The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/imgact_elf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2017 Dell EMC
    5  * Copyright (c) 2000-2001, 2003 David O'Brien
    6  * Copyright (c) 1995-1996 Søren Schmidt
    7  * Copyright (c) 1996 Peter Wemm
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer
   15  *    in this position and unchanged.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. The name of the author may not be used to endorse or promote products
   20  *    derived from this software without specific prior written permission
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_capsicum.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/capsicum.h>
   41 #include <sys/compressor.h>
   42 #include <sys/exec.h>
   43 #include <sys/fcntl.h>
   44 #include <sys/imgact.h>
   45 #include <sys/imgact_elf.h>
   46 #include <sys/jail.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mount.h>
   51 #include <sys/mman.h>
   52 #include <sys/namei.h>
   53 #include <sys/proc.h>
   54 #include <sys/procfs.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/racct.h>
   57 #include <sys/reg.h>
   58 #include <sys/resourcevar.h>
   59 #include <sys/rwlock.h>
   60 #include <sys/sbuf.h>
   61 #include <sys/sf_buf.h>
   62 #include <sys/smp.h>
   63 #include <sys/systm.h>
   64 #include <sys/signalvar.h>
   65 #include <sys/stat.h>
   66 #include <sys/sx.h>
   67 #include <sys/syscall.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/sysent.h>
   70 #include <sys/vnode.h>
   71 #include <sys/syslog.h>
   72 #include <sys/eventhandler.h>
   73 #include <sys/user.h>
   74 
   75 #include <vm/vm.h>
   76 #include <vm/vm_kern.h>
   77 #include <vm/vm_param.h>
   78 #include <vm/pmap.h>
   79 #include <vm/vm_map.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_extern.h>
   82 
   83 #include <machine/elf.h>
   84 #include <machine/md_var.h>
   85 
   86 #define ELF_NOTE_ROUNDSIZE      4
   87 #define OLD_EI_BRAND    8
   88 
   89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
   90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
   91     const char *interp, int32_t *osrel, uint32_t *fctl0);
   92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
   93     u_long *entry);
   94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
   95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
   96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
   97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
   98     int32_t *osrel);
   99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
  100 static bool __elfN(check_note)(struct image_params *imgp,
  101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
  102     uint32_t *fctl0);
  103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
  104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
  105 static size_t __elfN(prepare_register_notes)(struct thread *td,
  106     struct note_info_list *list, struct thread *target_td);
  107 
  108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
  109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  110     "");
  111 
  112 int __elfN(fallback_brand) = -1;
  113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
  115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
  116 
  117 static int elf_legacy_coredump = 0;
  118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 
  119     &elf_legacy_coredump, 0,
  120     "include all and only RW pages in core dumps");
  121 
  122 int __elfN(nxstack) =
  123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
  124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
  125     defined(__riscv)
  126         1;
  127 #else
  128         0;
  129 #endif
  130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
  132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
  133 
  134 #if defined(__amd64__)
  135 static int __elfN(vdso) = 1;
  136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
  138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
  139 #else
  140 static int __elfN(vdso) = 0;
  141 #endif
  142 
  143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
  144 int i386_read_exec = 0;
  145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
  146     "enable execution from readable segments");
  147 #endif
  148 
  149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
  150 static int
  151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
  152 {
  153         u_long val;
  154         int error;
  155 
  156         val = __elfN(pie_base);
  157         error = sysctl_handle_long(oidp, &val, 0, req);
  158         if (error != 0 || req->newptr == NULL)
  159                 return (error);
  160         if ((val & PAGE_MASK) != 0)
  161                 return (EINVAL);
  162         __elfN(pie_base) = val;
  163         return (0);
  164 }
  165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
  166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  167     sysctl_pie_base, "LU",
  168     "PIE load base without randomization");
  169 
  170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
  171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  172     "");
  173 #define ASLR_NODE_OID   __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
  174 
  175 /*
  176  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
  177  * have limited address space (which can cause issues for applications with
  178  * high memory use) so we leave it off there.
  179  */
  180 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
  181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
  182     &__elfN(aslr_enabled), 0,
  183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  184     ": enable address map randomization");
  185 
  186 /*
  187  * Enable ASLR by default for 64-bit PIE binaries.
  188  */
  189 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
  190 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
  191     &__elfN(pie_aslr_enabled), 0,
  192     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  193     ": enable address map randomization for PIE binaries");
  194 
  195 /*
  196  * Sbrk is deprecated and it can be assumed that in most cases it will not be
  197  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
  198  * to use the bss grow region.
  199  */
  200 static int __elfN(aslr_honor_sbrk) = 0;
  201 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
  202     &__elfN(aslr_honor_sbrk), 0,
  203     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
  204 
  205 static int __elfN(aslr_stack) = 1;
  206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
  207     &__elfN(aslr_stack), 0,
  208     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  209     ": enable stack address randomization");
  210 
  211 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
  212 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
  213     &__elfN(aslr_shared_page), 0,
  214     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  215     ": enable shared page address randomization");
  216 
  217 static int __elfN(sigfastblock) = 1;
  218 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
  219     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
  220     "enable sigfastblock for new processes");
  221 
  222 static bool __elfN(allow_wx) = true;
  223 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
  224     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
  225     "Allow pages to be mapped simultaneously writable and executable");
  226 
  227 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
  228 
  229 #define aligned(a, t)   (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
  230 
  231 Elf_Brandnote __elfN(freebsd_brandnote) = {
  232         .hdr.n_namesz   = sizeof(FREEBSD_ABI_VENDOR),
  233         .hdr.n_descsz   = sizeof(int32_t),
  234         .hdr.n_type     = NT_FREEBSD_ABI_TAG,
  235         .vendor         = FREEBSD_ABI_VENDOR,
  236         .flags          = BN_TRANSLATE_OSREL,
  237         .trans_osrel    = __elfN(freebsd_trans_osrel)
  238 };
  239 
  240 static bool
  241 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
  242 {
  243         uintptr_t p;
  244 
  245         p = (uintptr_t)(note + 1);
  246         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  247         *osrel = *(const int32_t *)(p);
  248 
  249         return (true);
  250 }
  251 
  252 static const char GNU_ABI_VENDOR[] = "GNU";
  253 static int GNU_KFREEBSD_ABI_DESC = 3;
  254 
  255 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
  256         .hdr.n_namesz   = sizeof(GNU_ABI_VENDOR),
  257         .hdr.n_descsz   = 16,   /* XXX at least 16 */
  258         .hdr.n_type     = 1,
  259         .vendor         = GNU_ABI_VENDOR,
  260         .flags          = BN_TRANSLATE_OSREL,
  261         .trans_osrel    = kfreebsd_trans_osrel
  262 };
  263 
  264 static bool
  265 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
  266 {
  267         const Elf32_Word *desc;
  268         uintptr_t p;
  269 
  270         p = (uintptr_t)(note + 1);
  271         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  272 
  273         desc = (const Elf32_Word *)p;
  274         if (desc[0] != GNU_KFREEBSD_ABI_DESC)
  275                 return (false);
  276 
  277         /*
  278          * Debian GNU/kFreeBSD embed the earliest compatible kernel version
  279          * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
  280          */
  281         *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
  282 
  283         return (true);
  284 }
  285 
  286 int
  287 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
  288 {
  289         int i;
  290 
  291         for (i = 0; i < MAX_BRANDS; i++) {
  292                 if (elf_brand_list[i] == NULL) {
  293                         elf_brand_list[i] = entry;
  294                         break;
  295                 }
  296         }
  297         if (i == MAX_BRANDS) {
  298                 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
  299                         __func__, entry);
  300                 return (-1);
  301         }
  302         return (0);
  303 }
  304 
  305 int
  306 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
  307 {
  308         int i;
  309 
  310         for (i = 0; i < MAX_BRANDS; i++) {
  311                 if (elf_brand_list[i] == entry) {
  312                         elf_brand_list[i] = NULL;
  313                         break;
  314                 }
  315         }
  316         if (i == MAX_BRANDS)
  317                 return (-1);
  318         return (0);
  319 }
  320 
  321 bool
  322 __elfN(brand_inuse)(Elf_Brandinfo *entry)
  323 {
  324         struct proc *p;
  325         bool rval = false;
  326 
  327         sx_slock(&allproc_lock);
  328         FOREACH_PROC_IN_SYSTEM(p) {
  329                 if (p->p_sysent == entry->sysvec) {
  330                         rval = true;
  331                         break;
  332                 }
  333         }
  334         sx_sunlock(&allproc_lock);
  335 
  336         return (rval);
  337 }
  338 
  339 static Elf_Brandinfo *
  340 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
  341     int32_t *osrel, uint32_t *fctl0)
  342 {
  343         const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
  344         Elf_Brandinfo *bi, *bi_m;
  345         bool ret, has_fctl0;
  346         int i, interp_name_len;
  347 
  348         interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
  349 
  350         /*
  351          * We support four types of branding -- (1) the ELF EI_OSABI field
  352          * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
  353          * branding w/in the ELF header, (3) path of the `interp_path'
  354          * field, and (4) the ".note.ABI-tag" ELF section.
  355          */
  356 
  357         /* Look for an ".note.ABI-tag" ELF section */
  358         bi_m = NULL;
  359         for (i = 0; i < MAX_BRANDS; i++) {
  360                 bi = elf_brand_list[i];
  361                 if (bi == NULL)
  362                         continue;
  363                 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
  364                         continue;
  365                 if (hdr->e_machine == bi->machine && (bi->flags &
  366                     (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
  367                         has_fctl0 = false;
  368                         *fctl0 = 0;
  369                         *osrel = 0;
  370                         ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
  371                             &has_fctl0, fctl0);
  372                         /* Give brand a chance to veto check_note's guess */
  373                         if (ret && bi->header_supported) {
  374                                 ret = bi->header_supported(imgp, osrel,
  375                                     has_fctl0 ? fctl0 : NULL);
  376                         }
  377                         /*
  378                          * If note checker claimed the binary, but the
  379                          * interpreter path in the image does not
  380                          * match default one for the brand, try to
  381                          * search for other brands with the same
  382                          * interpreter.  Either there is better brand
  383                          * with the right interpreter, or, failing
  384                          * this, we return first brand which accepted
  385                          * our note and, optionally, header.
  386                          */
  387                         if (ret && bi_m == NULL && interp != NULL &&
  388                             (bi->interp_path == NULL ||
  389                             (strlen(bi->interp_path) + 1 != interp_name_len ||
  390                             strncmp(interp, bi->interp_path, interp_name_len)
  391                             != 0))) {
  392                                 bi_m = bi;
  393                                 ret = 0;
  394                         }
  395                         if (ret)
  396                                 return (bi);
  397                 }
  398         }
  399         if (bi_m != NULL)
  400                 return (bi_m);
  401 
  402         /* If the executable has a brand, search for it in the brand list. */
  403         for (i = 0; i < MAX_BRANDS; i++) {
  404                 bi = elf_brand_list[i];
  405                 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
  406                     (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
  407                         continue;
  408                 if (hdr->e_machine == bi->machine &&
  409                     (hdr->e_ident[EI_OSABI] == bi->brand ||
  410                     (bi->compat_3_brand != NULL &&
  411                     strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
  412                     bi->compat_3_brand) == 0))) {
  413                         /* Looks good, but give brand a chance to veto */
  414                         if (bi->header_supported == NULL ||
  415                             bi->header_supported(imgp, NULL, NULL)) {
  416                                 /*
  417                                  * Again, prefer strictly matching
  418                                  * interpreter path.
