The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/imgact_elf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2017 Dell EMC
    5  * Copyright (c) 2000-2001, 2003 David O'Brien
    6  * Copyright (c) 1995-1996 Søren Schmidt
    7  * Copyright (c) 1996 Peter Wemm
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer
   15  *    in this position and unchanged.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. The name of the author may not be used to endorse or promote products
   20  *    derived from this software without specific prior written permission
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_capsicum.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/capsicum.h>
   41 #include <sys/compressor.h>
   42 #include <sys/exec.h>
   43 #include <sys/fcntl.h>
   44 #include <sys/imgact.h>
   45 #include <sys/imgact_elf.h>
   46 #include <sys/jail.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mount.h>
   51 #include <sys/mman.h>
   52 #include <sys/namei.h>
   53 #include <sys/proc.h>
   54 #include <sys/procfs.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/racct.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/rwlock.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/sf_buf.h>
   61 #include <sys/smp.h>
   62 #include <sys/systm.h>
   63 #include <sys/signalvar.h>
   64 #include <sys/stat.h>
   65 #include <sys/sx.h>
   66 #include <sys/syscall.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/sysent.h>
   69 #include <sys/vnode.h>
   70 #include <sys/syslog.h>
   71 #include <sys/eventhandler.h>
   72 #include <sys/user.h>
   73 
   74 #include <vm/vm.h>
   75 #include <vm/vm_kern.h>
   76 #include <vm/vm_param.h>
   77 #include <vm/pmap.h>
   78 #include <vm/vm_map.h>
   79 #include <vm/vm_object.h>
   80 #include <vm/vm_extern.h>
   81 
   82 #include <machine/elf.h>
   83 #include <machine/md_var.h>
   84 
   85 #define ELF_NOTE_ROUNDSIZE      4
   86 #define OLD_EI_BRAND    8
   87 
   88 static int __elfN(check_header)(const Elf_Ehdr *hdr);
   89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
   90     const char *interp, int32_t *osrel, uint32_t *fctl0);
   91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
   92     u_long *entry);
   93 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
   94     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
   95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
   96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
   97     int32_t *osrel);
   98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
   99 static boolean_t __elfN(check_note)(struct image_params *imgp,
  100     Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0,
  101     uint32_t *fctl0);
  102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
  103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
  104 
  105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
  106     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  107     "");
  108 
  109 #define CORE_BUF_SIZE   (16 * 1024)
  110 
  111 int __elfN(fallback_brand) = -1;
  112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  113     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
  114     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
  115 
  116 static int elf_legacy_coredump = 0;
  117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 
  118     &elf_legacy_coredump, 0,
  119     "include all and only RW pages in core dumps");
  120 
  121 int __elfN(nxstack) =
  122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
  123     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
  124     defined(__riscv)
  125         1;
  126 #else
  127         0;
  128 #endif
  129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  130     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
  131     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
  132 
  133 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
  134 int i386_read_exec = 0;
  135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
  136     "enable execution from readable segments");
  137 #endif
  138 
  139 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
  140 static int
  141 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
  142 {
  143         u_long val;
  144         int error;
  145 
  146         val = __elfN(pie_base);
  147         error = sysctl_handle_long(oidp, &val, 0, req);
  148         if (error != 0 || req->newptr == NULL)
  149                 return (error);
  150         if ((val & PAGE_MASK) != 0)
  151                 return (EINVAL);
  152         __elfN(pie_base) = val;
  153         return (0);
  154 }
  155 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
  156     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  157     sysctl_pie_base, "LU",
  158     "PIE load base without randomization");
  159 
  160 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
  161     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  162     "");
  163 #define ASLR_NODE_OID   __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
  164 
  165 static int __elfN(aslr_enabled) = 0;
  166 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
  167     &__elfN(aslr_enabled), 0,
  168     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  169     ": enable address map randomization");
  170 
  171 static int __elfN(pie_aslr_enabled) = 0;
  172 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
  173     &__elfN(pie_aslr_enabled), 0,
  174     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  175     ": enable address map randomization for PIE binaries");
  176 
  177 static int __elfN(aslr_honor_sbrk) = 1;
  178 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
  179     &__elfN(aslr_honor_sbrk), 0,
  180     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
  181 
  182 static int __elfN(aslr_stack_gap) = 3;
  183 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW,
  184     &__elfN(aslr_stack_gap), 0,
  185     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  186     ": maximum percentage of main stack to waste on a random gap");
  187 
  188 static int __elfN(sigfastblock) = 1;
  189 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
  190     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
  191     "enable sigfastblock for new processes");
  192 
  193 static bool __elfN(allow_wx) = true;
  194 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
  195     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
  196     "Allow pages to be mapped simultaneously writable and executable");
  197 
  198 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
  199 
  200 #define aligned(a, t)   (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
  201 
  202 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
  203 
  204 Elf_Brandnote __elfN(freebsd_brandnote) = {
  205         .hdr.n_namesz   = sizeof(FREEBSD_ABI_VENDOR),
  206         .hdr.n_descsz   = sizeof(int32_t),
  207         .hdr.n_type     = NT_FREEBSD_ABI_TAG,
  208         .vendor         = FREEBSD_ABI_VENDOR,
  209         .flags          = BN_TRANSLATE_OSREL,
  210         .trans_osrel    = __elfN(freebsd_trans_osrel)
  211 };
  212 
  213 static bool
  214 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
  215 {
  216         uintptr_t p;
  217 
  218         p = (uintptr_t)(note + 1);
  219         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  220         *osrel = *(const int32_t *)(p);
  221 
  222         return (true);
  223 }
  224 
  225 static const char GNU_ABI_VENDOR[] = "GNU";
  226 static int GNU_KFREEBSD_ABI_DESC = 3;
  227 
  228 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
  229         .hdr.n_namesz   = sizeof(GNU_ABI_VENDOR),
  230         .hdr.n_descsz   = 16,   /* XXX at least 16 */
  231         .hdr.n_type     = 1,
  232         .vendor         = GNU_ABI_VENDOR,
  233         .flags          = BN_TRANSLATE_OSREL,
  234         .trans_osrel    = kfreebsd_trans_osrel
  235 };
  236 
  237 static bool
  238 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
  239 {
  240         const Elf32_Word *desc;
  241         uintptr_t p;
  242 
  243         p = (uintptr_t)(note + 1);
  244         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  245 
  246         desc = (const Elf32_Word *)p;
  247         if (desc[0] != GNU_KFREEBSD_ABI_DESC)
  248                 return (false);
  249 
  250         /*
  251          * Debian GNU/kFreeBSD embed the earliest compatible kernel version
  252          * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
  253          */
  254         *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
  255 
  256         return (true);
  257 }
  258 
  259 int
  260 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
  261 {
  262         int i;
  263 
  264         for (i = 0; i < MAX_BRANDS; i++) {
  265                 if (elf_brand_list[i] == NULL) {
  266                         elf_brand_list[i] = entry;
  267                         break;
  268                 }
  269         }
  270         if (i == MAX_BRANDS) {
  271                 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
  272                         __func__, entry);
  273                 return (-1);
  274         }
  275         return (0);
  276 }
  277 
  278 int
  279 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
  280 {
  281         int i;
  282 
  283         for (i = 0; i < MAX_BRANDS; i++) {
  284                 if (elf_brand_list[i] == entry) {
  285                         elf_brand_list[i] = NULL;
  286                         break;
  287                 }
  288         }
  289         if (i == MAX_BRANDS)
  290                 return (-1);
  291         return (0);
  292 }
  293 
  294 int
  295 __elfN(brand_inuse)(Elf_Brandinfo *entry)
  296 {
  297         struct proc *p;
  298         int rval = FALSE;
  299 
  300         sx_slock(&allproc_lock);
  301         FOREACH_PROC_IN_SYSTEM(p) {
  302                 if (p->p_sysent == entry->sysvec) {
  303                         rval = TRUE;
  304                         break;
  305                 }
  306         }
  307         sx_sunlock(&allproc_lock);
  308 
  309         return (rval);
  310 }
  311 
  312 static Elf_Brandinfo *
  313 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
  314     int32_t *osrel, uint32_t *fctl0)
  315 {
  316         const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
  317         Elf_Brandinfo *bi, *bi_m;
  318         boolean_t ret, has_fctl0;
  319         int i, interp_name_len;
  320 
  321         interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
  322 
  323         /*
  324          * We support four types of branding -- (1) the ELF EI_OSABI field
  325          * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
  326          * branding w/in the ELF header, (3) path of the `interp_path'
  327          * field, and (4) the ".note.ABI-tag" ELF section.
  328          */
  329 
  330         /* Look for an ".note.ABI-tag" ELF section */
  331         bi_m = NULL;
  332         for (i = 0; i < MAX_BRANDS; i++) {
  333                 bi = elf_brand_list[i];
  334                 if (bi == NULL)
  335                         continue;
  336                 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
  337                         continue;
  338                 if (hdr->e_machine == bi->machine && (bi->flags &
  339                     (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
  340                         has_fctl0 = false;
  341                         *fctl0 = 0;
  342                         *osrel = 0;
  343                         ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
  344                             &has_fctl0, fctl0);
  345                         /* Give brand a chance to veto check_note's guess */
  346                         if (ret && bi->header_supported) {
  347                                 ret = bi->header_supported(imgp, osrel,
  348                                     has_fctl0 ? fctl0 : NULL);
  349                         }
  350                         /*
  351                          * If note checker claimed the binary, but the
  352                          * interpreter path in the image does not
  353                          * match default one for the brand, try to
  354                          * search for other brands with the same
  355                          * interpreter.  Either there is better brand
  356                          * with the right interpreter, or, failing
  357                          * this, we return first brand which accepted
  358                          * our note and, optionally, header.
  359                          */
  360                         if (ret && bi_m == NULL && interp != NULL &&
  361                             (bi->interp_path == NULL ||
  362                             (strlen(bi->interp_path) + 1 != interp_name_len ||
  363                             strncmp(interp, bi->interp_path, interp_name_len)
  364                             != 0))) {
  365                                 bi_m = bi;
  366                                 ret = 0;
  367                         }
  368                         if (ret)
  369                                 return (bi);
  370                 }
  371         }
  372         if (bi_m != NULL)
  373                 return (bi_m);
  374 
  375         /* If the executable has a brand, search for it in the brand list. */
  376         for (i = 0; i < MAX_BRANDS; i++) {
  377                 bi = elf_brand_list[i];
  378                 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
  379                     (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
  380                         continue;
  381                 if (hdr->e_machine == bi->machine &&
  382                     (hdr->e_ident[EI_OSABI] == bi->brand ||
  383                     (bi->compat_3_brand != NULL &&
  384                     strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
  385                     bi->compat_3_brand) == 0))) {
  386                         /* Looks good, but give brand a chance to veto */
  387                         if (bi->header_supported == NULL ||
  388                             bi->header_supported(imgp, NULL, NULL)) {
  389                                 /*
  390                                  * Again, prefer strictly matching
  391                                  * interpreter path.
