifdef DDB
  152 extern vm_offset_t ksym_start, ksym_end;
  153 #endif
  154 
  155 
  156 struct msgbuf *msgbufp = NULL;
  157 
  158 /* Other subsystems (e.g., ACPI) can hook this later. */
  159 void (*cpu_idle_hook)(void) = NULL;
  160 
  161 long Maxmem = 0;
  162 long realmem = 0;
  163 
  164 #define PHYSMAP_SIZE    (2 * VM_PHYSSEG_MAX)
  165 
  166 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  167 
  168 /* must be 2 less so 0 0 can signal end of chunks */
  169 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
  170 
  171 struct kva_md_info kmi;
  172 
  173 #define Mhz     1000000L
  174 #define Ghz     (1000L*Mhz)
  175 
  176 static void
  177 identifycpu(void)
  178 {
  179         char vendor[17];
  180         char *family_name, *model_name;
  181         u_int64_t features, tmp;
  182         int number, revision, model, family, archrev;
  183 
  184         /*
  185          * Assumes little-endian.
  186          */
  187         *(u_int64_t *) &vendor[0] = ia64_get_cpuid(0);
  188         *(u_int64_t *) &vendor[8] = ia64_get_cpuid(1);
  189         vendor[16] = '\0';
  190 
  191         tmp = ia64_get_cpuid(3);
  192         number = (tmp >> 0) & 0xff;
  193         revision = (tmp >> 8) & 0xff;
  194         model = (tmp >> 16) & 0xff;
  195         family = (tmp >> 24) & 0xff;
  196         archrev = (tmp >> 32) & 0xff;
  197 
  198         family_name = model_name = "unknown";
  199         switch (family) {
  200         case 0x07:
  201                 family_name = "Itanium";
  202                 model_name = "Merced";
  203                 break;
  204         case 0x1f:
  205                 family_name = "Itanium 2";
  206                 switch (model) {
  207                 case 0x00:
  208                         model_name = "McKinley";
  209                         break;
  210                 case 0x01:
  211                         /*
  212                          * Deerfield is a low-voltage variant based on the
  213                          * Madison core. We need circumstantial evidence
  214                          * (i.e. the clock frequency) to identify those.
  215                          * Allow for roughly 1% error margin.
  216                          */
  217                         if (cpu_freq > 990 && cpu_freq < 1010)
  218                                 model_name = "Deerfield";
  219                         else
  220                                 model_name = "Madison";
  221                         break;
  222                 case 0x02:
  223                         model_name = "Madison II";
  224                         break;
  225                 }
  226                 break;
  227         case 0x20:
  228                 ia64_sync_icache_needed = 1;
  229 
  230                 family_name = "Itanium 2";
  231                 switch (model) {
  232                 case 0x00:
  233                         model_name = "Montecito";
  234                         break;
  235                 }
  236                 break;
  237         }
  238         snprintf(cpu_family, sizeof(cpu_family), "%s", family_name);
  239         snprintf(cpu_model, sizeof(cpu_model), "%s", model_name);
  240 
  241         features = ia64_get_cpuid(4);
  242 
  243         printf("CPU: %s (", model_name);
  244         if (cpu_freq)
  245                 printf("%u Mhz ", cpu_freq);
  246         printf("%s)\n", family_name);
  247         printf("  Origin = \"%s\"  Revision = %d\n", vendor, revision);
  248         printf("  Features = 0x%b\n", (u_int32_t) features,
  249             "\020"
  250             "\001LB"    /* long branch (brl) instruction. */
  251             "\002SD"    /* Spontaneous deferral. */
  252             "\003AO"    /* 16-byte atomic operations (ld, st, cmpxchg). */ );
  253 }
  254 
  255 static void
  256 cpu_startup(void *dummy)
  257 {
  258         char nodename[16];
  259         struct pcpu *pc;
  260         struct pcpu_stats *pcs;
  261 
  262         /*
  263          * Good {morning,afternoon,evening,night}.
  264          */
  265         identifycpu();
  266 
  267 #ifdef PERFMON
  268         perfmon_init();
  269 #endif
  270         printf("real memory  = %ld (%ld MB)\n", ia64_ptob(Maxmem),
  271             ia64_ptob(Maxmem) / 1048576);
  272         realmem = Maxmem;
  273 
  274         /*
  275          * Display any holes after the first chunk of extended memory.
  276          */
  277         if (bootverbose) {
  278                 int indx;
  279 
  280                 printf("Physical memory chunk(s):\n");
  281                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  282                         long size1 = phys_avail[indx + 1] - phys_avail[indx];
  283 
  284                         printf("0x%08lx - 0x%08lx, %ld bytes (%ld pages)\n",
  285                             phys_avail[indx], phys_avail[indx + 1] - 1, size1,
  286                             size1 >> PAGE_SHIFT);
  287                 }
  288         }
  289 
  290         vm_ksubmap_init(&kmi);
  291 
  292         printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
  293             ptoa(cnt.v_free_count) / 1048576);
  294  
  295         if (fpswa_iface == NULL)
  296                 printf("Warning: no FPSWA package supplied\n");
  297         else
  298                 printf("FPSWA Revision = 0x%lx, Entry = %p\n",
  299                     (long)fpswa_iface->if_rev, (void *)fpswa_iface->if_fpswa);
  300 
  301         /*
  302          * Set up buffers, so they can be used to read disk labels.
  303          */
  304         bufinit();
  305         vm_pager_bufferinit();
  306 
  307         /*
  308          * Traverse the MADT to discover IOSAPIC and Local SAPIC
  309          * information.
  310          */
  311         ia64_probe_sapics();
  312         ia64_pib = pmap_mapdev(ia64_lapic_addr, sizeof(*ia64_pib));
  313 
  314         ia64_mca_init();
  315 
  316         /*
  317          * Create sysctl tree for per-CPU information.