  419                                  */
  420                                 if (interp_name_len == 0 &&
  421                                     bi->interp_path == NULL)
  422                                         return (bi);
  423                                 if (bi->interp_path != NULL &&
  424                                     strlen(bi->interp_path) + 1 ==
  425                                     interp_name_len && strncmp(interp,
  426                                     bi->interp_path, interp_name_len) == 0)
  427                                         return (bi);
  428                                 if (bi_m == NULL)
  429                                         bi_m = bi;
  430                         }
  431                 }
  432         }
  433         if (bi_m != NULL)
  434                 return (bi_m);
  435 
  436         /* No known brand, see if the header is recognized by any brand */
  437         for (i = 0; i < MAX_BRANDS; i++) {
  438                 bi = elf_brand_list[i];
  439                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
  440                     bi->header_supported == NULL)
  441                         continue;
  442                 if (hdr->e_machine == bi->machine) {
  443                         ret = bi->header_supported(imgp, NULL, NULL);
  444                         if (ret)
  445                                 return (bi);
  446                 }
  447         }
  448 
  449         /* Lacking a known brand, search for a recognized interpreter. */
  450         if (interp != NULL) {
  451                 for (i = 0; i < MAX_BRANDS; i++) {
  452                         bi = elf_brand_list[i];
  453                         if (bi == NULL || (bi->flags &
  454                             (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
  455                             != 0)
  456                                 continue;
  457                         if (hdr->e_machine == bi->machine &&
  458                             bi->interp_path != NULL &&
  459                             /* ELF image p_filesz includes terminating zero */
  460                             strlen(bi->interp_path) + 1 == interp_name_len &&
  461                             strncmp(interp, bi->interp_path, interp_name_len)
  462                             == 0 && (bi->header_supported == NULL ||
  463                             bi->header_supported(imgp, NULL, NULL)))
  464                                 return (bi);
  465                 }
  466         }
  467 
  468         /* Lacking a recognized interpreter, try the default brand */
  469         for (i = 0; i < MAX_BRANDS; i++) {
  470                 bi = elf_brand_list[i];
  471                 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
  472                     (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
  473                         continue;
  474                 if (hdr->e_machine == bi->machine &&
  475                     __elfN(fallback_brand) == bi->brand &&
  476                     (bi->header_supported == NULL ||
  477                     bi->header_supported(imgp, NULL, NULL)))
  478                         return (bi);
  479         }
  480         return (NULL);
  481 }
  482 
  483 static bool
  484 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
  485 {
  486         return (hdr->e_phoff <= PAGE_SIZE &&
  487             (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
  488 }
  489 
  490 static int
  491 __elfN(check_header)(const Elf_Ehdr *hdr)
  492 {
  493         Elf_Brandinfo *bi;
  494         int i;
  495 
  496         if (!IS_ELF(*hdr) ||
  497             hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
  498             hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
  499             hdr->e_ident[EI_VERSION] != EV_CURRENT ||
  500             hdr->e_phentsize != sizeof(Elf_Phdr) ||
  501             hdr->e_version != ELF_TARG_VER)
  502                 return (ENOEXEC);
  503 
  504         /*
  505          * Make sure we have at least one brand for this machine.
  506          */
  507 
  508         for (i = 0; i < MAX_BRANDS; i++) {
  509                 bi = elf_brand_list[i];
  510                 if (bi != NULL && bi->machine == hdr->e_machine)
  511                         break;
  512         }
  513         if (i == MAX_BRANDS)
  514                 return (ENOEXEC);
  515 
  516         return (0);
  517 }
  518 
  519 static int
  520 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
  521     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
  522 {
  523         struct sf_buf *sf;
  524         int error;
  525         vm_offset_t off;
  526 
  527         /*
  528          * Create the page if it doesn't exist yet. Ignore errors.
  529          */
  530         vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
  531             trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
  532 
  533         /*
  534          * Find the page from the underlying object.
  535          */
  536         if (object != NULL) {
  537                 sf = vm_imgact_map_page(object, offset);
  538                 if (sf == NULL)
  539                         return (KERN_FAILURE);
  540                 off = offset - trunc_page(offset);
  541                 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
  542                     end - start);
  543                 vm_imgact_unmap_page(sf);
  544                 if (error != 0)
  545                         return (KERN_FAILURE);
  546         }
  547 
  548         return (KERN_SUCCESS);
  549 }
  550 
  551 static int
  552 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
  553     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
  554     int cow)
  555 {
  556         struct sf_buf *sf;
  557         vm_offset_t off;
  558         vm_size_t sz;
  559         int error, locked, rv;
  560 
  561         if (start != trunc_page(start)) {
  562                 rv = __elfN(map_partial)(map, object, offset, start,
  563                     round_page(start), prot);
  564                 if (rv != KERN_SUCCESS)
  565                         return (rv);
  566                 offset += round_page(start) - start;
  567                 start = round_page(start);
  568         }
  569         if (end != round_page(end)) {
  570                 rv = __elfN(map_partial)(map, object, offset +
  571                     trunc_page(end) - start, trunc_page(end), end, prot);
  572                 if (rv != KERN_SUCCESS)
  573                         return (rv);
  574                 end = trunc_page(end);
  575         }
  576         if (start >= end)
  577                 return (KERN_SUCCESS);
  578         if ((offset & PAGE_MASK) != 0) {
  579                 /*
  580                  * The mapping is not page aligned.  This means that we have
  581                  * to copy the data.
  582                  */
  583                 rv = vm_map_fixed(map, NULL, 0, start, end - start,
  584                     prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
  585                 if (rv != KERN_SUCCESS)
  586                         return (rv);
  587                 if (object == NULL)
  588                         return (KERN_SUCCESS);
  589                 for (; start < end; start += sz) {
  590                         sf = vm_imgact_map_page(object, offset);
  591                         if (sf == NULL)
  592                                 return (KERN_FAILURE);
  593                         off = offset - trunc_page(offset);
  594                         sz = end - start;
  595                         if (sz > PAGE_SIZE - off)
  596                                 sz = PAGE_SIZE - off;
  597                         error = copyout((caddr_t)sf_buf_kva(sf) + off,
  598                             (caddr_t)start, sz);
  599                         vm_imgact_unmap_page(sf);
  600                         if (error != 0)
  601                                 return (KERN_FAILURE);
  602                         offset += sz;
  603                 }
  604         } else {
  605                 vm_object_reference(object);
  606                 rv = vm_map_fixed(map, object, offset, start, end - start,
  607                     prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
  608                     (object != NULL ? MAP_VN_EXEC : 0));
  609                 if (rv != KERN_SUCCESS) {
  610                         locked = VOP_ISLOCKED(imgp->vp);
  611                         VOP_UNLOCK(imgp->vp);
  612                         vm_object_deallocate(object);
  613                         vn_lock(imgp->vp, locked | LK_RETRY);
  614                         return (rv);
  615                 } else if (object != NULL) {
  616                         MPASS(imgp->vp->v_object == object);
  617                         VOP_SET_TEXT_CHECKED(imgp->vp);
  618                 }
  619         }
  620         return (KERN_SUCCESS);
  621 }
  622 
  623 static int
  624 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
  625     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
  626 {
  627         struct sf_buf *sf;
  628         size_t map_len;
  629         vm_map_t map;
  630         vm_object_t object;
  631         vm_offset_t map_addr;
  632         int error, rv, cow;
  633         size_t copy_len;
  634         vm_ooffset_t file_addr;
  635 
  636         /*
  637          * It's necessary to fail if the filsz + offset taken from the
  638          * header is greater than the actual file pager object's size.
  639          * If we were to allow this, then the vm_map_find() below would
  640          * walk right off the end of the file object and into the ether.
  641          *
  642          * While I'm here, might as well check for something else that
  643          * is invalid: filsz cannot be greater than memsz.
  644          */
  645         if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
  646             filsz > memsz) {
  647                 uprintf("elf_load_section: truncated ELF file\n");
  648                 return (ENOEXEC);
  649         }
  650 
  651         object = imgp->object;
  652         map = &imgp->proc->p_vmspace->vm_map;
  653         map_addr = trunc_page((vm_offset_t)vmaddr);
  654         file_addr = trunc_page(offset);
  655 
  656         /*
  657          * We have two choices.  We can either clear the data in the last page
  658          * of an oversized mapping, or we can start the anon mapping a page
  659          * early and copy the initialized data into that first page.  We
  660          * choose the second.
  661          */
  662         if (filsz == 0)
  663                 map_len = 0;
  664         else if (memsz > filsz)
  665                 map_len = trunc_page(offset + filsz) - file_addr;
  666         else
  667                 map_len = round_page(offset + filsz) - file_addr;
  668 
  669         if (map_len != 0) {
  670                 /* cow flags: don't dump readonly sections in core */
  671                 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
  672                     (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
  673 
  674                 rv = __elfN(map_insert)(imgp, map, object, file_addr,
  675                     map_addr, map_addr + map_len, prot, cow);
  676                 if (rv != KERN_SUCCESS)
  677                         return (EINVAL);
  678 
  679                 /* we can stop now if we've covered it all */
  680                 if (memsz == filsz)
  681                         return (0);
  682         }
  683 
  684         /*
  685          * We have to get the remaining bit of the file into the first part
  686          * of the oversized map segment.  This is normally because the .data
  687          * segment in the file is extended to provide bss.  It's a neat idea
  688          * to try and save a page, but it's a pain in the behind to implement.
  689          */
  690         copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
  691             filsz);
  692         map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
  693         map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
  694 
  695         /* This had damn well better be true! */
  696         if (map_len != 0) {
  697                 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
  698                     map_addr + map_len, prot, 0);
  699                 if (rv != KERN_SUCCESS)
  700                         return (EINVAL);
  701         }
  702 
  703         if (copy_len != 0) {
  704                 sf = vm_imgact_map_page(object, offset + filsz);
  705                 if (sf == NULL)
  706                         return (EIO);
  707 
  708                 /* send the page fragment to user space */
  709                 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
  710                     copy_len);
  711                 vm_imgact_unmap_page(sf);
  712                 if (error != 0)
  713                         return (error);
  714         }
  715 
  716         /*
  717          * Remove write access to the page if it was only granted by map_insert
  718          * to allow copyout.
  719          */
  720         if ((prot & VM_PROT_WRITE) == 0)
  721                 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
  722                     map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
  723 
  724         return (0);
  725 }
  726 
  727 static int
  728 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
  729     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
  730 {
  731         vm_prot_t prot;
  732         u_long base_addr;
  733         bool first;
  734         int error, i;
  735 
  736         ASSERT_VOP_LOCKED(imgp->vp, __func__);
  737 
  738         base_addr = 0;
  739         first = true;
  740 
  741         for (i = 0; i < hdr->e_phnum; i++) {
  742                 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
  743                         continue;
  744 
  745                 /* Loadable segment */
  746                 prot = __elfN(trans_prot)(phdr[i].p_flags);
  747                 error = __elfN(load_section)(imgp, phdr[i].p_offset,
  748                     (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
  749                     phdr[i].p_memsz, phdr[i].p_filesz, prot);
  750                 if (error != 0)
  751                         return (error);
  752 
  753                 /*
  754                  * Establish the base address if this is the first segment.
  755                  */
  756                 if (first) {
  757                         base_addr = trunc_page(phdr[i].p_vaddr + rbase);
  758                         first = false;
  759                 }
  760         }
  761 
  762         if (base_addrp != NULL)
  763                 *base_addrp = base_addr;
  764 
  765         return (0);
  766 }
  767 
  768 /*
  769  * Load the file "file" into memory.  It may be either a shared object
  770  * or an executable.
  771  *
  772  * The "addr" reference parameter is in/out.  On entry, it specifies
  773  * the address where a shared object should be loaded.  If the file is
  774  * an executable, this value is ignored.  On exit, "addr" specifies
  775  * where the file was actually loaded.
  776  *
  777  * The "entry" reference parameter is out only.  On exit, it specifies
  778  * the entry point for the loaded file.
  779  */
  780 static int
  781 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
  782         u_long *entry)
  783 {
  784         struct {
  785                 struct nameidata nd;
  786                 struct vattr attr;
  787                 struct image_params image_params;
  788         } *tempdata;
  789         const Elf_Ehdr *hdr = NULL;
  790         const Elf_Phdr *phdr = NULL;
  791         struct nameidata *nd;
  792         struct vattr *attr;
  793         struct image_params *imgp;
  794         u_long rbase;
  795         u_long base_addr = 0;
  796         int error;
  797 
  798 #ifdef CAPABILITY_MODE
  799         /*
  800          * XXXJA: This check can go away once we are sufficiently confident
  801          * that the checks in namei() are correct.
