The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ipc/sem.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * linux/ipc/sem.c
    3  * Copyright (C) 1992 Krishna Balasubramanian
    4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
    5  *
    6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
    7  *
    8  * SMP-threaded, sysctl's added
    9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
   10  * Enforced range limit on SEM_UNDO
   11  * (c) 2001 Red Hat Inc
   12  * Lockless wakeup
   13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
   14  * Further wakeup optimizations, documentation
   15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
   16  *
   17  * support for audit of ipc object properties and permission changes
   18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
   19  *
   20  * namespaces support
   21  * OpenVZ, SWsoft Inc.
   22  * Pavel Emelianov <xemul@openvz.org>
   23  *
   24  * Implementation notes: (May 2010)
   25  * This file implements System V semaphores.
   26  *
   27  * User space visible behavior:
   28  * - FIFO ordering for semop() operations (just FIFO, not starvation
   29  *   protection)
   30  * - multiple semaphore operations that alter the same semaphore in
   31  *   one semop() are handled.
   32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
   33  *   SETALL calls.
   34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
   35  * - undo adjustments at process exit are limited to 0..SEMVMX.
   36  * - namespace are supported.
   37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
   38  *   to /proc/sys/kernel/sem.
   39  * - statistics about the usage are reported in /proc/sysvipc/sem.
   40  *
   41  * Internals:
   42  * - scalability:
   43  *   - all global variables are read-mostly.
   44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
   45  *   - most operations do write operations (actually: spin_lock calls) to
   46  *     the per-semaphore array structure.
   47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
   48  *         If multiple semaphores in one array are used, then cache line
   49  *         trashing on the semaphore array spinlock will limit the scaling.
   50  * - semncnt and semzcnt are calculated on demand in count_semncnt() and
   51  *   count_semzcnt()
   52  * - the task that performs a successful semop() scans the list of all
   53  *   sleeping tasks and completes any pending operations that can be fulfilled.
   54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
   55  *   (see update_queue())
   56  * - To improve the scalability, the actual wake-up calls are performed after
   57  *   dropping all locks. (see wake_up_sem_queue_prepare(),
   58  *   wake_up_sem_queue_do())
   59  * - All work is done by the waker, the woken up task does not have to do
   60  *   anything - not even acquiring a lock or dropping a refcount.
   61  * - A woken up task may not even touch the semaphore array anymore, it may
   62  *   have been destroyed already by a semctl(RMID).
   63  * - The synchronizations between wake-ups due to a timeout/signal and a
   64  *   wake-up due to a completed semaphore operation is achieved by using an
   65  *   intermediate state (IN_WAKEUP).
   66  * - UNDO values are stored in an array (one per process and per
   67  *   semaphore array, lazily allocated). For backwards compatibility, multiple
   68  *   modes for the UNDO variables are supported (per process, per thread)
   69  *   (see copy_semundo, CLONE_SYSVSEM)
   70  * - There are two lists of the pending operations: a per-array list
   71  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
   72  *   ordering without always scanning all pending operations.
   73  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
   74  */
   75 
   76 #include <linux/slab.h>
   77 #include <linux/spinlock.h>
   78 #include <linux/init.h>
   79 #include <linux/proc_fs.h>
   80 #include <linux/time.h>
   81 #include <linux/security.h>
   82 #include <linux/syscalls.h>
   83 #include <linux/audit.h>
   84 #include <linux/capability.h>
   85 #include <linux/seq_file.h>
   86 #include <linux/rwsem.h>
   87 #include <linux/nsproxy.h>
   88 #include <linux/ipc_namespace.h>
   89 
   90 #include <asm/uaccess.h>
   91 #include "util.h"
   92 
   93 /* One semaphore structure for each semaphore in the system. */
   94 struct sem {
   95         int     semval;         /* current value */
   96         int     sempid;         /* pid of last operation */
   97         struct list_head sem_pending; /* pending single-sop operations */
   98 };
   99 
  100 /* One queue for each sleeping process in the system. */
  101 struct sem_queue {
  102         struct list_head        simple_list; /* queue of pending operations */
  103         struct list_head        list;    /* queue of pending operations */
  104         struct task_struct      *sleeper; /* this process */
  105         struct sem_undo         *undo;   /* undo structure */
  106         int                     pid;     /* process id of requesting process */
  107         int                     status;  /* completion status of operation */
  108         struct sembuf           *sops;   /* array of pending operations */
  109         int                     nsops;   /* number of operations */
  110         int                     alter;   /* does *sops alter the array? */
  111 };
  112 
  113 /* Each task has a list of undo requests. They are executed automatically
  114  * when the process exits.
  115  */
  116 struct sem_undo {
  117         struct list_head        list_proc;      /* per-process list: *
  118                                                  * all undos from one process
  119                                                  * rcu protected */
  120         struct rcu_head         rcu;            /* rcu struct for sem_undo */
  121         struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
  122         struct list_head        list_id;        /* per semaphore array list:
  123                                                  * all undos for one array */
  124         int                     semid;          /* semaphore set identifier */
  125         short                   *semadj;        /* array of adjustments */
  126                                                 /* one per semaphore */
  127 };
  128 
  129 /* sem_undo_list controls shared access to the list of sem_undo structures
  130  * that may be shared among all a CLONE_SYSVSEM task group.
  131  */
  132 struct sem_undo_list {
  133         atomic_t                refcnt;
  134         spinlock_t              lock;
  135         struct list_head        list_proc;
  136 };
  137 
  138 
  139 #define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
  140 
  141 #define sem_unlock(sma)         ipc_unlock(&(sma)->sem_perm)
  142 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
  143 
  144 static int newary(struct ipc_namespace *, struct ipc_params *);
  145 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
  146 #ifdef CONFIG_PROC_FS
  147 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
  148 #endif
  149 
  150 #define SEMMSL_FAST     256 /* 512 bytes on stack */
  151 #define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
  152 
  153 /*
  154  * linked list protection:
  155  *      sem_undo.id_next,
  156  *      sem_array.sem_pending{,last},
  157  *      sem_array.sem_undo: sem_lock() for read/write
  158  *      sem_undo.proc_next: only "current" is allowed to read/write that field.
  159  *      
  160  */
  161 
  162 #define sc_semmsl       sem_ctls[0]
  163 #define sc_semmns       sem_ctls[1]
  164 #define sc_semopm       sem_ctls[2]
  165 #define sc_semmni       sem_ctls[3]
  166 
  167 void sem_init_ns(struct ipc_namespace *ns)
  168 {
  169         ns->sc_semmsl = SEMMSL;
  170         ns->sc_semmns = SEMMNS;
  171         ns->sc_semopm = SEMOPM;
  172         ns->sc_semmni = SEMMNI;
  173         ns->used_sems = 0;
  174         ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
  175 }
  176 
  177 #ifdef CONFIG_IPC_NS
  178 void sem_exit_ns(struct ipc_namespace *ns)
  179 {
  180         free_ipcs(ns, &sem_ids(ns), freeary);
  181         idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
  182 }
  183 #endif
  184 
  185 void __init sem_init (void)
  186 {
  187         sem_init_ns(&init_ipc_ns);
  188         ipc_init_proc_interface("sysvipc/sem",
  189                                 "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
  190                                 IPC_SEM_IDS, sysvipc_sem_proc_show);
  191 }
  192 
  193 /*
  194  * sem_lock_(check_) routines are called in the paths where the rw_mutex
  195  * is not held.