  318          */
  319         SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
  320                 snprintf(nodename, sizeof(nodename), "%u", pc->pc_cpuid);
  321                 sysctl_ctx_init(&pc->pc_md.sysctl_ctx);
  322                 pc->pc_md.sysctl_tree = SYSCTL_ADD_NODE(&pc->pc_md.sysctl_ctx,
  323                     SYSCTL_STATIC_CHILDREN(_machdep_cpu), OID_AUTO, nodename,
  324                     CTLFLAG_RD, NULL, "");
  325                 if (pc->pc_md.sysctl_tree == NULL)
  326                         continue;
  327 
  328                 pcs = &pc->pc_md.stats;
  329 
  330                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  331                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  332                     "nasts", CTLFLAG_RD, &pcs->pcs_nasts,
  333                     "Number of IPI_AST interrupts");
  334 
  335                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  336                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  337                     "nclks", CTLFLAG_RD, &pcs->pcs_nclks,
  338                     "Number of clock interrupts");
  339 
  340                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  341                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  342                     "nextints", CTLFLAG_RD, &pcs->pcs_nextints,
  343                     "Number of ExtINT interrupts");
  344 
  345                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  346                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  347                     "nhighfps", CTLFLAG_RD, &pcs->pcs_nhighfps,
  348                     "Number of IPI_HIGH_FP interrupts");
  349 
  350                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  351                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  352                     "nhwints", CTLFLAG_RD, &pcs->pcs_nhwints,
  353                     "Number of hardware (device) interrupts");
  354 
  355                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  356                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  357                     "npreempts", CTLFLAG_RD, &pcs->pcs_npreempts,
  358                     "Number of IPI_PREEMPT interrupts");
  359 
  360                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  361                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  362                     "nrdvs", CTLFLAG_RD, &pcs->pcs_nrdvs,
  363                     "Number of IPI_RENDEZVOUS interrupts");
  364 
  365                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  366                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  367                     "nstops", CTLFLAG_RD, &pcs->pcs_nstops,
  368                     "Number of IPI_STOP interrupts");
  369 
  370                 SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
  371                     SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
  372                     "nstrays", CTLFLAG_RD, &pcs->pcs_nstrays,
  373                     "Number of stray interrupts");
  374         }
  375 }
  376 SYSINIT(cpu_startup, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  377 
  378 void
  379 cpu_flush_dcache(void *ptr, size_t len)
  380 {
  381         vm_offset_t lim, va;
  382 
  383         va = (uintptr_t)ptr & ~31;
  384         lim = (uintptr_t)ptr + len;
  385         while (va < lim) {
  386                 ia64_fc(va);
  387                 va += 32;
  388         }
  389 
  390         ia64_srlz_d();
  391 }
  392 
  393 /* Get current clock frequency for the given cpu id. */
  394 int
  395 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  396 {
  397 
  398         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  399                 return (EINVAL);
  400         *rate = (u_long)cpu_freq * 1000000ul;
  401         return (0);
  402 }
  403 
  404 void
  405 cpu_halt()
  406 {
  407 
  408         efi_reset_system();
  409 }
  410 
  411 void
  412 cpu_idle(int busy)
  413 {
  414         struct ia64_pal_result res;
  415 
  416         if (cpu_idle_hook != NULL)
  417                 (*cpu_idle_hook)();
  418         else
  419                 res = ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
  420 }
  421 
  422 int
  423 cpu_idle_wakeup(int cpu)
  424 {
  425 
  426         return (0);
  427 }
  428 
  429 void
  430 cpu_reset()
  431 {
  432 
  433         efi_reset_system();
  434 }
  435 
  436 void
  437 cpu_switch(struct thread *old, struct thread *new, struct mtx *mtx)
  438 {
  439         struct pcb *oldpcb, *newpcb;
  440 
  441         oldpcb = old->td_pcb;
  442 #ifdef COMPAT_FREEBSD32
  443         ia32_savectx(oldpcb);
  444 #endif
  445         if (PCPU_GET(fpcurthread) == old)
  446                 old->td_frame->tf_special.psr |= IA64_PSR_DFH;
  447         if (!savectx(oldpcb)) {
  448                 atomic_store_rel_ptr(&old->td_lock, mtx);
  449 
  450                 newpcb = new->td_pcb;
  451                 oldpcb->pcb_current_pmap =
  452                     pmap_switch(newpcb->pcb_current_pmap);
  453 
  454 #if defined(SCHED_ULE) && defined(SMP)
  455                 while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
  456                         cpu_spinwait();
  457 #endif
  458 
  459                 PCPU_SET(curthread, new);
  460 
  461 #ifdef COMPAT_FREEBSD32
  462                 ia32_restorectx(newpcb);
  463 #endif
  464 
  465                 if (PCPU_GET(fpcurthread) == new)
  466                         new->td_frame->tf_special.psr &= ~IA64_PSR_DFH;
  467                 restorectx(newpcb);
  468                 /* We should not get here. */
  469                 panic("cpu_switch: restorectx() returned");
  470                 /* NOTREACHED */
  471         }
  472 }
  473 
  474 void
  475 cpu_throw(struct thread *old __unused, struct thread *new)
  476 {
  477         struct pcb *newpcb;
  478 
  479         newpcb = new->td_pcb;
  480         (void)pmap_switch(newpcb->pcb_current_pmap);
  481 
  482 #if defined(SCHED_ULE) && defined(SMP)
  483         while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
  484                 cpu_spinwait();
  485 #endif
  486 
  487         PCPU_SET(curthread, new);
  488 
  489 #ifdef COMPAT_FREEBSD32
  490         ia32_restorectx(newpcb);
  491 #endif
  492 
  493         restorectx(newpcb);
  494         /* We should not get here. */
  495         panic("cpu_throw: restorectx() returned");
  496         /* NOTREACHED */
  497 }
  498 
  499 void
  500 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  501 {
  502 
  503         /*
  504          * Set pc_acpi_id to "uninitialized".