  802          */
  803         if (IN_CAPABILITY_MODE(curthread))
  804                 return (ECAPMODE);
  805 #endif
  806 
  807         tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
  808         nd = &tempdata->nd;
  809         attr = &tempdata->attr;
  810         imgp = &tempdata->image_params;
  811 
  812         /*
  813          * Initialize part of the common data
  814          */
  815         imgp->proc = p;
  816         imgp->attr = attr;
  817 
  818         NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
  819             UIO_SYSSPACE, file);
  820         if ((error = namei(nd)) != 0) {
  821                 nd->ni_vp = NULL;
  822                 goto fail;
  823         }
  824         NDFREE_PNBUF(nd);
  825         imgp->vp = nd->ni_vp;
  826 
  827         /*
  828          * Check permissions, modes, uid, etc on the file, and "open" it.
  829          */
  830         error = exec_check_permissions(imgp);
  831         if (error)
  832                 goto fail;
  833 
  834         error = exec_map_first_page(imgp);
  835         if (error)
  836                 goto fail;
  837 
  838         imgp->object = nd->ni_vp->v_object;
  839 
  840         hdr = (const Elf_Ehdr *)imgp->image_header;
  841         if ((error = __elfN(check_header)(hdr)) != 0)
  842                 goto fail;
  843         if (hdr->e_type == ET_DYN)
  844                 rbase = *addr;
  845         else if (hdr->e_type == ET_EXEC)
  846                 rbase = 0;
  847         else {
  848                 error = ENOEXEC;
  849                 goto fail;
  850         }
  851 
  852         /* Only support headers that fit within first page for now      */
  853         if (!__elfN(phdr_in_zero_page)(hdr)) {
  854                 error = ENOEXEC;
  855                 goto fail;
  856         }
  857 
  858         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
  859         if (!aligned(phdr, Elf_Addr)) {
  860                 error = ENOEXEC;
  861                 goto fail;
  862         }
  863 
  864         error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
  865         if (error != 0)
  866                 goto fail;
  867 
  868         *addr = base_addr;
  869         *entry = (unsigned long)hdr->e_entry + rbase;
  870 
  871 fail:
  872         if (imgp->firstpage)
  873                 exec_unmap_first_page(imgp);
  874 
  875         if (nd->ni_vp) {
  876                 if (imgp->textset)
  877                         VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
  878                 vput(nd->ni_vp);
  879         }
  880         free(tempdata, M_TEMP);
  881 
  882         return (error);
  883 }
  884 
  885 /*
  886  * Select randomized valid address in the map map, between minv and
  887  * maxv, with specified alignment.  The [minv, maxv) range must belong
  888  * to the map.  Note that function only allocates the address, it is
  889  * up to caller to clamp maxv in a way that the final allocation
  890  * length fit into the map.
  891  *
  892  * Result is returned in *resp, error code indicates that arguments
  893  * did not pass sanity checks for overflow and range correctness.
  894  */
  895 static int
  896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
  897     u_int align, u_long *resp)
  898 {
  899         u_long rbase, res;
  900 
  901         MPASS(vm_map_min(map) <= minv);
  902 
  903         if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
  904                 uprintf("Invalid ELF segments layout\n");
  905                 return (ENOEXEC);
  906         }
  907 
  908         arc4rand(&rbase, sizeof(rbase), 0);
  909         res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
  910         res &= ~((u_long)align - 1);
  911         if (res >= maxv)
  912                 res -= align;
  913 
  914         KASSERT(res >= minv,
  915             ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
  916             res, minv, maxv, rbase));
  917         KASSERT(res < maxv,
  918             ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
  919             res, maxv, minv, rbase));
  920 
  921         *resp = res;
  922         return (0);
  923 }
  924 
  925 static int
  926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
  927     const Elf_Phdr *phdr, u_long et_dyn_addr)
  928 {
  929         struct vmspace *vmspace;
  930         const char *err_str;
  931         u_long text_size, data_size, total_size, text_addr, data_addr;
  932         u_long seg_size, seg_addr;
  933         int i;
  934 
  935         err_str = NULL;
  936         text_size = data_size = total_size = text_addr = data_addr = 0;
  937 
  938         for (i = 0; i < hdr->e_phnum; i++) {
  939                 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
  940                         continue;
  941 
  942                 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
  943                 seg_size = round_page(phdr[i].p_memsz +
  944                     phdr[i].p_vaddr + et_dyn_addr - seg_addr);
  945 
  946                 /*
  947                  * Make the largest executable segment the official
  948                  * text segment and all others data.
  949                  *
  950                  * Note that obreak() assumes that data_addr + data_size == end
  951                  * of data load area, and the ELF file format expects segments
  952                  * to be sorted by address.  If multiple data segments exist,
  953                  * the last one will be used.
  954                  */
  955 
  956                 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
  957                         text_size = seg_size;
  958                         text_addr = seg_addr;
  959                 } else {
  960                         data_size = seg_size;
  961                         data_addr = seg_addr;
  962                 }
  963                 total_size += seg_size;
  964         }
  965 
  966         if (data_addr == 0 && data_size == 0) {
  967                 data_addr = text_addr;
  968                 data_size = text_size;
  969         }
  970 
  971         /*
  972          * Check limits.  It should be safe to check the
  973          * limits after loading the segments since we do
  974          * not actually fault in all the segments pages.
  975          */
  976         PROC_LOCK(imgp->proc);
  977         if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
  978                 err_str = "Data segment size exceeds process limit";
  979         else if (text_size > maxtsiz)
  980                 err_str = "Text segment size exceeds system limit";
  981         else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
  982                 err_str = "Total segment size exceeds process limit";
  983         else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
  984                 err_str = "Data segment size exceeds resource limit";
  985         else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
  986                 err_str = "Total segment size exceeds resource limit";
  987         PROC_UNLOCK(imgp->proc);
  988         if (err_str != NULL) {
  989                 uprintf("%s\n", err_str);
  990                 return (ENOMEM);
  991         }
  992 
  993         vmspace = imgp->proc->p_vmspace;
  994         vmspace->vm_tsize = text_size >> PAGE_SHIFT;
  995         vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
  996         vmspace->vm_dsize = data_size >> PAGE_SHIFT;
  997         vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
  998 
  999         return (0);
 1000 }
 1001 
 1002 static int
 1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
 1004     char **interpp, bool *free_interpp)
 1005 {
 1006         struct thread *td;
 1007         char *interp;
 1008         int error, interp_name_len;
 1009 
 1010         KASSERT(phdr->p_type == PT_INTERP,
 1011             ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
 1012         ASSERT_VOP_LOCKED(imgp->vp, __func__);
 1013 
 1014         td = curthread;
 1015 
 1016         /* Path to interpreter */
 1017         if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
 1018                 uprintf("Invalid PT_INTERP\n");
 1019                 return (ENOEXEC);
 1020         }
 1021 
 1022         interp_name_len = phdr->p_filesz;
 1023         if (phdr->p_offset > PAGE_SIZE ||
 1024             interp_name_len > PAGE_SIZE - phdr->p_offset) {
 1025                 /*
 1026                  * The vnode lock might be needed by the pagedaemon to
 1027                  * clean pages owned by the vnode.  Do not allow sleep
 1028                  * waiting for memory with the vnode locked, instead
 1029                  * try non-sleepable allocation first, and if it
 1030                  * fails, go to the slow path were we drop the lock
 1031                  * and do M_WAITOK.  A text reference prevents
 1032                  * modifications to the vnode content.
 1033                  */
 1034                 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
 1035                 if (interp == NULL) {
 1036                         VOP_UNLOCK(imgp->vp);
 1037                         interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
 1038                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1039                 }
 1040 
 1041                 error = vn_rdwr(UIO_READ, imgp->vp, interp,
 1042                     interp_name_len, phdr->p_offset,
 1043                     UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
 1044                     NOCRED, NULL, td);
 1045                 if (error != 0) {
 1046                         free(interp, M_TEMP);
 1047                         uprintf("i/o error PT_INTERP %d\n", error);
 1048                         return (error);
 1049                 }
 1050                 interp[interp_name_len] = '\0';
 1051 
 1052                 *interpp = interp;
 1053                 *free_interpp = true;
 1054                 return (0);
 1055         }
 1056 
 1057         interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
 1058         if (interp[interp_name_len - 1] != '\0') {
 1059                 uprintf("Invalid PT_INTERP\n");
 1060                 return (ENOEXEC);
 1061         }
 1062 
 1063         *interpp = interp;
 1064         *free_interpp = false;
 1065         return (0);
 1066 }
 1067 
 1068 static int
 1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
 1070     const char *interp, u_long *addr, u_long *entry)
 1071 {
 1072         char *path;
 1073         int error;
 1074 
 1075         if (brand_info->emul_path != NULL &&
 1076             brand_info->emul_path[0] != '\0') {
 1077                 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 1078                 snprintf(path, MAXPATHLEN, "%s%s",
 1079                     brand_info->emul_path, interp);
 1080                 error = __elfN(load_file)(imgp->proc, path, addr, entry);
 1081                 free(path, M_TEMP);
 1082                 if (error == 0)
 1083                         return (0);
 1084         }
 1085 
 1086         if (brand_info->interp_newpath != NULL &&
 1087             (brand_info->interp_path == NULL ||
 1088             strcmp(interp, brand_info->interp_path) == 0)) {
 1089                 error = __elfN(load_file)(imgp->proc,
 1090                     brand_info->interp_newpath, addr, entry);
 1091                 if (error == 0)
 1092                         return (0);
 1093         }
 1094 
 1095         error = __elfN(load_file)(imgp->proc, interp, addr, entry);
 1096         if (error == 0)
 1097                 return (0);
 1098 
 1099         uprintf("ELF interpreter %s not found, error %d\n", interp, error);
 1100         return (error);
 1101 }
 1102 
 1103 /*
 1104  * Impossible et_dyn_addr initial value indicating that the real base
 1105  * must be calculated later with some randomization applied.
 1106  */
 1107 #define ET_DYN_ADDR_RAND        1
 1108 
 1109 static int
 1110 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
 1111 {
 1112         struct thread *td;
 1113         const Elf_Ehdr *hdr;
 1114         const Elf_Phdr *phdr;
 1115         Elf_Auxargs *elf_auxargs;
 1116         struct vmspace *vmspace;
 1117         vm_map_t map;
 1118         char *interp;
 1119         Elf_Brandinfo *brand_info;
 1120         struct sysentvec *sv;
 1121         u_long addr, baddr, et_dyn_addr, entry, proghdr;
 1122         u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
 1123         uint32_t fctl0;
 1124         int32_t osrel;
 1125         bool free_interp;
 1126         int error, i, n;
 1127 
 1128         hdr = (const Elf_Ehdr *)imgp->image_header;
 1129 
 1130         /*
 1131          * Do we have a valid ELF header ?
 1132          *
 1133          * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
 1134          * if particular brand doesn't support it.
 1135          */
 1136         if (__elfN(check_header)(hdr) != 0 ||
 1137             (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
 1138                 return (-1);
 1139 
 1140         /*
 1141          * From here on down, we return an errno, not -1, as we've
 1142          * detected an ELF file.
 1143          */
 1144 
 1145         if (!__elfN(phdr_in_zero_page)(hdr)) {
 1146                 uprintf("Program headers not in the first page\n");
 1147                 return (ENOEXEC);
 1148         }
 1149         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 
 1150         if (!aligned(phdr, Elf_Addr)) {
 1151                 uprintf("Unaligned program headers\n");
 1152                 return (ENOEXEC);
 1153         }
 1154 
 1155         n = error = 0;
 1156         baddr = 0;
 1157         osrel = 0;
 1158         fctl0 = 0;
 1159         entry = proghdr = 0;
 1160         interp = NULL;
 1161         free_interp = false;
 1162         td = curthread;
 1163 
 1164         /*
 1165          * Somewhat arbitrary, limit accepted max alignment for the
 1166          * loadable segment to the max supported superpage size. Too
 1167          * large alignment requests are not useful and are indicators
 1168          * of corrupted or outright malicious binary.
