The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/imgact_elf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 David O'Brien
    3  * Copyright (c) 1995-1996 Søren Schmidt
    4  * Copyright (c) 1996 Peter Wemm
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer
   12  *    in this position and unchanged.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. The name of the author may not be used to endorse or promote products
   17  *    derived from this software without specific prior written permission
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "opt_capsicum.h"
   35 #include "opt_compat.h"
   36 #include "opt_core.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/capsicum.h>
   40 #include <sys/exec.h>
   41 #include <sys/fcntl.h>
   42 #include <sys/imgact.h>
   43 #include <sys/imgact_elf.h>
   44 #include <sys/jail.h>
   45 #include <sys/kernel.h>
   46 #include <sys/lock.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mount.h>
   49 #include <sys/mman.h>
   50 #include <sys/namei.h>
   51 #include <sys/pioctl.h>
   52 #include <sys/proc.h>
   53 #include <sys/procfs.h>
   54 #include <sys/racct.h>
   55 #include <sys/resourcevar.h>
   56 #include <sys/rwlock.h>
   57 #include <sys/sbuf.h>
   58 #include <sys/sf_buf.h>
   59 #include <sys/smp.h>
   60 #include <sys/systm.h>
   61 #include <sys/signalvar.h>
   62 #include <sys/stat.h>
   63 #include <sys/sx.h>
   64 #include <sys/syscall.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/sysent.h>
   67 #include <sys/vnode.h>
   68 #include <sys/syslog.h>
   69 #include <sys/eventhandler.h>
   70 #include <sys/user.h>
   71 
   72 #include <net/zlib.h>
   73 
   74 #include <vm/vm.h>
   75 #include <vm/vm_kern.h>
   76 #include <vm/vm_param.h>
   77 #include <vm/pmap.h>
   78 #include <vm/vm_map.h>
   79 #include <vm/vm_object.h>
   80 #include <vm/vm_extern.h>
   81 
   82 #include <machine/elf.h>
   83 #include <machine/md_var.h>
   84 
   85 #define ELF_NOTE_ROUNDSIZE      4
   86 #define OLD_EI_BRAND    8
   87 
   88 static int __elfN(check_header)(const Elf_Ehdr *hdr);
   89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
   90     const char *interp, int interp_name_len, int32_t *osrel);
   91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
   92     u_long *entry, size_t pagesize);
   93 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
   94     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
   95     size_t pagesize);
   96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
   97 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note,
   98     int32_t *osrel);
   99 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
  100 static boolean_t __elfN(check_note)(struct image_params *imgp,
  101     Elf_Brandnote *checknote, int32_t *osrel);
  102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
  103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
  104 
  105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
  106     "");
  107 
  108 #ifdef COMPRESS_USER_CORES
  109 static int compress_core(gzFile, char *, char *, unsigned int,
  110     struct thread * td);
  111 #endif
  112 #define CORE_BUF_SIZE   (16 * 1024)
  113 
  114 int __elfN(fallback_brand) = -1;
  115 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  116     fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0,
  117     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
  118 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand",
  119     &__elfN(fallback_brand));
  120 
  121 static int elf_legacy_coredump = 0;
  122 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 
  123     &elf_legacy_coredump, 0, "");
  124 
  125 int __elfN(nxstack) =
  126 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */
  127         1;
  128 #else
  129         0;
  130 #endif
  131 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  132     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
  133     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
  134 
  135 #if __ELF_WORD_SIZE == 32
  136 #if defined(__amd64__) || defined(__ia64__)
  137 int i386_read_exec = 0;
  138 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
  139     "enable execution from readable segments");
  140 #endif
  141 #endif
  142 
  143 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
  144 
  145 #define trunc_page_ps(va, ps)   ((va) & ~(ps - 1))
  146 #define round_page_ps(va, ps)   (((va) + (ps - 1)) & ~(ps - 1))
  147 #define aligned(a, t)   (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
  148 
  149 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
  150 
  151 Elf_Brandnote __elfN(freebsd_brandnote) = {
  152         .hdr.n_namesz   = sizeof(FREEBSD_ABI_VENDOR),
  153         .hdr.n_descsz   = sizeof(int32_t),
  154         .hdr.n_type     = 1,
  155         .vendor         = FREEBSD_ABI_VENDOR,
  156         .flags          = BN_TRANSLATE_OSREL,
  157         .trans_osrel    = __elfN(freebsd_trans_osrel)
  158 };
  159 
  160 static boolean_t
  161 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
  162 {
  163         uintptr_t p;
  164 
  165         p = (uintptr_t)(note + 1);
  166         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  167         *osrel = *(const int32_t *)(p);
  168 
  169         return (TRUE);
  170 }
  171 
  172 static const char GNU_ABI_VENDOR[] = "GNU";
  173 static int GNU_KFREEBSD_ABI_DESC = 3;
  174 
  175 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
  176         .hdr.n_namesz   = sizeof(GNU_ABI_VENDOR),
  177         .hdr.n_descsz   = 16,   /* XXX at least 16 */
  178         .hdr.n_type     = 1,
  179         .vendor         = GNU_ABI_VENDOR,
  180         .flags          = BN_TRANSLATE_OSREL,
  181         .trans_osrel    = kfreebsd_trans_osrel
  182 };
  183 
  184 static boolean_t
  185 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
  186 {
  187         const Elf32_Word *desc;
  188         uintptr_t p;
  189 
  190         p = (uintptr_t)(note + 1);
  191         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  192 
  193         desc = (const Elf32_Word *)p;
  194         if (desc[0] != GNU_KFREEBSD_ABI_DESC)
  195                 return (FALSE);
  196 
  197         /*
  198          * Debian GNU/kFreeBSD embed the earliest compatible kernel version
  199          * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
  200          */
  201         *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
  202 
  203         return (TRUE);
  204 }
  205 
  206 int
  207 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
  208 {
  209         int i;
  210 
  211         for (i = 0; i < MAX_BRANDS; i++) {
  212                 if (elf_brand_list[i] == NULL) {
  213                         elf_brand_list[i] = entry;
  214                         break;
  215                 }
  216         }
  217         if (i == MAX_BRANDS) {
  218                 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
  219                         __func__, entry);
  220                 return (-1);
  221         }
  222         return (0);
  223 }
  224 
  225 int
  226 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
  227 {
  228         int i;
  229 
  230         for (i = 0; i < MAX_BRANDS; i++) {
  231                 if (elf_brand_list[i] == entry) {
  232                         elf_brand_list[i] = NULL;
  233                         break;
  234                 }
  235         }
  236         if (i == MAX_BRANDS)
  237                 return (-1);
  238         return (0);
  239 }
  240 
  241 int
  242 __elfN(brand_inuse)(Elf_Brandinfo *entry)
  243 {
  244         struct proc *p;
  245         int rval = FALSE;
  246 
  247         sx_slock(&allproc_lock);
  248         FOREACH_PROC_IN_SYSTEM(p) {
  249                 if (p->p_sysent == entry->sysvec) {
  250                         rval = TRUE;
  251                         break;
  252                 }
  253         }
  254         sx_sunlock(&allproc_lock);
  255 
  256         return (rval);
  257 }
  258 
  259 static Elf_Brandinfo *
  260 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
  261     int interp_name_len, int32_t *osrel)
  262 {
  263         const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
  264         Elf_Brandinfo *bi, *bi_m;
  265         boolean_t ret;
  266         int i;
  267 
  268         /*
  269          * We support four types of branding -- (1) the ELF EI_OSABI field
  270          * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
  271          * branding w/in the ELF header, (3) path of the `interp_path'
  272          * field, and (4) the ".note.ABI-tag" ELF section.
  273          */
  274 
  275         /* Look for an ".note.ABI-tag" ELF section */
  276         bi_m = NULL;
  277         for (i = 0; i < MAX_BRANDS; i++) {
  278                 bi = elf_brand_list[i];
  279                 if (bi == NULL)
  280                         continue;
  281                 if (hdr->e_machine == bi->machine && (bi->flags &
  282                     (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
  283                         ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
  284                         /*
  285                          * If note checker claimed the binary, but the
  286                          * interpreter path in the image does not
  287                          * match default one for the brand, try to
  288                          * search for other brands with the same
  289                          * interpreter.  Either there is better brand
  290                          * with the right interpreter, or, failing
  291                          * this, we return first brand which accepted
  292                          * our note and, optionally, header.
  293                          */
  294                         if (ret && bi_m == NULL && (strlen(bi->interp_path) +
  295                             1 != interp_name_len || strncmp(interp,
  296                             bi->interp_path, interp_name_len) != 0)) {
  297                                 bi_m = bi;
  298                                 ret = 0;
  299                         }
  300                         if (ret)
  301                                 return (bi);
  302                 }
  303         }
  304         if (bi_m != NULL)
  305                 return (bi_m);
  306 
  307         /* If the executable has a brand, search for it in the brand list. */
  308         for (i = 0; i < MAX_BRANDS; i++) {
  309                 bi = elf_brand_list[i];
  310                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
  311                         continue;
  312                 if (hdr->e_machine == bi->machine &&
  313                     (hdr->e_ident[EI_OSABI] == bi->brand ||
  314                     strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
  315                     bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
  316                         return (bi);
  317         }
  318 
  319         /* Lacking a known brand, search for a recognized interpreter. */
  320         if (interp != NULL) {
  321                 for (i = 0; i < MAX_BRANDS; i++) {
  322                         bi = elf_brand_list[i];
  323                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
  324                                 continue;
  325                         if (hdr->e_machine == bi->machine &&
  326                             /* ELF image p_filesz includes terminating zero */
  327                             strlen(bi->interp_path) + 1 == interp_name_len &&
  328                             strncmp(interp, bi->interp_path, interp_name_len)
  329                             == 0)
  330                                 return (bi);
  331                 }
  332         }
  333 
  334         /* Lacking a recognized interpreter, try the default brand */
  335         for (i = 0; i < MAX_BRANDS; i++) {
  336                 bi = elf_brand_list[i];
  337                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
  338                         continue;
  339                 if (hdr->e_machine == bi->machine &&
  340                     __elfN(fallback_brand) == bi->brand)
  341                         return (bi);
  342         }
  343         return (NULL);
  344 }
  345 
  346 static int
  347 __elfN(check_header)(const Elf_Ehdr *hdr)
  348 {
  349         Elf_Brandinfo *bi;
  350         int i;
  351 
  352         if (!IS_ELF(*hdr) ||
  353             hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
  354             hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
  355             hdr->e_ident[EI_VERSION] != EV_CURRENT ||
  356             hdr->e_phentsize != sizeof(Elf_Phdr) ||
  357             hdr->e_version != ELF_TARG_VER)
  358                 return (ENOEXEC);
  359 
  360         /*
  361          * Make sure we have at least one brand for this machine.
