The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/init/calibrate.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* calibrate.c: default delay calibration
    2  *
    3  * Excised from init/main.c
    4  *  Copyright (C) 1991, 1992  Linus Torvalds
    5  */
    6 
    7 #include <linux/jiffies.h>
    8 #include <linux/delay.h>
    9 #include <linux/init.h>
   10 #include <linux/timex.h>
   11 #include <linux/smp.h>
   12 #include <linux/percpu.h>
   13 
   14 unsigned long lpj_fine;
   15 unsigned long preset_lpj;
   16 static int __init lpj_setup(char *str)
   17 {
   18         preset_lpj = simple_strtoul(str,NULL,0);
   19         return 1;
   20 }
   21 
   22 __setup("lpj=", lpj_setup);
   23 
   24 #ifdef ARCH_HAS_READ_CURRENT_TIMER
   25 
   26 /* This routine uses the read_current_timer() routine and gets the
   27  * loops per jiffy directly, instead of guessing it using delay().
   28  * Also, this code tries to handle non-maskable asynchronous events
   29  * (like SMIs)
   30  */
   31 #define DELAY_CALIBRATION_TICKS                 ((HZ < 100) ? 1 : (HZ/100))
   32 #define MAX_DIRECT_CALIBRATION_RETRIES          5
   33 
   34 static unsigned long __cpuinit calibrate_delay_direct(void)
   35 {
   36         unsigned long pre_start, start, post_start;
   37         unsigned long pre_end, end, post_end;
   38         unsigned long start_jiffies;
   39         unsigned long timer_rate_min, timer_rate_max;
   40         unsigned long good_timer_sum = 0;
   41         unsigned long good_timer_count = 0;
   42         unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
   43         int max = -1; /* index of measured_times with max/min values or not set */
   44         int min = -1;
   45         int i;
   46 
   47         if (read_current_timer(&pre_start) < 0 )
   48                 return 0;
   49 
   50         /*
   51          * A simple loop like
   52          *      while ( jiffies < start_jiffies+1)
   53          *              start = read_current_timer();
   54          * will not do. As we don't really know whether jiffy switch
   55          * happened first or timer_value was read first. And some asynchronous
   56          * event can happen between these two events introducing errors in lpj.
   57          *
   58          * So, we do
   59          * 1. pre_start <- When we are sure that jiffy switch hasn't happened
   60          * 2. check jiffy switch
   61          * 3. start <- timer value before or after jiffy switch
   62          * 4. post_start <- When we are sure that jiffy switch has happened
   63          *
   64          * Note, we don't know anything about order of 2 and 3.
   65          * Now, by looking at post_start and pre_start difference, we can
   66          * check whether any asynchronous event happened or not
   67          */
   68 
   69         for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
   70                 pre_start = 0;
   71                 read_current_timer(&start);
   72                 start_jiffies = jiffies;
   73                 while (time_before_eq(jiffies, start_jiffies + 1)) {
   74                         pre_start = start;
   75                         read_current_timer(&start);
   76                 }
   77                 read_current_timer(&post_start);
   78 
   79                 pre_end = 0;
   80                 end = post_start;
   81                 while (time_before_eq(jiffies, start_jiffies + 1 +
   82                                                DELAY_CALIBRATION_TICKS)) {
   83                         pre_end = end;
   84                         read_current_timer(&end);
   85                 }
   86                 read_current_timer(&post_end);
   87 
   88                 timer_rate_max = (post_end - pre_start) /
   89                                         DELAY_CALIBRATION_TICKS;
   90                 timer_rate_min = (pre_end - post_start) /
   91                                         DELAY_CALIBRATION_TICKS;
   92 
   93                 /*
   94                  * If the upper limit and lower limit of the timer_rate is
   95                  * >= 12.5% apart, redo calibration.
   96                  */
   97                 if (start >= post_end)
   98                         printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
   99                                         "timer_rate as we had a TSC wrap around"
  100                                         " start=%lu >=post_end=%lu\n",
  101                                 start, post_end);
  102                 if (start < post_end && pre_start != 0 && pre_end != 0 &&
  103                     (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
  104                         good_timer_count++;
  105                         good_timer_sum += timer_rate_max;
  106                         measured_times[i] = timer_rate_max;
  107                         if (max < 0 || timer_rate_max > measured_times[max])
  108                                 max = i;
  109                         if (min < 0 || timer_rate_max < measured_times[min])
  110                                 min = i;
  111                 } else
  112                         measured_times[i] = 0;
  113 
  114         }
  115 
  116         /*
  117          * Find the maximum & minimum - if they differ too much throw out the
  118          * one with the largest difference from the mean and try again...