  196  */
  197 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
  198 {
  199         struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
  200 
  201         if (IS_ERR(ipcp))
  202                 return (struct sem_array *)ipcp;
  203 
  204         return container_of(ipcp, struct sem_array, sem_perm);
  205 }
  206 
  207 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
  208                                                 int id)
  209 {
  210         struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
  211 
  212         if (IS_ERR(ipcp))
  213                 return (struct sem_array *)ipcp;
  214 
  215         return container_of(ipcp, struct sem_array, sem_perm);
  216 }
  217 
  218 static inline void sem_lock_and_putref(struct sem_array *sma)
  219 {
  220         ipc_lock_by_ptr(&sma->sem_perm);
  221         ipc_rcu_putref(sma);
  222 }
  223 
  224 static inline void sem_getref_and_unlock(struct sem_array *sma)
  225 {
  226         ipc_rcu_getref(sma);
  227         ipc_unlock(&(sma)->sem_perm);
  228 }
  229 
  230 static inline void sem_putref(struct sem_array *sma)
  231 {
  232         ipc_lock_by_ptr(&sma->sem_perm);
  233         ipc_rcu_putref(sma);
  234         ipc_unlock(&(sma)->sem_perm);
  235 }
  236 
  237 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
  238 {
  239         ipc_rmid(&sem_ids(ns), &s->sem_perm);
  240 }
  241 
  242 /*
  243  * Lockless wakeup algorithm:
  244  * Without the check/retry algorithm a lockless wakeup is possible:
  245  * - queue.status is initialized to -EINTR before blocking.
  246  * - wakeup is performed by
  247  *      * unlinking the queue entry from sma->sem_pending
  248  *      * setting queue.status to IN_WAKEUP
  249  *        This is the notification for the blocked thread that a
  250  *        result value is imminent.
  251  *      * call wake_up_process
  252  *      * set queue.status to the final value.
  253  * - the previously blocked thread checks queue.status:
  254  *      * if it's IN_WAKEUP, then it must wait until the value changes
  255  *      * if it's not -EINTR, then the operation was completed by
  256  *        update_queue. semtimedop can return queue.status without
  257  *        performing any operation on the sem array.
  258  *      * otherwise it must acquire the spinlock and check what's up.
  259  *
  260  * The two-stage algorithm is necessary to protect against the following
  261  * races:
  262  * - if queue.status is set after wake_up_process, then the woken up idle
  263  *   thread could race forward and try (and fail) to acquire sma->lock
  264  *   before update_queue had a chance to set queue.status
  265  * - if queue.status is written before wake_up_process and if the
  266  *   blocked process is woken up by a signal between writing
  267  *   queue.status and the wake_up_process, then the woken up
  268  *   process could return from semtimedop and die by calling
  269  *   sys_exit before wake_up_process is called. Then wake_up_process
  270  *   will oops, because the task structure is already invalid.
  271  *   (yes, this happened on s390 with sysv msg).
  272  *
  273  */
  274 #define IN_WAKEUP       1
  275 
  276 /**
  277  * newary - Create a new semaphore set
  278  * @ns: namespace
  279  * @params: ptr to the structure that contains key, semflg and nsems
  280  *
  281  * Called with sem_ids.rw_mutex held (as a writer)
  282  */
  283 
  284 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
  285 {
  286         int id;
  287         int retval;
  288         struct sem_array *sma;
  289         int size;
  290         key_t key = params->key;
  291         int nsems = params->u.nsems;
  292         int semflg = params->flg;
  293         int i;
  294 
  295         if (!nsems)
  296                 return -EINVAL;
  297         if (ns->used_sems + nsems > ns->sc_semmns)
  298                 return -ENOSPC;
  299 
  300         size = sizeof (*sma) + nsems * sizeof (struct sem);
  301         sma = ipc_rcu_alloc(size);
  302         if (!sma) {
  303                 return -ENOMEM;
  304         }
  305         memset (sma, 0, size);
  306 
  307         sma->sem_perm.mode = (semflg & S_IRWXUGO);
  308         sma->sem_perm.key = key;
  309 
  310         sma->sem_perm.security = NULL;
  311         retval = security_sem_alloc(sma);
  312         if (retval) {
  313                 ipc_rcu_putref(sma);
  314                 return retval;
  315         }
  316 
  317         id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
  318         if (id < 0) {
  319                 security_sem_free(sma);
  320                 ipc_rcu_putref(sma);
  321                 return id;
  322         }
  323         ns->used_sems += nsems;
  324 
  325         sma->sem_base = (struct sem *) &sma[1];
  326 
  327         for (i = 0; i < nsems; i++)
  328                 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
  329 
  330         sma->complex_count = 0;
  331         INIT_LIST_HEAD(&sma->sem_pending);
  332         INIT_LIST_HEAD(&sma->list_id);
  333         sma->sem_nsems = nsems;
  334         sma->sem_ctime = get_seconds();
  335         sem_unlock(sma);
  336 
  337         return sma->sem_perm.id;
  338 }
  339 
  340 
  341 /*
  342  * Called with sem_ids.rw_mutex and ipcp locked.
  343  */
  344 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
  345 {
  346         struct sem_array *sma;
  347 
  348         sma = container_of(ipcp, struct sem_array, sem_perm);
  349         return security_sem_associate(sma, semflg);
  350 }
  351 
  352 /*
  353  * Called with sem_ids.rw_mutex and ipcp locked.
  354  */
  355 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
  356                                 struct ipc_params *params)
  357 {
  358         struct sem_array *sma;
  359 
  360         sma = container_of(ipcp, struct sem_array, sem_perm);
  361         if (params->u.nsems > sma->sem_nsems)
  362                 return -EINVAL;
  363 
  364         return 0;
  365 }
  366 
  367 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
  368 {
  369         struct ipc_namespace *ns;
  370         struct ipc_ops sem_ops;
  371         struct ipc_params sem_params;
  372 
  373         ns = current->nsproxy->ipc_ns;
  374 
  375         if (nsems < 0 || nsems > ns->sc_semmsl)
  376                 return -EINVAL;
  377 
  378         sem_ops.getnew = newary;
  379         sem_ops.associate = sem_security;
  380         sem_ops.more_checks = sem_more_checks;
  381 
  382         sem_params.key = key;
  383         sem_params.flg = semflg;
  384         sem_params.u.nsems = nsems;
  385 
  386         return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
  387 }
  388 
  389 /*
  390  * Determine whether a sequence of semaphore operations would succeed
  391  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
  392  */
  393 
  394 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
  395                              int nsops, struct sem_undo *un, int pid)
  396 {
  397         int result, sem_op;
  398         struct sembuf *sop;
  399         struct sem * curr;
  400 
  401         for (sop = sops; sop < sops + nsops; sop++) {
  402                 curr = sma->sem_base + sop->sem_num;
  403                 sem_op = sop->sem_op;
  404                 result = curr->semval;
  405   
  406                 if (!sem_op && result)
  407                         goto would_block;
  408 
  409                 result += sem_op;
  410                 if (result < 0)
  411                         goto would_block;
  412                 if (result > SEMVMX)
  413                         goto out_of_range;
  414                 if (sop->sem_flg & SEM_UNDO) {
  415                         int undo = un->semadj[sop->sem_num] - sem_op;
  416                         /*
  417                          *      Exceeding the undo range is an error.