 1169          */
 1170         maxalign = PAGE_SIZE;
 1171         maxsalign = PAGE_SIZE * 1024;
 1172         for (i = MAXPAGESIZES - 1; i > 0; i--) {
 1173                 if (pagesizes[i] > maxsalign)
 1174                         maxsalign = pagesizes[i];
 1175         }
 1176 
 1177         mapsz = 0;
 1178 
 1179         for (i = 0; i < hdr->e_phnum; i++) {
 1180                 switch (phdr[i].p_type) {
 1181                 case PT_LOAD:
 1182                         if (n == 0)
 1183                                 baddr = phdr[i].p_vaddr;
 1184                         if (!powerof2(phdr[i].p_align) ||
 1185                             phdr[i].p_align > maxsalign) {
 1186                                 uprintf("Invalid segment alignment\n");
 1187                                 error = ENOEXEC;
 1188                                 goto ret;
 1189                         }
 1190                         if (phdr[i].p_align > maxalign)
 1191                                 maxalign = phdr[i].p_align;
 1192                         if (mapsz + phdr[i].p_memsz < mapsz) {
 1193                                 uprintf("Mapsize overflow\n");
 1194                                 error = ENOEXEC;
 1195                                 goto ret;
 1196                         }
 1197                         mapsz += phdr[i].p_memsz;
 1198                         n++;
 1199 
 1200                         /*
 1201                          * If this segment contains the program headers,
 1202                          * remember their virtual address for the AT_PHDR
 1203                          * aux entry. Static binaries don't usually include
 1204                          * a PT_PHDR entry.
 1205                          */
 1206                         if (phdr[i].p_offset == 0 &&
 1207                             hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
 1208                             phdr[i].p_filesz)
 1209                                 proghdr = phdr[i].p_vaddr + hdr->e_phoff;
 1210                         break;
 1211                 case PT_INTERP:
 1212                         /* Path to interpreter */
 1213                         if (interp != NULL) {
 1214                                 uprintf("Multiple PT_INTERP headers\n");
 1215                                 error = ENOEXEC;
 1216                                 goto ret;
 1217                         }
 1218                         error = __elfN(get_interp)(imgp, &phdr[i], &interp,
 1219                             &free_interp);
 1220                         if (error != 0)
 1221                                 goto ret;
 1222                         break;
 1223                 case PT_GNU_STACK:
 1224                         if (__elfN(nxstack)) {
 1225                                 imgp->stack_prot =
 1226                                     __elfN(trans_prot)(phdr[i].p_flags);
 1227                                 if ((imgp->stack_prot & VM_PROT_RW) !=
 1228                                     VM_PROT_RW) {
 1229                                         uprintf("Invalid PT_GNU_STACK\n");
 1230                                         error = ENOEXEC;
 1231                                         goto ret;
 1232                                 }
 1233                         }
 1234                         imgp->stack_sz = phdr[i].p_memsz;
 1235                         break;
 1236                 case PT_PHDR:   /* Program header table info */
 1237                         proghdr = phdr[i].p_vaddr;
 1238                         break;
 1239                 }
 1240         }
 1241 
 1242         brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
 1243         if (brand_info == NULL) {
 1244                 uprintf("ELF binary type \"%u\" not known.\n",
 1245                     hdr->e_ident[EI_OSABI]);
 1246                 error = ENOEXEC;
 1247                 goto ret;
 1248         }
 1249         sv = brand_info->sysvec;
 1250         et_dyn_addr = 0;
 1251         if (hdr->e_type == ET_DYN) {
 1252                 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
 1253                         uprintf("Cannot execute shared object\n");
 1254                         error = ENOEXEC;
 1255                         goto ret;
 1256                 }
 1257                 /*
 1258                  * Honour the base load address from the dso if it is
 1259                  * non-zero for some reason.
 1260                  */
 1261                 if (baddr == 0) {
 1262                         if ((sv->sv_flags & SV_ASLR) == 0 ||
 1263                             (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
 1264                                 et_dyn_addr = __elfN(pie_base);
 1265                         else if ((__elfN(pie_aslr_enabled) &&
 1266                             (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
 1267                             (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
 1268                                 et_dyn_addr = ET_DYN_ADDR_RAND;
 1269                         else
 1270                                 et_dyn_addr = __elfN(pie_base);
 1271                 }
 1272         }
 1273 
 1274         /*
 1275          * Avoid a possible deadlock if the current address space is destroyed
 1276          * and that address space maps the locked vnode.  In the common case,
 1277          * the locked vnode's v_usecount is decremented but remains greater
 1278          * than zero.  Consequently, the vnode lock is not needed by vrele().
 1279          * However, in cases where the vnode lock is external, such as nullfs,
 1280          * v_usecount may become zero.
 1281          *
 1282          * The VV_TEXT flag prevents modifications to the executable while
 1283          * the vnode is unlocked.
 1284          */
 1285         VOP_UNLOCK(imgp->vp);
 1286 
 1287         /*
 1288          * Decide whether to enable randomization of user mappings.
 1289          * First, reset user preferences for the setid binaries.
 1290          * Then, account for the support of the randomization by the
 1291          * ABI, by user preferences, and make special treatment for
 1292          * PIE binaries.
 1293          */
 1294         if (imgp->credential_setid) {
 1295                 PROC_LOCK(imgp->proc);
 1296                 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
 1297                     P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
 1298                 PROC_UNLOCK(imgp->proc);
 1299         }
 1300         if ((sv->sv_flags & SV_ASLR) == 0 ||
 1301             (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
 1302             (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
 1303                 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
 1304                     ("et_dyn_addr == RAND and !ASLR"));
 1305         } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
 1306             (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
 1307             et_dyn_addr == ET_DYN_ADDR_RAND) {
 1308                 imgp->map_flags |= MAP_ASLR;
 1309                 /*
 1310                  * If user does not care about sbrk, utilize the bss
 1311                  * grow region for mappings as well.  We can select
 1312                  * the base for the image anywere and still not suffer
 1313                  * from the fragmentation.
 1314                  */
 1315                 if (!__elfN(aslr_honor_sbrk) ||
 1316                     (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
 1317                         imgp->map_flags |= MAP_ASLR_IGNSTART;
 1318                 if (__elfN(aslr_stack))
 1319                         imgp->map_flags |= MAP_ASLR_STACK;
 1320                 if (__elfN(aslr_shared_page))
 1321                         imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
 1322         }
 1323 
 1324         if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
 1325             (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
 1326             (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
 1327                 imgp->map_flags |= MAP_WXORX;
 1328 
 1329         error = exec_new_vmspace(imgp, sv);
 1330 
 1331         imgp->proc->p_sysent = sv;
 1332         imgp->proc->p_elf_brandinfo = brand_info;
 1333 
 1334         vmspace = imgp->proc->p_vmspace;
 1335         map = &vmspace->vm_map;
 1336         maxv = sv->sv_usrstack;
 1337         if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
 1338                 maxv -= lim_max(td, RLIMIT_STACK);
 1339         if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
 1340                 uprintf("Excessive mapping size\n");
 1341                 error = ENOEXEC;
 1342         }
 1343 
 1344         if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
 1345                 KASSERT((map->flags & MAP_ASLR) != 0,
 1346                     ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
 1347                 error = __CONCAT(rnd_, __elfN(base))(map,
 1348                     vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
 1349                     /* reserve half of the address space to interpreter */
 1350                     maxv / 2, maxalign, &et_dyn_addr);
 1351         }
 1352 
 1353         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1354         if (error != 0)
 1355                 goto ret;
 1356 
 1357         error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
 1358         if (error != 0)
 1359                 goto ret;
 1360 
 1361         error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
 1362         if (error != 0)
 1363                 goto ret;
 1364 
 1365         /*
 1366          * We load the dynamic linker where a userland call
 1367          * to mmap(0, ...) would put it.  The rationale behind this
 1368          * calculation is that it leaves room for the heap to grow to
 1369          * its maximum allowed size.
 1370          */
 1371         addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
 1372             RLIMIT_DATA));
 1373         if ((map->flags & MAP_ASLR) != 0) {
 1374                 maxv1 = maxv / 2 + addr / 2;
 1375                 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
 1376                     (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
 1377                     pagesizes[1] : pagesizes[0], &anon_loc);
 1378                 if (error != 0)
 1379                         goto ret;
 1380                 map->anon_loc = anon_loc;
 1381         } else {
 1382                 map->anon_loc = addr;
 1383         }
 1384 
 1385         entry = (u_long)hdr->e_entry + et_dyn_addr;
 1386         imgp->entry_addr = entry;
 1387 
 1388         if (interp != NULL) {
 1389                 VOP_UNLOCK(imgp->vp);
 1390                 if ((map->flags & MAP_ASLR) != 0) {
 1391                         /* Assume that interpreter fits into 1/4 of AS */
 1392                         maxv1 = maxv / 2 + addr / 2;
 1393                         error = __CONCAT(rnd_, __elfN(base))(map, addr,
 1394                             maxv1, PAGE_SIZE, &addr);
 1395                 }
 1396                 if (error == 0) {
 1397                         error = __elfN(load_interp)(imgp, brand_info, interp,
 1398                             &addr, &imgp->entry_addr);
 1399                 }
 1400                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1401                 if (error != 0)
 1402                         goto ret;
 1403         } else
 1404                 addr = et_dyn_addr;
 1405 
 1406         error = exec_map_stack(imgp);
 1407         if (error != 0)
 1408                 goto ret;
 1409 
 1410         /*
 1411          * Construct auxargs table (used by the copyout_auxargs routine)
 1412          */
 1413         elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
 1414         if (elf_auxargs == NULL) {
 1415                 VOP_UNLOCK(imgp->vp);
 1416                 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
 1417                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1418         }
 1419         elf_auxargs->execfd = -1;
 1420         elf_auxargs->phdr = proghdr + et_dyn_addr;
 1421         elf_auxargs->phent = hdr->e_phentsize;
 1422         elf_auxargs->phnum = hdr->e_phnum;
 1423         elf_auxargs->pagesz = PAGE_SIZE;
 1424         elf_auxargs->base = addr;
 1425         elf_auxargs->flags = 0;
 1426         elf_auxargs->entry = entry;
 1427         elf_auxargs->hdr_eflags = hdr->e_flags;
 1428 
 1429         imgp->auxargs = elf_auxargs;
 1430         imgp->interpreted = 0;
 1431         imgp->reloc_base = addr;
 1432         imgp->proc->p_osrel = osrel;
 1433         imgp->proc->p_fctl0 = fctl0;
 1434         imgp->proc->p_elf_flags = hdr->e_flags;
 1435 
 1436 ret:
 1437         ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
 1438         if (free_interp)
 1439                 free(interp, M_TEMP);
 1440         return (error);
 1441 }
 1442 
 1443 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
 1444 
 1445 int
 1446 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
 1447 {
 1448         Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
 1449         Elf_Auxinfo *argarray, *pos;
 1450         struct vmspace *vmspace;
 1451         rlim_t stacksz;
 1452         int error, bsdflags, oc;
 1453 
 1454         argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
 1455             M_WAITOK | M_ZERO);
 1456 
 1457         vmspace = imgp->proc->p_vmspace;
 1458 
 1459         if (args->execfd != -1)
 1460                 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
 1461         AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
 1462         AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
 1463         AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
 1464         AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
 1465         AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
 1466         AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
 1467         AUXARGS_ENTRY(pos, AT_BASE, args->base);
 1468         AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
 1469         if (imgp->execpathp != 0)
 1470                 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
 1471         AUXARGS_ENTRY(pos, AT_OSRELDATE,
 1472             imgp->proc->p_ucred->cr_prison->pr_osreldate);
 1473         if (imgp->canary != 0) {
 1474                 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
 1475                 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
 1476         }
 1477         AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
 1478         if (imgp->pagesizes != 0) {
 1479                 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
 1480                 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
 1481         }
 1482         if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
 1483                 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
 1484                     vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
 1485         }
 1486         AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
 1487             != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
 1488             imgp->sysent->sv_stackprot);
 1489         if (imgp->sysent->sv_hwcap != NULL)
 1490                 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
 1491         if (imgp->sysent->sv_hwcap2 != NULL)
 1492                 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
 1493         bsdflags = 0;
 1494         bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
 1495         oc = atomic_load_int(&vm_overcommit);
 1496         bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
 1497             0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
 1498         AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
 1499         AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
 1500         AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
 1501         AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
 1502         AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
 1503         AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
 1504 #ifdef RANDOM_FENESTRASX
 1505         if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
 1506                 AUXARGS_ENTRY(pos, AT_FXRNG,
 1507                     vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
 1508         }
 1509 #endif
 1510         if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
 1511                 AUXARGS_ENTRY(pos, AT_KPRELOAD,
 1512                     vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
 1513         }
 1514         AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
 1515         stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
 1516         AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
 1517         AUXARGS_ENTRY(pos, AT_NULL, 0);
 1518 
 1519         free(imgp->auxargs, M_TEMP);
 1520         imgp->auxargs = NULL;
 1521         KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
 1522 
 1523         error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
 1524         free(argarray, M_TEMP);
 1525         return (error);
 1526 }
 1527 
 1528 int
 1529 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
 1530 {
 1531         Elf_Addr *base;
 1532 
 1533         base = (Elf_Addr *)*stack_base;
 1534         base--;
 1535         if (elf_suword(base, imgp->args->argc) == -1)
 1536                 return (EFAULT);
 1537         *stack_base = (uintptr_t)base;
 1538         return (0);
 1539 }
 1540 
 1541 /*
 1542  * Code for generating ELF core dumps.
