The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/imgact_elf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2017 Dell EMC
    5  * Copyright (c) 2000-2001, 2003 David O'Brien
    6  * Copyright (c) 1995-1996 Søren Schmidt
    7  * Copyright (c) 1996 Peter Wemm
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer
   15  *    in this position and unchanged.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. The name of the author may not be used to endorse or promote products
   20  *    derived from this software without specific prior written permission
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_capsicum.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/capsicum.h>
   41 #include <sys/compressor.h>
   42 #include <sys/exec.h>
   43 #include <sys/fcntl.h>
   44 #include <sys/imgact.h>
   45 #include <sys/imgact_elf.h>
   46 #include <sys/jail.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mount.h>
   51 #include <sys/mman.h>
   52 #include <sys/namei.h>
   53 #include <sys/proc.h>
   54 #include <sys/procfs.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/racct.h>
   57 #include <sys/reg.h>
   58 #include <sys/resourcevar.h>
   59 #include <sys/rwlock.h>
   60 #include <sys/sbuf.h>
   61 #include <sys/sf_buf.h>
   62 #include <sys/smp.h>
   63 #include <sys/systm.h>
   64 #include <sys/signalvar.h>
   65 #include <sys/stat.h>
   66 #include <sys/sx.h>
   67 #include <sys/syscall.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/sysent.h>
   70 #include <sys/vnode.h>
   71 #include <sys/syslog.h>
   72 #include <sys/eventhandler.h>
   73 #include <sys/user.h>
   74 
   75 #include <vm/vm.h>
   76 #include <vm/vm_kern.h>
   77 #include <vm/vm_param.h>
   78 #include <vm/pmap.h>
   79 #include <vm/vm_map.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_extern.h>
   82 
   83 #include <machine/elf.h>
   84 #include <machine/md_var.h>
   85 
   86 #define ELF_NOTE_ROUNDSIZE      4
   87 #define OLD_EI_BRAND    8
   88 
   89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
   90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
   91     const char *interp, int32_t *osrel, uint32_t *fctl0);
   92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
   93     u_long *entry);
   94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
   95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
   96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
   97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
   98     int32_t *osrel);
   99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
  100 static boolean_t __elfN(check_note)(struct image_params *imgp,
  101     Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0,
  102     uint32_t *fctl0);
  103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
  104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
  105 static size_t __elfN(prepare_register_notes)(struct thread *td,
  106     struct note_info_list *list, struct thread *target_td);
  107 
  108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
  109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  110     "");
  111 
  112 int __elfN(fallback_brand) = -1;
  113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
  115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
  116 
  117 static int elf_legacy_coredump = 0;
  118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 
  119     &elf_legacy_coredump, 0,
  120     "include all and only RW pages in core dumps");
  121 
  122 int __elfN(nxstack) =
  123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
  124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
  125     defined(__riscv)
  126         1;
  127 #else
  128         0;
  129 #endif
  130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
  132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
  133 
  134 #if defined(__amd64__)
  135 static int __elfN(vdso) = 1;
  136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
  137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
  138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
  139 #else
  140 static int __elfN(vdso) = 0;
  141 #endif
  142 
  143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
  144 int i386_read_exec = 0;
  145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
  146     "enable execution from readable segments");
  147 #endif
  148 
  149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
  150 static int
  151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
  152 {
  153         u_long val;
  154         int error;
  155 
  156         val = __elfN(pie_base);
  157         error = sysctl_handle_long(oidp, &val, 0, req);
  158         if (error != 0 || req->newptr == NULL)
  159                 return (error);
  160         if ((val & PAGE_MASK) != 0)
  161                 return (EINVAL);
  162         __elfN(pie_base) = val;
  163         return (0);
  164 }
  165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
  166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  167     sysctl_pie_base, "LU",
  168     "PIE load base without randomization");
  169 
  170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
  171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  172     "");
  173 #define ASLR_NODE_OID   __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
  174 
  175 /*
  176  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
  177  * have limited address space (which can cause issues for applications with
  178  * high memory use) so we leave it off there.
  179  */
  180 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
  181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
  182     &__elfN(aslr_enabled), 0,
  183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  184     ": enable address map randomization");
  185 
  186 /*
  187  * Enable ASLR by default for 64-bit PIE binaries.