  418                          */
  419                         if (undo < (-SEMAEM - 1) || undo > SEMAEM)
  420                                 goto out_of_range;
  421                 }
  422                 curr->semval = result;
  423         }
  424 
  425         sop--;
  426         while (sop >= sops) {
  427                 sma->sem_base[sop->sem_num].sempid = pid;
  428                 if (sop->sem_flg & SEM_UNDO)
  429                         un->semadj[sop->sem_num] -= sop->sem_op;
  430                 sop--;
  431         }
  432         
  433         return 0;
  434 
  435 out_of_range:
  436         result = -ERANGE;
  437         goto undo;
  438 
  439 would_block:
  440         if (sop->sem_flg & IPC_NOWAIT)
  441                 result = -EAGAIN;
  442         else
  443                 result = 1;
  444 
  445 undo:
  446         sop--;
  447         while (sop >= sops) {
  448                 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
  449                 sop--;
  450         }
  451 
  452         return result;
  453 }
  454 
  455 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
  456  * @q: queue entry that must be signaled
  457  * @error: Error value for the signal
  458  *
  459  * Prepare the wake-up of the queue entry q.
  460  */
  461 static void wake_up_sem_queue_prepare(struct list_head *pt,
  462                                 struct sem_queue *q, int error)
  463 {
  464         if (list_empty(pt)) {
  465                 /*
  466                  * Hold preempt off so that we don't get preempted and have the
  467                  * wakee busy-wait until we're scheduled back on.
  468                  */
  469                 preempt_disable();
  470         }
  471         q->status = IN_WAKEUP;
  472         q->pid = error;
  473 
  474         list_add_tail(&q->simple_list, pt);
  475 }
  476 
  477 /**
  478  * wake_up_sem_queue_do(pt) - do the actual wake-up
  479  * @pt: list of tasks to be woken up
  480  *
  481  * Do the actual wake-up.
  482  * The function is called without any locks held, thus the semaphore array
  483  * could be destroyed already and the tasks can disappear as soon as the
  484  * status is set to the actual return code.
  485  */
  486 static void wake_up_sem_queue_do(struct list_head *pt)
  487 {
  488         struct sem_queue *q, *t;
  489         int did_something;
  490 
  491         did_something = !list_empty(pt);
  492         list_for_each_entry_safe(q, t, pt, simple_list) {
  493                 wake_up_process(q->sleeper);
  494                 /* q can disappear immediately after writing q->status. */
  495                 smp_wmb();
  496                 q->status = q->pid;
  497         }
  498         if (did_something)
  499                 preempt_enable();
  500 }
  501 
  502 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
  503 {
  504         list_del(&q->list);
  505         if (q->nsops == 1)
  506                 list_del(&q->simple_list);
  507         else
  508                 sma->complex_count--;
  509 }
  510 
  511 /** check_restart(sma, q)
  512  * @sma: semaphore array
  513  * @q: the operation that just completed
  514  *
  515  * update_queue is O(N^2) when it restarts scanning the whole queue of
  516  * waiting operations. Therefore this function checks if the restart is
  517  * really necessary. It is called after a previously waiting operation
  518  * was completed.
  519  */
  520 static int check_restart(struct sem_array *sma, struct sem_queue *q)
  521 {
  522         struct sem *curr;
  523         struct sem_queue *h;
  524 
  525         /* if the operation didn't modify the array, then no restart */
  526         if (q->alter == 0)
  527                 return 0;
  528 
  529         /* pending complex operations are too difficult to analyse */
  530         if (sma->complex_count)
  531                 return 1;
  532 
  533         /* we were a sleeping complex operation. Too difficult */
  534         if (q->nsops > 1)
  535                 return 1;
  536 
  537         curr = sma->sem_base + q->sops[0].sem_num;
  538 
  539         /* No-one waits on this queue */
  540         if (list_empty(&curr->sem_pending))
  541                 return 0;
  542 
  543         /* the new semaphore value */
  544         if (curr->semval) {
  545                 /* It is impossible that someone waits for the new value:
  546                  * - q is a previously sleeping simple operation that
  547                  *   altered the array. It must be a decrement, because
  548                  *   simple increments never sleep.
  549                  * - The value is not 0, thus wait-for-zero won't proceed.
  550                  * - If there are older (higher priority) decrements
  551                  *   in the queue, then they have observed the original
  552                  *   semval value and couldn't proceed. The operation
  553                  *   decremented to value - thus they won't proceed either.
  554                  */
  555                 BUG_ON(q->sops[0].sem_op >= 0);
  556                 return 0;
  557         }
  558         /*
  559          * semval is 0. Check if there are wait-for-zero semops.
  560          * They must be the first entries in the per-semaphore simple queue
  561          */
  562         h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
  563         BUG_ON(h->nsops != 1);
  564         BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
  565 
  566         /* Yes, there is a wait-for-zero semop. Restart */
  567         if (h->sops[0].sem_op == 0)
  568                 return 1;
  569 
  570         /* Again - no-one is waiting for the new value. */
  571         return 0;
  572 }
  573 
  574 
  575 /**
  576  * update_queue(sma, semnum): Look for tasks that can be completed.
  577  * @sma: semaphore array.
  578  * @semnum: semaphore that was modified.
  579  * @pt: list head for the tasks that must be woken up.
  580  *
  581  * update_queue must be called after a semaphore in a semaphore array
  582  * was modified. If multiple semaphore were modified, then @semnum
  583  * must be set to -1.
  584  * The tasks that must be woken up are added to @pt. The return code
  585  * is stored in q->pid.
  586  * The function return 1 if at least one semop was completed successfully.
  587  */
  588 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
  589 {
  590         struct sem_queue *q;
  591         struct list_head *walk;
  592         struct list_head *pending_list;
  593         int offset;
  594         int semop_completed = 0;
  595 
  596         /* if there are complex operations around, then knowing the semaphore
  597          * that was modified doesn't help us. Assume that multiple semaphores
  598          * were modified.
  599          */
  600         if (sma->complex_count)
  601                 semnum = -1;
  602 
  603         if (semnum == -1) {
  604                 pending_list = &sma->sem_pending;
  605                 offset = offsetof(struct sem_queue, list);
  606         } else {
  607                 pending_list = &sma->sem_base[semnum].sem_pending;
  608                 offset = offsetof(struct sem_queue, simple_list);
  609         }
  610 
  611 again:
  612         walk = pending_list->next;
  613         while (walk != pending_list) {
  614                 int error, restart;
  615 
  616                 q = (struct sem_queue *)((char *)walk - offset);
  617                 walk = walk->next;
  618 
  619                 /* If we are scanning the single sop, per-semaphore list of
  620                  * one semaphore and that semaphore is 0, then it is not
  621                  * necessary to scan the "alter" entries: simple increments
  622                  * that affect only one entry succeed immediately and cannot
  623                  * be in the  per semaphore pending queue, and decrements
  624                  * cannot be successful if the value is already 0.
  625                  */
  626                 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
  627                                 q->alter)
  628                         break;
  629 
  630                 error = try_atomic_semop(sma, q->sops, q->nsops,
  631                                          q->undo, q->pid);
  632 
  633                 /* Does q->sleeper still need to sleep? */
  634                 if (error > 0)
  635                         continue;
  636 
  637                 unlink_queue(sma, q);
  638 
  639                 if (error) {
  640                         restart = 0;
  641                 } else {
  642                         semop_completed = 1;
  643                         restart = check_restart(sma, q);
  644                 }
  645 
  646                 wake_up_sem_queue_prepare(pt, q, error);
  647                 if (restart)
  648                         goto again;
  649         }
  650         return semop_completed;
  651 }
  652 
  653 /**
  654  * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
  655  * @sma: semaphore array
  656  * @sops: operations that were performed
  657  * @nsops: number of operations
  658  * @otime: force setting otime
  659  * @pt: list head of the tasks that must be woken up.