 1543  */
 1544 
 1545 typedef void (*segment_callback)(vm_map_entry_t, void *);
 1546 
 1547 /* Closure for cb_put_phdr(). */
 1548 struct phdr_closure {
 1549         Elf_Phdr *phdr;         /* Program header to fill in */
 1550         Elf_Off offset;         /* Offset of segment in core file */
 1551 };
 1552 
 1553 struct note_info {
 1554         int             type;           /* Note type. */
 1555         struct regset   *regset;        /* Register set. */
 1556         outfunc_t       outfunc;        /* Output function. */
 1557         void            *outarg;        /* Argument for the output function. */
 1558         size_t          outsize;        /* Output size. */
 1559         TAILQ_ENTRY(note_info) link;    /* Link to the next note info. */
 1560 };
 1561 
 1562 TAILQ_HEAD(note_info_list, note_info);
 1563 
 1564 extern int compress_user_cores;
 1565 extern int compress_user_cores_level;
 1566 
 1567 static void cb_put_phdr(vm_map_entry_t, void *);
 1568 static void cb_size_segment(vm_map_entry_t, void *);
 1569 static void each_dumpable_segment(struct thread *, segment_callback, void *,
 1570     int);
 1571 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
 1572     struct note_info_list *, size_t, int);
 1573 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
 1574 
 1575 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
 1576 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
 1577 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
 1578 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
 1579 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
 1580 static void note_procstat_files(void *, struct sbuf *, size_t *);
 1581 static void note_procstat_groups(void *, struct sbuf *, size_t *);
 1582 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
 1583 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
 1584 static void note_procstat_umask(void *, struct sbuf *, size_t *);
 1585 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
 1586 
 1587 static int
 1588 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
 1589 {
 1590 
 1591         return (core_write((struct coredump_params *)arg, base, len, offset,
 1592             UIO_SYSSPACE, NULL));
 1593 }
 1594 
 1595 int
 1596 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
 1597 {
 1598         struct ucred *cred = td->td_ucred;
 1599         int compm, error = 0;
 1600         struct sseg_closure seginfo;
 1601         struct note_info_list notelst;
 1602         struct coredump_params params;
 1603         struct note_info *ninfo;
 1604         void *hdr, *tmpbuf;
 1605         size_t hdrsize, notesz, coresize;
 1606 
 1607         hdr = NULL;
 1608         tmpbuf = NULL;
 1609         TAILQ_INIT(&notelst);
 1610 
 1611         /* Size the program segments. */
 1612         __elfN(size_segments)(td, &seginfo, flags);
 1613 
 1614         /*
 1615          * Collect info about the core file header area.
 1616          */
 1617         hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
 1618         if (seginfo.count + 1 >= PN_XNUM)
 1619                 hdrsize += sizeof(Elf_Shdr);
 1620         td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
 1621         coresize = round_page(hdrsize + notesz) + seginfo.size;
 1622 
 1623         /* Set up core dump parameters. */
 1624         params.offset = 0;
 1625         params.active_cred = cred;
 1626         params.file_cred = NOCRED;
 1627         params.td = td;
 1628         params.vp = vp;
 1629         params.comp = NULL;
 1630 
 1631 #ifdef RACCT
 1632         if (racct_enable) {
 1633                 PROC_LOCK(td->td_proc);
 1634                 error = racct_add(td->td_proc, RACCT_CORE, coresize);
 1635                 PROC_UNLOCK(td->td_proc);
 1636                 if (error != 0) {
 1637                         error = EFAULT;
 1638                         goto done;
 1639                 }
 1640         }
 1641 #endif
 1642         if (coresize >= limit) {
 1643                 error = EFAULT;
 1644                 goto done;
 1645         }
 1646 
 1647         /* Create a compression stream if necessary. */
 1648         compm = compress_user_cores;
 1649         if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
 1650             compm == 0)
 1651                 compm = COMPRESS_GZIP;
 1652         if (compm != 0) {
 1653                 params.comp = compressor_init(core_compressed_write,
 1654                     compm, CORE_BUF_SIZE,
 1655                     compress_user_cores_level, &params);
 1656                 if (params.comp == NULL) {
 1657                         error = EFAULT;
 1658                         goto done;
 1659                 }
 1660                 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
 1661         }
 1662 
 1663         /*
 1664          * Allocate memory for building the header, fill it up,
 1665          * and write it out following the notes.
 1666          */
 1667         hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
 1668         error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
 1669             notesz, flags);
 1670 
 1671         /* Write the contents of all of the writable segments. */
 1672         if (error == 0) {
 1673                 Elf_Phdr *php;
 1674                 off_t offset;
 1675                 int i;
 1676 
 1677                 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
 1678                 offset = round_page(hdrsize + notesz);
 1679                 for (i = 0; i < seginfo.count; i++) {
 1680                         error = core_output((char *)(uintptr_t)php->p_vaddr,
 1681                             php->p_filesz, offset, &params, tmpbuf);
 1682                         if (error != 0)
 1683                                 break;
 1684                         offset += php->p_filesz;
 1685                         php++;
 1686                 }
 1687                 if (error == 0 && params.comp != NULL)
 1688                         error = compressor_flush(params.comp);
 1689         }
 1690         if (error) {
 1691                 log(LOG_WARNING,
 1692                     "Failed to write core file for process %s (error %d)\n",
 1693                     curproc->p_comm, error);
 1694         }
 1695 
 1696 done:
 1697         free(tmpbuf, M_TEMP);
 1698         if (params.comp != NULL)
 1699                 compressor_fini(params.comp);
 1700         while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
 1701                 TAILQ_REMOVE(&notelst, ninfo, link);
 1702                 free(ninfo, M_TEMP);
 1703         }
 1704         if (hdr != NULL)
 1705                 free(hdr, M_TEMP);
 1706 
 1707         return (error);
 1708 }
 1709 
 1710 /*
 1711  * A callback for each_dumpable_segment() to write out the segment's
 1712  * program header entry.
 1713  */
 1714 static void
 1715 cb_put_phdr(vm_map_entry_t entry, void *closure)
 1716 {
 1717         struct phdr_closure *phc = (struct phdr_closure *)closure;
 1718         Elf_Phdr *phdr = phc->phdr;
 1719 
 1720         phc->offset = round_page(phc->offset);
 1721 
 1722         phdr->p_type = PT_LOAD;
 1723         phdr->p_offset = phc->offset;
 1724         phdr->p_vaddr = entry->start;
 1725         phdr->p_paddr = 0;
 1726         phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
 1727         phdr->p_align = PAGE_SIZE;
 1728         phdr->p_flags = __elfN(untrans_prot)(entry->protection);
 1729 
 1730         phc->offset += phdr->p_filesz;
 1731         phc->phdr++;
 1732 }
 1733 
 1734 /*
 1735  * A callback for each_dumpable_segment() to gather information about
 1736  * the number of segments and their total size.
 1737  */
 1738 static void
 1739 cb_size_segment(vm_map_entry_t entry, void *closure)
 1740 {
 1741         struct sseg_closure *ssc = (struct sseg_closure *)closure;
 1742 
 1743         ssc->count++;
 1744         ssc->size += entry->end - entry->start;
 1745 }
 1746 
 1747 void
 1748 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
 1749     int flags)
 1750 {
 1751         seginfo->count = 0;
 1752         seginfo->size = 0;
 1753 
 1754         each_dumpable_segment(td, cb_size_segment, seginfo, flags);
 1755 }
 1756 
 1757 /*
 1758  * For each writable segment in the process's memory map, call the given
 1759  * function with a pointer to the map entry and some arbitrary
 1760  * caller-supplied data.
 1761  */
 1762 static void
 1763 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
 1764     int flags)
 1765 {
 1766         struct proc *p = td->td_proc;
 1767         vm_map_t map = &p->p_vmspace->vm_map;
 1768         vm_map_entry_t entry;
 1769         vm_object_t backing_object, object;
 1770         bool ignore_entry;
 1771 
 1772         vm_map_lock_read(map);
 1773         VM_MAP_ENTRY_FOREACH(entry, map) {
 1774                 /*
 1775                  * Don't dump inaccessible mappings, deal with legacy
 1776                  * coredump mode.
 1777                  *
 1778                  * Note that read-only segments related to the elf binary
 1779                  * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
 1780                  * need to arbitrarily ignore such segments.
 1781                  */
 1782                 if ((flags & SVC_ALL) == 0) {
 1783                         if (elf_legacy_coredump) {
 1784                                 if ((entry->protection & VM_PROT_RW) !=
 1785                                     VM_PROT_RW)
 1786                                         continue;
 1787                         } else {
 1788                                 if ((entry->protection & VM_PROT_ALL) == 0)
 1789                                         continue;
 1790                         }
 1791                 }
 1792 
 1793                 /*
 1794                  * Dont include memory segment in the coredump if
 1795                  * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
 1796                  * madvise(2).  Do not dump submaps (i.e. parts of the
 1797                  * kernel map).
 1798                  */
 1799                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 1800                         continue;
 1801                 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
 1802                     (flags & SVC_ALL) == 0)
 1803                         continue;
 1804                 if ((object = entry->object.vm_object) == NULL)
 1805                         continue;
 1806 
 1807                 /* Ignore memory-mapped devices and such things. */
 1808                 VM_OBJECT_RLOCK(object);
 1809                 while ((backing_object = object->backing_object) != NULL) {
 1810                         VM_OBJECT_RLOCK(backing_object);
 1811                         VM_OBJECT_RUNLOCK(object);
 1812                         object = backing_object;
 1813                 }
 1814                 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
 1815                 VM_OBJECT_RUNLOCK(object);
 1816                 if (ignore_entry)
 1817                         continue;
 1818 
 1819                 (*func)(entry, closure);
 1820         }
 1821         vm_map_unlock_read(map);
 1822 }
 1823 
 1824 /*
 1825  * Write the core file header to the file, including padding up to
 1826  * the page boundary.
 1827  */
 1828 static int
 1829 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
 1830     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
 1831     int flags)
 1832 {
 1833         struct note_info *ninfo;
 1834         struct sbuf *sb;
 1835         int error;
 1836 
 1837         /* Fill in the header. */
 1838         bzero(hdr, hdrsize);
 1839         __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
 1840 
 1841         sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
 1842         sbuf_set_drain(sb, sbuf_drain_core_output, p);
 1843         sbuf_start_section(sb, NULL);
 1844         sbuf_bcat(sb, hdr, hdrsize);
 1845         TAILQ_FOREACH(ninfo, notelst, link)
 1846             __elfN(putnote)(p->td, ninfo, sb);
 1847         /* Align up to a page boundary for the program segments. */
 1848         sbuf_end_section(sb, -1, PAGE_SIZE, 0);
 1849         error = sbuf_finish(sb);
 1850         sbuf_delete(sb);
 1851 
 1852         return (error);
 1853 }
 1854 
 1855 void
 1856 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
 1857     size_t *sizep)
 1858 {
 1859         struct proc *p;
 1860         struct thread *thr;
 1861         size_t size;
 1862 
 1863         p = td->td_proc;
 1864         size = 0;
 1865 
 1866         size += __elfN(register_note)(td, list, NT_PRPSINFO,
 1867             __elfN(note_prpsinfo), p);
 1868 
 1869         /*
 1870          * To have the debugger select the right thread (LWP) as the initial
 1871          * thread, we dump the state of the thread passed to us in td first.