  188  */
  189 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
  190 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
  191     &__elfN(pie_aslr_enabled), 0,
  192     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  193     ": enable address map randomization for PIE binaries");
  194 
  195 /*
  196  * Sbrk is deprecated and it can be assumed that in most cases it will not be
  197  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
  198  * to use the bss grow region.
  199  */
  200 static int __elfN(aslr_honor_sbrk) = 0;
  201 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
  202     &__elfN(aslr_honor_sbrk), 0,
  203     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
  204 
  205 static int __elfN(aslr_stack) = 1;
  206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
  207     &__elfN(aslr_stack), 0,
  208     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
  209     ": enable stack address randomization");
  210 
  211 static int __elfN(sigfastblock) = 1;
  212 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
  213     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
  214     "enable sigfastblock for new processes");
  215 
  216 static bool __elfN(allow_wx) = true;
  217 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
  218     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
  219     "Allow pages to be mapped simultaneously writable and executable");
  220 
  221 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
  222 
  223 #define aligned(a, t)   (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
  224 
  225 Elf_Brandnote __elfN(freebsd_brandnote) = {
  226         .hdr.n_namesz   = sizeof(FREEBSD_ABI_VENDOR),
  227         .hdr.n_descsz   = sizeof(int32_t),
  228         .hdr.n_type     = NT_FREEBSD_ABI_TAG,
  229         .vendor         = FREEBSD_ABI_VENDOR,
  230         .flags          = BN_TRANSLATE_OSREL,
  231         .trans_osrel    = __elfN(freebsd_trans_osrel)
  232 };
  233 
  234 static bool
  235 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
  236 {
  237         uintptr_t p;
  238 
  239         p = (uintptr_t)(note + 1);
  240         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  241         *osrel = *(const int32_t *)(p);
  242 
  243         return (true);
  244 }
  245 
  246 static const char GNU_ABI_VENDOR[] = "GNU";
  247 static int GNU_KFREEBSD_ABI_DESC = 3;
  248 
  249 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
  250         .hdr.n_namesz   = sizeof(GNU_ABI_VENDOR),
  251         .hdr.n_descsz   = 16,   /* XXX at least 16 */
  252         .hdr.n_type     = 1,
  253         .vendor         = GNU_ABI_VENDOR,
  254         .flags          = BN_TRANSLATE_OSREL,
  255         .trans_osrel    = kfreebsd_trans_osrel
  256 };
  257 
  258 static bool
  259 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
  260 {
  261         const Elf32_Word *desc;
  262         uintptr_t p;
  263 
  264         p = (uintptr_t)(note + 1);
  265         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
  266 
  267         desc = (const Elf32_Word *)p;
  268         if (desc[0] != GNU_KFREEBSD_ABI_DESC)
  269                 return (false);
  270 
  271         /*
  272          * Debian GNU/kFreeBSD embed the earliest compatible kernel version
  273          * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
  274          */
  275         *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
  276 
  277         return (true);
  278 }
  279 
  280 int
  281 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
  282 {
  283         int i;
  284 
  285         for (i = 0; i < MAX_BRANDS; i++) {
  286                 if (elf_brand_list[i] == NULL) {
  287                         elf_brand_list[i] = entry;
  288                         break;
  289                 }
  290         }
  291         if (i == MAX_BRANDS) {
  292                 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
  293                         __func__, entry);
  294                 return (-1);
  295         }
  296         return (0);
  297 }
  298 
  299 int
  300 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
  301 {
  302         int i;
  303 
  304         for (i = 0; i < MAX_BRANDS; i++) {
  305                 if (elf_brand_list[i] == entry) {
  306                         elf_brand_list[i] = NULL;
  307                         break;
  308                 }
  309         }
  310         if (i == MAX_BRANDS)
  311                 return (-1);
  312         return (0);
  313 }
  314 
  315 int
  316 __elfN(brand_inuse)(Elf_Brandinfo *entry)
  317 {
  318         struct proc *p;
  319         int rval = FALSE;
  320 
  321         sx_slock(&allproc_lock);
  322         FOREACH_PROC_IN_SYSTEM(p) {
  323                 if (p->p_sysent == entry->sysvec) {
  324                         rval = TRUE;
  325                         break;
  326                 }
  327         }
  328         sx_sunlock(&allproc_lock);
  329 
  330         return (rval);
  331 }
  332 
  333 static Elf_Brandinfo *
  334 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
  335     int32_t *osrel, uint32_t *fctl0)
  336 {
  337         const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
  338         Elf_Brandinfo *bi, *bi_m;
  339         boolean_t ret, has_fctl0;
  340         int i, interp_name_len;
  341 
  342         interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
  343 
  344         /*
  345          * We support four types of branding -- (1) the ELF EI_OSABI field
  346          * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
  347          * branding w/in the ELF header, (3) path of the `interp_path'
  348          * field, and (4) the ".note.ABI-tag" ELF section.