  660  *
  661  * do_smart_update() does the required called to update_queue, based on the
  662  * actual changes that were performed on the semaphore array.
  663  * Note that the function does not do the actual wake-up: the caller is
  664  * responsible for calling wake_up_sem_queue_do(@pt).
  665  * It is safe to perform this call after dropping all locks.
  666  */
  667 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
  668                         int otime, struct list_head *pt)
  669 {
  670         int i;
  671 
  672         if (sma->complex_count || sops == NULL) {
  673                 if (update_queue(sma, -1, pt))
  674                         otime = 1;
  675                 goto done;
  676         }
  677 
  678         for (i = 0; i < nsops; i++) {
  679                 if (sops[i].sem_op > 0 ||
  680                         (sops[i].sem_op < 0 &&
  681                                 sma->sem_base[sops[i].sem_num].semval == 0))
  682                         if (update_queue(sma, sops[i].sem_num, pt))
  683                                 otime = 1;
  684         }
  685 done:
  686         if (otime)
  687                 sma->sem_otime = get_seconds();
  688 }
  689 
  690 
  691 /* The following counts are associated to each semaphore:
  692  *   semncnt        number of tasks waiting on semval being nonzero
  693  *   semzcnt        number of tasks waiting on semval being zero
  694  * This model assumes that a task waits on exactly one semaphore.
  695  * Since semaphore operations are to be performed atomically, tasks actually
  696  * wait on a whole sequence of semaphores simultaneously.
  697  * The counts we return here are a rough approximation, but still
  698  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
  699  */
  700 static int count_semncnt (struct sem_array * sma, ushort semnum)
  701 {
  702         int semncnt;
  703         struct sem_queue * q;
  704 
  705         semncnt = 0;
  706         list_for_each_entry(q, &sma->sem_pending, list) {
  707                 struct sembuf * sops = q->sops;
  708                 int nsops = q->nsops;
  709                 int i;
  710                 for (i = 0; i < nsops; i++)
  711                         if (sops[i].sem_num == semnum
  712                             && (sops[i].sem_op < 0)
  713                             && !(sops[i].sem_flg & IPC_NOWAIT))
  714                                 semncnt++;
  715         }
  716         return semncnt;
  717 }
  718 
  719 static int count_semzcnt (struct sem_array * sma, ushort semnum)
  720 {
  721         int semzcnt;
  722         struct sem_queue * q;
  723 
  724         semzcnt = 0;
  725         list_for_each_entry(q, &sma->sem_pending, list) {
  726                 struct sembuf * sops = q->sops;
  727                 int nsops = q->nsops;
  728                 int i;
  729                 for (i = 0; i < nsops; i++)
  730                         if (sops[i].sem_num == semnum
  731                             && (sops[i].sem_op == 0)
  732                             && !(sops[i].sem_flg & IPC_NOWAIT))
  733                                 semzcnt++;
  734         }
  735         return semzcnt;
  736 }
  737 
  738 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
  739  * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
  740  * remains locked on exit.
  741  */
  742 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
  743 {
  744         struct sem_undo *un, *tu;
  745         struct sem_queue *q, *tq;
  746         struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
  747         struct list_head tasks;
  748 
  749         /* Free the existing undo structures for this semaphore set.  */
  750         assert_spin_locked(&sma->sem_perm.lock);
  751         list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
  752                 list_del(&un->list_id);
  753                 spin_lock(&un->ulp->lock);
  754                 un->semid = -1;
  755                 list_del_rcu(&un->list_proc);
  756                 spin_unlock(&un->ulp->lock);
  757                 kfree_rcu(un, rcu);
  758         }
  759 
  760         /* Wake up all pending processes and let them fail with EIDRM. */
  761         INIT_LIST_HEAD(&tasks);
  762         list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
  763                 unlink_queue(sma, q);
  764                 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
  765         }
  766 
  767         /* Remove the semaphore set from the IDR */
  768         sem_rmid(ns, sma);
  769         sem_unlock(sma);
  770 
  771         wake_up_sem_queue_do(&tasks);
  772         ns->used_sems -= sma->sem_nsems;
  773         security_sem_free(sma);
  774         ipc_rcu_putref(sma);
  775 }
  776 
  777 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
  778 {
  779         switch(version) {
  780         case IPC_64:
  781                 return copy_to_user(buf, in, sizeof(*in));
  782         case IPC_OLD:
  783             {
  784                 struct semid_ds out;
  785 
  786                 memset(&out, 0, sizeof(out));
  787 
  788                 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
  789 
  790                 out.sem_otime   = in->sem_otime;
  791                 out.sem_ctime   = in->sem_ctime;
  792                 out.sem_nsems   = in->sem_nsems;
  793 
  794                 return copy_to_user(buf, &out, sizeof(out));
  795             }
  796         default:
  797                 return -EINVAL;
  798         }
  799 }
  800 
  801 static int semctl_nolock(struct ipc_namespace *ns, int semid,
  802                          int cmd, int version, union semun arg)
  803 {
  804         int err;
  805         struct sem_array *sma;
  806 
  807         switch(cmd) {
  808         case IPC_INFO:
  809         case SEM_INFO:
  810         {
  811                 struct seminfo seminfo;
  812                 int max_id;
  813 
  814                 err = security_sem_semctl(NULL, cmd);
  815                 if (err)
  816                         return err;
  817                 
  818                 memset(&seminfo,0,sizeof(seminfo));
  819                 seminfo.semmni = ns->sc_semmni;
  820                 seminfo.semmns = ns->sc_semmns;
  821                 seminfo.semmsl = ns->sc_semmsl;
  822                 seminfo.semopm = ns->sc_semopm;
  823                 seminfo.semvmx = SEMVMX;
  824                 seminfo.semmnu = SEMMNU;
  825                 seminfo.semmap = SEMMAP;
  826                 seminfo.semume = SEMUME;
  827                 down_read(&sem_ids(ns).rw_mutex);
  828                 if (cmd == SEM_INFO) {
  829                         seminfo.semusz = sem_ids(ns).in_use;
  830                         seminfo.semaem = ns->used_sems;
  831                 } else {
  832                         seminfo.semusz = SEMUSZ;
  833                         seminfo.semaem = SEMAEM;
  834                 }
  835                 max_id = ipc_get_maxid(&sem_ids(ns));
  836                 up_read(&sem_ids(ns).rw_mutex);
  837                 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 
  838                         return -EFAULT;
  839                 return (max_id < 0) ? 0: max_id;
  840         }
  841         case IPC_STAT:
  842         case SEM_STAT:
  843         {
  844                 struct semid64_ds tbuf;
  845                 int id;
  846 
  847                 if (cmd == SEM_STAT) {
  848                         sma = sem_lock(ns, semid);
  849                         if (IS_ERR(sma))
  850                                 return PTR_ERR(sma);
  851                         id = sma->sem_perm.id;
  852                 } else {
  853                         sma = sem_lock_check(ns, semid);
  854                         if (IS_ERR(sma))
  855                                 return PTR_ERR(sma);
  856                         id = 0;
  857                 }
  858 
  859                 err = -EACCES;