  362          */
  363 
  364         for (i = 0; i < MAX_BRANDS; i++) {
  365                 bi = elf_brand_list[i];
  366                 if (bi != NULL && bi->machine == hdr->e_machine)
  367                         break;
  368         }
  369         if (i == MAX_BRANDS)
  370                 return (ENOEXEC);
  371 
  372         return (0);
  373 }
  374 
  375 static int
  376 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
  377     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
  378 {
  379         struct sf_buf *sf;
  380         int error;
  381         vm_offset_t off;
  382 
  383         /*
  384          * Create the page if it doesn't exist yet. Ignore errors.
  385          */
  386         vm_map_lock(map);
  387         vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end),
  388             VM_PROT_ALL, VM_PROT_ALL, 0);
  389         vm_map_unlock(map);
  390 
  391         /*
  392          * Find the page from the underlying object.
  393          */
  394         if (object) {
  395                 sf = vm_imgact_map_page(object, offset);
  396                 if (sf == NULL)
  397                         return (KERN_FAILURE);
  398                 off = offset - trunc_page(offset);
  399                 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
  400                     end - start);
  401                 vm_imgact_unmap_page(sf);
  402                 if (error != 0)
  403                         return (KERN_FAILURE);
  404         }
  405 
  406         return (KERN_SUCCESS);
  407 }
  408 
  409 static int
  410 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
  411     vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow)
  412 {
  413         struct sf_buf *sf;
  414         vm_offset_t off;
  415         vm_size_t sz;
  416         int error, rv;
  417 
  418         if (start != trunc_page(start)) {
  419                 rv = __elfN(map_partial)(map, object, offset, start,
  420                     round_page(start), prot);
  421                 if (rv)
  422                         return (rv);
  423                 offset += round_page(start) - start;
  424                 start = round_page(start);
  425         }
  426         if (end != round_page(end)) {
  427                 rv = __elfN(map_partial)(map, object, offset +
  428                     trunc_page(end) - start, trunc_page(end), end, prot);
  429                 if (rv)
  430                         return (rv);
  431                 end = trunc_page(end);
  432         }
  433         if (end > start) {
  434                 if (offset & PAGE_MASK) {
  435                         /*
  436                          * The mapping is not page aligned. This means we have
  437                          * to copy the data. Sigh.
  438                          */
  439                         rv = vm_map_find(map, NULL, 0, &start, end - start, 0,
  440                             VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL,
  441                             0);
  442                         if (rv != KERN_SUCCESS)
  443                                 return (rv);
  444                         if (object == NULL)
  445                                 return (KERN_SUCCESS);
  446                         for (; start < end; start += sz) {
  447                                 sf = vm_imgact_map_page(object, offset);
  448                                 if (sf == NULL)
  449                                         return (KERN_FAILURE);
  450                                 off = offset - trunc_page(offset);
  451                                 sz = end - start;
  452                                 if (sz > PAGE_SIZE - off)
  453                                         sz = PAGE_SIZE - off;
  454                                 error = copyout((caddr_t)sf_buf_kva(sf) + off,
  455                                     (caddr_t)start, sz);
  456                                 vm_imgact_unmap_page(sf);
  457                                 if (error != 0)
  458                                         return (KERN_FAILURE);
  459                                 offset += sz;
  460                         }
  461                         rv = KERN_SUCCESS;
  462                 } else {
  463                         vm_object_reference(object);
  464                         vm_map_lock(map);
  465                         rv = vm_map_insert(map, object, offset, start, end,
  466                             prot, VM_PROT_ALL, cow);
  467                         vm_map_unlock(map);
  468                         if (rv != KERN_SUCCESS)
  469                                 vm_object_deallocate(object);
  470                 }
  471                 return (rv);
  472         } else {
  473                 return (KERN_SUCCESS);
  474         }
  475 }
  476 
  477 static int
  478 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
  479     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
  480     size_t pagesize)
  481 {
  482         struct sf_buf *sf;
  483         size_t map_len;
  484         vm_map_t map;
  485         vm_object_t object;
  486         vm_offset_t map_addr;
  487         int error, rv, cow;
  488         size_t copy_len;
  489         vm_offset_t file_addr;
  490 
  491         /*
  492          * It's necessary to fail if the filsz + offset taken from the
  493          * header is greater than the actual file pager object's size.
  494          * If we were to allow this, then the vm_map_find() below would
  495          * walk right off the end of the file object and into the ether.
  496          *
  497          * While I'm here, might as well check for something else that
  498          * is invalid: filsz cannot be greater than memsz.
  499          */
  500         if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) {
  501                 uprintf("elf_load_section: truncated ELF file\n");
  502                 return (ENOEXEC);
  503         }
  504 
  505         object = imgp->object;
  506         map = &imgp->proc->p_vmspace->vm_map;
  507         map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
  508         file_addr = trunc_page_ps(offset, pagesize);
  509 
  510         /*
  511          * We have two choices.  We can either clear the data in the last page
  512          * of an oversized mapping, or we can start the anon mapping a page
  513          * early and copy the initialized data into that first page.  We
  514          * choose the second..
  515          */
  516         if (memsz > filsz)
  517                 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
  518         else
  519                 map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
  520 
  521         if (map_len != 0) {
  522                 /* cow flags: don't dump readonly sections in core */
  523                 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
  524                     (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
  525 
  526                 rv = __elfN(map_insert)(map,
  527                                       object,
  528                                       file_addr,        /* file offset */
  529                                       map_addr,         /* virtual start */
  530                                       map_addr + map_len,/* virtual end */
  531                                       prot,
  532                                       cow);
  533                 if (rv != KERN_SUCCESS)
  534                         return (EINVAL);
  535 
  536                 /* we can stop now if we've covered it all */
  537                 if (memsz == filsz) {
  538                         return (0);
  539                 }
  540         }
  541 
  542 
  543         /*
  544          * We have to get the remaining bit of the file into the first part
  545          * of the oversized map segment.  This is normally because the .data
  546          * segment in the file is extended to provide bss.  It's a neat idea
  547          * to try and save a page, but it's a pain in the behind to implement.
  548          */
  549         copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize);
  550         map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
  551         map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
  552             map_addr;
  553 
  554         /* This had damn well better be true! */
  555         if (map_len != 0) {
  556                 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr +
  557                     map_len, VM_PROT_ALL, 0);
  558                 if (rv != KERN_SUCCESS) {
  559                         return (EINVAL);
  560                 }
  561         }
  562 
  563         if (copy_len != 0) {
  564                 vm_offset_t off;
  565 
  566                 sf = vm_imgact_map_page(object, offset + filsz);
  567                 if (sf == NULL)
  568                         return (EIO);
  569 
  570                 /* send the page fragment to user space */
  571                 off = trunc_page_ps(offset + filsz, pagesize) -
  572                     trunc_page(offset + filsz);
  573                 error = copyout((caddr_t)sf_buf_kva(sf) + off,
  574                     (caddr_t)map_addr, copy_len);
  575                 vm_imgact_unmap_page(sf);
  576                 if (error) {
  577                         return (error);
  578                 }
  579         }
  580 
  581         /*
  582          * set it to the specified protection.
  583          * XXX had better undo the damage from pasting over the cracks here!
  584          */
  585         vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
  586             map_len), prot, FALSE);
  587 
  588         return (0);
  589 }
  590 
  591 /*
  592  * Load the file "file" into memory.  It may be either a shared object
  593  * or an executable.
  594  *
  595  * The "addr" reference parameter is in/out.  On entry, it specifies
  596  * the address where a shared object should be loaded.  If the file is
  597  * an executable, this value is ignored.  On exit, "addr" specifies
  598  * where the file was actually loaded.
  599  *
  600  * The "entry" reference parameter is out only.  On exit, it specifies
  601  * the entry point for the loaded file.
  602  */
  603 static int
  604 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
  605         u_long *entry, size_t pagesize)
  606 {
  607         struct {
  608                 struct nameidata nd;
  609                 struct vattr attr;
  610                 struct image_params image_params;
  611         } *tempdata;
  612         const Elf_Ehdr *hdr = NULL;
  613         const Elf_Phdr *phdr = NULL;
  614         struct nameidata *nd;
  615         struct vattr *attr;
  616         struct image_params *imgp;
  617         vm_prot_t prot;
  618         u_long rbase;
  619         u_long base_addr = 0;
  620         int error, i, numsegs;
  621 
  622 #ifdef CAPABILITY_MODE
  623         /*
  624          * XXXJA: This check can go away once we are sufficiently confident
  625          * that the checks in namei() are correct.
  626          */
  627         if (IN_CAPABILITY_MODE(curthread))
  628                 return (ECAPMODE);
  629 #endif
  630 
  631         tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
  632         nd = &tempdata->nd;
  633         attr = &tempdata->attr;
  634         imgp = &tempdata->image_params;
  635 
  636         /*
  637          * Initialize part of the common data
  638          */
  639         imgp->proc = p;
  640         imgp->attr = attr;
  641         imgp->firstpage = NULL;
  642         imgp->image_header = NULL;
  643         imgp->object = NULL;
  644         imgp->execlabel = NULL;
  645 
  646         NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
  647         if ((error = namei(nd)) != 0) {
  648                 nd->ni_vp = NULL;
  649                 goto fail;
  650         }
  651         NDFREE(nd, NDF_ONLY_PNBUF);
  652         imgp->vp = nd->ni_vp;
  653 
  654         /*
  655          * Check permissions, modes, uid, etc on the file, and "open" it.
  656          */
  657         error = exec_check_permissions(imgp);
  658         if (error)
  659                 goto fail;
  660 
  661         error = exec_map_first_page(imgp);
  662         if (error)
  663                 goto fail;
  664 
  665         /*
  666          * Also make certain that the interpreter stays the same, so set
  667          * its VV_TEXT flag, too.