 1872          * This is the thread that causes the core dump and thus likely to
 1873          * be the right thread one wants to have selected in the debugger.
 1874          */
 1875         thr = td;
 1876         while (thr != NULL) {
 1877                 size += __elfN(prepare_register_notes)(td, list, thr);
 1878                 size += __elfN(register_note)(td, list, -1,
 1879                     __elfN(note_threadmd), thr);
 1880 
 1881                 thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
 1882                     TAILQ_NEXT(thr, td_plist);
 1883                 if (thr == td)
 1884                         thr = TAILQ_NEXT(thr, td_plist);
 1885         }
 1886 
 1887         size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
 1888             __elfN(note_procstat_proc), p);
 1889         size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
 1890             note_procstat_files, p);
 1891         size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
 1892             note_procstat_vmmap, p);
 1893         size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
 1894             note_procstat_groups, p);
 1895         size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
 1896             note_procstat_umask, p);
 1897         size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
 1898             note_procstat_rlimit, p);
 1899         size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
 1900             note_procstat_osrel, p);
 1901         size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
 1902             __elfN(note_procstat_psstrings), p);
 1903         size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
 1904             __elfN(note_procstat_auxv), p);
 1905 
 1906         *sizep = size;
 1907 }
 1908 
 1909 void
 1910 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
 1911     size_t notesz, int flags)
 1912 {
 1913         Elf_Ehdr *ehdr;
 1914         Elf_Phdr *phdr;
 1915         Elf_Shdr *shdr;
 1916         struct phdr_closure phc;
 1917         Elf_Brandinfo *bi;
 1918 
 1919         ehdr = (Elf_Ehdr *)hdr;
 1920         bi = td->td_proc->p_elf_brandinfo;
 1921 
 1922         ehdr->e_ident[EI_MAG0] = ELFMAG0;
 1923         ehdr->e_ident[EI_MAG1] = ELFMAG1;
 1924         ehdr->e_ident[EI_MAG2] = ELFMAG2;
 1925         ehdr->e_ident[EI_MAG3] = ELFMAG3;
 1926         ehdr->e_ident[EI_CLASS] = ELF_CLASS;
 1927         ehdr->e_ident[EI_DATA] = ELF_DATA;
 1928         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 1929         ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
 1930         ehdr->e_ident[EI_ABIVERSION] = 0;
 1931         ehdr->e_ident[EI_PAD] = 0;
 1932         ehdr->e_type = ET_CORE;
 1933         ehdr->e_machine = bi->machine;
 1934         ehdr->e_version = EV_CURRENT;
 1935         ehdr->e_entry = 0;
 1936         ehdr->e_phoff = sizeof(Elf_Ehdr);
 1937         ehdr->e_flags = td->td_proc->p_elf_flags;
 1938         ehdr->e_ehsize = sizeof(Elf_Ehdr);
 1939         ehdr->e_phentsize = sizeof(Elf_Phdr);
 1940         ehdr->e_shentsize = sizeof(Elf_Shdr);
 1941         ehdr->e_shstrndx = SHN_UNDEF;
 1942         if (numsegs + 1 < PN_XNUM) {
 1943                 ehdr->e_phnum = numsegs + 1;
 1944                 ehdr->e_shnum = 0;
 1945         } else {
 1946                 ehdr->e_phnum = PN_XNUM;
 1947                 ehdr->e_shnum = 1;
 1948 
 1949                 ehdr->e_shoff = ehdr->e_phoff +
 1950                     (numsegs + 1) * ehdr->e_phentsize;
 1951                 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
 1952                     ("e_shoff: %zu, hdrsize - shdr: %zu",
 1953                      (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
 1954 
 1955                 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
 1956                 memset(shdr, 0, sizeof(*shdr));
 1957                 /*
 1958                  * A special first section is used to hold large segment and
 1959                  * section counts.  This was proposed by Sun Microsystems in
 1960                  * Solaris and has been adopted by Linux; the standard ELF
 1961                  * tools are already familiar with the technique.
 1962                  *
 1963                  * See table 7-7 of the Solaris "Linker and Libraries Guide"
 1964                  * (or 12-7 depending on the version of the document) for more
 1965                  * details.
 1966                  */
 1967                 shdr->sh_type = SHT_NULL;
 1968                 shdr->sh_size = ehdr->e_shnum;
 1969                 shdr->sh_link = ehdr->e_shstrndx;
 1970                 shdr->sh_info = numsegs + 1;
 1971         }
 1972 
 1973         /*
 1974          * Fill in the program header entries.
 1975          */
 1976         phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
 1977 
 1978         /* The note segement. */
 1979         phdr->p_type = PT_NOTE;
 1980         phdr->p_offset = hdrsize;
 1981         phdr->p_vaddr = 0;
 1982         phdr->p_paddr = 0;
 1983         phdr->p_filesz = notesz;
 1984         phdr->p_memsz = 0;
 1985         phdr->p_flags = PF_R;
 1986         phdr->p_align = ELF_NOTE_ROUNDSIZE;
 1987         phdr++;
 1988 
 1989         /* All the writable segments from the program. */
 1990         phc.phdr = phdr;
 1991         phc.offset = round_page(hdrsize + notesz);
 1992         each_dumpable_segment(td, cb_put_phdr, &phc, flags);
 1993 }
 1994 
 1995 static size_t
 1996 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
 1997     struct regset *regset, struct thread *target_td)
 1998 {
 1999         const struct sysentvec *sv;
 2000         struct note_info *ninfo;
 2001         size_t size, notesize;
 2002 
 2003         size = 0;
 2004         if (!regset->get(regset, target_td, NULL, &size) || size == 0)
 2005                 return (0);
 2006 
 2007         ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
 2008         ninfo->type = regset->note;
 2009         ninfo->regset = regset;
 2010         ninfo->outarg = target_td;
 2011         ninfo->outsize = size;
 2012         TAILQ_INSERT_TAIL(list, ninfo, link);
 2013 
 2014         sv = td->td_proc->p_sysent;
 2015         notesize = sizeof(Elf_Note) +           /* note header */
 2016             roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
 2017                                                 /* note name */
 2018             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2019 
 2020         return (notesize);
 2021 }
 2022 
 2023 size_t
 2024 __elfN(register_note)(struct thread *td, struct note_info_list *list,
 2025     int type, outfunc_t out, void *arg)
 2026 {
 2027         const struct sysentvec *sv;
 2028         struct note_info *ninfo;
 2029         size_t size, notesize;
 2030 
 2031         sv = td->td_proc->p_sysent;
 2032         size = 0;
 2033         out(arg, NULL, &size);
 2034         ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
 2035         ninfo->type = type;
 2036         ninfo->outfunc = out;
 2037         ninfo->outarg = arg;
 2038         ninfo->outsize = size;
 2039         TAILQ_INSERT_TAIL(list, ninfo, link);
 2040 
 2041         if (type == -1)
 2042                 return (size);
 2043 
 2044         notesize = sizeof(Elf_Note) +           /* note header */
 2045             roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
 2046                                                 /* note name */
 2047             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2048 
 2049         return (notesize);
 2050 }
 2051 
 2052 static size_t
 2053 append_note_data(const void *src, void *dst, size_t len)
 2054 {
 2055         size_t padded_len;
 2056 
 2057         padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
 2058         if (dst != NULL) {
 2059                 bcopy(src, dst, len);
 2060                 bzero((char *)dst + len, padded_len - len);
 2061         }
 2062         return (padded_len);
 2063 }
 2064 
 2065 size_t
 2066 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
 2067 {
 2068         Elf_Note *note;
 2069         char *buf;
 2070         size_t notesize;
 2071 
 2072         buf = dst;
 2073         if (buf != NULL) {
 2074                 note = (Elf_Note *)buf;
 2075                 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
 2076                 note->n_descsz = size;
 2077                 note->n_type = type;
 2078                 buf += sizeof(*note);
 2079                 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
 2080                     sizeof(FREEBSD_ABI_VENDOR));
 2081                 append_note_data(src, buf, size);
 2082                 if (descp != NULL)
 2083                         *descp = buf;
 2084         }
 2085 
 2086         notesize = sizeof(Elf_Note) +           /* note header */
 2087             roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
 2088                                                 /* note name */
 2089             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2090 
 2091         return (notesize);
 2092 }
 2093 
 2094 static void
 2095 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
 2096 {
 2097         Elf_Note note;
 2098         const struct sysentvec *sv;
 2099         ssize_t old_len, sect_len;
 2100         size_t new_len, descsz, i;
 2101 
 2102         if (ninfo->type == -1) {
 2103                 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 2104                 return;
 2105         }
 2106 
 2107         sv = td->td_proc->p_sysent;
 2108 
 2109         note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
 2110         note.n_descsz = ninfo->outsize;
 2111         note.n_type = ninfo->type;
 2112 
 2113         sbuf_bcat(sb, &note, sizeof(note));
 2114         sbuf_start_section(sb, &old_len);
 2115         sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
 2116             strlen(sv->sv_elf_core_abi_vendor) + 1);
 2117         sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 2118         if (note.n_descsz == 0)
 2119                 return;
 2120         sbuf_start_section(sb, &old_len);
 2121         if (ninfo->regset != NULL) {
 2122                 struct regset *regset = ninfo->regset;
 2123                 void *buf;
 2124 
 2125                 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
 2126                 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
 2127                 sbuf_bcat(sb, buf, ninfo->outsize);
 2128                 free(buf, M_TEMP);
 2129         } else
 2130                 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 2131         sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 2132         if (sect_len < 0)
 2133                 return;
 2134 
 2135         new_len = (size_t)sect_len;
 2136         descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
 2137         if (new_len < descsz) {
 2138                 /*
 2139                  * It is expected that individual note emitters will correctly
 2140                  * predict their expected output size and fill up to that size
 2141                  * themselves, padding in a format-specific way if needed.
 2142                  * However, in case they don't, just do it here with zeros.
 2143                  */
 2144                 for (i = 0; i < descsz - new_len; i++)
 2145                         sbuf_putc(sb, 0);
 2146         } else if (new_len > descsz) {
 2147                 /*
 2148                  * We can't always truncate sb -- we may have drained some
 2149                  * of it already.
 2150                  */
 2151                 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
 2152                     "read it (%zu > %zu).  Since it is longer than "
 2153                     "expected, this coredump's notes are corrupt.  THIS "
 2154                     "IS A BUG in the note_procstat routine for type %u.\n",
 2155                     __func__, (unsigned)note.n_type, new_len, descsz,
 2156                     (unsigned)note.n_type));
 2157         }
 2158 }
 2159 
 2160 /*
 2161  * Miscellaneous note out functions.