  349          */
  350 
  351         /* Look for an ".note.ABI-tag" ELF section */
  352         bi_m = NULL;
  353         for (i = 0; i < MAX_BRANDS; i++) {
  354                 bi = elf_brand_list[i];
  355                 if (bi == NULL)
  356                         continue;
  357                 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
  358                         continue;
  359                 if (hdr->e_machine == bi->machine && (bi->flags &
  360                     (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
  361                         has_fctl0 = false;
  362                         *fctl0 = 0;
  363                         *osrel = 0;
  364                         ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
  365                             &has_fctl0, fctl0);
  366                         /* Give brand a chance to veto check_note's guess */
  367                         if (ret && bi->header_supported) {
  368                                 ret = bi->header_supported(imgp, osrel,
  369                                     has_fctl0 ? fctl0 : NULL);
  370                         }
  371                         /*
  372                          * If note checker claimed the binary, but the
  373                          * interpreter path in the image does not
  374                          * match default one for the brand, try to
  375                          * search for other brands with the same
  376                          * interpreter.  Either there is better brand
  377                          * with the right interpreter, or, failing
  378                          * this, we return first brand which accepted
  379                          * our note and, optionally, header.
  380                          */
  381                         if (ret && bi_m == NULL && interp != NULL &&
  382                             (bi->interp_path == NULL ||
  383                             (strlen(bi->interp_path) + 1 != interp_name_len ||
  384                             strncmp(interp, bi->interp_path, interp_name_len)
  385                             != 0))) {
  386                                 bi_m = bi;
  387                                 ret = 0;
  388                         }
  389                         if (ret)
  390                                 return (bi);
  391                 }
  392         }
  393         if (bi_m != NULL)
  394                 return (bi_m);
  395 
  396         /* If the executable has a brand, search for it in the brand list. */
  397         for (i = 0; i < MAX_BRANDS; i++) {
  398                 bi = elf_brand_list[i];
  399                 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
  400                     (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
  401                         continue;
  402                 if (hdr->e_machine == bi->machine &&
  403                     (hdr->e_ident[EI_OSABI] == bi->brand ||
  404                     (bi->compat_3_brand != NULL &&
  405                     strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
  406                     bi->compat_3_brand) == 0))) {
  407                         /* Looks good, but give brand a chance to veto */
  408                         if (bi->header_supported == NULL ||
  409                             bi->header_supported(imgp, NULL, NULL)) {
  410                                 /*
  411                                  * Again, prefer strictly matching
  412                                  * interpreter path.
  413                                  */
  414                                 if (interp_name_len == 0 &&
  415                                     bi->interp_path == NULL)
  416                                         return (bi);
  417                                 if (bi->interp_path != NULL &&
  418                                     strlen(bi->interp_path) + 1 ==
  419                                     interp_name_len && strncmp(interp,
  420                                     bi->interp_path, interp_name_len) == 0)
  421                                         return (bi);
  422                                 if (bi_m == NULL)
  423                                         bi_m = bi;
  424                         }
  425                 }
  426         }
  427         if (bi_m != NULL)
  428                 return (bi_m);
  429 
  430         /* No known brand, see if the header is recognized by any brand */
  431         for (i = 0; i < MAX_BRANDS; i++) {
  432                 bi = elf_brand_list[i];
  433                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
  434                     bi->header_supported == NULL)
  435                         continue;
  436                 if (hdr->e_machine == bi->machine) {
  437                         ret = bi->header_supported(imgp, NULL, NULL);
  438                         if (ret)
  439                                 return (bi);
  440                 }
  441         }
  442 
  443         /* Lacking a known brand, search for a recognized interpreter. */
  444         if (interp != NULL) {
  445                 for (i = 0; i < MAX_BRANDS; i++) {
  446                         bi = elf_brand_list[i];