  668          */
  669         VOP_SET_TEXT(nd->ni_vp);
  670 
  671         imgp->object = nd->ni_vp->v_object;
  672 
  673         hdr = (const Elf_Ehdr *)imgp->image_header;
  674         if ((error = __elfN(check_header)(hdr)) != 0)
  675                 goto fail;
  676         if (hdr->e_type == ET_DYN)
  677                 rbase = *addr;
  678         else if (hdr->e_type == ET_EXEC)
  679                 rbase = 0;
  680         else {
  681                 error = ENOEXEC;
  682                 goto fail;
  683         }
  684 
  685         /* Only support headers that fit within first page for now      */
  686         if ((hdr->e_phoff > PAGE_SIZE) ||
  687             (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
  688                 error = ENOEXEC;
  689                 goto fail;
  690         }
  691 
  692         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
  693         if (!aligned(phdr, Elf_Addr)) {
  694                 error = ENOEXEC;
  695                 goto fail;
  696         }
  697 
  698         for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
  699                 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
  700                         /* Loadable segment */
  701                         prot = __elfN(trans_prot)(phdr[i].p_flags);
  702                         error = __elfN(load_section)(imgp, phdr[i].p_offset,
  703                             (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
  704                             phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
  705                         if (error != 0)
  706                                 goto fail;
  707                         /*
  708                          * Establish the base address if this is the
  709                          * first segment.
  710                          */
  711                         if (numsegs == 0)
  712                                 base_addr = trunc_page(phdr[i].p_vaddr +
  713                                     rbase);
  714                         numsegs++;
  715                 }
  716         }
  717         *addr = base_addr;
  718         *entry = (unsigned long)hdr->e_entry + rbase;
  719 
  720 fail:
  721         if (imgp->firstpage)
  722                 exec_unmap_first_page(imgp);
  723 
  724         if (nd->ni_vp)
  725                 vput(nd->ni_vp);
  726 
  727         free(tempdata, M_TEMP);
  728 
  729         return (error);
  730 }
  731 
  732 static int
  733 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
  734 {
  735         struct thread *td;
  736         const Elf_Ehdr *hdr;
  737         const Elf_Phdr *phdr;
  738         Elf_Auxargs *elf_auxargs;
  739         struct vmspace *vmspace;
  740         const char *err_str, *newinterp;
  741         char *interp, *interp_buf, *path;
  742         Elf_Brandinfo *brand_info;
  743         struct sysentvec *sv;
  744         vm_prot_t prot;
  745         u_long text_size, data_size, total_size, text_addr, data_addr;
  746         u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr;
  747         int32_t osrel;
  748         int error, i, n, interp_name_len, have_interp;
  749 
  750         hdr = (const Elf_Ehdr *)imgp->image_header;
  751 
  752         /*
  753          * Do we have a valid ELF header ?
  754          *
  755          * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
  756          * if particular brand doesn't support it.
  757          */
  758         if (__elfN(check_header)(hdr) != 0 ||
  759             (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
  760                 return (-1);
  761 
  762         /*
  763          * From here on down, we return an errno, not -1, as we've
  764          * detected an ELF file.
  765          */
  766 
  767         if ((hdr->e_phoff > PAGE_SIZE) ||
  768             (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
  769                 /* Only support headers in first page for now */
  770                 uprintf("Program headers not in the first page\n");
  771                 return (ENOEXEC);
  772         }
  773         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 
  774         if (!aligned(phdr, Elf_Addr)) {
  775                 uprintf("Unaligned program headers\n");
  776                 return (ENOEXEC);
  777         }
  778 
  779         n = error = 0;
  780         baddr = 0;
  781         osrel = 0;
  782         text_size = data_size = total_size = text_addr = data_addr = 0;
  783         entry = proghdr = 0;
  784         interp_name_len = 0;
  785         err_str = newinterp = NULL;
  786         interp = interp_buf = NULL;
  787         td = curthread;
  788 
  789         for (i = 0; i < hdr->e_phnum; i++) {
  790                 switch (phdr[i].p_type) {
  791                 case PT_LOAD:
  792                         if (n == 0)
  793                                 baddr = phdr[i].p_vaddr;
  794                         n++;
  795                         break;
  796                 case PT_INTERP:
  797                         /* Path to interpreter */
  798                         if (phdr[i].p_filesz < 2 ||
  799                             phdr[i].p_filesz > MAXPATHLEN) {
  800                                 uprintf("Invalid PT_INTERP\n");
  801                                 error = ENOEXEC;
  802                                 goto ret;
  803                         }
  804                         if (interp != NULL) {
  805                                 uprintf("Multiple PT_INTERP headers\n");
  806                                 error = ENOEXEC;
  807                                 goto ret;
  808                         }
  809                         interp_name_len = phdr[i].p_filesz;
  810                         if (phdr[i].p_offset > PAGE_SIZE ||
  811                             interp_name_len > PAGE_SIZE - phdr[i].p_offset) {
  812                                 VOP_UNLOCK(imgp->vp, 0);
  813                                 interp_buf = malloc(interp_name_len + 1, M_TEMP,
  814                                     M_WAITOK);
  815                                 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
  816                                 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf,
  817                                     interp_name_len, phdr[i].p_offset,
  818                                     UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
  819                                     NOCRED, NULL, td);
  820                                 if (error != 0) {
  821                                         uprintf("i/o error PT_INTERP\n");
  822                                         goto ret;
  823                                 }
  824                                 interp_buf[interp_name_len] = '\0';
  825                                 interp = interp_buf;
  826                         } else {
  827                                 interp = __DECONST(char *, imgp->image_header) +
  828                                     phdr[i].p_offset;
  829                                 if (interp[interp_name_len - 1] != '\0') {
  830                                         uprintf("Invalid PT_INTERP\n");
  831                                         error = ENOEXEC;
  832                                         goto ret;
  833                                 }
  834                         }
  835                         break;
  836                 case PT_GNU_STACK:
  837                         if (__elfN(nxstack))
  838                                 imgp->stack_prot =
  839                                     __elfN(trans_prot)(phdr[i].p_flags);
  840                         imgp->stack_sz = phdr[i].p_memsz;
  841                         break;
  842                 }
  843         }
  844 
  845         brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
  846             &osrel);
  847         if (brand_info == NULL) {
  848                 uprintf("ELF binary type \"%u\" not known.\n",
  849                     hdr->e_ident[EI_OSABI]);
  850                 error = ENOEXEC;
  851                 goto ret;
  852         }
  853         if (hdr->e_type == ET_DYN) {
  854                 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
  855                         uprintf("Cannot execute shared object\n");
  856                         error = ENOEXEC;
  857                         goto ret;
  858                 }
  859                 /*
  860                  * Honour the base load address from the dso if it is
  861                  * non-zero for some reason.
  862                  */
  863                 if (baddr == 0)
  864                         et_dyn_addr = ET_DYN_LOAD_ADDR;
  865                 else
  866                         et_dyn_addr = 0;
  867         } else
  868                 et_dyn_addr = 0;
  869         sv = brand_info->sysvec;
  870         if (interp != NULL && brand_info->interp_newpath != NULL)
  871                 newinterp = brand_info->interp_newpath;
  872 
  873         /*
  874          * Avoid a possible deadlock if the current address space is destroyed
  875          * and that address space maps the locked vnode.  In the common case,
  876          * the locked vnode's v_usecount is decremented but remains greater
  877          * than zero.  Consequently, the vnode lock is not needed by vrele().
  878          * However, in cases where the vnode lock is external, such as nullfs,
  879          * v_usecount may become zero.
  880          *
  881          * The VV_TEXT flag prevents modifications to the executable while
  882          * the vnode is unlocked.
  883          */
  884         VOP_UNLOCK(imgp->vp, 0);
  885 
  886         error = exec_new_vmspace(imgp, sv);
  887         imgp->proc->p_sysent = sv;
  888 
  889         vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
  890         if (error != 0)
  891                 goto ret;
  892 
  893         for (i = 0; i < hdr->e_phnum; i++) {
  894                 switch (phdr[i].p_type) {
  895                 case PT_LOAD:   /* Loadable segment */
  896                         if (phdr[i].p_memsz == 0)
  897                                 break;
  898                         prot = __elfN(trans_prot)(phdr[i].p_flags);
  899                         error = __elfN(load_section)(imgp, phdr[i].p_offset,
  900                             (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
  901                             phdr[i].p_memsz, phdr[i].p_filesz, prot,
  902                             sv->sv_pagesize);
  903                         if (error != 0)
  904                                 goto ret;
  905 
  906                         /*
  907                          * If this segment contains the program headers,
  908                          * remember their virtual address for the AT_PHDR
  909                          * aux entry. Static binaries don't usually include
  910                          * a PT_PHDR entry.
  911                          */
  912                         if (phdr[i].p_offset == 0 &&
  913                             hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
  914                                 <= phdr[i].p_filesz)
  915                                 proghdr = phdr[i].p_vaddr + hdr->e_phoff +
  916                                     et_dyn_addr;
  917 
  918                         seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
  919                         seg_size = round_page(phdr[i].p_memsz +
  920                             phdr[i].p_vaddr + et_dyn_addr - seg_addr);
  921 
  922                         /*
  923                          * Make the largest executable segment the official
  924                          * text segment and all others data.
  925                          *
  926                          * Note that obreak() assumes that data_addr + 
  927                          * data_size == end of data load area, and the ELF
  928                          * file format expects segments to be sorted by
  929                          * address.  If multiple data segments exist, the
  930                          * last one will be used.
  931                          */
  932 
  933                         if (phdr[i].p_flags & PF_X && text_size < seg_size) {
  934                                 text_size = seg_size;
  935                                 text_addr = seg_addr;
  936                         } else {
  937                                 data_size = seg_size;
  938                                 data_addr = seg_addr;
  939                         }
  940                         total_size += seg_size;
  941                         break;
  942                 case PT_PHDR:   /* Program header table info */
  943                         proghdr = phdr[i].p_vaddr + et_dyn_addr;
  944                         break;
  945                 default:
  946                         break;
  947                 }
  948         }
  949         
  950         if (data_addr == 0 && data_size == 0) {
  951                 data_addr = text_addr;
  952                 data_size = text_size;
  953         }
  954 
  955         entry = (u_long)hdr->e_entry + et_dyn_addr;
  956 
  957         /*
  958          * Check limits.  It should be safe to check the
  959          * limits after loading the segments since we do
  960          * not actually fault in all the segments pages.