  119          */
  120         while (good_timer_count > 1) {
  121                 unsigned long estimate;
  122                 unsigned long maxdiff;
  123 
  124                 /* compute the estimate */
  125                 estimate = (good_timer_sum/good_timer_count);
  126                 maxdiff = estimate >> 3;
  127 
  128                 /* if range is within 12% let's take it */
  129                 if ((measured_times[max] - measured_times[min]) < maxdiff)
  130                         return estimate;
  131 
  132                 /* ok - drop the worse value and try again... */
  133                 good_timer_sum = 0;
  134                 good_timer_count = 0;
  135                 if ((measured_times[max] - estimate) <
  136                                 (estimate - measured_times[min])) {
  137                         printk(KERN_NOTICE "calibrate_delay_direct() dropping "
  138                                         "min bogoMips estimate %d = %lu\n",
  139                                 min, measured_times[min]);
  140                         measured_times[min] = 0;
  141                         min = max;
  142                 } else {
  143                         printk(KERN_NOTICE "calibrate_delay_direct() dropping "
  144                                         "max bogoMips estimate %d = %lu\n",
  145                                 max, measured_times[max]);
  146                         measured_times[max] = 0;
  147                         max = min;
  148                 }
  149 
  150                 for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  151                         if (measured_times[i] == 0)
  152                                 continue;
  153                         good_timer_count++;
  154                         good_timer_sum += measured_times[i];
  155                         if (measured_times[i] < measured_times[min])
  156                                 min = i;
  157                         if (measured_times[i] > measured_times[max])
  158                                 max = i;
  159                 }
  160 
  161         }
  162 
  163         printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
  164                "estimate for loops_per_jiffy.\nProbably due to long platform "
  165                 "interrupts. Consider using \"lpj=\" boot option.\n");
  166         return 0;
  167 }
  168 #else
  169 static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
  170 #endif
  171 
  172 /*
  173  * This is the number of bits of precision for the loops_per_jiffy.  Each
  174  * time we refine our estimate after the first takes 1.5/HZ seconds, so try
  175  * to start with a good estimate.
  176  * For the boot cpu we can skip the delay calibration and assign it a value
  177  * calculated based on the timer frequency.
  178  * For the rest of the CPUs we cannot assume that the timer frequency is same as
  179  * the cpu frequency, hence do the calibration for those.
  180  */
  181 #define LPS_PREC 8
  182 
  183 static unsigned long __cpuinit calibrate_delay_converge(void)
  184 {
  185         /* First stage - slowly accelerate to find initial bounds */
  186         unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
  187         int trials = 0, band = 0, trial_in_band = 0;
  188 
  189         lpj = (1<<12);
  190 
  191         /* wait for "start of" clock tick */
  192         ticks = jiffies;
  193         while (ticks == jiffies)
  194                 ; /* nothing */
  195         /* Go .. */
  196         ticks = jiffies;
  197         do {
  198                 if (++trial_in_band == (1<<band)) {
  199                         ++band;
  200                         trial_in_band = 0;
  201                 }
  202                 __delay(lpj * band);
  203                 trials += band;
  204         } while (ticks == jiffies);
  205         /*
  206          * We overshot, so retreat to a clear underestimate. Then estimate
  207          * the largest likely undershoot. This defines our chop bounds.
  208          */
  209         trials -= band;
  210         loopadd_base = lpj * band;
  211         lpj_base = lpj * trials;
  212 
  213 recalibrate:
  214         lpj = lpj_base;
  215         loopadd = loopadd_base;
  216 
  217         /*
  218          * Do a binary approximation to get lpj set to
  219          * equal one clock (up to LPS_PREC bits)
  220          */
  221         chop_limit = lpj >> LPS_PREC;
  222         while (loopadd > chop_limit) {
  223                 lpj += loopadd;
  224                 ticks = jiffies;
  225                 while (ticks == jiffies)
  226                         ; /* nothing */
  227                 ticks = jiffies;
  228                 __delay(lpj);
  229                 if (jiffies != ticks)   /* longer than 1 tick */
  230                         lpj -= loopadd;
  231                 loopadd >>= 1;
  232         }
  233         /*
  234          * If we incremented every single time possible, presume we've
  235          * massively underestimated initially, and retry with a higher
  236          * start, and larger range. (Only seen on x86_64, due to SMIs)
  237          */
  238         if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
  239                 lpj_base = lpj;
  240                 loopadd_base <<= 2;
  241                 goto recalibrate;
  242         }
  243 
  244         return lpj;
  245 }
  246 
  247 static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
  248 
  249 /*
  250  * Check if cpu calibration delay is already known. For example,
  251  * some processors with multi-core sockets may have all cores
  252  * with the same calibration delay.
  253  *
  254  * Architectures should override this function if a faster calibration
  255  * method is available.
  256  */
  257 unsigned long __attribute__((weak)) __cpuinit calibrate_delay_is_known(void)
  258 {
  259         return 0;
  260 }
  261 
  262 void __cpuinit calibrate_delay(void)
  263 {
  264         unsigned long lpj;
  265         static bool printed;
  266         int this_cpu = smp_processor_id();
  267 
  268         if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
  269                 lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
  270                 if (!printed)
  271                         pr_info("Calibrating delay loop (skipped) "
  272                                 "already calibrated this CPU");
  273         } else if (preset_lpj) {
  274                 lpj = preset_lpj;
  275                 if (!printed)
  276                         pr_info("Calibrating delay loop (skipped) "
  277                                 "preset value.. ");
  278         } else if ((!printed) && lpj_fine) {
  279                 lpj = lpj_fine;
  280                 pr_info("Calibrating delay loop (skipped), "
  281                         "value calculated using timer frequency.. ");
  282         } else if ((lpj = calibrate_delay_is_known())) {
  283                 ;
  284         } else if ((lpj = calibrate_delay_direct()) != 0) {
  285                 if (!printed)
  286                         pr_info("Calibrating delay using timer "
  287                                 "specific routine.. ");
  288         } else {
  289                 if (!printed)
  290                         pr_info("Calibrating delay loop... ");
  291                 lpj = calibrate_delay_converge();
  292         }
  293         per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
  294         if (!printed)
  295                 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
  296                         lpj/(500000/HZ),
  297                         (lpj/(5000/HZ)) % 100, lpj);
  298 
  299         loops_per_jiffy = lpj;
  300         printed = true;
  301 }

Cache object: bb04b669b1a40d63864bdc72688c0210


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.