  505          * See sys/dev/acpica/acpi_cpu.c
  506          */
  507         pcpu->pc_acpi_id = 0xffffffff;
  508 }
  509 
  510 void
  511 spinlock_enter(void)
  512 {
  513         struct thread *td;
  514         int intr;
  515 
  516         td = curthread;
  517         if (td->td_md.md_spinlock_count == 0) {
  518                 intr = intr_disable();
  519                 td->td_md.md_spinlock_count = 1;
  520                 td->td_md.md_saved_intr = intr;
  521         } else
  522                 td->td_md.md_spinlock_count++;
  523         critical_enter();
  524 }
  525 
  526 void
  527 spinlock_exit(void)
  528 {
  529         struct thread *td;
  530         int intr;
  531 
  532         td = curthread;
  533         critical_exit();
  534         intr = td->td_md.md_saved_intr;
  535         td->td_md.md_spinlock_count--;
  536         if (td->td_md.md_spinlock_count == 0)
  537                 intr_restore(intr);
  538 }
  539 
  540 void
  541 map_vhpt(uintptr_t vhpt)
  542 {
  543         pt_entry_t pte;
  544         uint64_t psr;
  545 
  546         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
  547             PTE_PL_KERN | PTE_AR_RW;
  548         pte |= vhpt & PTE_PPN_MASK;
  549 
  550         __asm __volatile("ptr.d %0,%1" :: "r"(vhpt),
  551             "r"(IA64_ID_PAGE_SHIFT<<2));
  552 
  553         __asm __volatile("mov   %0=psr" : "=r"(psr));
  554         __asm __volatile("rsm   psr.ic|psr.i");
  555         ia64_srlz_i();
  556         ia64_set_ifa(vhpt);
  557         ia64_set_itir(IA64_ID_PAGE_SHIFT << 2);
  558         ia64_srlz_d();
  559         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(2), "r"(pte));
  560         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
  561         ia64_srlz_i();
  562 }
  563 
  564 void
  565 map_pal_code(void)
  566 {
  567         pt_entry_t pte;
  568         uint64_t psr;
  569 
  570         if (ia64_pal_base == 0)
  571                 return;
  572 
  573         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
  574             PTE_PL_KERN | PTE_AR_RWX;
  575         pte |= ia64_pal_base & PTE_PPN_MASK;
  576 
  577         __asm __volatile("ptr.d %0,%1; ptr.i %0,%1" ::
  578             "r"(IA64_PHYS_TO_RR7(ia64_pal_base)), "r"(IA64_ID_PAGE_SHIFT<<2));
  579 
  580         __asm __volatile("mov   %0=psr" : "=r"(psr));
  581         __asm __volatile("rsm   psr.ic|psr.i");
  582         ia64_srlz_i();
  583         ia64_set_ifa(IA64_PHYS_TO_RR7(ia64_pal_base));
  584         ia64_set_itir(IA64_ID_PAGE_SHIFT << 2);
  585         ia64_srlz_d();
  586         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(1), "r"(pte));
  587         ia64_srlz_d();
  588         __asm __volatile("itr.i itr[%0]=%1" :: "r"(1), "r"(pte));
  589         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
  590         ia64_srlz_i();
  591 }
  592 
  593 void
  594 map_gateway_page(void)
  595 {
  596         pt_entry_t pte;
  597         uint64_t psr;
  598 
  599         pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
  600             PTE_PL_KERN | PTE_AR_X_RX;
  601         pte |= (uint64_t)ia64_gateway_page & PTE_PPN_MASK;
  602 
  603         __asm __volatile("ptr.d %0,%1; ptr.i %0,%1" ::
  604             "r"(VM_MAX_ADDRESS), "r"(PAGE_SHIFT << 2));
  605 
  606         __asm __volatile("mov   %0=psr" : "=r"(psr));
  607         __asm __volatile("rsm   psr.ic|psr.i");
  608         ia64_srlz_i();
  609         ia64_set_ifa(VM_MAX_ADDRESS);
  610         ia64_set_itir(PAGE_SHIFT << 2);
  611         ia64_srlz_d();
  612         __asm __volatile("itr.d dtr[%0]=%1" :: "r"(3), "r"(pte));
  613         ia64_srlz_d();
  614         __asm __volatile("itr.i itr[%0]=%1" :: "r"(3), "r"(pte));
  615         __asm __volatile("mov   psr.l=%0" :: "r" (psr));
  616         ia64_srlz_i();
  617 
  618         /* Expose the mapping to userland in ar.k5 */
  619         ia64_set_k5(VM_MAX_ADDRESS);
  620 }
  621 
  622 static u_int
  623 freq_ratio(u_long base, u_long ratio)
  624 {
  625         u_long f;
  626 
  627         f = (base * (ratio >> 32)) / (ratio & 0xfffffffful);
  628         return ((f + 500000) / 1000000);
  629 }
  630 
  631 static void
  632 calculate_frequencies(void)
  633 {
  634         struct ia64_sal_result sal;
  635         struct ia64_pal_result pal;
  636 
  637         sal = ia64_sal_entry(SAL_FREQ_BASE, 0, 0, 0, 0, 0, 0, 0);
  638         pal = ia64_call_pal_static(PAL_FREQ_RATIOS, 0, 0, 0);
  639 
  640         if (sal.sal_status == 0 && pal.pal_status == 0) {
  641                 if (bootverbose) {
  642                         printf("Platform clock frequency %ld Hz\n",
  643                                sal.sal_result[0]);
  644                         printf("Processor ratio %ld/%ld, Bus ratio %ld/%ld, "
  645                                "ITC ratio %ld/%ld\n",
  646                                pal.pal_result[0] >> 32,
  647                                pal.pal_result[0] & ((1L << 32) - 1),
  648                                pal.pal_result[1] >> 32,
  649                                pal.pal_result[1] & ((1L << 32) - 1),
  650                                pal.pal_result[2] >> 32,
  651                                pal.pal_result[2] & ((1L << 32) - 1));
  652                 }
  653                 cpu_freq = freq_ratio(sal.sal_result[0], pal.pal_result[0]);
  654                 bus_freq = freq_ratio(sal.sal_result[0], pal.pal_result[1]);
  655                 itc_freq = freq_ratio(sal.sal_result[0], pal.pal_result[2]);
  656         }
  657 }
  658 
  659 struct ia64_init_return
  660 ia64_init(void)
  661 {
  662         struct ia64_init_return ret;
  663         int phys_avail_cnt;
  664         vm_offset_t kernstart, kernend;
  665         vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
  666         char *p;
  667         struct efi_md *md;
  668         int metadata_missing;
  669 
  670         /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
  671 
  672         /*
  673          * TODO: Disable interrupts, floating point etc.
  674          * Maybe flush cache and tlb
  675          */
  676         ia64_set_fpsr(IA64_FPSR_DEFAULT);
  677 
  678         /*
  679          * TODO: Get critical system information (if possible, from the
  680          * information provided by the boot program).
  681          */
  682 
  683         /*
  684          * pa_bootinfo is the physical address of the bootinfo block as
  685          * passed to us by the loader and set in locore.s.
  686          */
  687         bootinfo = *(struct bootinfo *)(IA64_PHYS_TO_RR7(pa_bootinfo));
  688 
  689         if (bootinfo.bi_magic != BOOTINFO_MAGIC || bootinfo.bi_version != 1) {
  690                 bzero(&bootinfo, sizeof(bootinfo));
  691                 bootinfo.bi_kernend = (vm_offset_t) round_page(_end);
  692         }
  693 
  694         /*
  695          * Look for the I/O ports first - we need them for console
  696          * probing.
  697          */
  698         for (md = efi_md_first(); md != NULL; md = efi_md_next(md)) {
  699                 switch (md->md_type) {
  700                 case EFI_MD_TYPE_IOPORT:
  701                         ia64_port_base = (uintptr_t)pmap_mapdev(md->md_phys,
  702                             md->md_pages * EFI_PAGE_SIZE);
  703                         break;
  704                 case EFI_MD_TYPE_PALCODE:
  705                         ia64_pal_base = md->md_phys;
  706                         break;
  707                 }
  708         }
  709 
  710         metadata_missing = 0;
  711         if (bootinfo.bi_modulep)
  712                 preload_metadata = (caddr_t)bootinfo.bi_modulep;
  713         else
  714                 metadata_missing = 1;
  715 
  716         if (envmode == 0 && bootinfo.bi_envp)
  717                 kern_envp = (caddr_t)bootinfo.bi_envp;
  718         else
  719                 kern_envp = static_env;
  720 
  721         /*
  722          * Look at arguments passed to us and compute boothowto.