  961          */
  962         PROC_LOCK(imgp->proc);
  963         if (data_size > lim_cur(imgp->proc, RLIMIT_DATA))
  964                 err_str = "Data segment size exceeds process limit";
  965         else if (text_size > maxtsiz)
  966                 err_str = "Text segment size exceeds system limit";
  967         else if (total_size > lim_cur(imgp->proc, RLIMIT_VMEM))
  968                 err_str = "Total segment size exceeds process limit";
  969         else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
  970                 err_str = "Data segment size exceeds resource limit";
  971         else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
  972                 err_str = "Total segment size exceeds resource limit";
  973         if (err_str != NULL) {
  974                 PROC_UNLOCK(imgp->proc);
  975                 uprintf("%s\n", err_str);
  976                 error = ENOMEM;
  977                 goto ret;
  978         }
  979 
  980         vmspace = imgp->proc->p_vmspace;
  981         vmspace->vm_tsize = text_size >> PAGE_SHIFT;
  982         vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
  983         vmspace->vm_dsize = data_size >> PAGE_SHIFT;
  984         vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
  985 
  986         /*
  987          * We load the dynamic linker where a userland call
  988          * to mmap(0, ...) would put it.  The rationale behind this
  989          * calculation is that it leaves room for the heap to grow to
  990          * its maximum allowed size.
  991          */
  992         addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc,
  993             RLIMIT_DATA));
  994         PROC_UNLOCK(imgp->proc);
  995 
  996         imgp->entry_addr = entry;
  997 
  998         if (interp != NULL) {
  999                 have_interp = FALSE;
 1000                 VOP_UNLOCK(imgp->vp, 0);
 1001                 if (brand_info->emul_path != NULL &&
 1002                     brand_info->emul_path[0] != '\0') {
 1003                         path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 1004                         snprintf(path, MAXPATHLEN, "%s%s",
 1005                             brand_info->emul_path, interp);
 1006                         error = __elfN(load_file)(imgp->proc, path, &addr,
 1007                             &imgp->entry_addr, sv->sv_pagesize);
 1008                         free(path, M_TEMP);
 1009                         if (error == 0)
 1010                                 have_interp = TRUE;
 1011                 }
 1012                 if (!have_interp && newinterp != NULL &&
 1013                     (brand_info->interp_path == NULL ||
 1014                     strcmp(interp, brand_info->interp_path) == 0)) {
 1015                         error = __elfN(load_file)(imgp->proc, newinterp, &addr,
 1016                             &imgp->entry_addr, sv->sv_pagesize);
 1017                         if (error == 0)
 1018                                 have_interp = TRUE;
 1019                 }
 1020                 if (!have_interp) {
 1021                         error = __elfN(load_file)(imgp->proc, interp, &addr,
 1022                             &imgp->entry_addr, sv->sv_pagesize);
 1023                 }
 1024                 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
 1025                 if (error != 0) {
 1026                         uprintf("ELF interpreter %s not found, error %d\n",
 1027                             interp, error);
 1028                         goto ret;
 1029                 }
 1030         } else
 1031                 addr = et_dyn_addr;
 1032 
 1033         /*
 1034          * Construct auxargs table (used by the fixup routine)
 1035          */
 1036         elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
 1037         elf_auxargs->execfd = -1;
 1038         elf_auxargs->phdr = proghdr;
 1039         elf_auxargs->phent = hdr->e_phentsize;
 1040         elf_auxargs->phnum = hdr->e_phnum;
 1041         elf_auxargs->pagesz = PAGE_SIZE;
 1042         elf_auxargs->base = addr;
 1043         elf_auxargs->flags = 0;
 1044         elf_auxargs->entry = entry;
 1045 
 1046         imgp->auxargs = elf_auxargs;
 1047         imgp->interpreted = 0;
 1048         imgp->reloc_base = addr;
 1049         imgp->proc->p_osrel = osrel;
 1050         imgp->proc->p_elf_machine = hdr->e_machine;
 1051         imgp->proc->p_elf_flags = hdr->e_flags;
 1052 
 1053  ret:
 1054         free(interp_buf, M_TEMP);
 1055         return (error);
 1056 }
 1057 
 1058 #define suword __CONCAT(suword, __ELF_WORD_SIZE)
 1059 
 1060 int
 1061 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
 1062 {
 1063         Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
 1064         Elf_Addr *base;
 1065         Elf_Addr *pos;
 1066 
 1067         base = (Elf_Addr *)*stack_base;
 1068         pos = base + (imgp->args->argc + imgp->args->envc + 2);
 1069 
 1070         if (args->execfd != -1)
 1071                 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
 1072         AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
 1073         AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
 1074         AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
 1075         AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
 1076         AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
 1077         AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
 1078         AUXARGS_ENTRY(pos, AT_BASE, args->base);
 1079         if (imgp->execpathp != 0)
 1080                 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
 1081         AUXARGS_ENTRY(pos, AT_OSRELDATE,
 1082             imgp->proc->p_ucred->cr_prison->pr_osreldate);
 1083         if (imgp->canary != 0) {
 1084                 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
 1085                 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
 1086         }
 1087         AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
 1088         if (imgp->pagesizes != 0) {
 1089                 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
 1090                 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
 1091         }
 1092         if (imgp->sysent->sv_timekeep_base != 0) {
 1093                 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
 1094                     imgp->sysent->sv_timekeep_base);
 1095         }
 1096         AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
 1097             != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
 1098             imgp->sysent->sv_stackprot);
 1099         AUXARGS_ENTRY(pos, AT_NULL, 0);
 1100 
 1101         free(imgp->auxargs, M_TEMP);
 1102         imgp->auxargs = NULL;
 1103 
 1104         base--;
 1105         suword(base, (long)imgp->args->argc);
 1106         *stack_base = (register_t *)base;
 1107         return (0);
 1108 }
 1109 
 1110 /*
 1111  * Code for generating ELF core dumps.
 1112  */
 1113 
 1114 typedef void (*segment_callback)(vm_map_entry_t, void *);
 1115 
 1116 /* Closure for cb_put_phdr(). */
 1117 struct phdr_closure {
 1118         Elf_Phdr *phdr;         /* Program header to fill in */
 1119         Elf_Off offset;         /* Offset of segment in core file */
 1120 };
 1121 
 1122 /* Closure for cb_size_segment(). */
 1123 struct sseg_closure {
 1124         int count;              /* Count of writable segments. */
 1125         size_t size;            /* Total size of all writable segments. */
 1126 };
 1127 
 1128 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
 1129 
 1130 struct note_info {
 1131         int             type;           /* Note type. */
 1132         outfunc_t       outfunc;        /* Output function. */
 1133         void            *outarg;        /* Argument for the output function. */
 1134         size_t          outsize;        /* Output size. */
 1135         TAILQ_ENTRY(note_info) link;    /* Link to the next note info. */
 1136 };
 1137 
 1138 TAILQ_HEAD(note_info_list, note_info);
 1139 
 1140 static void cb_put_phdr(vm_map_entry_t, void *);
 1141 static void cb_size_segment(vm_map_entry_t, void *);
 1142 static void each_writable_segment(struct thread *, segment_callback, void *);
 1143 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *,
 1144     int, void *, size_t, struct note_info_list *, size_t, gzFile);
 1145 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
 1146     size_t *);
 1147 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
 1148 static void __elfN(putnote)(struct note_info *, struct sbuf *);
 1149 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
 1150 static int sbuf_drain_core_output(void *, const char *, int);
 1151 static int sbuf_drain_count(void *arg, const char *data, int len);
 1152 
 1153 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
 1154 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
 1155 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
 1156 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
 1157 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
 1158 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
 1159 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
 1160 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
 1161 static void note_procstat_files(void *, struct sbuf *, size_t *);
 1162 static void note_procstat_groups(void *, struct sbuf *, size_t *);
 1163 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
 1164 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
 1165 static void note_procstat_umask(void *, struct sbuf *, size_t *);
 1166 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
 1167 
 1168 #ifdef COMPRESS_USER_CORES
 1169 extern int compress_user_cores;
 1170 extern int compress_user_cores_gzlevel;
 1171 #endif
 1172 
 1173 static int
 1174 core_output(struct vnode *vp, void *base, size_t len, off_t offset,
 1175     struct ucred *active_cred, struct ucred *file_cred,
 1176     struct thread *td, char *core_buf, gzFile gzfile) {
 1177 
 1178         int error;
 1179         if (gzfile) {
 1180 #ifdef COMPRESS_USER_CORES
 1181                 error = compress_core(gzfile, base, core_buf, len, td);
 1182 #else
 1183                 panic("shouldn't be here");
 1184 #endif
 1185         } else {
 1186                 /*
 1187                  * EFAULT is a non-fatal error that we can get, for example,
 1188                  * if the segment is backed by a file but extends beyond its
 1189                  * end.
 1190                  */
 1191                 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset,
 1192                     UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred,
 1193                     NULL, td);
 1194                 if (error == EFAULT) {
 1195                         log(LOG_WARNING, "Failed to fully fault in a core file "
 1196                             "segment at VA %p with size 0x%zx to be written at "
 1197                             "offset 0x%jx for process %s\n", base, len, offset,
 1198                             curproc->p_comm);
 1199 
 1200                         /*
 1201                          * Write a "real" zero byte at the end of the target
 1202                          * region in the case this is the last segment.
 1203                          * The intermediate space will be implicitly
 1204                          * zero-filled.
 1205                          */
 1206                         error = vn_rdwr_inchunks(UIO_WRITE, vp,
 1207                             __DECONST(void *, zero_region), 1, offset + len - 1,
 1208                             UIO_SYSSPACE, IO_UNIT | IO_DIRECT, active_cred,
 1209                             file_cred, NULL, td);
 1210                 }
 1211         }
 1212         return (error);
 1213 }
 1214 
 1215 /* Coredump output parameters for sbuf drain routine. */
 1216 struct sbuf_drain_core_params {
 1217         off_t           offset;
 1218         struct ucred    *active_cred;
 1219         struct ucred    *file_cred;
 1220         struct thread   *td;
 1221         struct vnode    *vp;
 1222 #ifdef COMPRESS_USER_CORES
 1223         gzFile          gzfile;
 1224 #endif
 1225 };
 1226 
 1227 /*
 1228  * Drain into a core file.