  392                                  */
  393                                 if (interp_name_len == 0 &&
  394                                     bi->interp_path == NULL)
  395                                         return (bi);
  396                                 if (bi->interp_path != NULL &&
  397                                     strlen(bi->interp_path) + 1 ==
  398                                     interp_name_len && strncmp(interp,
  399                                     bi->interp_path, interp_name_len) == 0)
  400                                         return (bi);
  401                                 if (bi_m == NULL)
  402                                         bi_m = bi;
  403                         }
  404                 }
  405         }
  406         if (bi_m != NULL)
  407                 return (bi_m);
  408 
  409         /* No known brand, see if the header is recognized by any brand */
  410         for (i = 0; i < MAX_BRANDS; i++) {
  411                 bi = elf_brand_list[i];
  412                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
  413                     bi->header_supported == NULL)
  414                         continue;
  415                 if (hdr->e_machine == bi->machine) {
  416                         ret = bi->header_supported(imgp, NULL, NULL);
  417                         if (ret)
  418                                 return (bi);
  419                 }
  420         }
  421 
  422         /* Lacking a known brand, search for a recognized interpreter. */
  423         if (interp != NULL) {
  424                 for (i = 0; i < MAX_BRANDS; i++) {
  425                         bi = elf_brand_list[i];
  426                         if (bi == NULL || (bi->flags &
  427                             (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
  428                             != 0)
  429                                 continue;
  430                         if (hdr->e_machine == bi->machine &&
  431                             bi->interp_path != NULL &&
  432                             /* ELF image p_filesz includes terminating zero */
  433                             strlen(bi->interp_path) + 1 == interp_name_len &&
  434                             strncmp(interp, bi->interp_path, interp_name_len)
  435                             == 0 && (bi->header_supported == NULL ||
  436                             bi->header_supported(imgp, NULL, NULL)))
  437                                 return (bi);
  438                 }
  439         }
  440 
  441         /* Lacking a recognized interpreter, try the default brand */
  442         for (i = 0; i < MAX_BRANDS; i++) {
  443                 bi = elf_brand_list[i];
  444                 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
  445                     (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
  446                         continue;
  447                 if (hdr->e_machine == bi->machine &&
  448                     __elfN(fallback_brand) == bi->brand &&
  449                     (bi->header_supported == NULL ||
  450                     bi->header_supported(imgp, NULL, NULL)))
  451                         return (bi);
  452         }
  453         return (NULL);
  454 }
  455 
  456 static bool
  457 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
  458 {
  459         return (hdr->e_phoff <= PAGE_SIZE &&
  460             (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
  461 }
  462 
  463 static int
  464 __elfN(check_header)(const Elf_Ehdr *hdr)
  465 {
  466         Elf_Brandinfo *bi;
  467         int i;
  468 
  469         if (!IS_ELF(*hdr) ||
  470             hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
  471             hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
  472             hdr->e_ident[EI_VERSION] != EV_CURRENT ||
  473             hdr->e_phentsize != sizeof(Elf_Phdr) ||
  474             hdr->e_version != ELF_TARG_VER)
  475                 return (ENOEXEC);
  476 
  477         /*
  478          * Make sure we have at least one brand for this machine.
  479          */
  480 
  481         for (i = 0; i < MAX_BRANDS; i++) {
  482                 bi = elf_brand_list[i];
  483                 if (bi != NULL && bi->machine == hdr->e_machine)
  484                         break;
  485         }
  486         if (i == MAX_BRANDS)
  487                 return (ENOEXEC);
  488 
  489         return (0);
  490 }
  491 
  492 static int
  493 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
  494     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
  495 {
  496         struct sf_buf *sf;
  497         int error;
  498         vm_offset_t off;
  499 
  500         /*
  501          * Create the page if it doesn't exist yet. Ignore errors.
  502          */
  503         vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
  504             trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
  505 
  506         /*
  507          * Find the page from the underlying object.
  508          */
  509         if (object != NULL) {
  510                 sf = vm_imgact_map_page(object, offset);
  511                 if (sf == NULL)
  512                         return (KERN_FAILURE);
  513                 off = offset - trunc_page(offset);
  514                 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
  515                     end - start);
  516                 vm_imgact_unmap_page(sf);
  517                 if (error != 0)
  518                         return (KERN_FAILURE);
  519         }
  520 
  521         return (KERN_SUCCESS);
  522 }
  523 
  524 static int
  525 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
  526     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
  527     int cow)
  528 {
  529         struct sf_buf *sf;
  530         vm_offset_t off;
  531         vm_size_t sz;
  532         int error, locked, rv;
  533 
  534         if (start != trunc_page(start)) {
  535                 rv = __elfN(map_partial)(map, object, offset, start,
  536                     round_page(start), prot);
  537                 if (rv != KERN_SUCCESS)
  538                         return (rv);
  539                 offset += round_page(start) - start;
  540                 start = round_page(start);
  541         }
  542         if (end != round_page(end)) {
  543                 rv = __elfN(map_partial)(map, object, offset +
  544                     trunc_page(end) - start, trunc_page(end), end, prot);
  545                 if (rv != KERN_SUCCESS)
  546                         return (rv);
  547                 end = trunc_page(end);
  548         }
  549         if (start >= end)
  550                 return (KERN_SUCCESS);
  551         if ((offset & PAGE_MASK) != 0) {
  552                 /*
  553                  * The mapping is not page aligned.  This means that we have
  554                  * to copy the data.
  555                  */
  556                 rv = vm_map_fixed(map, NULL, 0, start, end - start,
  557                     prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
  558                 if (rv != KERN_SUCCESS)
  559                         return (rv);
  560                 if (object == NULL)
  561                         return (KERN_SUCCESS);
  562                 for (; start < end; start += sz) {
  563                         sf = vm_imgact_map_page(object, offset);
  564                         if (sf == NULL)
  565                                 return (KERN_FAILURE);
  566                         off = offset - trunc_page(offset);
  567                         sz = end - start;
  568                         if (sz > PAGE_SIZE - off)
  569                                 sz = PAGE_SIZE - off;
  570                         error = copyout((caddr_t)sf_buf_kva(sf) + off,
  571                             (caddr_t)start, sz);
  572                         vm_imgact_unmap_page(sf);
  573                         if (error != 0)
  574                                 return (KERN_FAILURE);
  575                         offset += sz;
  576                 }
  577         } else {
  578                 vm_object_reference(object);
  579                 rv = vm_map_fixed(map, object, offset, start, end - start,
  580                     prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
  581                     (object != NULL ? MAP_VN_EXEC : 0));
  582                 if (rv != KERN_SUCCESS) {
  583                         locked = VOP_ISLOCKED(imgp->vp);
  584                         VOP_UNLOCK(imgp->vp);
  585                         vm_object_deallocate(object);
  586                         vn_lock(imgp->vp, locked | LK_RETRY);
  587                         return (rv);
  588                 } else if (object != NULL) {
  589                         MPASS(imgp->vp->v_object == object);
  590                         VOP_SET_TEXT_CHECKED(imgp->vp);
  591                 }
  592         }
  593         return (KERN_SUCCESS);
  594 }
  595 
  596 static int
  597 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
  598     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
  599 {
  600         struct sf_buf *sf;
  601         size_t map_len;
  602         vm_map_t map;
  603         vm_object_t object;
  604         vm_offset_t map_addr;
  605         int error, rv, cow;
  606         size_t copy_len;
  607         vm_ooffset_t file_addr;
  608 
  609         /*
  610          * It's necessary to fail if the filsz + offset taken from the
  611          * header is greater than the actual file pager object's size.
  612          * If we were to allow this, then the vm_map_find() below would
  613          * walk right off the end of the file object and into the ether.
  614          *
  615          * While I'm here, might as well check for something else that
  616          * is invalid: filsz cannot be greater than memsz.
  617          */
  618         if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
  619             filsz > memsz) {
  620                 uprintf("elf_load_section: truncated ELF file\n");
  621                 return (ENOEXEC);
  622         }
  623 
  624         object = imgp->object;
  625         map = &imgp->proc->p_vmspace->vm_map;
  626         map_addr = trunc_page((vm_offset_t)vmaddr);
  627         file_addr = trunc_page(offset);
  628 
  629         /*
  630          * We have two choices.  We can either clear the data in the last page
  631          * of an oversized mapping, or we can start the anon mapping a page
  632          * early and copy the initialized data into that first page.  We
  633          * choose the second.
  634          */
  635         if (filsz == 0)
  636                 map_len = 0;
  637         else if (memsz > filsz)
  638                 map_len = trunc_page(offset + filsz) - file_addr;
  639         else
  640                 map_len = round_page(offset + filsz) - file_addr;
  641 
  642         if (map_len != 0) {
  643                 /* cow flags: don't dump readonly sections in core */
  644                 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
  645                     (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
  646 
  647                 rv = __elfN(map_insert)(imgp, map, object, file_addr,
  648                     map_addr, map_addr + map_len, prot, cow);
  649                 if (rv != KERN_SUCCESS)
  650                         return (EINVAL);
  651 
  652                 /* we can stop now if we've covered it all */
  653                 if (memsz == filsz)
  654                         return (0);
  655         }
  656 
  657         /*
  658          * We have to get the remaining bit of the file into the first part
  659          * of the oversized map segment.  This is normally because the .data
  660          * segment in the file is extended to provide bss.  It's a neat idea
  661          * to try and save a page, but it's a pain in the behind to implement.
  662          */
  663         copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
  664             filsz);
  665         map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
  666         map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
  667 
  668         /* This had damn well better be true! */
  669         if (map_len != 0) {
  670                 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
  671                     map_addr + map_len, prot, 0);
  672                 if (rv != KERN_SUCCESS)
  673                         return (EINVAL);
  674         }
  675 
  676         if (copy_len != 0) {
  677                 sf = vm_imgact_map_page(object, offset + filsz);
  678                 if (sf == NULL)
  679                         return (EIO);
  680 
  681                 /* send the page fragment to user space */
  682                 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
  683                     copy_len);
  684                 vm_imgact_unmap_page(sf);
  685                 if (error != 0)
  686                         return (error);
  687         }
  688 
  689         /*
  690          * Remove write access to the page if it was only granted by map_insert
  691          * to allow copyout.
  692          */
  693         if ((prot & VM_PROT_WRITE) == 0)
  694                 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
  695                     map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
  696 
  697         return (0);
  698 }
  699 
  700 static int
  701 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
  702     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
  703 {
  704         vm_prot_t prot;
  705         u_long base_addr;
  706         bool first;
  707         int error, i;
  708 
  709         ASSERT_VOP_LOCKED(imgp->vp, __func__);
  710 
  711         base_addr = 0;
  712         first = true;
  713 
  714         for (i = 0; i < hdr->e_phnum; i++) {
  715                 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
  716                         continue;
  717 
  718                 /* Loadable segment */
  719                 prot = __elfN(trans_prot)(phdr[i].p_flags);
  720                 error = __elfN(load_section)(imgp, phdr[i].p_offset,
  721                     (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
  722                     phdr[i].p_memsz, phdr[i].p_filesz, prot);
  723                 if (error != 0)
  724                         return (error);
  725 
  726                 /*
  727                  * Establish the base address if this is the first segment.
  728                  */
  729                 if (first) {
  730                         base_addr = trunc_page(phdr[i].p_vaddr + rbase);
  731                         first = false;
  732                 }
  733         }
  734 
  735         if (base_addrp != NULL)
  736                 *base_addrp = base_addr;
  737 
  738         return (0);
  739 }
  740 
  741 /*
  742  * Load the file "file" into memory.  It may be either a shared object
  743  * or an executable.
  744  *
  745  * The "addr" reference parameter is in/out.  On entry, it specifies
  746  * the address where a shared object should be loaded.  If the file is
  747  * an executable, this value is ignored.  On exit, "addr" specifies
  748  * where the file was actually loaded.
  749  *
  750  * The "entry" reference parameter is out only.  On exit, it specifies
  751  * the entry point for the loaded file.
  752  */
  753 static int
  754 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
  755         u_long *entry)
  756 {
  757         struct {
  758                 struct nameidata nd;
  759                 struct vattr attr;
  760                 struct image_params image_params;
  761         } *tempdata;
  762         const Elf_Ehdr *hdr = NULL;
  763         const Elf_Phdr *phdr = NULL;
  764         struct nameidata *nd;
  765         struct vattr *attr;
  766         struct image_params *imgp;
  767         u_long rbase;
  768         u_long base_addr = 0;
  769         int error;
  770 
  771 #ifdef CAPABILITY_MODE
  772         /*
  773          * XXXJA: This check can go away once we are sufficiently confident
  774          * that the checks in namei() are correct.