 2162  */
 2163 
 2164 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2165 #include <compat/freebsd32/freebsd32.h>
 2166 #include <compat/freebsd32/freebsd32_signal.h>
 2167 
 2168 typedef struct prstatus32 elf_prstatus_t;
 2169 typedef struct prpsinfo32 elf_prpsinfo_t;
 2170 typedef struct fpreg32 elf_prfpregset_t;
 2171 typedef struct fpreg32 elf_fpregset_t;
 2172 typedef struct reg32 elf_gregset_t;
 2173 typedef struct thrmisc32 elf_thrmisc_t;
 2174 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
 2175 #define ELF_KERN_PROC_MASK      KERN_PROC_MASK32
 2176 typedef struct kinfo_proc32 elf_kinfo_proc_t;
 2177 typedef uint32_t elf_ps_strings_t;
 2178 #else
 2179 typedef prstatus_t elf_prstatus_t;
 2180 typedef prpsinfo_t elf_prpsinfo_t;
 2181 typedef prfpregset_t elf_prfpregset_t;
 2182 typedef prfpregset_t elf_fpregset_t;
 2183 typedef gregset_t elf_gregset_t;
 2184 typedef thrmisc_t elf_thrmisc_t;
 2185 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
 2186 #define ELF_KERN_PROC_MASK      0
 2187 typedef struct kinfo_proc elf_kinfo_proc_t;
 2188 typedef vm_offset_t elf_ps_strings_t;
 2189 #endif
 2190 
 2191 static void
 2192 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
 2193 {
 2194         struct sbuf sbarg;
 2195         size_t len;
 2196         char *cp, *end;
 2197         struct proc *p;
 2198         elf_prpsinfo_t *psinfo;
 2199         int error;
 2200 
 2201         p = arg;
 2202         if (sb != NULL) {
 2203                 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
 2204                 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
 2205                 psinfo->pr_version = PRPSINFO_VERSION;
 2206                 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
 2207                 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
 2208                 PROC_LOCK(p);
 2209                 if (p->p_args != NULL) {
 2210                         len = sizeof(psinfo->pr_psargs) - 1;
 2211                         if (len > p->p_args->ar_length)
 2212                                 len = p->p_args->ar_length;
 2213                         memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
 2214                         PROC_UNLOCK(p);
 2215                         error = 0;
 2216                 } else {
 2217                         _PHOLD(p);
 2218                         PROC_UNLOCK(p);
 2219                         sbuf_new(&sbarg, psinfo->pr_psargs,
 2220                             sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
 2221                         error = proc_getargv(curthread, p, &sbarg);
 2222                         PRELE(p);
 2223                         if (sbuf_finish(&sbarg) == 0) {
 2224                                 len = sbuf_len(&sbarg);
 2225                                 if (len > 0)
 2226                                         len--;
 2227                         } else {
 2228                                 len = sizeof(psinfo->pr_psargs) - 1;
 2229                         }
 2230                         sbuf_delete(&sbarg);
 2231                 }
 2232                 if (error != 0 || len == 0 || (ssize_t)len == -1)
 2233                         strlcpy(psinfo->pr_psargs, p->p_comm,
 2234                             sizeof(psinfo->pr_psargs));
 2235                 else {
 2236                         KASSERT(len < sizeof(psinfo->pr_psargs),
 2237                             ("len is too long: %zu vs %zu", len,
 2238                             sizeof(psinfo->pr_psargs)));
 2239                         cp = psinfo->pr_psargs;
 2240                         end = cp + len - 1;
 2241                         for (;;) {
 2242                                 cp = memchr(cp, '\0', end - cp);
 2243                                 if (cp == NULL)
 2244                                         break;
 2245                                 *cp = ' ';
 2246                         }
 2247                 }
 2248                 psinfo->pr_pid = p->p_pid;
 2249                 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
 2250                 free(psinfo, M_TEMP);
 2251         }
 2252         *sizep = sizeof(*psinfo);
 2253 }
 2254 
 2255 static bool
 2256 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
 2257     size_t *sizep)
 2258 {
 2259         elf_prstatus_t *status;
 2260 
 2261         if (buf != NULL) {
 2262                 KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
 2263                     __func__));
 2264                 status = buf;
 2265                 memset(status, 0, *sizep);
 2266                 status->pr_version = PRSTATUS_VERSION;
 2267                 status->pr_statussz = sizeof(elf_prstatus_t);
 2268                 status->pr_gregsetsz = sizeof(elf_gregset_t);
 2269                 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
 2270                 status->pr_osreldate = osreldate;
 2271                 status->pr_cursig = td->td_proc->p_sig;
 2272                 status->pr_pid = td->td_tid;
 2273 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2274                 fill_regs32(td, &status->pr_reg);
 2275 #else
 2276                 fill_regs(td, &status->pr_reg);
 2277 #endif
 2278         }
 2279         *sizep = sizeof(*status);
 2280         return (true);
 2281 }
 2282 
 2283 static bool
 2284 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
 2285     size_t size)
 2286 {
 2287         elf_prstatus_t *status;
 2288 
 2289         KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
 2290         status = buf;
 2291 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2292         set_regs32(td, &status->pr_reg);
 2293 #else
 2294         set_regs(td, &status->pr_reg);
 2295 #endif
 2296         return (true);
 2297 }
 2298 
 2299 static struct regset __elfN(regset_prstatus) = {
 2300         .note = NT_PRSTATUS,
 2301         .size = sizeof(elf_prstatus_t),
 2302         .get = __elfN(get_prstatus),
 2303         .set = __elfN(set_prstatus),
 2304 };
 2305 ELF_REGSET(__elfN(regset_prstatus));
 2306 
 2307 static bool
 2308 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
 2309     size_t *sizep)
 2310 {
 2311         elf_prfpregset_t *fpregset;
 2312 
 2313         if (buf != NULL) {
 2314                 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
 2315                     __func__));
 2316                 fpregset = buf;
 2317 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2318                 fill_fpregs32(td, fpregset);
 2319 #else
 2320                 fill_fpregs(td, fpregset);
 2321 #endif
 2322         }
 2323         *sizep = sizeof(*fpregset);
 2324         return (true);
 2325 }
 2326 
 2327 static bool
 2328 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
 2329     size_t size)
 2330 {
 2331         elf_prfpregset_t *fpregset;
 2332 
 2333         fpregset = buf;
 2334         KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
 2335 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2336         set_fpregs32(td, fpregset);
 2337 #else
 2338         set_fpregs(td, fpregset);
 2339 #endif
 2340         return (true);
 2341 }
 2342 
 2343 static struct regset __elfN(regset_fpregset) = {
 2344         .note = NT_FPREGSET,
 2345         .size = sizeof(elf_prfpregset_t),
 2346         .get = __elfN(get_fpregset),
 2347         .set = __elfN(set_fpregset),
 2348 };
 2349 ELF_REGSET(__elfN(regset_fpregset));
 2350 
 2351 static bool
 2352 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
 2353     size_t *sizep)
 2354 {
 2355         elf_thrmisc_t *thrmisc;
 2356 
 2357         if (buf != NULL) {
 2358                 KASSERT(*sizep == sizeof(*thrmisc),
 2359                     ("%s: invalid size", __func__));
 2360                 thrmisc = buf;
 2361                 bzero(thrmisc, sizeof(*thrmisc));
 2362                 strcpy(thrmisc->pr_tname, td->td_name);
 2363         }
 2364         *sizep = sizeof(*thrmisc);
 2365         return (true);
 2366 }
 2367 
 2368 static struct regset __elfN(regset_thrmisc) = {
 2369         .note = NT_THRMISC,
 2370         .size = sizeof(elf_thrmisc_t),
 2371         .get = __elfN(get_thrmisc),
 2372 };
 2373 ELF_REGSET(__elfN(regset_thrmisc));
 2374 
 2375 static bool
 2376 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
 2377     size_t *sizep)
 2378 {
 2379         elf_lwpinfo_t pl;
 2380         size_t size;
 2381         int structsize;
 2382 
 2383         size = sizeof(structsize) + sizeof(pl);
 2384         if (buf != NULL) {
 2385                 KASSERT(*sizep == size, ("%s: invalid size", __func__));
 2386                 structsize = sizeof(pl);
 2387                 memcpy(buf, &structsize, sizeof(structsize));
 2388                 bzero(&pl, sizeof(pl));
 2389                 pl.pl_lwpid = td->td_tid;
 2390                 pl.pl_event = PL_EVENT_NONE;
 2391                 pl.pl_sigmask = td->td_sigmask;
 2392                 pl.pl_siglist = td->td_siglist;
 2393                 if (td->td_si.si_signo != 0) {
 2394                         pl.pl_event = PL_EVENT_SIGNAL;
 2395                         pl.pl_flags |= PL_FLAG_SI;
 2396 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2397                         siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
 2398 #else
 2399                         pl.pl_siginfo = td->td_si;
 2400 #endif
 2401                 }
 2402                 strcpy(pl.pl_tdname, td->td_name);
 2403                 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/
 2404                 memcpy((int *)buf + 1, &pl, sizeof(pl));
 2405         }
 2406         *sizep = size;
 2407         return (true);
 2408 }
 2409 
 2410 static struct regset __elfN(regset_lwpinfo) = {
 2411         .note = NT_PTLWPINFO,
 2412         .size = sizeof(int) + sizeof(elf_lwpinfo_t),
 2413         .get = __elfN(get_lwpinfo),
 2414 };
 2415 ELF_REGSET(__elfN(regset_lwpinfo));
 2416 
 2417 static size_t
 2418 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
 2419     struct thread *target_td)
 2420 {
 2421         struct sysentvec *sv = td->td_proc->p_sysent;
 2422         struct regset **regsetp, **regset_end, *regset;
 2423         size_t size;
 2424 
 2425         size = 0;
 2426 
 2427         /* NT_PRSTATUS must be the first register set note. */
 2428         size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
 2429             target_td);
 2430 
 2431         regsetp = sv->sv_regset_begin;
 2432         if (regsetp == NULL) {
 2433                 /* XXX: This shouldn't be true for any FreeBSD ABIs. */
 2434                 size += __elfN(register_regset_note)(td, list,
 2435                     &__elfN(regset_fpregset), target_td);
 2436                 return (size);
 2437         }
 2438         regset_end = sv->sv_regset_end;
 2439         MPASS(regset_end != NULL);
 2440         for (; regsetp < regset_end; regsetp++) {
 2441                 regset = *regsetp;
 2442                 if (regset->note == NT_PRSTATUS)
 2443                         continue;
 2444                 size += __elfN(register_regset_note)(td, list, regset,
 2445                     target_td);
 2446         }
 2447         return (size);
 2448 }
 2449 
 2450 /*
 2451  * Allow for MD specific notes, as well as any MD
 2452  * specific preparations for writing MI notes.