  860                 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
  861                         goto out_unlock;
  862 
  863                 err = security_sem_semctl(sma, cmd);
  864                 if (err)
  865                         goto out_unlock;
  866 
  867                 memset(&tbuf, 0, sizeof(tbuf));
  868 
  869                 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
  870                 tbuf.sem_otime  = sma->sem_otime;
  871                 tbuf.sem_ctime  = sma->sem_ctime;
  872                 tbuf.sem_nsems  = sma->sem_nsems;
  873                 sem_unlock(sma);
  874                 if (copy_semid_to_user (arg.buf, &tbuf, version))
  875                         return -EFAULT;
  876                 return id;
  877         }
  878         default:
  879                 return -EINVAL;
  880         }
  881 out_unlock:
  882         sem_unlock(sma);
  883         return err;
  884 }
  885 
  886 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
  887                 int cmd, int version, union semun arg)
  888 {
  889         struct sem_array *sma;
  890         struct sem* curr;
  891         int err;
  892         ushort fast_sem_io[SEMMSL_FAST];
  893         ushort* sem_io = fast_sem_io;
  894         int nsems;
  895         struct list_head tasks;
  896 
  897         sma = sem_lock_check(ns, semid);
  898         if (IS_ERR(sma))
  899                 return PTR_ERR(sma);
  900 
  901         INIT_LIST_HEAD(&tasks);
  902         nsems = sma->sem_nsems;
  903 
  904         err = -EACCES;
  905         if (ipcperms(ns, &sma->sem_perm,
  906                         (cmd == SETVAL || cmd == SETALL) ? S_IWUGO : S_IRUGO))
  907                 goto out_unlock;
  908 
  909         err = security_sem_semctl(sma, cmd);
  910         if (err)
  911                 goto out_unlock;
  912 
  913         err = -EACCES;
  914         switch (cmd) {
  915         case GETALL:
  916         {
  917                 ushort __user *array = arg.array;
  918                 int i;
  919 
  920                 if(nsems > SEMMSL_FAST) {
  921                         sem_getref_and_unlock(sma);
  922 
  923                         sem_io = ipc_alloc(sizeof(ushort)*nsems);
  924                         if(sem_io == NULL) {
  925                                 sem_putref(sma);
  926                                 return -ENOMEM;
  927                         }
  928 
  929                         sem_lock_and_putref(sma);
  930                         if (sma->sem_perm.deleted) {
  931                                 sem_unlock(sma);
  932                                 err = -EIDRM;
  933                                 goto out_free;
  934                         }
  935                 }
  936 
  937                 for (i = 0; i < sma->sem_nsems; i++)
  938                         sem_io[i] = sma->sem_base[i].semval;
  939                 sem_unlock(sma);
  940                 err = 0;
  941                 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
  942                         err = -EFAULT;
  943                 goto out_free;
  944         }
  945         case SETALL:
  946         {
  947                 int i;
  948                 struct sem_undo *un;
  949 
  950                 sem_getref_and_unlock(sma);
  951 
  952                 if(nsems > SEMMSL_FAST) {
  953                         sem_io = ipc_alloc(sizeof(ushort)*nsems);
  954                         if(sem_io == NULL) {
  955                                 sem_putref(sma);
  956                                 return -ENOMEM;
  957                         }
  958                 }
  959 
  960                 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
  961                         sem_putref(sma);
  962                         err = -EFAULT;
  963                         goto out_free;
  964                 }
  965 
  966                 for (i = 0; i < nsems; i++) {
  967                         if (sem_io[i] > SEMVMX) {
  968                                 sem_putref(sma);
  969                                 err = -ERANGE;
  970                                 goto out_free;
  971                         }
  972                 }
  973                 sem_lock_and_putref(sma);
  974                 if (sma->sem_perm.deleted) {
  975                         sem_unlock(sma);
  976                         err = -EIDRM;
  977                         goto out_free;
  978                 }
  979 
  980                 for (i = 0; i < nsems; i++)
  981                         sma->sem_base[i].semval = sem_io[i];
  982 
  983                 assert_spin_locked(&sma->sem_perm.lock);
  984                 list_for_each_entry(un, &sma->list_id, list_id) {
  985                         for (i = 0; i < nsems; i++)
  986                                 un->semadj[i] = 0;
  987                 }
  988                 sma->sem_ctime = get_seconds();
  989                 /* maybe some queued-up processes were waiting for this */
  990                 do_smart_update(sma, NULL, 0, 0, &tasks);
  991                 err = 0;
  992                 goto out_unlock;
  993         }
  994         /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
  995         }
  996         err = -EINVAL;
  997         if(semnum < 0 || semnum >= nsems)
  998                 goto out_unlock;
  999 
 1000         curr = &sma->sem_base[semnum];
 1001 
 1002         switch (cmd) {
 1003         case GETVAL:
 1004                 err = curr->semval;
 1005                 goto out_unlock;
 1006         case GETPID:
 1007                 err = curr->sempid;
 1008                 goto out_unlock;
 1009         case GETNCNT:
 1010                 err = count_semncnt(sma,semnum);
 1011                 goto out_unlock;
 1012         case GETZCNT:
 1013                 err = count_semzcnt(sma,semnum);
 1014                 goto out_unlock;
 1015         case SETVAL:
 1016         {
 1017                 int val = arg.val;
 1018                 struct sem_undo *un;
 1019 
 1020                 err = -ERANGE;
 1021                 if (val > SEMVMX || val < 0)
 1022                         goto out_unlock;
 1023 
 1024                 assert_spin_locked(&sma->sem_perm.lock);
 1025                 list_for_each_entry(un, &sma->list_id, list_id)
 1026                         un->semadj[semnum] = 0;
 1027 
 1028                 curr->semval = val;
 1029                 curr->sempid = task_tgid_vnr(current);
 1030                 sma->sem_ctime = get_seconds();
 1031                 /* maybe some queued-up processes were waiting for this */
 1032                 do_smart_update(sma, NULL, 0, 0, &tasks);
 1033                 err = 0;
 1034                 goto out_unlock;
 1035         }
 1036         }
 1037 out_unlock:
 1038         sem_unlock(sma);
 1039         wake_up_sem_queue_do(&tasks);
 1040 
 1041 out_free:
 1042         if(sem_io != fast_sem_io)
 1043                 ipc_free(sem_io, sizeof(ushort)*nsems);
 1044         return err;
 1045 }
 1046 
 1047 static inline unsigned long
 1048 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
 1049 {
 1050         switch(version) {
 1051         case IPC_64:
 1052                 if (copy_from_user(out, buf, sizeof(*out)))
 1053                         return -EFAULT;
 1054                 return 0;
 1055         case IPC_OLD:
 1056             {
 1057                 struct semid_ds tbuf_old;
 1058 
 1059                 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
 1060                         return -EFAULT;
 1061 
 1062                 out->sem_perm.uid       = tbuf_old.sem_perm.uid;
 1063                 out->sem_perm.gid       = tbuf_old.sem_perm.gid;
 1064                 out->sem_perm.mode      = tbuf_old.sem_perm.mode;
 1065 
 1066                 return 0;
 1067             }
 1068         default:
 1069                 return -EINVAL;
 1070         }
 1071 }
 1072 
 1073 /*
 1074  * This function handles some semctl commands which require the rw_mutex
 1075  * to be held in write mode.