  775          */
  776         if (IN_CAPABILITY_MODE(curthread))
  777                 return (ECAPMODE);
  778 #endif
  779 
  780         tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
  781         nd = &tempdata->nd;
  782         attr = &tempdata->attr;
  783         imgp = &tempdata->image_params;
  784 
  785         /*
  786          * Initialize part of the common data
  787          */
  788         imgp->proc = p;
  789         imgp->attr = attr;
  790 
  791         NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
  792             UIO_SYSSPACE, file, curthread);
  793         if ((error = namei(nd)) != 0) {
  794                 nd->ni_vp = NULL;
  795                 goto fail;
  796         }
  797         NDFREE(nd, NDF_ONLY_PNBUF);
  798         imgp->vp = nd->ni_vp;
  799 
  800         /*
  801          * Check permissions, modes, uid, etc on the file, and "open" it.
  802          */
  803         error = exec_check_permissions(imgp);
  804         if (error)
  805                 goto fail;
  806 
  807         error = exec_map_first_page(imgp);
  808         if (error)
  809                 goto fail;
  810 
  811         imgp->object = nd->ni_vp->v_object;
  812 
  813         hdr = (const Elf_Ehdr *)imgp->image_header;
  814         if ((error = __elfN(check_header)(hdr)) != 0)
  815                 goto fail;
  816         if (hdr->e_type == ET_DYN)
  817                 rbase = *addr;
  818         else if (hdr->e_type == ET_EXEC)
  819                 rbase = 0;
  820         else {
  821                 error = ENOEXEC;
  822                 goto fail;
  823         }
  824 
  825         /* Only support headers that fit within first page for now      */
  826         if (!__elfN(phdr_in_zero_page)(hdr)) {
  827                 error = ENOEXEC;
  828                 goto fail;
  829         }
  830 
  831         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
  832         if (!aligned(phdr, Elf_Addr)) {
  833                 error = ENOEXEC;
  834                 goto fail;
  835         }
  836 
  837         error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
  838         if (error != 0)
  839                 goto fail;
  840 
  841         *addr = base_addr;
  842         *entry = (unsigned long)hdr->e_entry + rbase;
  843 
  844 fail:
  845         if (imgp->firstpage)
  846                 exec_unmap_first_page(imgp);
  847 
  848         if (nd->ni_vp) {
  849                 if (imgp->textset)
  850                         VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
  851                 vput(nd->ni_vp);
  852         }
  853         free(tempdata, M_TEMP);
  854 
  855         return (error);
  856 }
  857 
  858 static u_long
  859 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
  860     u_int align)
  861 {
  862         u_long rbase, res;
  863 
  864         MPASS(vm_map_min(map) <= minv);
  865         MPASS(maxv <= vm_map_max(map));
  866         MPASS(minv < maxv);
  867         MPASS(minv + align < maxv);
  868         arc4rand(&rbase, sizeof(rbase), 0);
  869         res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
  870         res &= ~((u_long)align - 1);
  871         if (res >= maxv)
  872                 res -= align;
  873         KASSERT(res >= minv,
  874             ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
  875             res, minv, maxv, rbase));
  876         KASSERT(res < maxv,
  877             ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
  878             res, maxv, minv, rbase));
  879         return (res);
  880 }
  881 
  882 static int
  883 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
  884     const Elf_Phdr *phdr, u_long et_dyn_addr)
  885 {
  886         struct vmspace *vmspace;
  887         const char *err_str;
  888         u_long text_size, data_size, total_size, text_addr, data_addr;
  889         u_long seg_size, seg_addr;
  890         int i;
  891 
  892         err_str = NULL;
  893         text_size = data_size = total_size = text_addr = data_addr = 0;
  894 
  895         for (i = 0; i < hdr->e_phnum; i++) {
  896                 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
  897                         continue;
  898 
  899                 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
  900                 seg_size = round_page(phdr[i].p_memsz +
  901                     phdr[i].p_vaddr + et_dyn_addr - seg_addr);
  902 
  903                 /*
  904                  * Make the largest executable segment the official
  905                  * text segment and all others data.
  906                  *
  907                  * Note that obreak() assumes that data_addr + data_size == end
  908                  * of data load area, and the ELF file format expects segments
  909                  * to be sorted by address.  If multiple data segments exist,
  910                  * the last one will be used.
  911                  */
  912 
  913                 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
  914                         text_size = seg_size;
  915                         text_addr = seg_addr;
  916                 } else {
  917                         data_size = seg_size;
  918                         data_addr = seg_addr;
  919                 }
  920                 total_size += seg_size;
  921         }
  922 
  923         if (data_addr == 0 && data_size == 0) {
  924                 data_addr = text_addr;
  925                 data_size = text_size;
  926         }
  927 
  928         /*
  929          * Check limits.  It should be safe to check the
  930          * limits after loading the segments since we do
  931          * not actually fault in all the segments pages.
  932          */
  933         PROC_LOCK(imgp->proc);
  934         if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
  935                 err_str = "Data segment size exceeds process limit";
  936         else if (text_size > maxtsiz)
  937                 err_str = "Text segment size exceeds system limit";
  938         else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
  939                 err_str = "Total segment size exceeds process limit";
  940         else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
  941                 err_str = "Data segment size exceeds resource limit";
  942         else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
  943                 err_str = "Total segment size exceeds resource limit";
  944         PROC_UNLOCK(imgp->proc);
  945         if (err_str != NULL) {
  946                 uprintf("%s\n", err_str);
  947                 return (ENOMEM);
  948         }
  949 
  950         vmspace = imgp->proc->p_vmspace;
  951         vmspace->vm_tsize = text_size >> PAGE_SHIFT;
  952         vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
  953         vmspace->vm_dsize = data_size >> PAGE_SHIFT;
  954         vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
  955 
  956         return (0);
  957 }
  958 
  959 static int
  960 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
  961     char **interpp, bool *free_interpp)
  962 {
  963         struct thread *td;
  964         char *interp;
  965         int error, interp_name_len;
  966 
  967         KASSERT(phdr->p_type == PT_INTERP,
  968             ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
  969         ASSERT_VOP_LOCKED(imgp->vp, __func__);
  970 
  971         td = curthread;
  972 
  973         /* Path to interpreter */
  974         if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
  975                 uprintf("Invalid PT_INTERP\n");
  976                 return (ENOEXEC);
  977         }
  978 
  979         interp_name_len = phdr->p_filesz;
  980         if (phdr->p_offset > PAGE_SIZE ||
  981             interp_name_len > PAGE_SIZE - phdr->p_offset) {
  982                 /*
  983                  * The vnode lock might be needed by the pagedaemon to
  984                  * clean pages owned by the vnode.  Do not allow sleep
  985                  * waiting for memory with the vnode locked, instead
  986                  * try non-sleepable allocation first, and if it
  987                  * fails, go to the slow path were we drop the lock
  988                  * and do M_WAITOK.  A text reference prevents
  989                  * modifications to the vnode content.
  990                  */
  991                 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
  992                 if (interp == NULL) {
  993                         VOP_UNLOCK(imgp->vp);
  994                         interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
  995                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  996                 }
  997 
  998                 error = vn_rdwr(UIO_READ, imgp->vp, interp,
  999                     interp_name_len, phdr->p_offset,
 1000                     UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
 1001                     NOCRED, NULL, td);
 1002                 if (error != 0) {
 1003                         free(interp, M_TEMP);
 1004                         uprintf("i/o error PT_INTERP %d\n", error);
 1005                         return (error);
 1006                 }
 1007                 interp[interp_name_len] = '\0';
 1008 
 1009                 *interpp = interp;
 1010                 *free_interpp = true;
 1011                 return (0);
 1012         }
 1013 
 1014         interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
 1015         if (interp[interp_name_len - 1] != '\0') {
 1016                 uprintf("Invalid PT_INTERP\n");
 1017                 return (ENOEXEC);
 1018         }
 1019 
 1020         *interpp = interp;
 1021         *free_interpp = false;
 1022         return (0);
 1023 }
 1024 
 1025 static int
 1026 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
 1027     const char *interp, u_long *addr, u_long *entry)
 1028 {
 1029         char *path;
 1030         int error;
 1031 
 1032         if (brand_info->emul_path != NULL &&
 1033             brand_info->emul_path[0] != '\0') {
 1034                 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 1035                 snprintf(path, MAXPATHLEN, "%s%s",
 1036                     brand_info->emul_path, interp);
 1037                 error = __elfN(load_file)(imgp->proc, path, addr, entry);
 1038                 free(path, M_TEMP);
 1039                 if (error == 0)
 1040                         return (0);
 1041         }
 1042 
 1043         if (brand_info->interp_newpath != NULL &&
 1044             (brand_info->interp_path == NULL ||
 1045             strcmp(interp, brand_info->interp_path) == 0)) {
 1046                 error = __elfN(load_file)(imgp->proc,
 1047                     brand_info->interp_newpath, addr, entry);
 1048                 if (error == 0)
 1049                         return (0);
 1050         }
 1051 
 1052         error = __elfN(load_file)(imgp->proc, interp, addr, entry);
 1053         if (error == 0)
 1054                 return (0);
 1055 
 1056         uprintf("ELF interpreter %s not found, error %d\n", interp, error);
 1057         return (error);
 1058 }
 1059 
 1060 /*
 1061  * Impossible et_dyn_addr initial value indicating that the real base
 1062  * must be calculated later with some randomization applied.
 1063  */
 1064 #define ET_DYN_ADDR_RAND        1
 1065 
 1066 static int
 1067 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
 1068 {
 1069         struct thread *td;
 1070         const Elf_Ehdr *hdr;
 1071         const Elf_Phdr *phdr;
 1072         Elf_Auxargs *elf_auxargs;
 1073         struct vmspace *vmspace;
 1074         vm_map_t map;
 1075         char *interp;
 1076         Elf_Brandinfo *brand_info;
 1077         struct sysentvec *sv;
 1078         u_long addr, baddr, et_dyn_addr, entry, proghdr;
 1079         u_long maxalign, mapsz, maxv, maxv1;
 1080         uint32_t fctl0;
 1081         int32_t osrel;
 1082         bool free_interp;
 1083         int error, i, n;
 1084 
 1085         hdr = (const Elf_Ehdr *)imgp->image_header;
 1086 
 1087         /*
 1088          * Do we have a valid ELF header ?
 1089          *
 1090          * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
 1091          * if particular brand doesn't support it.
 1092          */
 1093         if (__elfN(check_header)(hdr) != 0 ||
 1094             (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
 1095                 return (-1);
 1096 
 1097         /*
 1098          * From here on down, we return an errno, not -1, as we've
 1099          * detected an ELF file.
 1100          */
 1101 
 1102         if (!__elfN(phdr_in_zero_page)(hdr)) {
 1103                 uprintf("Program headers not in the first page\n");
 1104                 return (ENOEXEC);
 1105         }
 1106         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 
 1107         if (!aligned(phdr, Elf_Addr)) {
 1108                 uprintf("Unaligned program headers\n");
 1109                 return (ENOEXEC);
 1110         }
 1111 
 1112         n = error = 0;
 1113         baddr = 0;
 1114         osrel = 0;
 1115         fctl0 = 0;
 1116         entry = proghdr = 0;
 1117         interp = NULL;
 1118         free_interp = false;
 1119         td = curthread;
 1120         maxalign = PAGE_SIZE;
 1121         mapsz = 0;
 1122 
 1123         for (i = 0; i < hdr->e_phnum; i++) {
 1124                 switch (phdr[i].p_type) {
 1125                 case PT_LOAD:
 1126                         if (n == 0)
 1127                                 baddr = phdr[i].p_vaddr;
 1128                         if (phdr[i].p_align > maxalign)
 1129                                 maxalign = phdr[i].p_align;
 1130                         mapsz += phdr[i].p_memsz;
 1131                         n++;
 1132 
 1133                         /*
 1134                          * If this segment contains the program headers,
 1135                          * remember their virtual address for the AT_PHDR
 1136                          * aux entry. Static binaries don't usually include
 1137                          * a PT_PHDR entry.