  447                         if (bi == NULL || (bi->flags &
  448                             (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
  449                             != 0)
  450                                 continue;
  451                         if (hdr->e_machine == bi->machine &&
  452                             bi->interp_path != NULL &&
  453                             /* ELF image p_filesz includes terminating zero */
  454                             strlen(bi->interp_path) + 1 == interp_name_len &&
  455                             strncmp(interp, bi->interp_path, interp_name_len)
  456                             == 0 && (bi->header_supported == NULL ||
  457                             bi->header_supported(imgp, NULL, NULL)))
  458                                 return (bi);
  459                 }
  460         }
  461 
  462         /* Lacking a recognized interpreter, try the default brand */
  463         for (i = 0; i < MAX_BRANDS; i++) {
  464                 bi = elf_brand_list[i];
  465                 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
  466                     (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
  467                         continue;
  468                 if (hdr->e_machine == bi->machine &&
  469                     __elfN(fallback_brand) == bi->brand &&
  470                     (bi->header_supported == NULL ||
  471                     bi->header_supported(imgp, NULL, NULL)))
  472                         return (bi);
  473         }
  474         return (NULL);
  475 }
  476 
  477 static bool
  478 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
  479 {
  480         return (hdr->e_phoff <= PAGE_SIZE &&
  481             (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
  482 }
  483 
  484 static int
  485 __elfN(check_header)(const Elf_Ehdr *hdr)
  486 {
  487         Elf_Brandinfo *bi;
  488         int i;
  489 
  490         if (!IS_ELF(*hdr) ||
  491             hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
  492             hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
  493             hdr->e_ident[EI_VERSION] != EV_CURRENT ||
  494             hdr->e_phentsize != sizeof(Elf_Phdr) ||
  495             hdr->e_version != ELF_TARG_VER)
  496                 return (ENOEXEC);
  497 
  498         /*
  499          * Make sure we have at least one brand for this machine.
  500          */
  501 
  502         for (i = 0; i < MAX_BRANDS; i++) {
  503                 bi = elf_brand_list[i];
  504                 if (bi != NULL && bi->machine == hdr->e_machine)
  505                         break;
  506         }
  507         if (i == MAX_BRANDS)
  508                 return (ENOEXEC);
  509 
  510         return (0);
  511 }
  512 
  513 static int
  514 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
  515     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
  516 {
  517         struct sf_buf *sf;
  518         int error;
  519         vm_offset_t off;
  520 
  521         /*
  522          * Create the page if it doesn't exist yet. Ignore errors.
  523          */
  524         vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
  525             trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
  526 
  527         /*
  528          * Find the page from the underlying object.
  529          */
  530         if (object != NULL) {
  531                 sf = vm_imgact_map_page(object, offset);
  532                 if (sf == NULL)
  533                         return (KERN_FAILURE);
  534                 off = offset - trunc_page(offset);
  535                 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
  536                     end - start);
  537                 vm_imgact_unmap_page(sf);
  538                 if (error != 0)
  539                         return (KERN_FAILURE);
  540         }
  541 
  542         return (KERN_SUCCESS);
  543 }
  544 
  545 static int
  546 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
  547     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
  548     int cow)
  549 {
  550         struct sf_buf *sf;
  551         vm_offset_t off;
  552         vm_size_t sz;
  553         int error, locked, rv;
  554 
  555         if (start != trunc_page(start)) {
  556                 rv = __elfN(map_partial)(map, object, offset, start,
  557                     round_page(start), prot);
  558                 if (rv != KERN_SUCCESS)
  559                         return (rv);
  560                 offset += round_page(start) - start;
  561                 start = round_page(start);
  562         }
  563         if (end != round_page(end)) {
  564                 rv = __elfN(map_partial)(map, object, offset +
  565                     trunc_page(end) - start, trunc_page(end), end, prot);
  566                 if (rv != KERN_SUCCESS)
  567                         return (rv);
  568                 end = trunc_page(end);
  569         }
  570         if (start >= end)
  571                 return (KERN_SUCCESS);
  572         if ((offset & PAGE_MASK) != 0) {
  573                 /*
  574                  * The mapping is not page aligned.  This means that we have
  575                  * to copy the data.