  723          */
  724         boothowto = bootinfo.bi_boothowto;
  725 
  726         if (boothowto & RB_VERBOSE)
  727                 bootverbose = 1;
  728 
  729         /*
  730          * Find the beginning and end of the kernel.
  731          */
  732         kernstart = trunc_page(kernel_text);
  733 #ifdef DDB
  734         ksym_start = bootinfo.bi_symtab;
  735         ksym_end = bootinfo.bi_esymtab;
  736         kernend = (vm_offset_t)round_page(ksym_end);
  737 #else
  738         kernend = (vm_offset_t)round_page(_end);
  739 #endif
  740         /* But if the bootstrap tells us otherwise, believe it! */
  741         if (bootinfo.bi_kernend)
  742                 kernend = round_page(bootinfo.bi_kernend);
  743 
  744         /*
  745          * Setup the PCPU data for the bootstrap processor. It is needed
  746          * by printf(). Also, since printf() has critical sections, we
  747          * need to initialize at least pc_curthread.
  748          */
  749         pcpup = &pcpu0;
  750         ia64_set_k4((u_int64_t)pcpup);
  751         pcpu_init(pcpup, 0, sizeof(pcpu0));
  752         dpcpu_init((void *)kernend, 0);
  753         kernend += DPCPU_SIZE;
  754         PCPU_SET(curthread, &thread0);
  755 
  756         /*
  757          * Initialize the console before we print anything out.
  758          */
  759         cninit();
  760 
  761         /* OUTPUT NOW ALLOWED */
  762 
  763         if (ia64_pal_base != 0) {
  764                 ia64_pal_base &= ~IA64_ID_PAGE_MASK;
  765                 /*
  766                  * We use a TR to map the first 256M of memory - this might
  767                  * cover the palcode too.
  768                  */
  769                 if (ia64_pal_base == 0)
  770                         printf("PAL code mapped by the kernel's TR\n");
  771         } else
  772                 printf("PAL code not found\n");
  773 
  774         /*
  775          * Wire things up so we can call the firmware.
  776          */
  777         map_pal_code();
  778         efi_boot_minimal(bootinfo.bi_systab);
  779         ia64_xiv_init();
  780         ia64_sal_init();
  781         calculate_frequencies();
  782 
  783         if (metadata_missing)
  784                 printf("WARNING: loader(8) metadata is missing!\n");
  785 
  786         /* Get FPSWA interface */
  787         fpswa_iface = (bootinfo.bi_fpswa == 0) ? NULL :
  788             (struct fpswa_iface *)IA64_PHYS_TO_RR7(bootinfo.bi_fpswa);
  789 
  790         /* Init basic tunables, including hz */
  791         init_param1();
  792 
  793         p = getenv("kernelname");
  794         if (p != NULL) {
  795                 strncpy(kernelname, p, sizeof(kernelname) - 1);
  796                 freeenv(p);
  797         }
  798 
  799         kernstartpfn = atop(IA64_RR_MASK(kernstart));
  800         kernendpfn = atop(IA64_RR_MASK(kernend));
  801 
  802         /*
  803          * Size the memory regions and load phys_avail[] with the results.
  804          */
  805 
  806         /*
  807          * Find out how much memory is available, by looking at
  808          * the memory descriptors.
  809          */
  810 
  811 #ifdef DEBUG_MD
  812         printf("Memory descriptor count: %d\n", mdcount);
  813 #endif
  814 
  815         phys_avail_cnt = 0;
  816         for (md = efi_md_first(); md != NULL; md = efi_md_next(md)) {
  817 #ifdef DEBUG_MD
  818                 printf("MD %p: type %d pa 0x%lx cnt 0x%lx\n", md,
  819                     md->md_type, md->md_phys, md->md_pages);
  820 #endif
  821 
  822                 pfn0 = ia64_btop(round_page(md->md_phys));
  823                 pfn1 = ia64_btop(trunc_page(md->md_phys + md->md_pages * 4096));
  824                 if (pfn1 <= pfn0)
  825                         continue;
  826 
  827                 if (md->md_type != EFI_MD_TYPE_FREE)
  828                         continue;
  829 
  830                 /*
  831                  * We have a memory descriptor that describes conventional
  832                  * memory that is for general use. We must determine if the
  833                  * loader has put the kernel in this region.
  834                  */
  835                 physmem += (pfn1 - pfn0);
  836                 if (pfn0 <= kernendpfn && kernstartpfn <= pfn1) {
  837                         /*
  838                          * Must compute the location of the kernel
  839                          * within the segment.
  840                          */
  841 #ifdef DEBUG_MD
  842                         printf("Descriptor %p contains kernel\n", mp);
  843 #endif
  844                         if (pfn0 < kernstartpfn) {
  845                                 /*
  846                                  * There is a chunk before the kernel.
  847                                  */
  848 #ifdef DEBUG_MD
  849                                 printf("Loading chunk before kernel: "
  850                                        "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
  851 #endif
  852                                 phys_avail[phys_avail_cnt] = ia64_ptob(pfn0);
  853                                 phys_avail[phys_avail_cnt+1] = ia64_ptob(kernstartpfn);
  854                                 phys_avail_cnt += 2;
  855                         }
  856                         if (kernendpfn < pfn1) {
  857                                 /*
  858                                  * There is a chunk after the kernel.
  859                                  */
  860 #ifdef DEBUG_MD
  861                                 printf("Loading chunk after kernel: "
  862                                        "0x%lx / 0x%lx\n", kernendpfn, pfn1);
  863 #endif
  864                                 phys_avail[phys_avail_cnt] = ia64_ptob(kernendpfn);
  865                                 phys_avail[phys_avail_cnt+1] = ia64_ptob(pfn1);
  866                                 phys_avail_cnt += 2;
  867                         }
  868                 } else {
  869                         /*
  870                          * Just load this cluster as one chunk.
  871                          */
  872 #ifdef DEBUG_MD
  873                         printf("Loading descriptor %d: 0x%lx / 0x%lx\n", i,
  874                                pfn0, pfn1);
  875 #endif
  876                         phys_avail[phys_avail_cnt] = ia64_ptob(pfn0);
  877                         phys_avail[phys_avail_cnt+1] = ia64_ptob(pfn1);
  878                         phys_avail_cnt += 2;
  879                         
  880                 }
  881         }
  882         phys_avail[phys_avail_cnt] = 0;
  883 
  884         Maxmem = physmem;
  885         init_param2(physmem);
  886 
  887         /*
  888          * Initialize error message buffer (at end of core).