 1138                          */
 1139                         if (phdr[i].p_offset == 0 &&
 1140                             hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
 1141                                 <= phdr[i].p_filesz)
 1142                                 proghdr = phdr[i].p_vaddr + hdr->e_phoff;
 1143                         break;
 1144                 case PT_INTERP:
 1145                         /* Path to interpreter */
 1146                         if (interp != NULL) {
 1147                                 uprintf("Multiple PT_INTERP headers\n");
 1148                                 error = ENOEXEC;
 1149                                 goto ret;
 1150                         }
 1151                         error = __elfN(get_interp)(imgp, &phdr[i], &interp,
 1152                             &free_interp);
 1153                         if (error != 0)
 1154                                 goto ret;
 1155                         break;
 1156                 case PT_GNU_STACK:
 1157                         if (__elfN(nxstack))
 1158                                 imgp->stack_prot =
 1159                                     __elfN(trans_prot)(phdr[i].p_flags);
 1160                         imgp->stack_sz = phdr[i].p_memsz;
 1161                         break;
 1162                 case PT_PHDR:   /* Program header table info */
 1163                         proghdr = phdr[i].p_vaddr;
 1164                         break;
 1165                 }
 1166         }
 1167 
 1168         brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
 1169         if (brand_info == NULL) {
 1170                 uprintf("ELF binary type \"%u\" not known.\n",
 1171                     hdr->e_ident[EI_OSABI]);
 1172                 error = ENOEXEC;
 1173                 goto ret;
 1174         }
 1175         sv = brand_info->sysvec;
 1176         et_dyn_addr = 0;
 1177         if (hdr->e_type == ET_DYN) {
 1178                 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
 1179                         uprintf("Cannot execute shared object\n");
 1180                         error = ENOEXEC;
 1181                         goto ret;
 1182                 }
 1183                 /*
 1184                  * Honour the base load address from the dso if it is
 1185                  * non-zero for some reason.
 1186                  */
 1187                 if (baddr == 0) {
 1188                         if ((sv->sv_flags & SV_ASLR) == 0 ||
 1189                             (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
 1190                                 et_dyn_addr = __elfN(pie_base);
 1191                         else if ((__elfN(pie_aslr_enabled) &&
 1192                             (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
 1193                             (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
 1194                                 et_dyn_addr = ET_DYN_ADDR_RAND;
 1195                         else
 1196                                 et_dyn_addr = __elfN(pie_base);
 1197                 }
 1198         }
 1199 
 1200         /*
 1201          * Avoid a possible deadlock if the current address space is destroyed
 1202          * and that address space maps the locked vnode.  In the common case,
 1203          * the locked vnode's v_usecount is decremented but remains greater
 1204          * than zero.  Consequently, the vnode lock is not needed by vrele().
 1205          * However, in cases where the vnode lock is external, such as nullfs,
 1206          * v_usecount may become zero.
 1207          *
 1208          * The VV_TEXT flag prevents modifications to the executable while
 1209          * the vnode is unlocked.
 1210          */
 1211         VOP_UNLOCK(imgp->vp);
 1212 
 1213         /*
 1214          * Decide whether to enable randomization of user mappings.
 1215          * First, reset user preferences for the setid binaries.
 1216          * Then, account for the support of the randomization by the
 1217          * ABI, by user preferences, and make special treatment for
 1218          * PIE binaries.
 1219          */
 1220         if (imgp->credential_setid) {
 1221                 PROC_LOCK(imgp->proc);
 1222                 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
 1223                 PROC_UNLOCK(imgp->proc);
 1224         }
 1225         if ((sv->sv_flags & SV_ASLR) == 0 ||
 1226             (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
 1227             (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
 1228                 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
 1229                     ("et_dyn_addr == RAND and !ASLR"));
 1230         } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
 1231             (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
 1232             et_dyn_addr == ET_DYN_ADDR_RAND) {
 1233                 imgp->map_flags |= MAP_ASLR;
 1234                 /*
 1235                  * If user does not care about sbrk, utilize the bss
 1236                  * grow region for mappings as well.  We can select
 1237                  * the base for the image anywere and still not suffer
 1238                  * from the fragmentation.
 1239                  */
 1240                 if (!__elfN(aslr_honor_sbrk) ||
 1241                     (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
 1242                         imgp->map_flags |= MAP_ASLR_IGNSTART;
 1243         }
 1244 
 1245         if (!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0)
 1246                 imgp->map_flags |= MAP_WXORX;
 1247 
 1248         error = exec_new_vmspace(imgp, sv);
 1249         vmspace = imgp->proc->p_vmspace;
 1250         map = &vmspace->vm_map;
 1251 
 1252         imgp->proc->p_sysent = sv;
 1253 
 1254         maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
 1255         if (et_dyn_addr == ET_DYN_ADDR_RAND) {
 1256                 KASSERT((map->flags & MAP_ASLR) != 0,
 1257                     ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
 1258                 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
 1259                     vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
 1260                     /* reserve half of the address space to interpreter */
 1261                     maxv / 2, 1UL << flsl(maxalign));
 1262         }
 1263 
 1264         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1265         if (error != 0)
 1266                 goto ret;
 1267 
 1268         error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
 1269         if (error != 0)
 1270                 goto ret;
 1271 
 1272         error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
 1273         if (error != 0)
 1274                 goto ret;
 1275 
 1276         entry = (u_long)hdr->e_entry + et_dyn_addr;
 1277 
 1278         /*
 1279          * We load the dynamic linker where a userland call
 1280          * to mmap(0, ...) would put it.  The rationale behind this
 1281          * calculation is that it leaves room for the heap to grow to
 1282          * its maximum allowed size.
 1283          */
 1284         addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
 1285             RLIMIT_DATA));
 1286         if ((map->flags & MAP_ASLR) != 0) {
 1287                 maxv1 = maxv / 2 + addr / 2;
 1288                 MPASS(maxv1 >= addr);   /* No overflow */
 1289                 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
 1290                     MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]);
 1291         } else {
 1292                 map->anon_loc = addr;
 1293         }
 1294 
 1295         imgp->entry_addr = entry;
 1296 
 1297         if (interp != NULL) {
 1298                 VOP_UNLOCK(imgp->vp);
 1299                 if ((map->flags & MAP_ASLR) != 0) {
 1300                         /* Assume that interpeter fits into 1/4 of AS */
 1301                         maxv1 = maxv / 2 + addr / 2;
 1302                         MPASS(maxv1 >= addr);   /* No overflow */
 1303                         addr = __CONCAT(rnd_, __elfN(base))(map, addr,
 1304                             maxv1, PAGE_SIZE);
 1305                 }
 1306                 error = __elfN(load_interp)(imgp, brand_info, interp, &addr,
 1307                     &imgp->entry_addr);
 1308                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1309                 if (error != 0)
 1310                         goto ret;
 1311         } else
 1312                 addr = et_dyn_addr;
 1313 
 1314         /*
 1315          * Construct auxargs table (used by the copyout_auxargs routine)
 1316          */
 1317         elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
 1318         if (elf_auxargs == NULL) {
 1319                 VOP_UNLOCK(imgp->vp);
 1320                 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
 1321                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1322         }
 1323         elf_auxargs->execfd = -1;
 1324         elf_auxargs->phdr = proghdr + et_dyn_addr;
 1325         elf_auxargs->phent = hdr->e_phentsize;
 1326         elf_auxargs->phnum = hdr->e_phnum;
 1327         elf_auxargs->pagesz = PAGE_SIZE;
 1328         elf_auxargs->base = addr;
 1329         elf_auxargs->flags = 0;
 1330         elf_auxargs->entry = entry;
 1331         elf_auxargs->hdr_eflags = hdr->e_flags;
 1332 
 1333         imgp->auxargs = elf_auxargs;
 1334         imgp->interpreted = 0;
 1335         imgp->reloc_base = addr;
 1336         imgp->proc->p_osrel = osrel;
 1337         imgp->proc->p_fctl0 = fctl0;
 1338         imgp->proc->p_elf_machine = hdr->e_machine;
 1339         imgp->proc->p_elf_flags = hdr->e_flags;
 1340 
 1341 ret:
 1342         if (free_interp)
 1343                 free(interp, M_TEMP);
 1344         return (error);
 1345 }
 1346 
 1347 #define suword __CONCAT(suword, __ELF_WORD_SIZE)
 1348 
 1349 int
 1350 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
 1351 {
 1352         Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
 1353         Elf_Auxinfo *argarray, *pos;
 1354         int error;
 1355 
 1356         argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
 1357             M_WAITOK | M_ZERO);
 1358 
 1359         if (args->execfd != -1)
 1360                 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
 1361         AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
 1362         AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
 1363         AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
 1364         AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
 1365         AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
 1366         AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
 1367         AUXARGS_ENTRY(pos, AT_BASE, args->base);
 1368         AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
 1369         if (imgp->execpathp != 0)
 1370                 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
 1371         AUXARGS_ENTRY(pos, AT_OSRELDATE,
 1372             imgp->proc->p_ucred->cr_prison->pr_osreldate);
 1373         if (imgp->canary != 0) {
 1374                 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
 1375                 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
 1376         }
 1377         AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
 1378         if (imgp->pagesizes != 0) {
 1379                 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
 1380                 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
 1381         }
 1382         if (imgp->sysent->sv_timekeep_base != 0) {
 1383                 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
 1384                     imgp->sysent->sv_timekeep_base);
 1385         }
 1386         AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
 1387             != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
 1388             imgp->sysent->sv_stackprot);
 1389         if (imgp->sysent->sv_hwcap != NULL)
 1390                 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
 1391         if (imgp->sysent->sv_hwcap2 != NULL)
 1392                 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
 1393         AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
 1394             ELF_BSDF_SIGFASTBLK : 0);
 1395         AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
 1396         AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
 1397         AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
 1398         AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
 1399         AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
 1400         if (imgp->sysent->sv_fxrng_gen_base != 0)
 1401                 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base);
 1402         AUXARGS_ENTRY(pos, AT_NULL, 0);
 1403 
 1404         free(imgp->auxargs, M_TEMP);
 1405         imgp->auxargs = NULL;
 1406         KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
 1407 
 1408         error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
 1409         free(argarray, M_TEMP);
 1410         return (error);
 1411 }
 1412 
 1413 int
 1414 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
 1415 {
 1416         Elf_Addr *base;
 1417 
 1418         base = (Elf_Addr *)*stack_base;
 1419         base--;
 1420         if (suword(base, imgp->args->argc) == -1)
 1421                 return (EFAULT);
 1422         *stack_base = (uintptr_t)base;
 1423         return (0);
 1424 }
 1425 
 1426 /*
 1427  * Code for generating ELF core dumps.
 1428  */
 1429 
 1430 typedef void (*segment_callback)(vm_map_entry_t, void *);
 1431 
 1432 /* Closure for cb_put_phdr(). */
 1433 struct phdr_closure {
 1434         Elf_Phdr *phdr;         /* Program header to fill in */
 1435         Elf_Off offset;         /* Offset of segment in core file */
 1436 };
 1437 
 1438 /* Closure for cb_size_segment(). */
 1439 struct sseg_closure {
 1440         int count;              /* Count of writable segments. */
 1441         size_t size;            /* Total size of all writable segments. */
 1442 };
 1443 
 1444 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
 1445 
 1446 struct note_info {
 1447         int             type;           /* Note type. */
 1448         outfunc_t       outfunc;        /* Output function. */
 1449         void            *outarg;        /* Argument for the output function. */
 1450         size_t          outsize;        /* Output size. */
 1451         TAILQ_ENTRY(note_info) link;    /* Link to the next note info. */
 1452 };
 1453 
 1454 TAILQ_HEAD(note_info_list, note_info);
 1455 
 1456 /* Coredump output parameters. */
 1457 struct coredump_params {
 1458         off_t           offset;
 1459         struct ucred    *active_cred;
 1460         struct ucred    *file_cred;
 1461         struct thread   *td;
 1462         struct vnode    *vp;
 1463         struct compressor *comp;
 1464 };
 1465 
 1466 extern int compress_user_cores;
 1467 extern int compress_user_cores_level;
 1468 
 1469 static void cb_put_phdr(vm_map_entry_t, void *);
 1470 static void cb_size_segment(vm_map_entry_t, void *);
 1471 static int core_write(struct coredump_params *, const void *, size_t, off_t,
 1472     enum uio_seg, size_t *);
 1473 static void each_dumpable_segment(struct thread *, segment_callback, void *);
 1474 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
 1475     struct note_info_list *, size_t);
 1476 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
 1477     size_t *);
 1478 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
 1479 static void __elfN(putnote)(struct note_info *, struct sbuf *);
 1480 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
 1481 static int sbuf_drain_core_output(void *, const char *, int);
 1482 
 1483 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
 1484 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
 1485 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
 1486 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
 1487 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
 1488 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
 1489 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
 1490 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
 1491 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
 1492 static void note_procstat_files(void *, struct sbuf *, size_t *);
 1493 static void note_procstat_groups(void *, struct sbuf *, size_t *);
 1494 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
 1495 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
 1496 static void note_procstat_umask(void *, struct sbuf *, size_t *);
 1497 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
 1498 
 1499 /*
 1500  * Write out a core segment to the compression stream.