  576                  */
  577                 rv = vm_map_fixed(map, NULL, 0, start, end - start,
  578                     prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
  579                 if (rv != KERN_SUCCESS)
  580                         return (rv);
  581                 if (object == NULL)
  582                         return (KERN_SUCCESS);
  583                 for (; start < end; start += sz) {
  584                         sf = vm_imgact_map_page(object, offset);
  585                         if (sf == NULL)
  586                                 return (KERN_FAILURE);
  587                         off = offset - trunc_page(offset);
  588                         sz = end - start;
  589                         if (sz > PAGE_SIZE - off)
  590                                 sz = PAGE_SIZE - off;
  591                         error = copyout((caddr_t)sf_buf_kva(sf) + off,
  592                             (caddr_t)start, sz);
  593                         vm_imgact_unmap_page(sf);
  594                         if (error != 0)
  595                                 return (KERN_FAILURE);
  596                         offset += sz;
  597                 }
  598         } else {
  599                 vm_object_reference(object);
  600                 rv = vm_map_fixed(map, object, offset, start, end - start,
  601                     prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
  602                     (object != NULL ? MAP_VN_EXEC : 0));
  603                 if (rv != KERN_SUCCESS) {
  604                         locked = VOP_ISLOCKED(imgp->vp);
  605                         VOP_UNLOCK(imgp->vp);
  606                         vm_object_deallocate(object);
  607                         vn_lock(imgp->vp, locked | LK_RETRY);
  608                         return (rv);
  609                 } else if (object != NULL) {
  610                         MPASS(imgp->vp->v_object == object);
  611                         VOP_SET_TEXT_CHECKED(imgp->vp);
  612                 }
  613         }
  614         return (KERN_SUCCESS);
  615 }
  616 
  617 static int
  618 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
  619     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
  620 {
  621         struct sf_buf *sf;
  622         size_t map_len;
  623         vm_map_t map;
  624         vm_object_t object;
  625         vm_offset_t map_addr;
  626         int error, rv, cow;
  627         size_t copy_len;
  628         vm_ooffset_t file_addr;
  629 
  630         /*
  631          * It's necessary to fail if the filsz + offset taken from the
  632          * header is greater than the actual file pager object's size.
  633          * If we were to allow this, then the vm_map_find() below would
  634          * walk right off the end of the file object and into the ether.
  635          *
  636          * While I'm here, might as well check for something else that
  637          * is invalid: filsz cannot be greater than memsz.
  638          */
  639         if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
  640             filsz > memsz) {
  641                 uprintf("elf_load_section: truncated ELF file\n");
  642                 return (ENOEXEC);
  643         }
  644 
  645         object = imgp->object;
  646         map = &imgp->proc->p_vmspace->vm_map;
  647         map_addr = trunc_page((vm_offset_t)vmaddr);
  648         file_addr = trunc_page(offset);
  649 
  650         /*
  651          * We have two choices.  We can either clear the data in the last page
  652          * of an oversized mapping, or we can start the anon mapping a page
  653          * early and copy the initialized data into that first page.  We
  654          * choose the second.
  655          */
  656         if (filsz == 0)
  657                 map_len = 0;
  658         else if (memsz > filsz)
  659                 map_len = trunc_page(offset + filsz) - file_addr;
  660         else
  661                 map_len = round_page(offset + filsz) - file_addr;
  662 
  663         if (map_len != 0) {
  664                 /* cow flags: don't dump readonly sections in core */
  665                 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
  666                     (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
  667 
  668                 rv = __elfN(map_insert)(imgp, map, object, file_addr,
  669                     map_addr, map_addr + map_len, prot, cow);
  670                 if (rv != KERN_SUCCESS)
  671                         return (EINVAL);
  672 
  673                 /* we can stop now if we've covered it all */
  674                 if (memsz == filsz)
  675                         return (0);
  676         }
  677 
  678         /*
  679          * We have to get the remaining bit of the file into the first part
  680          * of the oversized map segment.  This is normally because the .data
  681          * segment in the file is extended to provide bss.  It's a neat idea
  682          * to try and save a page, but it's a pain in the behind to implement.
  683          */
  684         copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
  685             filsz);
  686         map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
  687         map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
  688 
  689         /* This had damn well better be true! */
  690         if (map_len != 0) {
  691                 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
  692                     map_addr + map_len, prot, 0);
  693                 if (rv != KERN_SUCCESS)
  694                         return (EINVAL);
  695         }
  696 
  697         if (copy_len != 0) {
  698                 sf = vm_imgact_map_page(object, offset + filsz);
  699                 if (sf == NULL)
  700                         return (EIO);
  701 
  702                 /* send the page fragment to user space */
  703                 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
  704                     copy_len);
  705                 vm_imgact_unmap_page(sf);
  706                 if (error != 0)
  707                         return (error);
  708         }
  709 
  710         /*
  711          * Remove write access to the page if it was only granted by map_insert
  712          * to allow copyout.