  889          */
  890         msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
  891         msgbufinit(msgbufp, msgbufsize);
  892 
  893         proc_linkup0(&proc0, &thread0);
  894         /*
  895          * Init mapping for kernel stack for proc 0
  896          */
  897         thread0.td_kstack = pmap_steal_memory(KSTACK_PAGES * PAGE_SIZE);
  898         thread0.td_kstack_pages = KSTACK_PAGES;
  899 
  900         mutex_init();
  901 
  902         /*
  903          * Initialize the rest of proc 0's PCB.
  904          *
  905          * Set the kernel sp, reserving space for an (empty) trapframe,
  906          * and make proc0's trapframe pointer point to it for sanity.
  907          * Initialise proc0's backing store to start after u area.
  908          */
  909         cpu_thread_alloc(&thread0);
  910         thread0.td_frame->tf_flags = FRAME_SYSCALL;
  911         thread0.td_pcb->pcb_special.sp =
  912             (u_int64_t)thread0.td_frame - 16;
  913         thread0.td_pcb->pcb_special.bspstore = thread0.td_kstack;
  914 
  915         /*
  916          * Initialize the virtual memory system.
  917          */
  918         pmap_bootstrap();
  919 
  920         /*
  921          * Initialize debuggers, and break into them if appropriate.
  922          */
  923         kdb_init();
  924 
  925 #ifdef KDB
  926         if (boothowto & RB_KDB)
  927                 kdb_enter(KDB_WHY_BOOTFLAGS,
  928                     "Boot flags requested debugger\n");
  929 #endif
  930 
  931         ia64_set_tpr(0);
  932         ia64_srlz_d();
  933 
  934         ret.bspstore = thread0.td_pcb->pcb_special.bspstore;
  935         ret.sp = thread0.td_pcb->pcb_special.sp;
  936         return (ret);
  937 }
  938 
  939 uint64_t
  940 ia64_get_hcdp(void)
  941 {
  942 
  943         return (bootinfo.bi_hcdp);
  944 }
  945 
  946 void
  947 bzero(void *buf, size_t len)
  948 {
  949         caddr_t p = buf;
  950 
  951         while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
  952                 *p++ = 0;
  953                 len--;
  954         }
  955         while (len >= sizeof(u_long) * 8) {
  956                 *(u_long*) p = 0;
  957                 *((u_long*) p + 1) = 0;
  958                 *((u_long*) p + 2) = 0;
  959                 *((u_long*) p + 3) = 0;
  960                 len -= sizeof(u_long) * 8;
  961                 *((u_long*) p + 4) = 0;
  962                 *((u_long*) p + 5) = 0;
  963                 *((u_long*) p + 6) = 0;
  964                 *((u_long*) p + 7) = 0;
  965                 p += sizeof(u_long) * 8;
  966         }
  967         while (len >= sizeof(u_long)) {
  968                 *(u_long*) p = 0;
  969                 len -= sizeof(u_long);
  970                 p += sizeof(u_long);
  971         }
  972         while (len) {
  973                 *p++ = 0;
  974                 len--;
  975         }
  976 }
  977 
  978 u_int
  979 ia64_itc_freq(void)
  980 {
  981 
  982         return (itc_freq);
  983 }
  984 
  985 void
  986 DELAY(int n)
  987 {
  988         u_int64_t start, end, now;
  989 
  990         sched_pin();
  991 
  992         start = ia64_get_itc();
  993         end = start + itc_freq * n;
  994         /* printf("DELAY from 0x%lx to 0x%lx\n", start, end); */
  995         do {
  996                 now = ia64_get_itc();
  997         } while (now < end || (now > start && end < start));
  998 
  999         sched_unpin();
 1000 }
 1001 
 1002 /*
 1003  * Send an interrupt (signal) to a process.
 1004  */
 1005 void
 1006 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
 1007 {
 1008         struct proc *p;
 1009         struct thread *td;
 1010         struct trapframe *tf;
 1011         struct sigacts *psp;
 1012         struct sigframe sf, *sfp;
 1013         u_int64_t sbs, sp;
 1014         int oonstack;
 1015         int sig;
 1016         u_long code;
 1017 
 1018         td = curthread;
 1019         p = td->td_proc;
 1020         PROC_LOCK_ASSERT(p, MA_OWNED);
 1021         sig = ksi->ksi_signo;
 1022         code = ksi->ksi_code;
 1023         psp = p->p_sigacts;
 1024         mtx_assert(&psp->ps_mtx, MA_OWNED);
 1025         tf = td->td_frame;
 1026         sp = tf->tf_special.sp;
 1027         oonstack = sigonstack(sp);
 1028         sbs = 0;
 1029 
 1030         /* save user context */
 1031         bzero(&sf, sizeof(struct sigframe));
 1032         sf.sf_uc.uc_sigmask = *mask;
 1033         sf.sf_uc.uc_stack = td->td_sigstk;
 1034         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1035             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1036 
 1037         /*
 1038          * Allocate and validate space for the signal handler
 1039          * context. Note that if the stack is in P0 space, the
 1040          * call to grow() is a nop, and the useracc() check
 1041          * will fail if the process has not already allocated
 1042          * the space with a `brk'.
 1043          */
 1044         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
 1045             SIGISMEMBER(psp->ps_sigonstack, sig)) {
 1046                 sbs = (u_int64_t)td->td_sigstk.ss_sp;
 1047                 sbs = (sbs + 15) & ~15;
 1048                 sfp = (struct sigframe *)(sbs + td->td_sigstk.ss_size);
 1049 #if defined(COMPAT_43)
 1050                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1051 #endif
 1052         } else
 1053                 sfp = (struct sigframe *)sp;
 1054         sfp = (struct sigframe *)((u_int64_t)(sfp - 1) & ~15);
 1055 
 1056         /* Fill in the siginfo structure for POSIX handlers. */
 1057         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
 1058                 sf.sf_si = ksi->ksi_info;
 1059                 sf.sf_si.si_signo = sig;
 1060                 /*
 1061                  * XXX this shouldn't be here after code in trap.c
 1062                  * is fixed
 1063                  */
 1064                 sf.sf_si.si_addr = (void*)tf->tf_special.ifa;
 1065                 code = (u_int64_t)&sfp->sf_si;
 1066         }
 1067 
 1068         mtx_unlock(&psp->ps_mtx);
 1069         PROC_UNLOCK(p);
 1070 
 1071         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
 1072 
 1073         /* Copy the frame out to userland. */
 1074         if (copyout(&sf, sfp, sizeof(sf)) != 0) {
 1075                 /*
 1076                  * Process has trashed its stack; give it an illegal
 1077                  * instruction to halt it in its tracks.