 1229  */
 1230 static int
 1231 sbuf_drain_core_output(void *arg, const char *data, int len)
 1232 {
 1233         struct sbuf_drain_core_params *p;
 1234         int error, locked;
 1235 
 1236         p = (struct sbuf_drain_core_params *)arg;
 1237 
 1238         /*
 1239          * Some kern_proc out routines that print to this sbuf may
 1240          * call us with the process lock held. Draining with the
 1241          * non-sleepable lock held is unsafe. The lock is needed for
 1242          * those routines when dumping a live process. In our case we
 1243          * can safely release the lock before draining and acquire
 1244          * again after.
 1245          */
 1246         locked = PROC_LOCKED(p->td->td_proc);
 1247         if (locked)
 1248                 PROC_UNLOCK(p->td->td_proc);
 1249 #ifdef COMPRESS_USER_CORES
 1250         if (p->gzfile != Z_NULL)
 1251                 error = compress_core(p->gzfile, NULL, __DECONST(char *, data),
 1252                     len, p->td);
 1253         else
 1254 #endif
 1255                 error = vn_rdwr_inchunks(UIO_WRITE, p->vp,
 1256                     __DECONST(void *, data), len, p->offset, UIO_SYSSPACE,
 1257                     IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL,
 1258                     p->td);
 1259         if (locked)
 1260                 PROC_LOCK(p->td->td_proc);
 1261         if (error != 0)
 1262                 return (-error);
 1263         p->offset += len;
 1264         return (len);
 1265 }
 1266 
 1267 /*
 1268  * Drain into a counter.
 1269  */
 1270 static int
 1271 sbuf_drain_count(void *arg, const char *data __unused, int len)
 1272 {
 1273         size_t *sizep;
 1274 
 1275         sizep = (size_t *)arg;
 1276         *sizep += len;
 1277         return (len);
 1278 }
 1279 
 1280 int
 1281 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
 1282 {
 1283         struct ucred *cred = td->td_ucred;
 1284         int error = 0;
 1285         struct sseg_closure seginfo;
 1286         struct note_info_list notelst;
 1287         struct note_info *ninfo;
 1288         void *hdr;
 1289         size_t hdrsize, notesz, coresize;
 1290 
 1291         gzFile gzfile = Z_NULL;
 1292         char *core_buf = NULL;
 1293 #ifdef COMPRESS_USER_CORES
 1294         char gzopen_flags[8];
 1295         char *p;
 1296         int doing_compress = flags & IMGACT_CORE_COMPRESS;
 1297 #endif
 1298 
 1299         hdr = NULL;
 1300         TAILQ_INIT(&notelst);
 1301 
 1302 #ifdef COMPRESS_USER_CORES
 1303         if (doing_compress) {
 1304                 p = gzopen_flags;
 1305                 *p++ = 'w';
 1306                 if (compress_user_cores_gzlevel >= 0 &&
 1307                     compress_user_cores_gzlevel <= 9)
 1308                         *p++ = '' + compress_user_cores_gzlevel;
 1309                 *p = 0;
 1310                 gzfile = gz_open("", gzopen_flags, vp);
 1311                 if (gzfile == Z_NULL) {
 1312                         error = EFAULT;
 1313                         goto done;
 1314                 }
 1315                 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
 1316                 if (!core_buf) {
 1317                         error = ENOMEM;
 1318                         goto done;
 1319                 }
 1320         }
 1321 #endif
 1322 
 1323         /* Size the program segments. */
 1324         seginfo.count = 0;
 1325         seginfo.size = 0;
 1326         each_writable_segment(td, cb_size_segment, &seginfo);
 1327 
 1328         /*
 1329          * Collect info about the core file header area.
 1330          */
 1331         hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
 1332         __elfN(prepare_notes)(td, &notelst, &notesz);
 1333         coresize = round_page(hdrsize + notesz) + seginfo.size;
 1334 
 1335 #ifdef RACCT
 1336         if (racct_enable) {
 1337                 PROC_LOCK(td->td_proc);
 1338                 error = racct_add(td->td_proc, RACCT_CORE, coresize);
 1339                 PROC_UNLOCK(td->td_proc);
 1340                 if (error != 0) {
 1341                         error = EFAULT;
 1342                         goto done;
 1343                 }
 1344         }
 1345 #endif
 1346         if (coresize >= limit) {
 1347                 error = EFAULT;
 1348                 goto done;
 1349         }
 1350 
 1351         /*
 1352          * Allocate memory for building the header, fill it up,
 1353          * and write it out following the notes.
 1354          */
 1355         hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
 1356         error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize,
 1357             &notelst, notesz, gzfile);
 1358 
 1359         /* Write the contents of all of the writable segments. */
 1360         if (error == 0) {
 1361                 Elf_Phdr *php;
 1362                 off_t offset;
 1363                 int i;
 1364 
 1365                 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
 1366                 offset = round_page(hdrsize + notesz);
 1367                 for (i = 0; i < seginfo.count; i++) {
 1368                         error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr,
 1369                             php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile);
 1370                         if (error != 0)
 1371                                 break;
 1372                         offset += php->p_filesz;
 1373                         php++;
 1374                 }
 1375         }
 1376         if (error) {
 1377                 log(LOG_WARNING,
 1378                     "Failed to write core file for process %s (error %d)\n",
 1379                     curproc->p_comm, error);
 1380         }
 1381 
 1382 done:
 1383 #ifdef COMPRESS_USER_CORES
 1384         if (core_buf)
 1385                 free(core_buf, M_TEMP);
 1386         if (gzfile)
 1387                 gzclose(gzfile);
 1388 #endif
 1389         while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
 1390                 TAILQ_REMOVE(&notelst, ninfo, link);
 1391                 free(ninfo, M_TEMP);
 1392         }
 1393         if (hdr != NULL)
 1394                 free(hdr, M_TEMP);
 1395 
 1396         return (error);
 1397 }
 1398 
 1399 /*
 1400  * A callback for each_writable_segment() to write out the segment's
 1401  * program header entry.
 1402  */
 1403 static void
 1404 cb_put_phdr(entry, closure)
 1405         vm_map_entry_t entry;
 1406         void *closure;
 1407 {
 1408         struct phdr_closure *phc = (struct phdr_closure *)closure;
 1409         Elf_Phdr *phdr = phc->phdr;
 1410 
 1411         phc->offset = round_page(phc->offset);
 1412 
 1413         phdr->p_type = PT_LOAD;
 1414         phdr->p_offset = phc->offset;
 1415         phdr->p_vaddr = entry->start;
 1416         phdr->p_paddr = 0;
 1417         phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
 1418         phdr->p_align = PAGE_SIZE;
 1419         phdr->p_flags = __elfN(untrans_prot)(entry->protection);
 1420 
 1421         phc->offset += phdr->p_filesz;
 1422         phc->phdr++;
 1423 }
 1424 
 1425 /*
 1426  * A callback for each_writable_segment() to gather information about
 1427  * the number of segments and their total size.
 1428  */
 1429 static void
 1430 cb_size_segment(entry, closure)
 1431         vm_map_entry_t entry;
 1432         void *closure;
 1433 {
 1434         struct sseg_closure *ssc = (struct sseg_closure *)closure;
 1435 
 1436         ssc->count++;
 1437         ssc->size += entry->end - entry->start;
 1438 }
 1439 
 1440 /*
 1441  * For each writable segment in the process's memory map, call the given
 1442  * function with a pointer to the map entry and some arbitrary
 1443  * caller-supplied data.
 1444  */
 1445 static void
 1446 each_writable_segment(td, func, closure)
 1447         struct thread *td;
 1448         segment_callback func;
 1449         void *closure;
 1450 {
 1451         struct proc *p = td->td_proc;
 1452         vm_map_t map = &p->p_vmspace->vm_map;
 1453         vm_map_entry_t entry;
 1454         vm_object_t backing_object, object;
 1455         boolean_t ignore_entry;
 1456 
 1457         vm_map_lock_read(map);
 1458         for (entry = map->header.next; entry != &map->header;
 1459             entry = entry->next) {
 1460                 /*
 1461                  * Don't dump inaccessible mappings, deal with legacy
 1462                  * coredump mode.
 1463                  *
 1464                  * Note that read-only segments related to the elf binary
 1465                  * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
 1466                  * need to arbitrarily ignore such segments.
 1467                  */
 1468                 if (elf_legacy_coredump) {
 1469                         if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
 1470                                 continue;
 1471                 } else {
 1472                         if ((entry->protection & VM_PROT_ALL) == 0)
 1473                                 continue;
 1474                 }
 1475 
 1476                 /*
 1477                  * Dont include memory segment in the coredump if
 1478                  * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
 1479                  * madvise(2).  Do not dump submaps (i.e. parts of the
 1480                  * kernel map).
 1481                  */
 1482                 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
 1483                         continue;
 1484 
 1485                 if ((object = entry->object.vm_object) == NULL)
 1486                         continue;
 1487 
 1488                 /* Ignore memory-mapped devices and such things. */
 1489                 VM_OBJECT_RLOCK(object);
 1490                 while ((backing_object = object->backing_object) != NULL) {
 1491                         VM_OBJECT_RLOCK(backing_object);
 1492                         VM_OBJECT_RUNLOCK(object);
 1493                         object = backing_object;
 1494                 }
 1495                 ignore_entry = object->type != OBJT_DEFAULT &&
 1496                     object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
 1497                     object->type != OBJT_PHYS;
 1498                 VM_OBJECT_RUNLOCK(object);
 1499                 if (ignore_entry)
 1500                         continue;
 1501 
 1502                 (*func)(entry, closure);
 1503         }
 1504         vm_map_unlock_read(map);
 1505 }
 1506 
 1507 /*
 1508  * Write the core file header to the file, including padding up to
 1509  * the page boundary.