  713          */
  714         if ((prot & VM_PROT_WRITE) == 0)
  715                 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
  716                     map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
  717 
  718         return (0);
  719 }
  720 
  721 static int
  722 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
  723     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
  724 {
  725         vm_prot_t prot;
  726         u_long base_addr;
  727         bool first;
  728         int error, i;
  729 
  730         ASSERT_VOP_LOCKED(imgp->vp, __func__);
  731 
  732         base_addr = 0;
  733         first = true;
  734 
  735         for (i = 0; i < hdr->e_phnum; i++) {
  736                 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
  737                         continue;
  738 
  739                 /* Loadable segment */
  740                 prot = __elfN(trans_prot)(phdr[i].p_flags);
  741                 error = __elfN(load_section)(imgp, phdr[i].p_offset,
  742                     (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
  743                     phdr[i].p_memsz, phdr[i].p_filesz, prot);
  744                 if (error != 0)
  745                         return (error);
  746 
  747                 /*
  748                  * Establish the base address if this is the first segment.
  749                  */
  750                 if (first) {
  751                         base_addr = trunc_page(phdr[i].p_vaddr + rbase);
  752                         first = false;
  753                 }
  754         }
  755 
  756         if (base_addrp != NULL)
  757                 *base_addrp = base_addr;
  758 
  759         return (0);
  760 }
  761 
  762 /*
  763  * Load the file "file" into memory.  It may be either a shared object
  764  * or an executable.
  765  *
  766  * The "addr" reference parameter is in/out.  On entry, it specifies
  767  * the address where a shared object should be loaded.  If the file is
  768  * an executable, this value is ignored.  On exit, "addr" specifies
  769  * where the file was actually loaded.
  770  *
  771  * The "entry" reference parameter is out only.  On exit, it specifies
  772  * the entry point for the loaded file.
  773  */
  774 static int
  775 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
  776         u_long *entry)
  777 {
  778         struct {
  779                 struct nameidata nd;
  780                 struct vattr attr;
  781                 struct image_params image_params;
  782         } *tempdata;
  783         const Elf_Ehdr *hdr = NULL;
  784         const Elf_Phdr *phdr = NULL;
  785         struct nameidata *nd;
  786         struct vattr *attr;
  787         struct image_params *imgp;
  788         u_long rbase;
  789         u_long base_addr = 0;
  790         int error;
  791 
  792 #ifdef CAPABILITY_MODE
  793         /*
  794          * XXXJA: This check can go away once we are sufficiently confident
  795          * that the checks in namei() are correct.
  796          */
  797         if (IN_CAPABILITY_MODE(curthread))
  798                 return (ECAPMODE);
  799 #endif
  800 
  801         tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
  802         nd = &tempdata->nd;
  803         attr = &tempdata->attr;
  804         imgp = &tempdata->image_params;
  805 
  806         /*
  807          * Initialize part of the common data
  808          */
  809         imgp->proc = p;
  810         imgp->attr = attr;
  811 
  812         NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
  813             UIO_SYSSPACE, file, curthread);
  814         if ((error = namei(nd)) != 0) {
  815                 nd->ni_vp = NULL;
  816                 goto fail;
  817         }
  818         NDFREE(nd, NDF_ONLY_PNBUF);
  819         imgp->vp = nd->ni_vp;
  820 
  821         /*
  822          * Check permissions, modes, uid, etc on the file, and "open" it.