 1078                  */
 1079                 PROC_LOCK(p);
 1080                 sigexit(td, SIGILL);
 1081                 return;
 1082         }
 1083 
 1084         if ((tf->tf_flags & FRAME_SYSCALL) == 0) {
 1085                 tf->tf_special.psr &= ~IA64_PSR_RI;
 1086                 tf->tf_special.iip = ia64_get_k5() +
 1087                     ((uint64_t)break_sigtramp - (uint64_t)ia64_gateway_page);
 1088         } else
 1089                 tf->tf_special.iip = ia64_get_k5() +
 1090                     ((uint64_t)epc_sigtramp - (uint64_t)ia64_gateway_page);
 1091 
 1092         /*
 1093          * Setup the trapframe to return to the signal trampoline. We pass
 1094          * information to the trampoline in the following registers:
 1095          *
 1096          *      gp      new backing store or NULL
 1097          *      r8      signal number
 1098          *      r9      signal code or siginfo pointer
 1099          *      r10     signal handler (function descriptor)
 1100          */
 1101         tf->tf_special.sp = (u_int64_t)sfp - 16;
 1102         tf->tf_special.gp = sbs;
 1103         tf->tf_special.bspstore = sf.sf_uc.uc_mcontext.mc_special.bspstore;
 1104         tf->tf_special.ndirty = 0;
 1105         tf->tf_special.rnat = sf.sf_uc.uc_mcontext.mc_special.rnat;
 1106         tf->tf_scratch.gr8 = sig;
 1107         tf->tf_scratch.gr9 = code;
 1108         tf->tf_scratch.gr10 = (u_int64_t)catcher;
 1109 
 1110         PROC_LOCK(p);
 1111         mtx_lock(&psp->ps_mtx);
 1112 }
 1113 
 1114 /*
 1115  * System call to cleanup state after a signal
 1116  * has been taken.  Reset signal mask and
 1117  * stack state from context left by sendsig (above).
 1118  * Return to previous pc and psl as specified by
 1119  * context left by sendsig. Check carefully to
 1120  * make sure that the user has not modified the
 1121  * state to gain improper privileges.
 1122  *
 1123  * MPSAFE
 1124  */
 1125 int
 1126 sigreturn(struct thread *td,
 1127         struct sigreturn_args /* {
 1128                 ucontext_t *sigcntxp;
 1129         } */ *uap)
 1130 {
 1131         ucontext_t uc;
 1132         struct trapframe *tf;
 1133         struct pcb *pcb;
 1134 
 1135         tf = td->td_frame;
 1136         pcb = td->td_pcb;
 1137 
 1138         /*
 1139          * Fetch the entire context structure at once for speed.
 1140          * We don't use a normal argument to simplify RSE handling.
 1141          */
 1142         if (copyin(uap->sigcntxp, (caddr_t)&uc, sizeof(uc)))
 1143                 return (EFAULT);
 1144 
 1145         set_mcontext(td, &uc.uc_mcontext);
 1146 
 1147 #if defined(COMPAT_43)
 1148         if (sigonstack(tf->tf_special.sp))
 1149                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1150         else
 1151                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1152 #endif
 1153         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
 1154 
 1155         return (EJUSTRETURN);
 1156 }
 1157 
 1158 #ifdef COMPAT_FREEBSD4
 1159 int
 1160 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
 1161 {
 1162 
 1163         return sigreturn(td, (struct sigreturn_args *)uap);
 1164 }
 1165 #endif
 1166 
 1167 /*
 1168  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1169  * we want to start a backtrace from the function that caused us to enter
 1170  * the debugger. We have the context in the trapframe, but base the trace
 1171  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1172  * enough for a backtrace.
 1173  */
 1174 void
 1175 makectx(struct trapframe *tf, struct pcb *pcb)
 1176 {
 1177 
 1178         pcb->pcb_special = tf->tf_special;
 1179         pcb->pcb_special.__spare = ~0UL;        /* XXX see unwind.c */
 1180         save_callee_saved(&pcb->pcb_preserved);
 1181         save_callee_saved_fp(&pcb->pcb_preserved_fp);
 1182 }
 1183 
 1184 int
 1185 ia64_flush_dirty(struct thread *td, struct _special *r)
 1186 {
 1187         struct iovec iov;
 1188         struct uio uio;
 1189         uint64_t bspst, kstk, rnat;
 1190         int error, locked;
 1191 
 1192         if (r->ndirty == 0)
 1193                 return (0);
 1194 
 1195         kstk = td->td_kstack + (r->bspstore & 0x1ffUL);
 1196         if (td == curthread) {
 1197                 __asm __volatile("mov   ar.rsc=0;;");
 1198                 __asm __volatile("mov   %0=ar.bspstore" : "=r"(bspst));
 1199                 /* Make sure we have all the user registers written out. */
 1200                 if (bspst - kstk < r->ndirty) {
 1201                         __asm __volatile("flushrs;;");
 1202                         __asm __volatile("mov   %0=ar.bspstore" : "=r"(bspst));
 1203                 }
 1204                 __asm __volatile("mov   %0=ar.rnat;;" : "=r"(rnat));
 1205                 __asm __volatile("mov   ar.rsc=3");
 1206                 error = copyout((void*)kstk, (void*)r->bspstore, r->ndirty);
 1207                 kstk += r->ndirty;
 1208                 r->rnat = (bspst > kstk && (bspst & 0x1ffL) < (kstk & 0x1ffL))
 1209                     ? *(uint64_t*)(kstk | 0x1f8L) : rnat;
 1210         } else {
 1211                 locked = PROC_LOCKED(td->td_proc);
 1212                 if (!locked)
 1213                         PHOLD(td->td_proc);
 1214                 iov.iov_base = (void*)(uintptr_t)kstk;
 1215                 iov.iov_len = r->ndirty;
 1216                 uio.uio_iov = &iov;
 1217                 uio.uio_iovcnt = 1;
 1218                 uio.uio_offset = r->bspstore;
 1219                 uio.uio_resid = r->ndirty;
 1220                 uio.uio_segflg = UIO_SYSSPACE;
 1221                 uio.uio_rw = UIO_WRITE;
 1222                 uio.uio_td = td;
 1223                 error = proc_rwmem(td->td_proc, &uio);
 1224                 /*
 1225                  * XXX proc_rwmem() doesn't currently return ENOSPC,
 1226                  * so I think it can bogusly return 0. Neither do
 1227                  * we allow short writes.