 1501  */
 1502 static int
 1503 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
 1504 {
 1505         u_int chunk_len;
 1506         int error;
 1507 
 1508         while (len > 0) {
 1509                 chunk_len = MIN(len, CORE_BUF_SIZE);
 1510 
 1511                 /*
 1512                  * We can get EFAULT error here.
 1513                  * In that case zero out the current chunk of the segment.
 1514                  */
 1515                 error = copyin(base, buf, chunk_len);
 1516                 if (error != 0)
 1517                         bzero(buf, chunk_len);
 1518                 error = compressor_write(p->comp, buf, chunk_len);
 1519                 if (error != 0)
 1520                         break;
 1521                 base += chunk_len;
 1522                 len -= chunk_len;
 1523         }
 1524         return (error);
 1525 }
 1526 
 1527 static int
 1528 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
 1529 {
 1530 
 1531         return (core_write((struct coredump_params *)arg, base, len, offset,
 1532             UIO_SYSSPACE, NULL));
 1533 }
 1534 
 1535 static int
 1536 core_write(struct coredump_params *p, const void *base, size_t len,
 1537     off_t offset, enum uio_seg seg, size_t *resid)
 1538 {
 1539 
 1540         return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
 1541             len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
 1542             p->active_cred, p->file_cred, resid, p->td));
 1543 }
 1544 
 1545 static int
 1546 core_output(char *base, size_t len, off_t offset, struct coredump_params *p,
 1547     void *tmpbuf)
 1548 {
 1549         vm_map_t map;
 1550         struct mount *mp;
 1551         size_t resid, runlen;
 1552         int error;
 1553         bool success;
 1554 
 1555         KASSERT((uintptr_t)base % PAGE_SIZE == 0,
 1556             ("%s: user address %p is not page-aligned", __func__, base));
 1557 
 1558         if (p->comp != NULL)
 1559                 return (compress_chunk(p, base, tmpbuf, len));
 1560 
 1561         map = &p->td->td_proc->p_vmspace->vm_map;
 1562         for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
 1563                 /*
 1564                  * Attempt to page in all virtual pages in the range.  If a
 1565                  * virtual page is not backed by the pager, it is represented as
 1566                  * a hole in the file.  This can occur with zero-filled
 1567                  * anonymous memory or truncated files, for example.
 1568                  */
 1569                 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
 1570                         error = vm_fault(map, (uintptr_t)base + runlen,
 1571                             VM_PROT_READ, VM_FAULT_NOFILL, NULL);
 1572                         if (runlen == 0)
 1573                                 success = error == KERN_SUCCESS;
 1574                         else if ((error == KERN_SUCCESS) != success)
 1575                                 break;
 1576                 }
 1577 
 1578                 if (success) {
 1579                         error = core_write(p, base, runlen, offset,
 1580                             UIO_USERSPACE, &resid);
 1581                         if (error != 0) {
 1582                                 if (error != EFAULT)
 1583                                         break;
 1584 
 1585                                 /*
 1586                                  * EFAULT may be returned if the user mapping
 1587                                  * could not be accessed, e.g., because a mapped
 1588                                  * file has been truncated.  Skip the page if no
 1589                                  * progress was made, to protect against a
 1590                                  * hypothetical scenario where vm_fault() was
 1591                                  * successful but core_write() returns EFAULT
 1592                                  * anyway.
 1593                                  */
 1594                                 runlen -= resid;
 1595                                 if (runlen == 0) {
 1596                                         success = false;
 1597                                         runlen = PAGE_SIZE;
 1598                                 }
 1599                         }
 1600                 }
 1601                 if (!success) {
 1602                         error = vn_start_write(p->vp, &mp, V_WAIT);
 1603                         if (error != 0)
 1604                                 break;
 1605                         vn_lock(p->vp, LK_EXCLUSIVE | LK_RETRY);
 1606                         error = vn_truncate_locked(p->vp, offset + runlen,
 1607                             false, p->td->td_ucred);
 1608                         VOP_UNLOCK(p->vp);
 1609                         vn_finished_write(mp);
 1610                         if (error != 0)
 1611                                 break;
 1612                 }
 1613         }
 1614         return (error);
 1615 }
 1616 
 1617 /*
 1618  * Drain into a core file.
 1619  */
 1620 static int
 1621 sbuf_drain_core_output(void *arg, const char *data, int len)
 1622 {
 1623         struct coredump_params *p;
 1624         int error, locked;
 1625 
 1626         p = (struct coredump_params *)arg;
 1627 
 1628         /*
 1629          * Some kern_proc out routines that print to this sbuf may
 1630          * call us with the process lock held. Draining with the
 1631          * non-sleepable lock held is unsafe. The lock is needed for
 1632          * those routines when dumping a live process. In our case we
 1633          * can safely release the lock before draining and acquire
 1634          * again after.
 1635          */
 1636         locked = PROC_LOCKED(p->td->td_proc);
 1637         if (locked)
 1638                 PROC_UNLOCK(p->td->td_proc);
 1639         if (p->comp != NULL)
 1640                 error = compressor_write(p->comp, __DECONST(char *, data), len);
 1641         else
 1642                 error = core_write(p, __DECONST(void *, data), len, p->offset,
 1643                     UIO_SYSSPACE, NULL);
 1644         if (locked)
 1645                 PROC_LOCK(p->td->td_proc);
 1646         if (error != 0)
 1647                 return (-error);
 1648         p->offset += len;
 1649         return (len);
 1650 }
 1651 
 1652 int
 1653 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
 1654 {
 1655         struct ucred *cred = td->td_ucred;
 1656         int error = 0;
 1657         struct sseg_closure seginfo;
 1658         struct note_info_list notelst;
 1659         struct coredump_params params;
 1660         struct note_info *ninfo;
 1661         void *hdr, *tmpbuf;
 1662         size_t hdrsize, notesz, coresize;
 1663 
 1664         hdr = NULL;
 1665         tmpbuf = NULL;
 1666         TAILQ_INIT(&notelst);
 1667 
 1668         /* Size the program segments. */
 1669         seginfo.count = 0;
 1670         seginfo.size = 0;
 1671         each_dumpable_segment(td, cb_size_segment, &seginfo);
 1672 
 1673         /*
 1674          * Collect info about the core file header area.
 1675          */
 1676         hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
 1677         if (seginfo.count + 1 >= PN_XNUM)
 1678                 hdrsize += sizeof(Elf_Shdr);
 1679         __elfN(prepare_notes)(td, &notelst, &notesz);
 1680         coresize = round_page(hdrsize + notesz) + seginfo.size;
 1681 
 1682         /* Set up core dump parameters. */
 1683         params.offset = 0;
 1684         params.active_cred = cred;
 1685         params.file_cred = NOCRED;
 1686         params.td = td;
 1687         params.vp = vp;
 1688         params.comp = NULL;
 1689 
 1690 #ifdef RACCT
 1691         if (racct_enable) {
 1692                 PROC_LOCK(td->td_proc);
 1693                 error = racct_add(td->td_proc, RACCT_CORE, coresize);
 1694                 PROC_UNLOCK(td->td_proc);
 1695                 if (error != 0) {
 1696                         error = EFAULT;
 1697                         goto done;
 1698                 }
 1699         }
 1700 #endif
 1701         if (coresize >= limit) {
 1702                 error = EFAULT;
 1703                 goto done;
 1704         }
 1705 
 1706         /* Create a compression stream if necessary. */
 1707         if (compress_user_cores != 0) {
 1708                 params.comp = compressor_init(core_compressed_write,
 1709                     compress_user_cores, CORE_BUF_SIZE,
 1710                     compress_user_cores_level, &params);
 1711                 if (params.comp == NULL) {
 1712                         error = EFAULT;
 1713                         goto done;
 1714                 }
 1715                 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
 1716         }
 1717 
 1718         /*
 1719          * Allocate memory for building the header, fill it up,
 1720          * and write it out following the notes.
 1721          */
 1722         hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
 1723         error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
 1724             notesz);
 1725 
 1726         /* Write the contents of all of the writable segments. */
 1727         if (error == 0) {
 1728                 Elf_Phdr *php;
 1729                 off_t offset;
 1730                 int i;
 1731 
 1732                 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
 1733                 offset = round_page(hdrsize + notesz);
 1734                 for (i = 0; i < seginfo.count; i++) {
 1735                         error = core_output((char *)(uintptr_t)php->p_vaddr,
 1736                             php->p_filesz, offset, &params, tmpbuf);
 1737                         if (error != 0)
 1738                                 break;
 1739                         offset += php->p_filesz;
 1740                         php++;
 1741                 }
 1742                 if (error == 0 && params.comp != NULL)
 1743                         error = compressor_flush(params.comp);
 1744         }
 1745         if (error) {
 1746                 log(LOG_WARNING,
 1747                     "Failed to write core file for process %s (error %d)\n",
 1748                     curproc->p_comm, error);
 1749         }
 1750 
 1751 done:
 1752         free(tmpbuf, M_TEMP);
 1753         if (params.comp != NULL)
 1754                 compressor_fini(params.comp);
 1755         while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
 1756                 TAILQ_REMOVE(&notelst, ninfo, link);
 1757                 free(ninfo, M_TEMP);
 1758         }
 1759         if (hdr != NULL)
 1760                 free(hdr, M_TEMP);
 1761 
 1762         return (error);
 1763 }
 1764 
 1765 /*
 1766  * A callback for each_dumpable_segment() to write out the segment's
 1767  * program header entry.
 1768  */
 1769 static void
 1770 cb_put_phdr(vm_map_entry_t entry, void *closure)
 1771 {
 1772         struct phdr_closure *phc = (struct phdr_closure *)closure;
 1773         Elf_Phdr *phdr = phc->phdr;
 1774 
 1775         phc->offset = round_page(phc->offset);
 1776 
 1777         phdr->p_type = PT_LOAD;
 1778         phdr->p_offset = phc->offset;
 1779         phdr->p_vaddr = entry->start;
 1780         phdr->p_paddr = 0;
 1781         phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
 1782         phdr->p_align = PAGE_SIZE;
 1783         phdr->p_flags = __elfN(untrans_prot)(entry->protection);
 1784 
 1785         phc->offset += phdr->p_filesz;
 1786         phc->phdr++;
 1787 }
 1788 
 1789 /*
 1790  * A callback for each_dumpable_segment() to gather information about
 1791  * the number of segments and their total size.
 1792  */
 1793 static void
 1794 cb_size_segment(vm_map_entry_t entry, void *closure)
 1795 {
 1796         struct sseg_closure *ssc = (struct sseg_closure *)closure;
 1797 
 1798         ssc->count++;
 1799         ssc->size += entry->end - entry->start;
 1800 }
 1801 
 1802 /*
 1803  * For each writable segment in the process's memory map, call the given
 1804  * function with a pointer to the map entry and some arbitrary
 1805  * caller-supplied data.
 1806  */
 1807 static void
 1808 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
 1809 {
 1810         struct proc *p = td->td_proc;
 1811         vm_map_t map = &p->p_vmspace->vm_map;
 1812         vm_map_entry_t entry;
 1813         vm_object_t backing_object, object;
 1814         bool ignore_entry;
 1815 
 1816         vm_map_lock_read(map);
 1817         VM_MAP_ENTRY_FOREACH(entry, map) {
 1818                 /*
 1819                  * Don't dump inaccessible mappings, deal with legacy
 1820                  * coredump mode.