 2453  */
 2454 static void
 2455 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
 2456 {
 2457         struct thread *td;
 2458         void *buf;
 2459         size_t size;
 2460 
 2461         td = (struct thread *)arg;
 2462         size = *sizep;
 2463         if (size != 0 && sb != NULL)
 2464                 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
 2465         else
 2466                 buf = NULL;
 2467         size = 0;
 2468         __elfN(dump_thread)(td, buf, &size);
 2469         KASSERT(sb == NULL || *sizep == size, ("invalid size"));
 2470         if (size != 0 && sb != NULL)
 2471                 sbuf_bcat(sb, buf, size);
 2472         free(buf, M_TEMP);
 2473         *sizep = size;
 2474 }
 2475 
 2476 #ifdef KINFO_PROC_SIZE
 2477 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
 2478 #endif
 2479 
 2480 static void
 2481 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
 2482 {
 2483         struct proc *p;
 2484         size_t size;
 2485         int structsize;
 2486 
 2487         p = arg;
 2488         size = sizeof(structsize) + p->p_numthreads *
 2489             sizeof(elf_kinfo_proc_t);
 2490 
 2491         if (sb != NULL) {
 2492                 KASSERT(*sizep == size, ("invalid size"));
 2493                 structsize = sizeof(elf_kinfo_proc_t);
 2494                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2495                 sx_slock(&proctree_lock);
 2496                 PROC_LOCK(p);
 2497                 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
 2498                 sx_sunlock(&proctree_lock);
 2499         }
 2500         *sizep = size;
 2501 }
 2502 
 2503 #ifdef KINFO_FILE_SIZE
 2504 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
 2505 #endif
 2506 
 2507 static void
 2508 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
 2509 {
 2510         struct proc *p;
 2511         size_t size, sect_sz, i;
 2512         ssize_t start_len, sect_len;
 2513         int structsize, filedesc_flags;
 2514 
 2515         if (coredump_pack_fileinfo)
 2516                 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
 2517         else
 2518                 filedesc_flags = 0;
 2519 
 2520         p = arg;
 2521         structsize = sizeof(struct kinfo_file);
 2522         if (sb == NULL) {
 2523                 size = 0;
 2524                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2525                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2526                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2527                 PROC_LOCK(p);
 2528                 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
 2529                 sbuf_finish(sb);
 2530                 sbuf_delete(sb);
 2531                 *sizep = size;
 2532         } else {
 2533                 sbuf_start_section(sb, &start_len);
 2534 
 2535                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2536                 PROC_LOCK(p);
 2537                 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
 2538                     filedesc_flags);
 2539 
 2540                 sect_len = sbuf_end_section(sb, start_len, 0, 0);
 2541                 if (sect_len < 0)
 2542                         return;
 2543                 sect_sz = sect_len;
 2544 
 2545                 KASSERT(sect_sz <= *sizep,
 2546                     ("kern_proc_filedesc_out did not respect maxlen; "
 2547                      "requested %zu, got %zu", *sizep - sizeof(structsize),
 2548                      sect_sz - sizeof(structsize)));
 2549 
 2550                 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
 2551                         sbuf_putc(sb, 0);
 2552         }
 2553 }
 2554 
 2555 #ifdef KINFO_VMENTRY_SIZE
 2556 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2557 #endif
 2558 
 2559 static void
 2560 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
 2561 {
 2562         struct proc *p;
 2563         size_t size;
 2564         int structsize, vmmap_flags;
 2565 
 2566         if (coredump_pack_vmmapinfo)
 2567                 vmmap_flags = KERN_VMMAP_PACK_KINFO;
 2568         else
 2569                 vmmap_flags = 0;
 2570 
 2571         p = arg;
 2572         structsize = sizeof(struct kinfo_vmentry);
 2573         if (sb == NULL) {
 2574                 size = 0;
 2575                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2576                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2577                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2578                 PROC_LOCK(p);
 2579                 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
 2580                 sbuf_finish(sb);
 2581                 sbuf_delete(sb);
 2582                 *sizep = size;
 2583         } else {
 2584                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2585                 PROC_LOCK(p);
 2586                 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
 2587                     vmmap_flags);
 2588         }
 2589 }
 2590 
 2591 static void
 2592 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
 2593 {
 2594         struct proc *p;
 2595         size_t size;
 2596         int structsize;
 2597 
 2598         p = arg;
 2599         size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
 2600         if (sb != NULL) {
 2601                 KASSERT(*sizep == size, ("invalid size"));
 2602                 structsize = sizeof(gid_t);
 2603                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2604                 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
 2605                     sizeof(gid_t));
 2606         }
 2607         *sizep = size;
 2608 }
 2609 
 2610 static void
 2611 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
 2612 {
 2613         struct proc *p;
 2614         size_t size;
 2615         int structsize;
 2616 
 2617         p = arg;
 2618         size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
 2619         if (sb != NULL) {
 2620                 KASSERT(*sizep == size, ("invalid size"));
 2621                 structsize = sizeof(p->p_pd->pd_cmask);
 2622                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2623                 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
 2624         }
 2625         *sizep = size;
 2626 }
 2627 
 2628 static void
 2629 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
 2630 {
 2631         struct proc *p;
 2632         struct rlimit rlim[RLIM_NLIMITS];
 2633         size_t size;
 2634         int structsize, i;
 2635 
 2636         p = arg;
 2637         size = sizeof(structsize) + sizeof(rlim);
 2638         if (sb != NULL) {
 2639                 KASSERT(*sizep == size, ("invalid size"));
 2640                 structsize = sizeof(rlim);
 2641                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2642                 PROC_LOCK(p);
 2643                 for (i = 0; i < RLIM_NLIMITS; i++)
 2644                         lim_rlimit_proc(p, i, &rlim[i]);
 2645                 PROC_UNLOCK(p);
 2646                 sbuf_bcat(sb, rlim, sizeof(rlim));
 2647         }
 2648         *sizep = size;
 2649 }
 2650 
 2651 static void
 2652 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
 2653 {
 2654         struct proc *p;
 2655         size_t size;
 2656         int structsize;
 2657 
 2658         p = arg;
 2659         size = sizeof(structsize) + sizeof(p->p_osrel);
 2660         if (sb != NULL) {
 2661                 KASSERT(*sizep == size, ("invalid size"));
 2662                 structsize = sizeof(p->p_osrel);
 2663                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2664                 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
 2665         }
 2666         *sizep = size;
 2667 }
 2668 
 2669 static void
 2670 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
 2671 {
 2672         struct proc *p;
 2673         elf_ps_strings_t ps_strings;
 2674         size_t size;
 2675         int structsize;
 2676 
 2677         p = arg;
 2678         size = sizeof(structsize) + sizeof(ps_strings);
 2679         if (sb != NULL) {
 2680                 KASSERT(*sizep == size, ("invalid size"));
 2681                 structsize = sizeof(ps_strings);
 2682 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2683                 ps_strings = PTROUT(PROC_PS_STRINGS(p));
 2684 #else
 2685                 ps_strings = PROC_PS_STRINGS(p);
 2686 #endif
 2687                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2688                 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
 2689         }
 2690         *sizep = size;
 2691 }
 2692 
 2693 static void
 2694 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
 2695 {
 2696         struct proc *p;
 2697         size_t size;
 2698         int structsize;
 2699 
 2700         p = arg;
 2701         if (sb == NULL) {
 2702                 size = 0;
 2703                 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
 2704                     SBUF_FIXEDLEN);
 2705                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2706                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2707                 PHOLD(p);
 2708                 proc_getauxv(curthread, p, sb);
 2709                 PRELE(p);
 2710                 sbuf_finish(sb);
 2711                 sbuf_delete(sb);
 2712                 *sizep = size;
 2713         } else {
 2714                 structsize = sizeof(Elf_Auxinfo);
 2715                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2716                 PHOLD(p);
 2717                 proc_getauxv(curthread, p, sb);
 2718                 PRELE(p);
 2719         }
 2720 }
 2721 
 2722 static bool
 2723 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
 2724     const char *note_vendor, const Elf_Phdr *pnote,
 2725     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
 2726 {
 2727         const Elf_Note *note, *note0, *note_end;
 2728         const char *note_name;
 2729         char *buf;
 2730         int i, error;
 2731         bool res;
 2732 
 2733         /* We need some limit, might as well use PAGE_SIZE. */
 2734         if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
 2735                 return (false);
 2736         ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
 2737         if (pnote->p_offset > PAGE_SIZE ||
 2738             pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
 2739                 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
 2740                 if (buf == NULL) {
 2741                         VOP_UNLOCK(imgp->vp);
 2742                         buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
 2743                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 2744                 }
 2745                 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
 2746                     pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
 2747                     curthread->td_ucred, NOCRED, NULL, curthread);
 2748                 if (error != 0) {
 2749                         uprintf("i/o error PT_NOTE\n");
 2750                         goto retf;
 2751                 }
 2752                 note = note0 = (const Elf_Note *)buf;
 2753                 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
 2754         } else {
 2755                 note = note0 = (const Elf_Note *)(imgp->image_header +
 2756                     pnote->p_offset);
 2757                 note_end = (const Elf_Note *)(imgp->image_header +
 2758                     pnote->p_offset + pnote->p_filesz);
 2759                 buf = NULL;
 2760         }
 2761         for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
 2762                 if (!aligned(note, Elf32_Addr) || (const char *)note_end -
 2763                     (const char *)note < sizeof(Elf_Note)) {
 2764                         goto retf;
 2765                 }
 2766                 if (note->n_namesz != checknote->n_namesz ||
 2767                     note->n_descsz != checknote->n_descsz ||
 2768                     note->n_type != checknote->n_type)
 2769                         goto nextnote;
 2770                 note_name = (const char *)(note + 1);
 2771                 if (note_name + checknote->n_namesz >=
 2772                     (const char *)note_end || strncmp(note_vendor,
 2773                     note_name, checknote->n_namesz) != 0)
 2774                         goto nextnote;
 2775 
 2776                 if (cb(note, cb_arg, &res))
 2777                         goto ret;
 2778 nextnote:
 2779                 note = (const Elf_Note *)((const char *)(note + 1) +
 2780                     roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
 2781                     roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
 2782         }
 2783 retf:
 2784         res = false;
 2785 ret:
 2786         free(buf, M_TEMP);
 2787         return (res);
 2788 }
 2789 
 2790 struct brandnote_cb_arg {
 2791         Elf_Brandnote *brandnote;
 2792         int32_t *osrel;
 2793 };
 2794 
 2795 static bool
 2796 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
 2797 {
 2798         struct brandnote_cb_arg *arg;
 2799 
 2800         arg = arg0;
 2801 
 2802         /*
 2803          * Fetch the osreldate for binary from the ELF OSABI-note if
 2804          * necessary.
 2805          */
 2806         *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
 2807             arg->brandnote->trans_osrel != NULL ?
 2808             arg->brandnote->trans_osrel(note, arg->osrel) : true;
 2809 
 2810         return (true);
 2811 }
 2812 
 2813 static Elf_Note fctl_note = {
 2814         .n_namesz = sizeof(FREEBSD_ABI_VENDOR),
 2815         .n_descsz = sizeof(uint32_t),
 2816         .n_type = NT_FREEBSD_FEATURE_CTL,
 2817 };
 2818 
 2819 struct fctl_cb_arg {
 2820         bool *has_fctl0;
 2821         uint32_t *fctl0;
 2822 };
 2823 
 2824 static bool
 2825 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
 2826 {
 2827         struct fctl_cb_arg *arg;
 2828         const Elf32_Word *desc;
 2829         uintptr_t p;
 2830 
 2831         arg = arg0;
 2832         p = (uintptr_t)(note + 1);
 2833         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
 2834         desc = (const Elf32_Word *)p;
 2835         *arg->has_fctl0 = true;
 2836         *arg->fctl0 = desc[0];
 2837         *res = true;
 2838         return (true);
 2839 }
 2840 
 2841 /*
 2842  * Try to find the appropriate ABI-note section for checknote, fetch
 2843  * the osreldate and feature control flags for binary from the ELF
 2844  * OSABI-note.  Only the first page of the image is searched, the same
 2845  * as for headers.
 2846  */
 2847 static bool
 2848 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
 2849     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
 2850 {
 2851         const Elf_Phdr *phdr;
 2852         const Elf_Ehdr *hdr;
 2853         struct brandnote_cb_arg b_arg;
 2854         struct fctl_cb_arg f_arg;
 2855         int i, j;
 2856 
 2857         hdr = (const Elf_Ehdr *)imgp->image_header;
 2858         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
 2859         b_arg.brandnote = brandnote;
 2860         b_arg.osrel = osrel;
 2861         f_arg.has_fctl0 = has_fctl0;
 2862         f_arg.fctl0 = fctl0;
 2863 
 2864         for (i = 0; i < hdr->e_phnum; i++) {
 2865                 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
 2866                     &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
 2867                     &b_arg)) {
 2868                         for (j = 0; j < hdr->e_phnum; j++) {
 2869                                 if (phdr[j].p_type == PT_NOTE &&
 2870                                     __elfN(parse_notes)(imgp, &fctl_note,
 2871                                     FREEBSD_ABI_VENDOR, &phdr[j],
 2872                                     note_fctl_cb, &f_arg))
 2873                                         break;
 2874                         }
 2875                         return (true);
 2876                 }
 2877         }
 2878         return (false);
 2879 
 2880 }
 2881 
 2882 /*
 2883  * Tell kern_execve.c about it, with a little help from the linker.
 2884  */
 2885 static struct execsw __elfN(execsw) = {
 2886         .ex_imgact = __CONCAT(exec_, __elfN(imgact)),
 2887         .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
 2888 };
 2889 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
 2890 
 2891 static vm_prot_t
 2892 __elfN(trans_prot)(Elf_Word flags)
 2893 {
 2894         vm_prot_t prot;
 2895 
 2896         prot = 0;
 2897         if (flags & PF_X)
 2898                 prot |= VM_PROT_EXECUTE;
 2899         if (flags & PF_W)
 2900                 prot |= VM_PROT_WRITE;
 2901         if (flags & PF_R)
 2902                 prot |= VM_PROT_READ;
 2903 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
 2904         if (i386_read_exec && (flags & PF_R))
 2905                 prot |= VM_PROT_EXECUTE;
 2906 #endif
 2907         return (prot);
 2908 }
 2909 
 2910 static Elf_Word
 2911 __elfN(untrans_prot)(vm_prot_t prot)
 2912 {
 2913         Elf_Word flags;
 2914 
 2915         flags = 0;
 2916         if (prot & VM_PROT_EXECUTE)
 2917                 flags |= PF_X;
 2918         if (prot & VM_PROT_READ)
 2919                 flags |= PF_R;
 2920         if (prot & VM_PROT_WRITE)
 2921                 flags |= PF_W;
 2922         return (flags);
 2923 }

Cache object: aee43032b71731dee6b50e04c298aab8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.