 1510  */
 1511 static int
 1512 __elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred,
 1513     int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst,
 1514     size_t notesz, gzFile gzfile)
 1515 {
 1516         struct sbuf_drain_core_params params;
 1517         struct note_info *ninfo;
 1518         struct sbuf *sb;
 1519         int error;
 1520 
 1521         /* Fill in the header. */
 1522         bzero(hdr, hdrsize);
 1523         __elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz);
 1524 
 1525         params.offset = 0;
 1526         params.active_cred = cred;
 1527         params.file_cred = NOCRED;
 1528         params.td = td;
 1529         params.vp = vp;
 1530 #ifdef COMPRESS_USER_CORES
 1531         params.gzfile = gzfile;
 1532 #endif
 1533         sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
 1534         sbuf_set_drain(sb, sbuf_drain_core_output, &params);
 1535         sbuf_start_section(sb, NULL);
 1536         sbuf_bcat(sb, hdr, hdrsize);
 1537         TAILQ_FOREACH(ninfo, notelst, link)
 1538             __elfN(putnote)(ninfo, sb);
 1539         /* Align up to a page boundary for the program segments. */
 1540         sbuf_end_section(sb, -1, PAGE_SIZE, 0);
 1541         error = sbuf_finish(sb);
 1542         sbuf_delete(sb);
 1543 
 1544         return (error);
 1545 }
 1546 
 1547 static void
 1548 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
 1549     size_t *sizep)
 1550 {
 1551         struct proc *p;
 1552         struct thread *thr;
 1553         size_t size;
 1554 
 1555         p = td->td_proc;
 1556         size = 0;
 1557 
 1558         size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
 1559 
 1560         /*
 1561          * To have the debugger select the right thread (LWP) as the initial
 1562          * thread, we dump the state of the thread passed to us in td first.
 1563          * This is the thread that causes the core dump and thus likely to
 1564          * be the right thread one wants to have selected in the debugger.
 1565          */
 1566         thr = td;
 1567         while (thr != NULL) {
 1568                 size += register_note(list, NT_PRSTATUS,
 1569                     __elfN(note_prstatus), thr);
 1570                 size += register_note(list, NT_FPREGSET,
 1571                     __elfN(note_fpregset), thr);
 1572                 size += register_note(list, NT_THRMISC,
 1573                     __elfN(note_thrmisc), thr);
 1574                 size += register_note(list, -1,
 1575                     __elfN(note_threadmd), thr);
 1576 
 1577                 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
 1578                     TAILQ_NEXT(thr, td_plist);
 1579                 if (thr == td)
 1580                         thr = TAILQ_NEXT(thr, td_plist);
 1581         }
 1582 
 1583         size += register_note(list, NT_PROCSTAT_PROC,
 1584             __elfN(note_procstat_proc), p);
 1585         size += register_note(list, NT_PROCSTAT_FILES,
 1586             note_procstat_files, p);
 1587         size += register_note(list, NT_PROCSTAT_VMMAP,
 1588             note_procstat_vmmap, p);
 1589         size += register_note(list, NT_PROCSTAT_GROUPS,
 1590             note_procstat_groups, p);
 1591         size += register_note(list, NT_PROCSTAT_UMASK,
 1592             note_procstat_umask, p);
 1593         size += register_note(list, NT_PROCSTAT_RLIMIT,
 1594             note_procstat_rlimit, p);
 1595         size += register_note(list, NT_PROCSTAT_OSREL,
 1596             note_procstat_osrel, p);
 1597         size += register_note(list, NT_PROCSTAT_PSSTRINGS,
 1598             __elfN(note_procstat_psstrings), p);
 1599         size += register_note(list, NT_PROCSTAT_AUXV,
 1600             __elfN(note_procstat_auxv), p);
 1601 
 1602         *sizep = size;
 1603 }
 1604 
 1605 static void
 1606 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
 1607     size_t notesz)
 1608 {
 1609         Elf_Ehdr *ehdr;
 1610         Elf_Phdr *phdr;
 1611         struct phdr_closure phc;
 1612 
 1613         ehdr = (Elf_Ehdr *)hdr;
 1614         phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr));
 1615 
 1616         ehdr->e_ident[EI_MAG0] = ELFMAG0;
 1617         ehdr->e_ident[EI_MAG1] = ELFMAG1;
 1618         ehdr->e_ident[EI_MAG2] = ELFMAG2;
 1619         ehdr->e_ident[EI_MAG3] = ELFMAG3;
 1620         ehdr->e_ident[EI_CLASS] = ELF_CLASS;
 1621         ehdr->e_ident[EI_DATA] = ELF_DATA;
 1622         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 1623         ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
 1624         ehdr->e_ident[EI_ABIVERSION] = 0;
 1625         ehdr->e_ident[EI_PAD] = 0;
 1626         ehdr->e_type = ET_CORE;
 1627         ehdr->e_machine = td->td_proc->p_elf_machine;
 1628         ehdr->e_version = EV_CURRENT;
 1629         ehdr->e_entry = 0;
 1630         ehdr->e_phoff = sizeof(Elf_Ehdr);
 1631         ehdr->e_flags = td->td_proc->p_elf_flags;
 1632         ehdr->e_ehsize = sizeof(Elf_Ehdr);
 1633         ehdr->e_phentsize = sizeof(Elf_Phdr);
 1634         ehdr->e_phnum = numsegs + 1;
 1635         ehdr->e_shentsize = sizeof(Elf_Shdr);
 1636         ehdr->e_shnum = 0;
 1637         ehdr->e_shstrndx = SHN_UNDEF;
 1638 
 1639         /*
 1640          * Fill in the program header entries.
 1641          */
 1642 
 1643         /* The note segement. */
 1644         phdr->p_type = PT_NOTE;
 1645         phdr->p_offset = hdrsize;
 1646         phdr->p_vaddr = 0;
 1647         phdr->p_paddr = 0;
 1648         phdr->p_filesz = notesz;
 1649         phdr->p_memsz = 0;
 1650         phdr->p_flags = PF_R;
 1651         phdr->p_align = ELF_NOTE_ROUNDSIZE;
 1652         phdr++;
 1653 
 1654         /* All the writable segments from the program. */
 1655         phc.phdr = phdr;
 1656         phc.offset = round_page(hdrsize + notesz);
 1657         each_writable_segment(td, cb_put_phdr, &phc);
 1658 }
 1659 
 1660 static size_t
 1661 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
 1662 {
 1663         struct note_info *ninfo;
 1664         size_t size, notesize;
 1665 
 1666         size = 0;
 1667         out(arg, NULL, &size);
 1668         ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
 1669         ninfo->type = type;
 1670         ninfo->outfunc = out;
 1671         ninfo->outarg = arg;
 1672         ninfo->outsize = size;
 1673         TAILQ_INSERT_TAIL(list, ninfo, link);
 1674 
 1675         if (type == -1)
 1676                 return (size);
 1677 
 1678         notesize = sizeof(Elf_Note) +           /* note header */
 1679             roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
 1680                                                 /* note name */
 1681             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 1682 
 1683         return (notesize);
 1684 }
 1685 
 1686 static size_t
 1687 append_note_data(const void *src, void *dst, size_t len)
 1688 {
 1689         size_t padded_len;
 1690 
 1691         padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
 1692         if (dst != NULL) {
 1693                 bcopy(src, dst, len);
 1694                 bzero((char *)dst + len, padded_len - len);
 1695         }
 1696         return (padded_len);
 1697 }
 1698 
 1699 size_t
 1700 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
 1701 {
 1702         Elf_Note *note;
 1703         char *buf;
 1704         size_t notesize;
 1705 
 1706         buf = dst;
 1707         if (buf != NULL) {
 1708                 note = (Elf_Note *)buf;
 1709                 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
 1710                 note->n_descsz = size;
 1711                 note->n_type = type;
 1712                 buf += sizeof(*note);
 1713                 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
 1714                     sizeof(FREEBSD_ABI_VENDOR));
 1715                 append_note_data(src, buf, size);
 1716                 if (descp != NULL)
 1717                         *descp = buf;
 1718         }
 1719 
 1720         notesize = sizeof(Elf_Note) +           /* note header */
 1721             roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
 1722                                                 /* note name */
 1723             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 1724 
 1725         return (notesize);
 1726 }
 1727 
 1728 static void
 1729 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
 1730 {
 1731         Elf_Note note;
 1732         ssize_t old_len, sect_len;
 1733         size_t new_len, descsz, i;
 1734 
 1735         if (ninfo->type == -1) {
 1736                 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 1737                 return;
 1738         }
 1739 
 1740         note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
 1741         note.n_descsz = ninfo->outsize;
 1742         note.n_type = ninfo->type;
 1743 
 1744         sbuf_bcat(sb, &note, sizeof(note));
 1745         sbuf_start_section(sb, &old_len);
 1746         sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
 1747         sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 1748         if (note.n_descsz == 0)
 1749                 return;
 1750         sbuf_start_section(sb, &old_len);
 1751         ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 1752         sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 1753         if (sect_len < 0)
 1754                 return;
 1755 
 1756         new_len = (size_t)sect_len;
 1757         descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
 1758         if (new_len < descsz) {
 1759                 /*
 1760                  * It is expected that individual note emitters will correctly
 1761                  * predict their expected output size and fill up to that size
 1762                  * themselves, padding in a format-specific way if needed.
 1763                  * However, in case they don't, just do it here with zeros.
 1764                  */
 1765                 for (i = 0; i < descsz - new_len; i++)
 1766                         sbuf_putc(sb, 0);
 1767         } else if (new_len > descsz) {
 1768                 /*
 1769                  * We can't always truncate sb -- we may have drained some
 1770                  * of it already.
 1771                  */
 1772                 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
 1773                     "read it (%zu > %zu).  Since it is longer than "
 1774                     "expected, this coredump's notes are corrupt.  THIS "
 1775                     "IS A BUG in the note_procstat routine for type %u.\n",
 1776                     __func__, (unsigned)note.n_type, new_len, descsz,
 1777                     (unsigned)note.n_type));
 1778         }
 1779 }
 1780 
 1781 /*
 1782  * Miscellaneous note out functions.