 1821                  *
 1822                  * Note that read-only segments related to the elf binary
 1823                  * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
 1824                  * need to arbitrarily ignore such segments.
 1825                  */
 1826                 if (elf_legacy_coredump) {
 1827                         if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
 1828                                 continue;
 1829                 } else {
 1830                         if ((entry->protection & VM_PROT_ALL) == 0)
 1831                                 continue;
 1832                 }
 1833 
 1834                 /*
 1835                  * Dont include memory segment in the coredump if
 1836                  * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
 1837                  * madvise(2).  Do not dump submaps (i.e. parts of the
 1838                  * kernel map).
 1839                  */
 1840                 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
 1841                         continue;
 1842 
 1843                 if ((object = entry->object.vm_object) == NULL)
 1844                         continue;
 1845 
 1846                 /* Ignore memory-mapped devices and such things. */
 1847                 VM_OBJECT_RLOCK(object);
 1848                 while ((backing_object = object->backing_object) != NULL) {
 1849                         VM_OBJECT_RLOCK(backing_object);
 1850                         VM_OBJECT_RUNLOCK(object);
 1851                         object = backing_object;
 1852                 }
 1853                 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
 1854                 VM_OBJECT_RUNLOCK(object);
 1855                 if (ignore_entry)
 1856                         continue;
 1857 
 1858                 (*func)(entry, closure);
 1859         }
 1860         vm_map_unlock_read(map);
 1861 }
 1862 
 1863 /*
 1864  * Write the core file header to the file, including padding up to
 1865  * the page boundary.
 1866  */
 1867 static int
 1868 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
 1869     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
 1870 {
 1871         struct note_info *ninfo;
 1872         struct sbuf *sb;
 1873         int error;
 1874 
 1875         /* Fill in the header. */
 1876         bzero(hdr, hdrsize);
 1877         __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
 1878 
 1879         sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
 1880         sbuf_set_drain(sb, sbuf_drain_core_output, p);
 1881         sbuf_start_section(sb, NULL);
 1882         sbuf_bcat(sb, hdr, hdrsize);
 1883         TAILQ_FOREACH(ninfo, notelst, link)
 1884             __elfN(putnote)(ninfo, sb);
 1885         /* Align up to a page boundary for the program segments. */
 1886         sbuf_end_section(sb, -1, PAGE_SIZE, 0);
 1887         error = sbuf_finish(sb);
 1888         sbuf_delete(sb);
 1889 
 1890         return (error);
 1891 }
 1892 
 1893 static void
 1894 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
 1895     size_t *sizep)
 1896 {
 1897         struct proc *p;
 1898         struct thread *thr;
 1899         size_t size;
 1900 
 1901         p = td->td_proc;
 1902         size = 0;
 1903 
 1904         size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
 1905 
 1906         /*
 1907          * To have the debugger select the right thread (LWP) as the initial
 1908          * thread, we dump the state of the thread passed to us in td first.
 1909          * This is the thread that causes the core dump and thus likely to
 1910          * be the right thread one wants to have selected in the debugger.
 1911          */
 1912         thr = td;
 1913         while (thr != NULL) {
 1914                 size += register_note(list, NT_PRSTATUS,
 1915                     __elfN(note_prstatus), thr);
 1916                 size += register_note(list, NT_FPREGSET,
 1917                     __elfN(note_fpregset), thr);
 1918                 size += register_note(list, NT_THRMISC,
 1919                     __elfN(note_thrmisc), thr);
 1920                 size += register_note(list, NT_PTLWPINFO,
 1921                     __elfN(note_ptlwpinfo), thr);
 1922                 size += register_note(list, -1,
 1923                     __elfN(note_threadmd), thr);
 1924 
 1925                 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
 1926                     TAILQ_NEXT(thr, td_plist);
 1927                 if (thr == td)
 1928                         thr = TAILQ_NEXT(thr, td_plist);
 1929         }
 1930 
 1931         size += register_note(list, NT_PROCSTAT_PROC,
 1932             __elfN(note_procstat_proc), p);
 1933         size += register_note(list, NT_PROCSTAT_FILES,
 1934             note_procstat_files, p);
 1935         size += register_note(list, NT_PROCSTAT_VMMAP,
 1936             note_procstat_vmmap, p);
 1937         size += register_note(list, NT_PROCSTAT_GROUPS,
 1938             note_procstat_groups, p);
 1939         size += register_note(list, NT_PROCSTAT_UMASK,
 1940             note_procstat_umask, p);
 1941         size += register_note(list, NT_PROCSTAT_RLIMIT,
 1942             note_procstat_rlimit, p);
 1943         size += register_note(list, NT_PROCSTAT_OSREL,
 1944             note_procstat_osrel, p);
 1945         size += register_note(list, NT_PROCSTAT_PSSTRINGS,
 1946             __elfN(note_procstat_psstrings), p);
 1947         size += register_note(list, NT_PROCSTAT_AUXV,
 1948             __elfN(note_procstat_auxv), p);
 1949 
 1950         *sizep = size;
 1951 }
 1952 
 1953 static void
 1954 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
 1955     size_t notesz)
 1956 {
 1957         Elf_Ehdr *ehdr;
 1958         Elf_Phdr *phdr;
 1959         Elf_Shdr *shdr;
 1960         struct phdr_closure phc;
 1961 
 1962         ehdr = (Elf_Ehdr *)hdr;
 1963 
 1964         ehdr->e_ident[EI_MAG0] = ELFMAG0;
 1965         ehdr->e_ident[EI_MAG1] = ELFMAG1;
 1966         ehdr->e_ident[EI_MAG2] = ELFMAG2;
 1967         ehdr->e_ident[EI_MAG3] = ELFMAG3;
 1968         ehdr->e_ident[EI_CLASS] = ELF_CLASS;
 1969         ehdr->e_ident[EI_DATA] = ELF_DATA;
 1970         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 1971         ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
 1972         ehdr->e_ident[EI_ABIVERSION] = 0;
 1973         ehdr->e_ident[EI_PAD] = 0;
 1974         ehdr->e_type = ET_CORE;
 1975         ehdr->e_machine = td->td_proc->p_elf_machine;
 1976         ehdr->e_version = EV_CURRENT;
 1977         ehdr->e_entry = 0;
 1978         ehdr->e_phoff = sizeof(Elf_Ehdr);
 1979         ehdr->e_flags = td->td_proc->p_elf_flags;
 1980         ehdr->e_ehsize = sizeof(Elf_Ehdr);
 1981         ehdr->e_phentsize = sizeof(Elf_Phdr);
 1982         ehdr->e_shentsize = sizeof(Elf_Shdr);
 1983         ehdr->e_shstrndx = SHN_UNDEF;
 1984         if (numsegs + 1 < PN_XNUM) {
 1985                 ehdr->e_phnum = numsegs + 1;
 1986                 ehdr->e_shnum = 0;
 1987         } else {
 1988                 ehdr->e_phnum = PN_XNUM;
 1989                 ehdr->e_shnum = 1;
 1990 
 1991                 ehdr->e_shoff = ehdr->e_phoff +
 1992                     (numsegs + 1) * ehdr->e_phentsize;
 1993                 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
 1994                     ("e_shoff: %zu, hdrsize - shdr: %zu",
 1995                      (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
 1996 
 1997                 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
 1998                 memset(shdr, 0, sizeof(*shdr));
 1999                 /*
 2000                  * A special first section is used to hold large segment and
 2001                  * section counts.  This was proposed by Sun Microsystems in
 2002                  * Solaris and has been adopted by Linux; the standard ELF
 2003                  * tools are already familiar with the technique.
 2004                  *
 2005                  * See table 7-7 of the Solaris "Linker and Libraries Guide"
 2006                  * (or 12-7 depending on the version of the document) for more
 2007                  * details.
 2008                  */
 2009                 shdr->sh_type = SHT_NULL;
 2010                 shdr->sh_size = ehdr->e_shnum;
 2011                 shdr->sh_link = ehdr->e_shstrndx;
 2012                 shdr->sh_info = numsegs + 1;
 2013         }
 2014 
 2015         /*
 2016          * Fill in the program header entries.
 2017          */
 2018         phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
 2019 
 2020         /* The note segement. */
 2021         phdr->p_type = PT_NOTE;
 2022         phdr->p_offset = hdrsize;
 2023         phdr->p_vaddr = 0;
 2024         phdr->p_paddr = 0;
 2025         phdr->p_filesz = notesz;
 2026         phdr->p_memsz = 0;
 2027         phdr->p_flags = PF_R;
 2028         phdr->p_align = ELF_NOTE_ROUNDSIZE;
 2029         phdr++;
 2030 
 2031         /* All the writable segments from the program. */
 2032         phc.phdr = phdr;
 2033         phc.offset = round_page(hdrsize + notesz);
 2034         each_dumpable_segment(td, cb_put_phdr, &phc);
 2035 }
 2036 
 2037 static size_t
 2038 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
 2039 {
 2040         struct note_info *ninfo;
 2041         size_t size, notesize;
 2042 
 2043         size = 0;
 2044         out(arg, NULL, &size);
 2045         ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
 2046         ninfo->type = type;
 2047         ninfo->outfunc = out;
 2048         ninfo->outarg = arg;
 2049         ninfo->outsize = size;
 2050         TAILQ_INSERT_TAIL(list, ninfo, link);
 2051 
 2052         if (type == -1)
 2053                 return (size);
 2054 
 2055         notesize = sizeof(Elf_Note) +           /* note header */
 2056             roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
 2057                                                 /* note name */
 2058             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2059 
 2060         return (notesize);
 2061 }
 2062 
 2063 static size_t
 2064 append_note_data(const void *src, void *dst, size_t len)
 2065 {
 2066         size_t padded_len;
 2067 
 2068         padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
 2069         if (dst != NULL) {
 2070                 bcopy(src, dst, len);
 2071                 bzero((char *)dst + len, padded_len - len);
 2072         }
 2073         return (padded_len);
 2074 }
 2075 
 2076 size_t
 2077 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
 2078 {
 2079         Elf_Note *note;
 2080         char *buf;
 2081         size_t notesize;
 2082 
 2083         buf = dst;
 2084         if (buf != NULL) {
 2085                 note = (Elf_Note *)buf;
 2086                 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
 2087                 note->n_descsz = size;
 2088                 note->n_type = type;
 2089                 buf += sizeof(*note);
 2090                 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
 2091                     sizeof(FREEBSD_ABI_VENDOR));
 2092                 append_note_data(src, buf, size);
 2093                 if (descp != NULL)
 2094                         *descp = buf;
 2095         }
 2096 
 2097         notesize = sizeof(Elf_Note) +           /* note header */
 2098             roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
 2099                                                 /* note name */
 2100             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2101 
 2102         return (notesize);
 2103 }
 2104 
 2105 static void
 2106 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
 2107 {
 2108         Elf_Note note;
 2109         ssize_t old_len, sect_len;
 2110         size_t new_len, descsz, i;
 2111 
 2112         if (ninfo->type == -1) {
 2113                 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 2114                 return;
 2115         }
 2116 
 2117         note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
 2118         note.n_descsz = ninfo->outsize;
 2119         note.n_type = ninfo->type;
 2120 
 2121         sbuf_bcat(sb, &note, sizeof(note));
 2122         sbuf_start_section(sb, &old_len);
 2123         sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
 2124         sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 2125         if (note.n_descsz == 0)
 2126                 return;
 2127         sbuf_start_section(sb, &old_len);
 2128         ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 2129         sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 2130         if (sect_len < 0)
 2131                 return;
 2132 
 2133         new_len = (size_t)sect_len;
 2134         descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
 2135         if (new_len < descsz) {
 2136                 /*
 2137                  * It is expected that individual note emitters will correctly
 2138                  * predict their expected output size and fill up to that size
 2139                  * themselves, padding in a format-specific way if needed.
 2140                  * However, in case they don't, just do it here with zeros.