  823          */
  824         error = exec_check_permissions(imgp);
  825         if (error)
  826                 goto fail;
  827 
  828         error = exec_map_first_page(imgp);
  829         if (error)
  830                 goto fail;
  831 
  832         imgp->object = nd->ni_vp->v_object;
  833 
  834         hdr = (const Elf_Ehdr *)imgp->image_header;
  835         if ((error = __elfN(check_header)(hdr)) != 0)
  836                 goto fail;
  837         if (hdr->e_type == ET_DYN)
  838                 rbase = *addr;
  839         else if (hdr->e_type == ET_EXEC)
  840                 rbase = 0;
  841         else {
  842                 error = ENOEXEC;
  843                 goto fail;
  844         }
  845 
  846         /* Only support headers that fit within first page for now      */
  847         if (!__elfN(phdr_in_zero_page)(hdr)) {
  848                 error = ENOEXEC;
  849                 goto fail;
  850         }
  851 
  852         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
  853         if (!aligned(phdr, Elf_Addr)) {
  854                 error = ENOEXEC;
  855                 goto fail;
  856         }
  857 
  858         error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
  859         if (error != 0)
  860                 goto fail;
  861 
  862         *addr = base_addr;
  863         *entry = (unsigned long)hdr->e_entry + rbase;
  864 
  865 fail:
  866         if (imgp->firstpage)
  867                 exec_unmap_first_page(imgp);
  868 
  869         if (nd->ni_vp) {
  870                 if (imgp->textset)
  871                         VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
  872                 vput(nd->ni_vp);
  873         }
  874         free(tempdata, M_TEMP);
  875 
  876         return (error);
  877 }
  878 
  879 /*
  880  * Select randomized valid address in the map map, between minv and
  881  * maxv, with specified alignment.  The [minv, maxv) range must belong
  882  * to the map.  Note that function only allocates the address, it is
  883  * up to caller to clamp maxv in a way that the final allocation
  884  * length fit into the map.
  885  *
  886  * Result is returned in *resp, error code indicates that arguments
  887  * did not pass sanity checks for overflow and range correctness.
  888  */
  889 static int
  890 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
  891     u_int align, u_long *resp)
  892 {
  893         u_long rbase, res;
  894 
  895         MPASS(vm_map_min(map) <= minv);
  896 
  897         if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
  898                 uprintf("Invalid ELF segments layout\n");
  899                 return (ENOEXEC);
  900         }
  901 
  902         arc4rand(&rbase, sizeof(rbase), 0);
  903         res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
  904         res &= ~((u_long)align - 1);
  905         if (res >= maxv)
  906                 res -= align;
  907 
  908         KASSERT(res >= minv,
  909             ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
  910             res, minv, maxv, rbase));
  911         KASSERT(res < maxv,
  912             ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
  913             res, maxv, minv, rbase));
  914 
  915         *resp = res;
  916         return (0);
  917 }
  918 
  919 static int
  920 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
  921     const Elf_Phdr *phdr, u_long et_dyn_addr)
  922 {
  923         struct vmspace *vmspace;
  924         const char *err_str;
  925         u_long text_size, data_size, total_size, text_addr, data_addr;
  926         u_long seg_size, seg_addr;
  927         int i;
  928 
  929         err_str = NULL;
  930         text_size = data_size = total_size = text_addr = data_addr = 0;
  931 
  932         for (i = 0; i < hdr->e_phnum; i++) {
  933                 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
  934                         continue;
  935 
  936                 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
  937                 seg_size = round_page(phdr[i].p_memsz +
  938                     phdr[i].p_vaddr + et_dyn_addr - seg_addr);
  939 
  940                 /*
  941                  * Make the largest executable segment the official
  942                  * text segment and all others data.
  943                  *
  944                  * Note that obreak() assumes that data_addr + data_size == end
  945                  * of data load area, and the ELF file format expects segments
  946                  * to be sorted by address.  If multiple data segments exist,
  947                  * the last one will be used.
  948                  */
  949 
  950                 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
  951                         text_size = seg_size;
  952                         text_addr = seg_addr;
  953                 } else {
  954                         data_size = seg_size;
  955                         data_addr = seg_addr;
  956                 }
  957                 total_size += seg_size;
  958         }
  959 
  960         if (data_addr == 0 && data_size == 0) {
  961                 data_addr = text_addr;
  962                 data_size = text_size;
  963         }
  964 
  965         /*
  966          * Check limits.  It should be safe to check the
  967          * limits after loading the segments since we do
  968          * not actually fault in all the segments pages.