 1076  * NOTE: no locks must be held, the rw_mutex is taken inside this function.
 1077  */
 1078 static int semctl_down(struct ipc_namespace *ns, int semid,
 1079                        int cmd, int version, union semun arg)
 1080 {
 1081         struct sem_array *sma;
 1082         int err;
 1083         struct semid64_ds semid64;
 1084         struct kern_ipc_perm *ipcp;
 1085 
 1086         if(cmd == IPC_SET) {
 1087                 if (copy_semid_from_user(&semid64, arg.buf, version))
 1088                         return -EFAULT;
 1089         }
 1090 
 1091         ipcp = ipcctl_pre_down(ns, &sem_ids(ns), semid, cmd,
 1092                                &semid64.sem_perm, 0);
 1093         if (IS_ERR(ipcp))
 1094                 return PTR_ERR(ipcp);
 1095 
 1096         sma = container_of(ipcp, struct sem_array, sem_perm);
 1097 
 1098         err = security_sem_semctl(sma, cmd);
 1099         if (err)
 1100                 goto out_unlock;
 1101 
 1102         switch(cmd){
 1103         case IPC_RMID:
 1104                 freeary(ns, ipcp);
 1105                 goto out_up;
 1106         case IPC_SET:
 1107                 err = ipc_update_perm(&semid64.sem_perm, ipcp);
 1108                 if (err)
 1109                         goto out_unlock;
 1110                 sma->sem_ctime = get_seconds();
 1111                 break;
 1112         default:
 1113                 err = -EINVAL;
 1114         }
 1115 
 1116 out_unlock:
 1117         sem_unlock(sma);
 1118 out_up:
 1119         up_write(&sem_ids(ns).rw_mutex);
 1120         return err;
 1121 }
 1122 
 1123 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
 1124 {
 1125         int err = -EINVAL;
 1126         int version;
 1127         struct ipc_namespace *ns;
 1128 
 1129         if (semid < 0)
 1130                 return -EINVAL;
 1131 
 1132         version = ipc_parse_version(&cmd);
 1133         ns = current->nsproxy->ipc_ns;
 1134 
 1135         switch(cmd) {
 1136         case IPC_INFO:
 1137         case SEM_INFO:
 1138         case IPC_STAT:
 1139         case SEM_STAT:
 1140                 err = semctl_nolock(ns, semid, cmd, version, arg);
 1141                 return err;
 1142         case GETALL:
 1143         case GETVAL:
 1144         case GETPID:
 1145         case GETNCNT:
 1146         case GETZCNT:
 1147         case SETVAL:
 1148         case SETALL:
 1149                 err = semctl_main(ns,semid,semnum,cmd,version,arg);
 1150                 return err;
 1151         case IPC_RMID:
 1152         case IPC_SET:
 1153                 err = semctl_down(ns, semid, cmd, version, arg);
 1154                 return err;
 1155         default:
 1156                 return -EINVAL;
 1157         }
 1158 }
 1159 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
 1160 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
 1161 {
 1162         return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
 1163 }
 1164 SYSCALL_ALIAS(sys_semctl, SyS_semctl);
 1165 #endif
 1166 
 1167 /* If the task doesn't already have a undo_list, then allocate one
 1168  * here.  We guarantee there is only one thread using this undo list,
 1169  * and current is THE ONE
 1170  *
 1171  * If this allocation and assignment succeeds, but later
 1172  * portions of this code fail, there is no need to free the sem_undo_list.
 1173  * Just let it stay associated with the task, and it'll be freed later
 1174  * at exit time.
 1175  *
 1176  * This can block, so callers must hold no locks.
 1177  */
 1178 static inline int get_undo_list(struct sem_undo_list **undo_listp)
 1179 {
 1180         struct sem_undo_list *undo_list;
 1181 
 1182         undo_list = current->sysvsem.undo_list;
 1183         if (!undo_list) {
 1184                 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
 1185                 if (undo_list == NULL)
 1186                         return -ENOMEM;
 1187                 spin_lock_init(&undo_list->lock);
 1188                 atomic_set(&undo_list->refcnt, 1);
 1189                 INIT_LIST_HEAD(&undo_list->list_proc);
 1190 
 1191                 current->sysvsem.undo_list = undo_list;
 1192         }
 1193         *undo_listp = undo_list;
 1194         return 0;
 1195 }
 1196 
 1197 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
 1198 {
 1199         struct sem_undo *un;
 1200 
 1201         list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
 1202                 if (un->semid == semid)
 1203                         return un;
 1204         }
 1205         return NULL;
 1206 }
 1207 
 1208 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
 1209 {
 1210         struct sem_undo *un;
 1211 
 1212         assert_spin_locked(&ulp->lock);
 1213 
 1214         un = __lookup_undo(ulp, semid);
 1215         if (un) {
 1216                 list_del_rcu(&un->list_proc);
 1217                 list_add_rcu(&un->list_proc, &ulp->list_proc);
 1218         }
 1219         return un;
 1220 }
 1221 
 1222 /**
 1223  * find_alloc_undo - Lookup (and if not present create) undo array
 1224  * @ns: namespace
 1225  * @semid: semaphore array id
 1226  *
 1227  * The function looks up (and if not present creates) the undo structure.
 1228  * The size of the undo structure depends on the size of the semaphore
 1229  * array, thus the alloc path is not that straightforward.
 1230  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
 1231  * performs a rcu_read_lock().
 1232  */
 1233 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
 1234 {
 1235         struct sem_array *sma;
 1236         struct sem_undo_list *ulp;
 1237         struct sem_undo *un, *new;
 1238         int nsems;
 1239         int error;
 1240 
 1241         error = get_undo_list(&ulp);
 1242         if (error)
 1243                 return ERR_PTR(error);
 1244 
 1245         rcu_read_lock();
 1246         spin_lock(&ulp->lock);
 1247         un = lookup_undo(ulp, semid);
 1248         spin_unlock(&ulp->lock);
 1249         if (likely(un!=NULL))
 1250                 goto out;
 1251         rcu_read_unlock();
 1252 
 1253         /* no undo structure around - allocate one. */
 1254         /* step 1: figure out the size of the semaphore array */
 1255         sma = sem_lock_check(ns, semid);
 1256         if (IS_ERR(sma))
 1257                 return ERR_CAST(sma);
 1258 
 1259         nsems = sma->sem_nsems;
 1260         sem_getref_and_unlock(sma);
 1261 
 1262         /* step 2: allocate new undo structure */
 1263         new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
 1264         if (!new) {
 1265                 sem_putref(sma);
 1266                 return ERR_PTR(-ENOMEM);
 1267         }
 1268 
 1269         /* step 3: Acquire the lock on semaphore array */
 1270         sem_lock_and_putref(sma);
 1271         if (sma->sem_perm.deleted) {
 1272                 sem_unlock(sma);
 1273                 kfree(new);
 1274                 un = ERR_PTR(-EIDRM);
 1275                 goto out;
 1276         }
 1277         spin_lock(&ulp->lock);
 1278 
 1279         /*
 1280          * step 4: check for races: did someone else allocate the undo struct?