 2141                  */
 2142                 for (i = 0; i < descsz - new_len; i++)
 2143                         sbuf_putc(sb, 0);
 2144         } else if (new_len > descsz) {
 2145                 /*
 2146                  * We can't always truncate sb -- we may have drained some
 2147                  * of it already.
 2148                  */
 2149                 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
 2150                     "read it (%zu > %zu).  Since it is longer than "
 2151                     "expected, this coredump's notes are corrupt.  THIS "
 2152                     "IS A BUG in the note_procstat routine for type %u.\n",
 2153                     __func__, (unsigned)note.n_type, new_len, descsz,
 2154                     (unsigned)note.n_type));
 2155         }
 2156 }
 2157 
 2158 /*
 2159  * Miscellaneous note out functions.
 2160  */
 2161 
 2162 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2163 #include <compat/freebsd32/freebsd32.h>
 2164 #include <compat/freebsd32/freebsd32_signal.h>
 2165 
 2166 typedef struct prstatus32 elf_prstatus_t;
 2167 typedef struct prpsinfo32 elf_prpsinfo_t;
 2168 typedef struct fpreg32 elf_prfpregset_t;
 2169 typedef struct fpreg32 elf_fpregset_t;
 2170 typedef struct reg32 elf_gregset_t;
 2171 typedef struct thrmisc32 elf_thrmisc_t;
 2172 #define ELF_KERN_PROC_MASK      KERN_PROC_MASK32
 2173 typedef struct kinfo_proc32 elf_kinfo_proc_t;
 2174 typedef uint32_t elf_ps_strings_t;
 2175 #else
 2176 typedef prstatus_t elf_prstatus_t;
 2177 typedef prpsinfo_t elf_prpsinfo_t;
 2178 typedef prfpregset_t elf_prfpregset_t;
 2179 typedef prfpregset_t elf_fpregset_t;
 2180 typedef gregset_t elf_gregset_t;
 2181 typedef thrmisc_t elf_thrmisc_t;
 2182 #define ELF_KERN_PROC_MASK      0
 2183 typedef struct kinfo_proc elf_kinfo_proc_t;
 2184 typedef vm_offset_t elf_ps_strings_t;
 2185 #endif
 2186 
 2187 static void
 2188 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
 2189 {
 2190         struct sbuf sbarg;
 2191         size_t len;
 2192         char *cp, *end;
 2193         struct proc *p;
 2194         elf_prpsinfo_t *psinfo;
 2195         int error;
 2196 
 2197         p = (struct proc *)arg;
 2198         if (sb != NULL) {
 2199                 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
 2200                 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
 2201                 psinfo->pr_version = PRPSINFO_VERSION;
 2202                 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
 2203                 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
 2204                 PROC_LOCK(p);
 2205                 if (p->p_args != NULL) {
 2206                         len = sizeof(psinfo->pr_psargs) - 1;
 2207                         if (len > p->p_args->ar_length)
 2208                                 len = p->p_args->ar_length;
 2209                         memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
 2210                         PROC_UNLOCK(p);
 2211                         error = 0;
 2212                 } else {
 2213                         _PHOLD(p);
 2214                         PROC_UNLOCK(p);
 2215                         sbuf_new(&sbarg, psinfo->pr_psargs,
 2216                             sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
 2217                         error = proc_getargv(curthread, p, &sbarg);
 2218                         PRELE(p);
 2219                         if (sbuf_finish(&sbarg) == 0) {
 2220                                 len = sbuf_len(&sbarg);
 2221                                 if (len > 0)
 2222                                         len--;
 2223                         } else {
 2224                                 len = sizeof(psinfo->pr_psargs) - 1;
 2225                         }
 2226                         sbuf_delete(&sbarg);
 2227                 }
 2228                 if (error != 0 || len == 0 || (ssize_t)len == -1)
 2229                         strlcpy(psinfo->pr_psargs, p->p_comm,
 2230                             sizeof(psinfo->pr_psargs));
 2231                 else {
 2232                         KASSERT(len < sizeof(psinfo->pr_psargs),
 2233                             ("len is too long: %zu vs %zu", len,
 2234                             sizeof(psinfo->pr_psargs)));
 2235                         cp = psinfo->pr_psargs;
 2236                         end = cp + len - 1;
 2237                         for (;;) {
 2238                                 cp = memchr(cp, '\0', end - cp);
 2239                                 if (cp == NULL)
 2240                                         break;
 2241                                 *cp = ' ';
 2242                         }
 2243                 }
 2244                 psinfo->pr_pid = p->p_pid;
 2245                 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
 2246                 free(psinfo, M_TEMP);
 2247         }
 2248         *sizep = sizeof(*psinfo);
 2249 }
 2250 
 2251 static void
 2252 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
 2253 {
 2254         struct thread *td;
 2255         elf_prstatus_t *status;
 2256 
 2257         td = (struct thread *)arg;
 2258         if (sb != NULL) {
 2259                 KASSERT(*sizep == sizeof(*status), ("invalid size"));
 2260                 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
 2261                 status->pr_version = PRSTATUS_VERSION;
 2262                 status->pr_statussz = sizeof(elf_prstatus_t);
 2263                 status->pr_gregsetsz = sizeof(elf_gregset_t);
 2264                 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
 2265                 status->pr_osreldate = osreldate;
 2266                 status->pr_cursig = td->td_proc->p_sig;
 2267                 status->pr_pid = td->td_tid;
 2268 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2269                 fill_regs32(td, &status->pr_reg);
 2270 #else
 2271                 fill_regs(td, &status->pr_reg);
 2272 #endif
 2273                 sbuf_bcat(sb, status, sizeof(*status));
 2274                 free(status, M_TEMP);
 2275         }
 2276         *sizep = sizeof(*status);
 2277 }
 2278 
 2279 static void
 2280 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
 2281 {
 2282         struct thread *td;
 2283         elf_prfpregset_t *fpregset;
 2284 
 2285         td = (struct thread *)arg;
 2286         if (sb != NULL) {
 2287                 KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
 2288                 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
 2289 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2290                 fill_fpregs32(td, fpregset);
 2291 #else
 2292                 fill_fpregs(td, fpregset);
 2293 #endif
 2294                 sbuf_bcat(sb, fpregset, sizeof(*fpregset));
 2295                 free(fpregset, M_TEMP);
 2296         }
 2297         *sizep = sizeof(*fpregset);
 2298 }
 2299 
 2300 static void
 2301 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
 2302 {
 2303         struct thread *td;
 2304         elf_thrmisc_t thrmisc;
 2305 
 2306         td = (struct thread *)arg;
 2307         if (sb != NULL) {
 2308                 KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
 2309                 bzero(&thrmisc, sizeof(thrmisc));
 2310                 strcpy(thrmisc.pr_tname, td->td_name);
 2311                 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
 2312         }
 2313         *sizep = sizeof(thrmisc);
 2314 }
 2315 
 2316 static void
 2317 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
 2318 {
 2319         struct thread *td;
 2320         size_t size;
 2321         int structsize;
 2322 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2323         struct ptrace_lwpinfo32 pl;
 2324 #else
 2325         struct ptrace_lwpinfo pl;
 2326 #endif
 2327 
 2328         td = (struct thread *)arg;
 2329         size = sizeof(structsize) + sizeof(pl);
 2330         if (sb != NULL) {
 2331                 KASSERT(*sizep == size, ("invalid size"));
 2332                 structsize = sizeof(pl);
 2333                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2334                 bzero(&pl, sizeof(pl));
 2335                 pl.pl_lwpid = td->td_tid;
 2336                 pl.pl_event = PL_EVENT_NONE;
 2337                 pl.pl_sigmask = td->td_sigmask;
 2338                 pl.pl_siglist = td->td_siglist;
 2339                 if (td->td_si.si_signo != 0) {
 2340                         pl.pl_event = PL_EVENT_SIGNAL;
 2341                         pl.pl_flags |= PL_FLAG_SI;
 2342 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2343                         siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
 2344 #else
 2345                         pl.pl_siginfo = td->td_si;
 2346 #endif
 2347                 }
 2348                 strcpy(pl.pl_tdname, td->td_name);
 2349                 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/
 2350                 sbuf_bcat(sb, &pl, sizeof(pl));
 2351         }
 2352         *sizep = size;
 2353 }
 2354 
 2355 /*
 2356  * Allow for MD specific notes, as well as any MD
 2357  * specific preparations for writing MI notes.
 2358  */
 2359 static void
 2360 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
 2361 {
 2362         struct thread *td;
 2363         void *buf;
 2364         size_t size;
 2365 
 2366         td = (struct thread *)arg;
 2367         size = *sizep;
 2368         if (size != 0 && sb != NULL)
 2369                 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
 2370         else
 2371                 buf = NULL;
 2372         size = 0;
 2373         __elfN(dump_thread)(td, buf, &size);
 2374         KASSERT(sb == NULL || *sizep == size, ("invalid size"));
 2375         if (size != 0 && sb != NULL)
 2376                 sbuf_bcat(sb, buf, size);
 2377         free(buf, M_TEMP);
 2378         *sizep = size;
 2379 }
 2380 
 2381 #ifdef KINFO_PROC_SIZE
 2382 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
 2383 #endif
 2384 
 2385 static void
 2386 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
 2387 {
 2388         struct proc *p;
 2389         size_t size;
 2390         int structsize;
 2391 
 2392         p = (struct proc *)arg;
 2393         size = sizeof(structsize) + p->p_numthreads *
 2394             sizeof(elf_kinfo_proc_t);
 2395 
 2396         if (sb != NULL) {
 2397                 KASSERT(*sizep == size, ("invalid size"));
 2398                 structsize = sizeof(elf_kinfo_proc_t);
 2399                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2400                 sx_slock(&proctree_lock);
 2401                 PROC_LOCK(p);
 2402                 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
 2403                 sx_sunlock(&proctree_lock);
 2404         }
 2405         *sizep = size;
 2406 }
 2407 
 2408 #ifdef KINFO_FILE_SIZE
 2409 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
 2410 #endif
 2411 
 2412 static void
 2413 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
 2414 {
 2415         struct proc *p;
 2416         size_t size, sect_sz, i;
 2417         ssize_t start_len, sect_len;
 2418         int structsize, filedesc_flags;
 2419 
 2420         if (coredump_pack_fileinfo)
 2421                 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
 2422         else
 2423                 filedesc_flags = 0;
 2424 
 2425         p = (struct proc *)arg;
 2426         structsize = sizeof(struct kinfo_file);
 2427         if (sb == NULL) {
 2428                 size = 0;
 2429                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2430                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2431                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2432                 PROC_LOCK(p);
 2433                 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
 2434                 sbuf_finish(sb);
 2435                 sbuf_delete(sb);
 2436                 *sizep = size;
 2437         } else {
 2438                 sbuf_start_section(sb, &start_len);
 2439 
 2440                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2441                 PROC_LOCK(p);
 2442                 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
 2443                     filedesc_flags);
 2444 
 2445                 sect_len = sbuf_end_section(sb, start_len, 0, 0);
 2446                 if (sect_len < 0)
 2447                         return;
 2448                 sect_sz = sect_len;
 2449 
 2450                 KASSERT(sect_sz <= *sizep,
 2451                     ("kern_proc_filedesc_out did not respect maxlen; "
 2452                      "requested %zu, got %zu", *sizep - sizeof(structsize),
 2453                      sect_sz - sizeof(structsize)));
 2454 
 2455                 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
 2456                         sbuf_putc(sb, 0);
 2457         }
 2458 }
 2459 
 2460 #ifdef KINFO_VMENTRY_SIZE
 2461 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2462 #endif
 2463 
 2464 static void
 2465 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
 2466 {
 2467         struct proc *p;
 2468         size_t size;
 2469         int structsize, vmmap_flags;
 2470 
 2471         if (coredump_pack_vmmapinfo)
 2472                 vmmap_flags = KERN_VMMAP_PACK_KINFO;
 2473         else
 2474                 vmmap_flags = 0;
 2475 
 2476         p = (struct proc *)arg;
 2477         structsize = sizeof(struct kinfo_vmentry);
 2478         if (sb == NULL) {
 2479                 size = 0;
 2480                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2481                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2482                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2483                 PROC_LOCK(p);