 1228                  */
 1229                 if (uio.uio_resid != 0 && error == 0)
 1230                         error = ENOSPC;
 1231                 if (!locked)
 1232                         PRELE(td->td_proc);
 1233         }
 1234 
 1235         r->bspstore += r->ndirty;
 1236         r->ndirty = 0;
 1237         return (error);
 1238 }
 1239 
 1240 int
 1241 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
 1242 {
 1243         struct trapframe *tf;
 1244         int error;
 1245 
 1246         tf = td->td_frame;
 1247         bzero(mc, sizeof(*mc));
 1248         mc->mc_special = tf->tf_special;
 1249         error = ia64_flush_dirty(td, &mc->mc_special);
 1250         if (tf->tf_flags & FRAME_SYSCALL) {
 1251                 mc->mc_flags |= _MC_FLAGS_SYSCALL_CONTEXT;
 1252                 mc->mc_scratch = tf->tf_scratch;
 1253                 if (flags & GET_MC_CLEAR_RET) {
 1254                         mc->mc_scratch.gr8 = 0;
 1255                         mc->mc_scratch.gr9 = 0;
 1256                         mc->mc_scratch.gr10 = 0;
 1257                         mc->mc_scratch.gr11 = 0;
 1258                 }
 1259         } else {
 1260                 mc->mc_flags |= _MC_FLAGS_ASYNC_CONTEXT;
 1261                 mc->mc_scratch = tf->tf_scratch;
 1262                 mc->mc_scratch_fp = tf->tf_scratch_fp;
 1263                 /*
 1264                  * XXX If the thread never used the high FP registers, we
 1265                  * probably shouldn't waste time saving them.
 1266                  */
 1267                 ia64_highfp_save(td);
 1268                 mc->mc_flags |= _MC_FLAGS_HIGHFP_VALID;
 1269                 mc->mc_high_fp = td->td_pcb->pcb_high_fp;
 1270         }
 1271         save_callee_saved(&mc->mc_preserved);
 1272         save_callee_saved_fp(&mc->mc_preserved_fp);
 1273         return (error);
 1274 }
 1275 
 1276 int
 1277 set_mcontext(struct thread *td, const mcontext_t *mc)
 1278 {
 1279         struct _special s;
 1280         struct trapframe *tf;
 1281         uint64_t psrmask;
 1282 
 1283         tf = td->td_frame;
 1284 
 1285         KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
 1286             ("Whoa there! We have more than 8KB of dirty registers!"));
 1287 
 1288         s = mc->mc_special;
 1289         /*
 1290          * Only copy the user mask and the restart instruction bit from
 1291          * the new context.
 1292          */
 1293         psrmask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
 1294             IA64_PSR_MFH | IA64_PSR_RI;
 1295         s.psr = (tf->tf_special.psr & ~psrmask) | (s.psr & psrmask);
 1296         /* We don't have any dirty registers of the new context. */
 1297         s.ndirty = 0;
 1298         if (mc->mc_flags & _MC_FLAGS_ASYNC_CONTEXT) {
 1299                 /*
 1300                  * We can get an async context passed to us while we
 1301                  * entered the kernel through a syscall: sigreturn(2)
 1302                  * takes contexts that could previously be the result of
 1303                  * a trap or interrupt.
 1304                  * Hence, we cannot assert that the trapframe is not
 1305                  * a syscall frame, but we can assert that it's at
 1306                  * least an expected syscall.
 1307                  */
 1308                 if (tf->tf_flags & FRAME_SYSCALL) {
 1309                         KASSERT(tf->tf_scratch.gr15 == SYS_sigreturn, ("foo"));
 1310                         tf->tf_flags &= ~FRAME_SYSCALL;
 1311                 }
 1312                 tf->tf_scratch = mc->mc_scratch;
 1313                 tf->tf_scratch_fp = mc->mc_scratch_fp;
 1314                 if (mc->mc_flags & _MC_FLAGS_HIGHFP_VALID)
 1315                         td->td_pcb->pcb_high_fp = mc->mc_high_fp;
 1316         } else {
 1317                 KASSERT((tf->tf_flags & FRAME_SYSCALL) != 0, ("foo"));
 1318                 if ((mc->mc_flags & _MC_FLAGS_SYSCALL_CONTEXT) == 0) {
 1319                         s.cfm = tf->tf_special.cfm;
 1320                         s.iip = tf->tf_special.iip;
 1321                         tf->tf_scratch.gr15 = 0;        /* Clear syscall nr. */
 1322                 } else
 1323                         tf->tf_scratch = mc->mc_scratch;
 1324         }
 1325         tf->tf_special = s;
 1326         restore_callee_saved(&mc->mc_preserved);
 1327         restore_callee_saved_fp(&mc->mc_preserved_fp);
 1328 
 1329         return (0);
 1330 }
 1331 
 1332 /*
 1333  * Clear registers on exec.
 1334  */
 1335 void
 1336 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
 1337 {
 1338         struct trapframe *tf;
 1339         uint64_t *ksttop, *kst;
 1340 
 1341         tf = td->td_frame;
 1342         ksttop = (uint64_t*)(td->td_kstack + tf->tf_special.ndirty +
 1343             (tf->tf_special.bspstore & 0x1ffUL));
 1344 
 1345         /*
 1346          * We can ignore up to 8KB of dirty registers by masking off the
 1347          * lower 13 bits in exception_restore() or epc_syscall(). This
 1348          * should be enough for a couple of years, but if there are more
 1349          * than 8KB of dirty registers, we lose track of the bottom of
 1350          * the kernel stack. The solution is to copy the active part of
 1351          * the kernel stack down 1 page (or 2, but not more than that)
 1352          * so that we always have less than 8KB of dirty registers.
 1353          */
 1354         KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
 1355             ("Whoa there! We have more than 8KB of dirty registers!"));
 1356 
 1357         bzero(&tf->tf_special, sizeof(tf->tf_special));
 1358         if ((tf->tf_flags & FRAME_SYSCALL) == 0) {      /* break syscalls. */
 1359                 bzero(&tf->tf_scratch, sizeof(tf->tf_scratch));
 1360                 bzero(&tf->tf_scratch_fp, sizeof(tf->tf_scratch_fp));
 1361                 tf->tf_special.cfm = (1UL<<63) | (3UL<<7) | 3UL;
 1362                 tf->tf_special.bspstore = IA64_BACKINGSTORE;
 1363                 /*
 1364                  * Copy the arguments onto the kernel register stack so that
 1365                  * they get loaded by the loadrs instruction. Skip over the
 1366                  * NaT collection points.