 1281          */
 1282         un = lookup_undo(ulp, semid);
 1283         if (un) {
 1284                 kfree(new);
 1285                 goto success;
 1286         }
 1287         /* step 5: initialize & link new undo structure */
 1288         new->semadj = (short *) &new[1];
 1289         new->ulp = ulp;
 1290         new->semid = semid;
 1291         assert_spin_locked(&ulp->lock);
 1292         list_add_rcu(&new->list_proc, &ulp->list_proc);
 1293         assert_spin_locked(&sma->sem_perm.lock);
 1294         list_add(&new->list_id, &sma->list_id);
 1295         un = new;
 1296 
 1297 success:
 1298         spin_unlock(&ulp->lock);
 1299         rcu_read_lock();
 1300         sem_unlock(sma);
 1301 out:
 1302         return un;
 1303 }
 1304 
 1305 
 1306 /**
 1307  * get_queue_result - Retrieve the result code from sem_queue
 1308  * @q: Pointer to queue structure
 1309  *
 1310  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
 1311  * q->status, then we must loop until the value is replaced with the final
 1312  * value: This may happen if a task is woken up by an unrelated event (e.g.
 1313  * signal) and in parallel the task is woken up by another task because it got
 1314  * the requested semaphores.
 1315  *
 1316  * The function can be called with or without holding the semaphore spinlock.
 1317  */
 1318 static int get_queue_result(struct sem_queue *q)
 1319 {
 1320         int error;
 1321 
 1322         error = q->status;
 1323         while (unlikely(error == IN_WAKEUP)) {
 1324                 cpu_relax();
 1325                 error = q->status;
 1326         }
 1327 
 1328         return error;
 1329 }
 1330 
 1331 
 1332 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
 1333                 unsigned, nsops, const struct timespec __user *, timeout)
 1334 {
 1335         int error = -EINVAL;
 1336         struct sem_array *sma;
 1337         struct sembuf fast_sops[SEMOPM_FAST];
 1338         struct sembuf* sops = fast_sops, *sop;
 1339         struct sem_undo *un;
 1340         int undos = 0, alter = 0, max;
 1341         struct sem_queue queue;
 1342         unsigned long jiffies_left = 0;
 1343         struct ipc_namespace *ns;
 1344         struct list_head tasks;
 1345 
 1346         ns = current->nsproxy->ipc_ns;
 1347 
 1348         if (nsops < 1 || semid < 0)
 1349                 return -EINVAL;
 1350         if (nsops > ns->sc_semopm)
 1351                 return -E2BIG;
 1352         if(nsops > SEMOPM_FAST) {
 1353                 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
 1354                 if(sops==NULL)
 1355                         return -ENOMEM;
 1356         }
 1357         if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
 1358                 error=-EFAULT;
 1359                 goto out_free;
 1360         }
 1361         if (timeout) {
 1362                 struct timespec _timeout;
 1363                 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
 1364                         error = -EFAULT;
 1365                         goto out_free;
 1366                 }
 1367                 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
 1368                         _timeout.tv_nsec >= 1000000000L) {
 1369                         error = -EINVAL;
 1370                         goto out_free;
 1371                 }
 1372                 jiffies_left = timespec_to_jiffies(&_timeout);
 1373         }
 1374         max = 0;
 1375         for (sop = sops; sop < sops + nsops; sop++) {
 1376                 if (sop->sem_num >= max)
 1377                         max = sop->sem_num;
 1378                 if (sop->sem_flg & SEM_UNDO)
 1379                         undos = 1;
 1380                 if (sop->sem_op != 0)
 1381                         alter = 1;
 1382         }
 1383 
 1384         if (undos) {
 1385                 un = find_alloc_undo(ns, semid);
 1386                 if (IS_ERR(un)) {
 1387                         error = PTR_ERR(un);
 1388                         goto out_free;
 1389                 }
 1390         } else
 1391                 un = NULL;
 1392 
 1393         INIT_LIST_HEAD(&tasks);
 1394 
 1395         sma = sem_lock_check(ns, semid);
 1396         if (IS_ERR(sma)) {
 1397                 if (un)
 1398                         rcu_read_unlock();
 1399                 error = PTR_ERR(sma);
 1400                 goto out_free;
 1401         }
 1402 
 1403         /*
 1404          * semid identifiers are not unique - find_alloc_undo may have
 1405          * allocated an undo structure, it was invalidated by an RMID
 1406          * and now a new array with received the same id. Check and fail.
 1407          * This case can be detected checking un->semid. The existence of
 1408          * "un" itself is guaranteed by rcu.
 1409          */
 1410         error = -EIDRM;
 1411         if (un) {
 1412                 if (un->semid == -1) {
 1413                         rcu_read_unlock();
 1414                         goto out_unlock_free;
 1415                 } else {
 1416                         /*
 1417                          * rcu lock can be released, "un" cannot disappear:
 1418                          * - sem_lock is acquired, thus IPC_RMID is
 1419                          *   impossible.
 1420                          * - exit_sem is impossible, it always operates on
 1421                          *   current (or a dead task).
 1422                          */
 1423 
 1424                         rcu_read_unlock();
 1425                 }
 1426         }
 1427 
 1428         error = -EFBIG;
 1429         if (max >= sma->sem_nsems)
 1430                 goto out_unlock_free;
 1431 
 1432         error = -EACCES;
 1433         if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
 1434                 goto out_unlock_free;
 1435 
 1436         error = security_sem_semop(sma, sops, nsops, alter);
 1437         if (error)
 1438                 goto out_unlock_free;
 1439 
 1440         error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
 1441         if (error <= 0) {
 1442                 if (alter && error == 0)
 1443                         do_smart_update(sma, sops, nsops, 1, &tasks);
 1444 
 1445                 goto out_unlock_free;
 1446         }
 1447 
 1448         /* We need to sleep on this operation, so we put the current
 1449          * task into the pending queue and go to sleep.
 1450          */
 1451                 
 1452         queue.sops = sops;
 1453         queue.nsops = nsops;
 1454         queue.undo = un;
 1455         queue.pid = task_tgid_vnr(current);
 1456         queue.alter = alter;
 1457         if (alter)
 1458                 list_add_tail(&queue.list, &sma->sem_pending);
 1459         else
 1460                 list_add(&queue.list, &sma->sem_pending);
 1461 
 1462         if (nsops == 1) {
 1463                 struct sem *curr;
 1464                 curr = &sma->sem_base[sops->sem_num];
 1465 
 1466                 if (alter)
 1467                         list_add_tail(&queue.simple_list, &curr->sem_pending);
 1468                 else
 1469                         list_add(&queue.simple_list, &curr->sem_pending);
 1470         } else {
 1471                 INIT_LIST_HEAD(&queue.simple_list);
 1472                 sma->complex_count++;
 1473         }
 1474 
 1475         queue.status = -EINTR;
 1476         queue.sleeper = current;
 1477 
 1478 sleep_again:
 1479         current->state = TASK_INTERRUPTIBLE;
 1480         sem_unlock(sma);
 1481 
 1482         if (timeout)
 1483                 jiffies_left = schedule_timeout(jiffies_left);
 1484         else
 1485                 schedule();
 1486 
 1487         error = get_queue_result(&queue);
 1488 
 1489         if (error != -EINTR) {
 1490                 /* fast path: update_queue already obtained all requested
 1491                  * resources.
 1492                  * Perform a smp_mb(): User space could assume that semop()
 1493                  * is a memory barrier: Without the mb(), the cpu could
 1494                  * speculatively read in user space stale data that was
 1495                  * overwritten by the previous owner of the semaphore.