 2484                 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
 2485                 sbuf_finish(sb);
 2486                 sbuf_delete(sb);
 2487                 *sizep = size;
 2488         } else {
 2489                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2490                 PROC_LOCK(p);
 2491                 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
 2492                     vmmap_flags);
 2493         }
 2494 }
 2495 
 2496 static void
 2497 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
 2498 {
 2499         struct proc *p;
 2500         size_t size;
 2501         int structsize;
 2502 
 2503         p = (struct proc *)arg;
 2504         size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
 2505         if (sb != NULL) {
 2506                 KASSERT(*sizep == size, ("invalid size"));
 2507                 structsize = sizeof(gid_t);
 2508                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2509                 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
 2510                     sizeof(gid_t));
 2511         }
 2512         *sizep = size;
 2513 }
 2514 
 2515 static void
 2516 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
 2517 {
 2518         struct proc *p;
 2519         size_t size;
 2520         int structsize;
 2521 
 2522         p = (struct proc *)arg;
 2523         size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
 2524         if (sb != NULL) {
 2525                 KASSERT(*sizep == size, ("invalid size"));
 2526                 structsize = sizeof(p->p_pd->pd_cmask);
 2527                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2528                 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
 2529         }
 2530         *sizep = size;
 2531 }
 2532 
 2533 static void
 2534 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
 2535 {
 2536         struct proc *p;
 2537         struct rlimit rlim[RLIM_NLIMITS];
 2538         size_t size;
 2539         int structsize, i;
 2540 
 2541         p = (struct proc *)arg;
 2542         size = sizeof(structsize) + sizeof(rlim);
 2543         if (sb != NULL) {
 2544                 KASSERT(*sizep == size, ("invalid size"));
 2545                 structsize = sizeof(rlim);
 2546                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2547                 PROC_LOCK(p);
 2548                 for (i = 0; i < RLIM_NLIMITS; i++)
 2549                         lim_rlimit_proc(p, i, &rlim[i]);
 2550                 PROC_UNLOCK(p);
 2551                 sbuf_bcat(sb, rlim, sizeof(rlim));
 2552         }
 2553         *sizep = size;
 2554 }
 2555 
 2556 static void
 2557 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
 2558 {
 2559         struct proc *p;
 2560         size_t size;
 2561         int structsize;
 2562 
 2563         p = (struct proc *)arg;
 2564         size = sizeof(structsize) + sizeof(p->p_osrel);
 2565         if (sb != NULL) {
 2566                 KASSERT(*sizep == size, ("invalid size"));
 2567                 structsize = sizeof(p->p_osrel);
 2568                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2569                 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
 2570         }
 2571         *sizep = size;
 2572 }
 2573 
 2574 static void
 2575 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
 2576 {
 2577         struct proc *p;
 2578         elf_ps_strings_t ps_strings;
 2579         size_t size;
 2580         int structsize;
 2581 
 2582         p = (struct proc *)arg;
 2583         size = sizeof(structsize) + sizeof(ps_strings);
 2584         if (sb != NULL) {
 2585                 KASSERT(*sizep == size, ("invalid size"));
 2586                 structsize = sizeof(ps_strings);
 2587 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2588                 ps_strings = PTROUT(p->p_sysent->sv_psstrings);
 2589 #else
 2590                 ps_strings = p->p_sysent->sv_psstrings;
 2591 #endif
 2592                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2593                 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
 2594         }
 2595         *sizep = size;
 2596 }
 2597 
 2598 static void
 2599 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
 2600 {
 2601         struct proc *p;
 2602         size_t size;
 2603         int structsize;
 2604 
 2605         p = (struct proc *)arg;
 2606         if (sb == NULL) {
 2607                 size = 0;
 2608                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2609                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2610                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2611                 PHOLD(p);
 2612                 proc_getauxv(curthread, p, sb);
 2613                 PRELE(p);
 2614                 sbuf_finish(sb);
 2615                 sbuf_delete(sb);
 2616                 *sizep = size;
 2617         } else {
 2618                 structsize = sizeof(Elf_Auxinfo);
 2619                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2620                 PHOLD(p);
 2621                 proc_getauxv(curthread, p, sb);
 2622                 PRELE(p);
 2623         }
 2624 }
 2625 
 2626 static boolean_t
 2627 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
 2628     const char *note_vendor, const Elf_Phdr *pnote,
 2629     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
 2630 {
 2631         const Elf_Note *note, *note0, *note_end;
 2632         const char *note_name;
 2633         char *buf;
 2634         int i, error;
 2635         boolean_t res;
 2636 
 2637         /* We need some limit, might as well use PAGE_SIZE. */
 2638         if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
 2639                 return (FALSE);
 2640         ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
 2641         if (pnote->p_offset > PAGE_SIZE ||
 2642             pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
 2643                 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
 2644                 if (buf == NULL) {
 2645                         VOP_UNLOCK(imgp->vp);
 2646                         buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
 2647                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 2648                 }
 2649                 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
 2650                     pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
 2651                     curthread->td_ucred, NOCRED, NULL, curthread);
 2652                 if (error != 0) {
 2653                         uprintf("i/o error PT_NOTE\n");
 2654                         goto retf;
 2655                 }
 2656                 note = note0 = (const Elf_Note *)buf;
 2657                 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
 2658         } else {
 2659                 note = note0 = (const Elf_Note *)(imgp->image_header +
 2660                     pnote->p_offset);
 2661                 note_end = (const Elf_Note *)(imgp->image_header +
 2662                     pnote->p_offset + pnote->p_filesz);
 2663                 buf = NULL;
 2664         }
 2665         for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
 2666                 if (!aligned(note, Elf32_Addr) || (const char *)note_end -
 2667                     (const char *)note < sizeof(Elf_Note)) {
 2668                         goto retf;
 2669                 }
 2670                 if (note->n_namesz != checknote->n_namesz ||
 2671                     note->n_descsz != checknote->n_descsz ||
 2672                     note->n_type != checknote->n_type)
 2673                         goto nextnote;
 2674                 note_name = (const char *)(note + 1);
 2675                 if (note_name + checknote->n_namesz >=
 2676                     (const char *)note_end || strncmp(note_vendor,
 2677                     note_name, checknote->n_namesz) != 0)
 2678                         goto nextnote;
 2679 
 2680                 if (cb(note, cb_arg, &res))
 2681                         goto ret;
 2682 nextnote:
 2683                 note = (const Elf_Note *)((const char *)(note + 1) +
 2684                     roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
 2685                     roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
 2686         }
 2687 retf:
 2688         res = FALSE;
 2689 ret:
 2690         free(buf, M_TEMP);
 2691         return (res);
 2692 }
 2693 
 2694 struct brandnote_cb_arg {
 2695         Elf_Brandnote *brandnote;
 2696         int32_t *osrel;
 2697 };
 2698 
 2699 static boolean_t
 2700 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
 2701 {
 2702         struct brandnote_cb_arg *arg;
 2703 
 2704         arg = arg0;
 2705 
 2706         /*
 2707          * Fetch the osreldate for binary from the ELF OSABI-note if
 2708          * necessary.
 2709          */
 2710         *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
 2711             arg->brandnote->trans_osrel != NULL ?
 2712             arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
 2713 
 2714         return (TRUE);
 2715 }
 2716 
 2717 static Elf_Note fctl_note = {
 2718         .n_namesz = sizeof(FREEBSD_ABI_VENDOR),
 2719         .n_descsz = sizeof(uint32_t),
 2720         .n_type = NT_FREEBSD_FEATURE_CTL,
 2721 };
 2722 
 2723 struct fctl_cb_arg {
 2724         boolean_t *has_fctl0;
 2725         uint32_t *fctl0;
 2726 };
 2727 
 2728 static boolean_t
 2729 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
 2730 {
 2731         struct fctl_cb_arg *arg;
 2732         const Elf32_Word *desc;
 2733         uintptr_t p;
 2734 
 2735         arg = arg0;
 2736         p = (uintptr_t)(note + 1);
 2737         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
 2738         desc = (const Elf32_Word *)p;
 2739         *arg->has_fctl0 = TRUE;
 2740         *arg->fctl0 = desc[0];
 2741         return (TRUE);
 2742 }
 2743 
 2744 /*
 2745  * Try to find the appropriate ABI-note section for checknote, fetch
 2746  * the osreldate and feature control flags for binary from the ELF
 2747  * OSABI-note.  Only the first page of the image is searched, the same
 2748  * as for headers.
 2749  */
 2750 static boolean_t
 2751 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
 2752     int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0)
 2753 {
 2754         const Elf_Phdr *phdr;
 2755         const Elf_Ehdr *hdr;
 2756         struct brandnote_cb_arg b_arg;
 2757         struct fctl_cb_arg f_arg;
 2758         int i, j;
 2759 
 2760         hdr = (const Elf_Ehdr *)imgp->image_header;
 2761         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
 2762         b_arg.brandnote = brandnote;
 2763         b_arg.osrel = osrel;
 2764         f_arg.has_fctl0 = has_fctl0;
 2765         f_arg.fctl0 = fctl0;
 2766 
 2767         for (i = 0; i < hdr->e_phnum; i++) {
 2768                 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
 2769                     &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
 2770                     &b_arg)) {
 2771                         for (j = 0; j < hdr->e_phnum; j++) {
 2772                                 if (phdr[j].p_type == PT_NOTE &&
 2773                                     __elfN(parse_notes)(imgp, &fctl_note,
 2774                                     FREEBSD_ABI_VENDOR, &phdr[j],
 2775                                     note_fctl_cb, &f_arg))
 2776                                         break;
 2777                         }
 2778                         return (TRUE);
 2779                 }
 2780         }
 2781         return (FALSE);
 2782 
 2783 }
 2784 
 2785 /*
 2786  * Tell kern_execve.c about it, with a little help from the linker.
 2787  */
 2788 static struct execsw __elfN(execsw) = {
 2789         .ex_imgact = __CONCAT(exec_, __elfN(imgact)),
 2790         .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
 2791 };
 2792 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
 2793 
 2794 static vm_prot_t
 2795 __elfN(trans_prot)(Elf_Word flags)
 2796 {
 2797         vm_prot_t prot;
 2798 
 2799         prot = 0;
 2800         if (flags & PF_X)
 2801                 prot |= VM_PROT_EXECUTE;
 2802         if (flags & PF_W)
 2803                 prot |= VM_PROT_WRITE;
 2804         if (flags & PF_R)
 2805                 prot |= VM_PROT_READ;
 2806 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
 2807         if (i386_read_exec && (flags & PF_R))
 2808                 prot |= VM_PROT_EXECUTE;
 2809 #endif
 2810         return (prot);
 2811 }
 2812 
 2813 static Elf_Word
 2814 __elfN(untrans_prot)(vm_prot_t prot)
 2815 {
 2816         Elf_Word flags;
 2817 
 2818         flags = 0;
 2819         if (prot & VM_PROT_EXECUTE)
 2820                 flags |= PF_X;
 2821         if (prot & VM_PROT_READ)
 2822                 flags |= PF_R;
 2823         if (prot & VM_PROT_WRITE)
 2824                 flags |= PF_W;
 2825         return (flags);
 2826 }
 2827 
 2828 void
 2829 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base)
 2830 {
 2831         uintptr_t range, rbase, gap;
 2832         int pct;
 2833 
 2834         pct = __elfN(aslr_stack_gap);
 2835         if (pct == 0)
 2836                 return;
 2837         if (pct > 50)
 2838                 pct = 50;
 2839         range = imgp->eff_stack_sz * pct / 100;
 2840         arc4rand(&rbase, sizeof(rbase), 0);
 2841         gap = rbase % range;
 2842         gap &= ~(sizeof(u_long) - 1);
 2843         *stack_base -= gap;
 2844 }

Cache object: bc0002c531976181ce9eccc7792d5d10


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.