 1783  */
 1784 
 1785 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 1786 #include <compat/freebsd32/freebsd32.h>
 1787 
 1788 typedef struct prstatus32 elf_prstatus_t;
 1789 typedef struct prpsinfo32 elf_prpsinfo_t;
 1790 typedef struct fpreg32 elf_prfpregset_t;
 1791 typedef struct fpreg32 elf_fpregset_t;
 1792 typedef struct reg32 elf_gregset_t;
 1793 typedef struct thrmisc32 elf_thrmisc_t;
 1794 #define ELF_KERN_PROC_MASK      KERN_PROC_MASK32
 1795 typedef struct kinfo_proc32 elf_kinfo_proc_t;
 1796 typedef uint32_t elf_ps_strings_t;
 1797 #else
 1798 typedef prstatus_t elf_prstatus_t;
 1799 typedef prpsinfo_t elf_prpsinfo_t;
 1800 typedef prfpregset_t elf_prfpregset_t;
 1801 typedef prfpregset_t elf_fpregset_t;
 1802 typedef gregset_t elf_gregset_t;
 1803 typedef thrmisc_t elf_thrmisc_t;
 1804 #define ELF_KERN_PROC_MASK      0
 1805 typedef struct kinfo_proc elf_kinfo_proc_t;
 1806 typedef vm_offset_t elf_ps_strings_t;
 1807 #endif
 1808 
 1809 static void
 1810 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
 1811 {
 1812         struct sbuf sbarg;
 1813         size_t len;
 1814         char *cp, *end;
 1815         struct proc *p;
 1816         elf_prpsinfo_t *psinfo;
 1817         int error;
 1818 
 1819         p = (struct proc *)arg;
 1820         if (sb != NULL) {
 1821                 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
 1822                 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
 1823                 psinfo->pr_version = PRPSINFO_VERSION;
 1824                 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
 1825                 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
 1826                 PROC_LOCK(p);
 1827                 if (p->p_args != NULL) {
 1828                         len = sizeof(psinfo->pr_psargs) - 1;
 1829                         if (len > p->p_args->ar_length)
 1830                                 len = p->p_args->ar_length;
 1831                         memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
 1832                         PROC_UNLOCK(p);
 1833                         error = 0;
 1834                 } else {
 1835                         _PHOLD(p);
 1836                         PROC_UNLOCK(p);
 1837                         sbuf_new(&sbarg, psinfo->pr_psargs,
 1838                             sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
 1839                         error = proc_getargv(curthread, p, &sbarg);
 1840                         PRELE(p);
 1841                         if (sbuf_finish(&sbarg) == 0)
 1842                                 len = sbuf_len(&sbarg) - 1;
 1843                         else
 1844                                 len = sizeof(psinfo->pr_psargs) - 1;
 1845                         sbuf_delete(&sbarg);
 1846                 }
 1847                 if (error || len == 0)
 1848                         strlcpy(psinfo->pr_psargs, p->p_comm,
 1849                             sizeof(psinfo->pr_psargs));
 1850                 else {
 1851                         KASSERT(len < sizeof(psinfo->pr_psargs),
 1852                             ("len is too long: %zu vs %zu", len,
 1853                             sizeof(psinfo->pr_psargs)));
 1854                         cp = psinfo->pr_psargs;
 1855                         end = cp + len - 1;
 1856                         for (;;) {
 1857                                 cp = memchr(cp, '\0', end - cp);
 1858                                 if (cp == NULL)
 1859                                         break;
 1860                                 *cp = ' ';
 1861                         }
 1862                 }
 1863                 psinfo->pr_pid = p->p_pid;
 1864                 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
 1865                 free(psinfo, M_TEMP);
 1866         }
 1867         *sizep = sizeof(*psinfo);
 1868 }
 1869 
 1870 static void
 1871 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
 1872 {
 1873         struct thread *td;
 1874         elf_prstatus_t *status;
 1875 
 1876         td = (struct thread *)arg;
 1877         if (sb != NULL) {
 1878                 KASSERT(*sizep == sizeof(*status), ("invalid size"));
 1879                 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
 1880                 status->pr_version = PRSTATUS_VERSION;
 1881                 status->pr_statussz = sizeof(elf_prstatus_t);
 1882                 status->pr_gregsetsz = sizeof(elf_gregset_t);
 1883                 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
 1884                 status->pr_osreldate = osreldate;
 1885                 status->pr_cursig = td->td_proc->p_sig;
 1886                 status->pr_pid = td->td_tid;
 1887 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 1888                 fill_regs32(td, &status->pr_reg);
 1889 #else
 1890                 fill_regs(td, &status->pr_reg);
 1891 #endif
 1892                 sbuf_bcat(sb, status, sizeof(*status));
 1893                 free(status, M_TEMP);
 1894         }
 1895         *sizep = sizeof(*status);
 1896 }
 1897 
 1898 static void
 1899 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
 1900 {
 1901         struct thread *td;
 1902         elf_prfpregset_t *fpregset;
 1903 
 1904         td = (struct thread *)arg;
 1905         if (sb != NULL) {
 1906                 KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
 1907                 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
 1908 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 1909                 fill_fpregs32(td, fpregset);
 1910 #else
 1911                 fill_fpregs(td, fpregset);
 1912 #endif
 1913                 sbuf_bcat(sb, fpregset, sizeof(*fpregset));
 1914                 free(fpregset, M_TEMP);
 1915         }
 1916         *sizep = sizeof(*fpregset);
 1917 }
 1918 
 1919 static void
 1920 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
 1921 {
 1922         struct thread *td;
 1923         elf_thrmisc_t thrmisc;
 1924 
 1925         td = (struct thread *)arg;
 1926         if (sb != NULL) {
 1927                 KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
 1928                 bzero(&thrmisc._pad, sizeof(thrmisc._pad));
 1929                 strcpy(thrmisc.pr_tname, td->td_name);
 1930                 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
 1931         }
 1932         *sizep = sizeof(thrmisc);
 1933 }
 1934 
 1935 /*
 1936  * Allow for MD specific notes, as well as any MD
 1937  * specific preparations for writing MI notes.
 1938  */
 1939 static void
 1940 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
 1941 {
 1942         struct thread *td;
 1943         void *buf;
 1944         size_t size;
 1945 
 1946         td = (struct thread *)arg;
 1947         size = *sizep;
 1948         if (size != 0 && sb != NULL)
 1949                 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
 1950         else
 1951                 buf = NULL;
 1952         size = 0;
 1953         __elfN(dump_thread)(td, buf, &size);
 1954         KASSERT(sb == NULL || *sizep == size, ("invalid size"));
 1955         if (size != 0 && sb != NULL)
 1956                 sbuf_bcat(sb, buf, size);
 1957         free(buf, M_TEMP);
 1958         *sizep = size;
 1959 }
 1960 
 1961 #ifdef KINFO_PROC_SIZE
 1962 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
 1963 #endif
 1964 
 1965 static void
 1966 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
 1967 {
 1968         struct proc *p;
 1969         size_t size;
 1970         int structsize;
 1971 
 1972         p = (struct proc *)arg;
 1973         size = sizeof(structsize) + p->p_numthreads *
 1974             sizeof(elf_kinfo_proc_t);
 1975 
 1976         if (sb != NULL) {
 1977                 KASSERT(*sizep == size, ("invalid size"));
 1978                 structsize = sizeof(elf_kinfo_proc_t);
 1979                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 1980                 PROC_LOCK(p);
 1981                 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
 1982         }
 1983         *sizep = size;
 1984 }
 1985 
 1986 #ifdef KINFO_FILE_SIZE
 1987 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
 1988 #endif
 1989 
 1990 static void
 1991 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
 1992 {
 1993         struct proc *p;
 1994         size_t size, sect_sz, i;
 1995         ssize_t start_len, sect_len;
 1996         int structsize, filedesc_flags;
 1997 
 1998         if (coredump_pack_fileinfo)
 1999                 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
 2000         else
 2001                 filedesc_flags = 0;
 2002 
 2003         p = (struct proc *)arg;
 2004         structsize = sizeof(struct kinfo_file);
 2005         if (sb == NULL) {
 2006                 size = 0;
 2007                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2008                 sbuf_set_drain(sb, sbuf_drain_count, &size);
 2009                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2010                 PROC_LOCK(p);
 2011                 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
 2012                 sbuf_finish(sb);
 2013                 sbuf_delete(sb);
 2014                 *sizep = size;
 2015         } else {
 2016                 sbuf_start_section(sb, &start_len);
 2017 
 2018                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2019                 PROC_LOCK(p);
 2020                 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
 2021                     filedesc_flags);
 2022 
 2023                 sect_len = sbuf_end_section(sb, start_len, 0, 0);
 2024                 if (sect_len < 0)
 2025                         return;
 2026                 sect_sz = sect_len;
 2027 
 2028                 KASSERT(sect_sz <= *sizep,
 2029                     ("kern_proc_filedesc_out did not respect maxlen; "
 2030                      "requested %zu, got %zu", *sizep - sizeof(structsize),
 2031                      sect_sz - sizeof(structsize)));
 2032 
 2033                 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
 2034                         sbuf_putc(sb, 0);
 2035         }
 2036 }
 2037 
 2038 #ifdef KINFO_VMENTRY_SIZE
 2039 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2040 #endif
 2041 
 2042 static void
 2043 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
 2044 {
 2045         struct proc *p;
 2046         size_t size;
 2047         int structsize, vmmap_flags;
 2048 
 2049         if (coredump_pack_vmmapinfo)
 2050                 vmmap_flags = KERN_VMMAP_PACK_KINFO;
 2051         else
 2052                 vmmap_flags = 0;
 2053 
 2054         p = (struct proc *)arg;
 2055         structsize = sizeof(struct kinfo_vmentry);
 2056         if (sb == NULL) {
 2057                 size = 0;
 2058                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2059                 sbuf_set_drain(sb, sbuf_drain_count, &size);
 2060                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2061                 PROC_LOCK(p);
 2062                 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
 2063                 sbuf_finish(sb);
 2064                 sbuf_delete(sb);
 2065                 *sizep = size;
 2066         } else {
 2067                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2068                 PROC_LOCK(p);
 2069                 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
 2070                     vmmap_flags);
 2071         }
 2072 }
 2073 
 2074 static void
 2075 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
 2076 {
 2077         struct proc *p;
 2078         size_t size;
 2079         int structsize;
 2080 
 2081         p = (struct proc *)arg;
 2082         size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
 2083         if (sb != NULL) {
 2084                 KASSERT(*sizep == size, ("invalid size"));
 2085                 structsize = sizeof(gid_t);
 2086                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2087                 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
 2088                     sizeof(gid_t));
 2089         }
 2090         *sizep = size;
 2091 }
 2092 
 2093 static void
 2094 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
 2095 {
 2096         struct proc *p;
 2097         size_t size;
 2098         int structsize;
 2099 
 2100         p = (struct proc *)arg;