 1496                  */
 1497                 smp_mb();
 1498 
 1499                 goto out_free;
 1500         }
 1501 
 1502         sma = sem_lock(ns, semid);
 1503 
 1504         /*
 1505          * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
 1506          */
 1507         error = get_queue_result(&queue);
 1508 
 1509         /*
 1510          * Array removed? If yes, leave without sem_unlock().
 1511          */
 1512         if (IS_ERR(sma)) {
 1513                 goto out_free;
 1514         }
 1515 
 1516 
 1517         /*
 1518          * If queue.status != -EINTR we are woken up by another process.
 1519          * Leave without unlink_queue(), but with sem_unlock().
 1520          */
 1521 
 1522         if (error != -EINTR) {
 1523                 goto out_unlock_free;
 1524         }
 1525 
 1526         /*
 1527          * If an interrupt occurred we have to clean up the queue
 1528          */
 1529         if (timeout && jiffies_left == 0)
 1530                 error = -EAGAIN;
 1531 
 1532         /*
 1533          * If the wakeup was spurious, just retry
 1534          */
 1535         if (error == -EINTR && !signal_pending(current))
 1536                 goto sleep_again;
 1537 
 1538         unlink_queue(sma, &queue);
 1539 
 1540 out_unlock_free:
 1541         sem_unlock(sma);
 1542 
 1543         wake_up_sem_queue_do(&tasks);
 1544 out_free:
 1545         if(sops != fast_sops)
 1546                 kfree(sops);
 1547         return error;
 1548 }
 1549 
 1550 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
 1551                 unsigned, nsops)
 1552 {
 1553         return sys_semtimedop(semid, tsops, nsops, NULL);
 1554 }
 1555 
 1556 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
 1557  * parent and child tasks.
 1558  */
 1559 
 1560 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
 1561 {
 1562         struct sem_undo_list *undo_list;
 1563         int error;
 1564 
 1565         if (clone_flags & CLONE_SYSVSEM) {
 1566                 error = get_undo_list(&undo_list);
 1567                 if (error)
 1568                         return error;
 1569                 atomic_inc(&undo_list->refcnt);
 1570                 tsk->sysvsem.undo_list = undo_list;
 1571         } else 
 1572                 tsk->sysvsem.undo_list = NULL;
 1573 
 1574         return 0;
 1575 }
 1576 
 1577 /*
 1578  * add semadj values to semaphores, free undo structures.
 1579  * undo structures are not freed when semaphore arrays are destroyed
 1580  * so some of them may be out of date.
 1581  * IMPLEMENTATION NOTE: There is some confusion over whether the
 1582  * set of adjustments that needs to be done should be done in an atomic
 1583  * manner or not. That is, if we are attempting to decrement the semval
 1584  * should we queue up and wait until we can do so legally?
 1585  * The original implementation attempted to do this (queue and wait).
 1586  * The current implementation does not do so. The POSIX standard
 1587  * and SVID should be consulted to determine what behavior is mandated.
 1588  */
 1589 void exit_sem(struct task_struct *tsk)
 1590 {
 1591         struct sem_undo_list *ulp;
 1592 
 1593         ulp = tsk->sysvsem.undo_list;
 1594         if (!ulp)
 1595                 return;
 1596         tsk->sysvsem.undo_list = NULL;
 1597 
 1598         if (!atomic_dec_and_test(&ulp->refcnt))
 1599                 return;
 1600 
 1601         for (;;) {
 1602                 struct sem_array *sma;
 1603                 struct sem_undo *un;
 1604                 struct list_head tasks;
 1605                 int semid;
 1606                 int i;
 1607 
 1608                 rcu_read_lock();
 1609                 un = list_entry_rcu(ulp->list_proc.next,
 1610                                     struct sem_undo, list_proc);
 1611                 if (&un->list_proc == &ulp->list_proc)
 1612                         semid = -1;
 1613                  else
 1614                         semid = un->semid;
 1615                 rcu_read_unlock();
 1616 
 1617                 if (semid == -1)
 1618                         break;
 1619 
 1620                 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
 1621 
 1622                 /* exit_sem raced with IPC_RMID, nothing to do */
 1623                 if (IS_ERR(sma))
 1624                         continue;
 1625 
 1626                 un = __lookup_undo(ulp, semid);
 1627                 if (un == NULL) {
 1628                         /* exit_sem raced with IPC_RMID+semget() that created
 1629                          * exactly the same semid. Nothing to do.
 1630                          */
 1631                         sem_unlock(sma);
 1632                         continue;
 1633                 }
 1634 
 1635                 /* remove un from the linked lists */
 1636                 assert_spin_locked(&sma->sem_perm.lock);
 1637                 list_del(&un->list_id);
 1638 
 1639                 spin_lock(&ulp->lock);
 1640                 list_del_rcu(&un->list_proc);
 1641                 spin_unlock(&ulp->lock);
 1642 
 1643                 /* perform adjustments registered in un */
 1644                 for (i = 0; i < sma->sem_nsems; i++) {
 1645                         struct sem * semaphore = &sma->sem_base[i];
 1646                         if (un->semadj[i]) {
 1647                                 semaphore->semval += un->semadj[i];
 1648                                 /*
 1649                                  * Range checks of the new semaphore value,
 1650                                  * not defined by sus:
 1651                                  * - Some unices ignore the undo entirely
 1652                                  *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
 1653                                  * - some cap the value (e.g. FreeBSD caps
 1654                                  *   at 0, but doesn't enforce SEMVMX)
 1655                                  *
 1656                                  * Linux caps the semaphore value, both at 0
 1657                                  * and at SEMVMX.
 1658                                  *
 1659                                  *      Manfred <manfred@colorfullife.com>
 1660                                  */
 1661                                 if (semaphore->semval < 0)
 1662                                         semaphore->semval = 0;
 1663                                 if (semaphore->semval > SEMVMX)
 1664                                         semaphore->semval = SEMVMX;
 1665                                 semaphore->sempid = task_tgid_vnr(current);
 1666                         }
 1667                 }
 1668                 /* maybe some queued-up processes were waiting for this */
 1669                 INIT_LIST_HEAD(&tasks);
 1670                 do_smart_update(sma, NULL, 0, 1, &tasks);
 1671                 sem_unlock(sma);
 1672                 wake_up_sem_queue_do(&tasks);
 1673 
 1674                 kfree_rcu(un, rcu);
 1675         }
 1676         kfree(ulp);
 1677 }
 1678 
 1679 #ifdef CONFIG_PROC_FS
 1680 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
 1681 {
 1682         struct user_namespace *user_ns = seq_user_ns(s);
 1683         struct sem_array *sma = it;
 1684 
 1685         return seq_printf(s,
 1686                           "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
 1687                           sma->sem_perm.key,
 1688                           sma->sem_perm.id,
 1689                           sma->sem_perm.mode,
 1690                           sma->sem_nsems,
 1691                           from_kuid_munged(user_ns, sma->sem_perm.uid),
 1692                           from_kgid_munged(user_ns, sma->sem_perm.gid),
 1693                           from_kuid_munged(user_ns, sma->sem_perm.cuid),
 1694                           from_kgid_munged(user_ns, sma->sem_perm.cgid),
 1695                           sma->sem_otime,
 1696                           sma->sem_ctime);
 1697 }
 1698 #endif

Cache object: 27f106180ffc03065abf9a3352f4990a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.