 1367                  */
 1368                 kst = ksttop - 1;
 1369                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
 1370                         *kst-- = 0;
 1371                 *kst-- = 0;
 1372                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
 1373                         *kst-- = 0;
 1374                 *kst-- = ps_strings;
 1375                 if (((uintptr_t)kst & 0x1ff) == 0x1f8)
 1376                         *kst-- = 0;
 1377                 *kst = stack;
 1378                 tf->tf_special.ndirty = (ksttop - kst) << 3;
 1379         } else {                                /* epc syscalls (default). */
 1380                 tf->tf_special.cfm = (3UL<<62) | (3UL<<7) | 3UL;
 1381                 tf->tf_special.bspstore = IA64_BACKINGSTORE + 24;
 1382                 /*
 1383                  * Write values for out0, out1 and out2 to the user's backing
 1384                  * store and arrange for them to be restored into the user's
 1385                  * initial register frame.
 1386                  * Assumes that (bspstore & 0x1f8) < 0x1e0.
 1387                  */
 1388                 suword((caddr_t)tf->tf_special.bspstore - 24, stack);
 1389                 suword((caddr_t)tf->tf_special.bspstore - 16, ps_strings);
 1390                 suword((caddr_t)tf->tf_special.bspstore -  8, 0);
 1391         }
 1392 
 1393         tf->tf_special.iip = entry;
 1394         tf->tf_special.sp = (stack & ~15) - 16;
 1395         tf->tf_special.rsc = 0xf;
 1396         tf->tf_special.fpsr = IA64_FPSR_DEFAULT;
 1397         tf->tf_special.psr = IA64_PSR_IC | IA64_PSR_I | IA64_PSR_IT |
 1398             IA64_PSR_DT | IA64_PSR_RT | IA64_PSR_DFH | IA64_PSR_BN |
 1399             IA64_PSR_CPL_USER;
 1400 }
 1401 
 1402 int
 1403 ptrace_set_pc(struct thread *td, unsigned long addr)
 1404 {
 1405         uint64_t slot;
 1406 
 1407         switch (addr & 0xFUL) {
 1408         case 0:
 1409                 slot = IA64_PSR_RI_0;
 1410                 break;
 1411         case 1:
 1412                 /* XXX we need to deal with MLX bundles here */
 1413                 slot = IA64_PSR_RI_1;
 1414                 break;
 1415         case 2:
 1416                 slot = IA64_PSR_RI_2;
 1417                 break;
 1418         default:
 1419                 return (EINVAL);
 1420         }
 1421 
 1422         td->td_frame->tf_special.iip = addr & ~0x0FULL;
 1423         td->td_frame->tf_special.psr =
 1424             (td->td_frame->tf_special.psr & ~IA64_PSR_RI) | slot;
 1425         return (0);
 1426 }
 1427 
 1428 int
 1429 ptrace_single_step(struct thread *td)
 1430 {
 1431         struct trapframe *tf;
 1432 
 1433         /*
 1434          * There's no way to set single stepping when we're leaving the
 1435          * kernel through the EPC syscall path. The way we solve this is
 1436          * by enabling the lower-privilege trap so that we re-enter the
 1437          * kernel as soon as the privilege level changes. See trap.c for
 1438          * how we proceed from there.
 1439          */
 1440         tf = td->td_frame;
 1441         if (tf->tf_flags & FRAME_SYSCALL)
 1442                 tf->tf_special.psr |= IA64_PSR_LP;
 1443         else
 1444                 tf->tf_special.psr |= IA64_PSR_SS;
 1445         return (0);
 1446 }
 1447 
 1448 int
 1449 ptrace_clear_single_step(struct thread *td)
 1450 {
 1451         struct trapframe *tf;
 1452 
 1453         /*
 1454          * Clear any and all status bits we may use to implement single
 1455          * stepping.
 1456          */
 1457         tf = td->td_frame;
 1458         tf->tf_special.psr &= ~IA64_PSR_SS;
 1459         tf->tf_special.psr &= ~IA64_PSR_LP;
 1460         tf->tf_special.psr &= ~IA64_PSR_TB;
 1461         return (0);
 1462 }
 1463 
 1464 int
 1465 fill_regs(struct thread *td, struct reg *regs)
 1466 {
 1467         struct trapframe *tf;
 1468 
 1469         tf = td->td_frame;
 1470         regs->r_special = tf->tf_special;
 1471         regs->r_scratch = tf->tf_scratch;
 1472         save_callee_saved(&regs->r_preserved);
 1473         return (0);
 1474 }
 1475 
 1476 int
 1477 set_regs(struct thread *td, struct reg *regs)
 1478 {
 1479         struct trapframe *tf;
 1480         int error;
 1481 
 1482         tf = td->td_frame;
 1483         error = ia64_flush_dirty(td, &tf->tf_special);
 1484         if (!error) {
 1485                 tf->tf_special = regs->r_special;
 1486                 tf->tf_special.bspstore += tf->tf_special.ndirty;
 1487                 tf->tf_special.ndirty = 0;
 1488                 tf->tf_scratch = regs->r_scratch;
 1489                 restore_callee_saved(&regs->r_preserved);
 1490         }
 1491         return (error);
 1492 }
 1493 
 1494 int
 1495 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1496 {
 1497 
 1498         return (ENOSYS);
 1499 }
 1500 
 1501 int
 1502 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1503 {
 1504 
 1505         return (ENOSYS);
 1506 }
 1507 
 1508 int
 1509 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1510 {
 1511         struct trapframe *frame = td->td_frame;
 1512         struct pcb *pcb = td->td_pcb;
 1513 
 1514         /* Save the high FP registers. */
 1515         ia64_highfp_save(td);
 1516 
 1517         fpregs->fpr_scratch = frame->tf_scratch_fp;
 1518         save_callee_saved_fp(&fpregs->fpr_preserved);
 1519         fpregs->fpr_high = pcb->pcb_high_fp;
 1520         return (0);
 1521 }
 1522 
 1523 int
 1524 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1525 {
 1526         struct trapframe *frame = td->td_frame;
 1527         struct pcb *pcb = td->td_pcb;
 1528 
 1529         /* Throw away the high FP registers (should be redundant). */
 1530         ia64_highfp_drop(td);
 1531 
 1532         frame->tf_scratch_fp = fpregs->fpr_scratch;
 1533         restore_callee_saved_fp(&fpregs->fpr_preserved);
 1534         pcb->pcb_high_fp = fpregs->fpr_high;
 1535         return (0);
 1536 }
 1537 
 1538 void
 1539 ia64_sync_icache(vm_offset_t va, vm_offset_t sz)
 1540 {
 1541         vm_offset_t lim;
 1542 
 1543         if (!ia64_sync_icache_needed)
 1544                 return;
 1545 
 1546         lim = va + sz;
 1547         while (va < lim) {
 1548                 ia64_fc_i(va);
 1549                 va += 32;       /* XXX */
 1550         }
 1551 
 1552         ia64_sync_i();
 1553         ia64_srlz_i();
 1554 }

Cache object: 4d804333188f59b62814c81ab28fd4eb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.