 2101         size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
 2102         if (sb != NULL) {
 2103                 KASSERT(*sizep == size, ("invalid size"));
 2104                 structsize = sizeof(p->p_fd->fd_cmask);
 2105                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2106                 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
 2107         }
 2108         *sizep = size;
 2109 }
 2110 
 2111 static void
 2112 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
 2113 {
 2114         struct proc *p;
 2115         struct rlimit rlim[RLIM_NLIMITS];
 2116         size_t size;
 2117         int structsize, i;
 2118 
 2119         p = (struct proc *)arg;
 2120         size = sizeof(structsize) + sizeof(rlim);
 2121         if (sb != NULL) {
 2122                 KASSERT(*sizep == size, ("invalid size"));
 2123                 structsize = sizeof(rlim);
 2124                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2125                 PROC_LOCK(p);
 2126                 for (i = 0; i < RLIM_NLIMITS; i++)
 2127                         lim_rlimit(p, i, &rlim[i]);
 2128                 PROC_UNLOCK(p);
 2129                 sbuf_bcat(sb, rlim, sizeof(rlim));
 2130         }
 2131         *sizep = size;
 2132 }
 2133 
 2134 static void
 2135 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
 2136 {
 2137         struct proc *p;
 2138         size_t size;
 2139         int structsize;
 2140 
 2141         p = (struct proc *)arg;
 2142         size = sizeof(structsize) + sizeof(p->p_osrel);
 2143         if (sb != NULL) {
 2144                 KASSERT(*sizep == size, ("invalid size"));
 2145                 structsize = sizeof(p->p_osrel);
 2146                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2147                 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
 2148         }
 2149         *sizep = size;
 2150 }
 2151 
 2152 static void
 2153 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
 2154 {
 2155         struct proc *p;
 2156         elf_ps_strings_t ps_strings;
 2157         size_t size;
 2158         int structsize;
 2159 
 2160         p = (struct proc *)arg;
 2161         size = sizeof(structsize) + sizeof(ps_strings);
 2162         if (sb != NULL) {
 2163                 KASSERT(*sizep == size, ("invalid size"));
 2164                 structsize = sizeof(ps_strings);
 2165 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2166                 ps_strings = PTROUT(p->p_sysent->sv_psstrings);
 2167 #else
 2168                 ps_strings = p->p_sysent->sv_psstrings;
 2169 #endif
 2170                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2171                 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
 2172         }
 2173         *sizep = size;
 2174 }
 2175 
 2176 static void
 2177 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
 2178 {
 2179         struct proc *p;
 2180         size_t size;
 2181         int structsize;
 2182 
 2183         p = (struct proc *)arg;
 2184         if (sb == NULL) {
 2185                 size = 0;
 2186                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2187                 sbuf_set_drain(sb, sbuf_drain_count, &size);
 2188                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2189                 PHOLD(p);
 2190                 proc_getauxv(curthread, p, sb);
 2191                 PRELE(p);
 2192                 sbuf_finish(sb);
 2193                 sbuf_delete(sb);
 2194                 *sizep = size;
 2195         } else {
 2196                 structsize = sizeof(Elf_Auxinfo);
 2197                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2198                 PHOLD(p);
 2199                 proc_getauxv(curthread, p, sb);
 2200                 PRELE(p);
 2201         }
 2202 }
 2203 
 2204 static boolean_t
 2205 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
 2206     int32_t *osrel, const Elf_Phdr *pnote)
 2207 {
 2208         const Elf_Note *note, *note0, *note_end;
 2209         const char *note_name;
 2210         char *buf;
 2211         int i, error;
 2212         boolean_t res;
 2213 
 2214         /* We need some limit, might as well use PAGE_SIZE. */
 2215         if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
 2216                 return (FALSE);
 2217         ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
 2218         if (pnote->p_offset > PAGE_SIZE ||
 2219             pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
 2220                 VOP_UNLOCK(imgp->vp, 0);
 2221                 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
 2222                 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
 2223                 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
 2224                     pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
 2225                     curthread->td_ucred, NOCRED, NULL, curthread);
 2226                 if (error != 0) {
 2227                         uprintf("i/o error PT_NOTE\n");
 2228                         res = FALSE;
 2229                         goto ret;
 2230                 }
 2231                 note = note0 = (const Elf_Note *)buf;
 2232                 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
 2233         } else {
 2234                 note = note0 = (const Elf_Note *)(imgp->image_header +
 2235                     pnote->p_offset);
 2236                 note_end = (const Elf_Note *)(imgp->image_header +
 2237                     pnote->p_offset + pnote->p_filesz);
 2238                 buf = NULL;
 2239         }
 2240         for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
 2241                 if (!aligned(note, Elf32_Addr) || (const char *)note_end -
 2242                     (const char *)note < sizeof(Elf_Note)) {
 2243                         res = FALSE;
 2244                         goto ret;
 2245                 }
 2246                 if (note->n_namesz != checknote->hdr.n_namesz ||
 2247                     note->n_descsz != checknote->hdr.n_descsz ||
 2248                     note->n_type != checknote->hdr.n_type)
 2249                         goto nextnote;
 2250                 note_name = (const char *)(note + 1);
 2251                 if (note_name + checknote->hdr.n_namesz >=
 2252                     (const char *)note_end || strncmp(checknote->vendor,
 2253                     note_name, checknote->hdr.n_namesz) != 0)
 2254                         goto nextnote;
 2255 
 2256                 /*
 2257                  * Fetch the osreldate for binary
 2258                  * from the ELF OSABI-note if necessary.
 2259                  */
 2260                 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
 2261                     checknote->trans_osrel != NULL) {
 2262                         res = checknote->trans_osrel(note, osrel);
 2263                         goto ret;
 2264                 }
 2265                 res = TRUE;
 2266                 goto ret;
 2267 nextnote:
 2268                 note = (const Elf_Note *)((const char *)(note + 1) +
 2269                     roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
 2270                     roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
 2271         }
 2272         res = FALSE;
 2273 ret:
 2274         free(buf, M_TEMP);
 2275         return (res);
 2276 }
 2277 
 2278 /*
 2279  * Try to find the appropriate ABI-note section for checknote,
 2280  * fetch the osreldate for binary from the ELF OSABI-note. Only the
 2281  * first page of the image is searched, the same as for headers.
 2282  */
 2283 static boolean_t
 2284 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
 2285     int32_t *osrel)
 2286 {
 2287         const Elf_Phdr *phdr;
 2288         const Elf_Ehdr *hdr;
 2289         int i;
 2290 
 2291         hdr = (const Elf_Ehdr *)imgp->image_header;
 2292         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
 2293 
 2294         for (i = 0; i < hdr->e_phnum; i++) {
 2295                 if (phdr[i].p_type == PT_NOTE &&
 2296                     __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
 2297                         return (TRUE);
 2298         }
 2299         return (FALSE);
 2300 
 2301 }
 2302 
 2303 /*
 2304  * Tell kern_execve.c about it, with a little help from the linker.
 2305  */
 2306 static struct execsw __elfN(execsw) = {
 2307         __CONCAT(exec_, __elfN(imgact)),
 2308         __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
 2309 };
 2310 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
 2311 
 2312 #ifdef COMPRESS_USER_CORES
 2313 /*
 2314  * Compress and write out a core segment for a user process.
 2315  *
 2316  * 'inbuf' is the starting address of a VM segment in the process' address
 2317  * space that is to be compressed and written out to the core file.  'dest_buf'
 2318  * is a buffer in the kernel's address space.  The segment is copied from 
 2319  * 'inbuf' to 'dest_buf' first before being processed by the compression
 2320  * routine gzwrite().  This copying is necessary because the content of the VM
 2321  * segment may change between the compression pass and the crc-computation pass
 2322  * in gzwrite().  This is because realtime threads may preempt the UNIX kernel.
 2323  *
 2324  * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'.
 2325  */
 2326 static int
 2327 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len,
 2328     struct thread *td)
 2329 {
 2330         int len_compressed;
 2331         int error = 0;
 2332         unsigned int chunk_len;
 2333 
 2334         while (len) {
 2335                 if (inbuf != NULL) {
 2336                         chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len;
 2337 
 2338                         /*
 2339                          * We can get EFAULT error here.  In that case zero out
 2340                          * the current chunk of the segment.
 2341                          */
 2342                         error = copyin(inbuf, dest_buf, chunk_len);
 2343                         if (error != 0) {
 2344                                 bzero(dest_buf, chunk_len);
 2345                                 error = 0;
 2346                         }
 2347                         inbuf += chunk_len;
 2348                 } else {
 2349                         chunk_len = len;
 2350                 }
 2351                 len_compressed = gzwrite(file, dest_buf, chunk_len);
 2352 
 2353                 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed);
 2354 
 2355                 if ((unsigned int)len_compressed != chunk_len) {
 2356                         log(LOG_WARNING,
 2357                             "compress_core: length mismatch (0x%x returned, "
 2358                             "0x%x expected)\n", len_compressed, chunk_len);
 2359                         EVENTHANDLER_INVOKE(app_coredump_error, td,
 2360                             "compress_core: length mismatch %x -> %x",
 2361                             chunk_len, len_compressed);
 2362                         error = EFAULT;
 2363                         break;
 2364                 }
 2365                 len -= chunk_len;
 2366                 maybe_yield();
 2367         }
 2368 
 2369         return (error);
 2370 }
 2371 #endif /* COMPRESS_USER_CORES */
 2372 
 2373 static vm_prot_t
 2374 __elfN(trans_prot)(Elf_Word flags)
 2375 {
 2376         vm_prot_t prot;
 2377 
 2378         prot = 0;
 2379         if (flags & PF_X)
 2380                 prot |= VM_PROT_EXECUTE;
 2381         if (flags & PF_W)
 2382                 prot |= VM_PROT_WRITE;
 2383         if (flags & PF_R)
 2384                 prot |= VM_PROT_READ;
 2385 #if __ELF_WORD_SIZE == 32
 2386 #if defined(__amd64__) || defined(__ia64__)
 2387         if (i386_read_exec && (flags & PF_R))
 2388                 prot |= VM_PROT_EXECUTE;
 2389 #endif
 2390 #endif
 2391         return (prot);
 2392 }
 2393 
 2394 static Elf_Word
 2395 __elfN(untrans_prot)(vm_prot_t prot)
 2396 {
 2397         Elf_Word flags;
 2398 
 2399         flags = 0;
 2400         if (prot & VM_PROT_EXECUTE)
 2401                 flags |= PF_X;
 2402         if (prot & VM_PROT_READ)
 2403                 flags |= PF_R;
 2404         if (prot & VM_PROT_WRITE)
 2405                 flags |= PF_W;
 2406         return (flags);
 2407 }

Cache object: 6486183c627090253b99cf9c41b1030f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.