  969          */
  970         PROC_LOCK(imgp->proc);
  971         if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
  972                 err_str = "Data segment size exceeds process limit";
  973         else if (text_size > maxtsiz)
  974                 err_str = "Text segment size exceeds system limit";
  975         else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
  976                 err_str = "Total segment size exceeds process limit";
  977         else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
  978                 err_str = "Data segment size exceeds resource limit";
  979         else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
  980                 err_str = "Total segment size exceeds resource limit";
  981         PROC_UNLOCK(imgp->proc);
  982         if (err_str != NULL) {
  983                 uprintf("%s\n", err_str);
  984                 return (ENOMEM);
  985         }
  986 
  987         vmspace = imgp->proc->p_vmspace;
  988         vmspace->vm_tsize = text_size >> PAGE_SHIFT;
  989         vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
  990         vmspace->vm_dsize = data_size >> PAGE_SHIFT;
  991         vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
  992 
  993         return (0);
  994 }
  995 
  996 static int
  997 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
  998     char **interpp, bool *free_interpp)
  999 {
 1000         struct thread *td;
 1001         char *interp;
 1002         int error, interp_name_len;
 1003 
 1004         KASSERT(phdr->p_type == PT_INTERP,
 1005             ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
 1006         ASSERT_VOP_LOCKED(imgp->vp, __func__);
 1007 
 1008         td = curthread;
 1009 
 1010         /* Path to interpreter */
 1011         if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
 1012                 uprintf("Invalid PT_INTERP\n");
 1013                 return (ENOEXEC);
 1014         }
 1015 
 1016         interp_name_len = phdr->p_filesz;
 1017         if (phdr->p_offset > PAGE_SIZE ||
 1018             interp_name_len > PAGE_SIZE - phdr->p_offset) {
 1019                 /*
 1020                  * The vnode lock might be needed by the pagedaemon to
 1021                  * clean pages owned by the vnode.  Do not allow sleep
 1022                  * waiting for memory with the vnode locked, instead
 1023                  * try non-sleepable allocation first, and if it
 1024                  * fails, go to the slow path were we drop the lock
 1025                  * and do M_WAITOK.  A text reference prevents
 1026                  * modifications to the vnode content.
 1027                  */
 1028                 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
 1029                 if (interp == NULL) {
 1030                         VOP_UNLOCK(imgp->vp);
 1031                         interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
 1032                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1033                 }
 1034 
 1035                 error = vn_rdwr(UIO_READ, imgp->vp, interp,
 1036                     interp_name_len, phdr->p_offset,
 1037                     UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
 1038                     NOCRED, NULL, td);
 1039                 if (error != 0) {
 1040                         free(interp, M_TEMP);
 1041                         uprintf("i/o error PT_INTERP %d\n", error);
 1042                         return (error);
 1043                 }
 1044                 interp[interp_name_len] = '\0';
 1045 
 1046                 *interpp = interp;
 1047                 *free_interpp = true;
 1048                 return (0);
 1049         }
 1050 
 1051         interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
 1052         if (interp[interp_name_len - 1] != '\0') {
 1053                 uprintf("Invalid PT_INTERP\n");
 1054                 return (ENOEXEC);
 1055         }
 1056 
 1057         *interpp = interp;
 1058         *free_interpp = false;
 1059         return (0);
 1060 }
 1061 
 1062 static int
 1063 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
 1064     const char *interp, u_long *addr, u_long *entry)
 1065 {
 1066         char *path;
 1067         int error;
 1068 
 1069         if (brand_info->emul_path != NULL &&
 1070             brand_info->emul_path[0] != '\0') {
 1071                 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 1072                 snprintf(path, MAXPATHLEN, "%s%s",
 1073                     brand_info->emul_path, interp);
 1074                 error = __elfN(load_file)(imgp->proc, path, addr, entry);
 1075                 free(path, M_TEMP);
 1076                 if (error == 0)
 1077                         return (0);
 1078         }
 1079 
 1080         if (brand_info->interp_newpath != NULL &&
 1081             (brand_info->interp_path == NULL ||
 1082             strcmp(interp, brand_info->interp_path) == 0)) {
 1083                 error = __elfN(load_file)(imgp->proc,
 1084                     brand_info->interp_newpath, addr, entry);
 1085                 if (error == 0)
 1086                         return (0);
 1087         }
 1088 
 1089         error = __elfN(load_file)(imgp->proc, interp, addr, entry);
 1090         if (error == 0)
 1091                 return (0);
 1092 
 1093         uprintf("ELF interpreter %s not found, error %d\n", interp, error);
 1094         return (error);
 1095 }
 1096 
 1097 /*
 1098  * Impossible et_dyn_addr initial value indicating that the real base
 1099  * must be calculated later with some randomization applied.
 1100  */
 1101 #define ET_DYN_ADDR_RAND        1
 1102 
 1103 static int
 1104 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
 1105 {
 1106         struct thread *td;
 1107         const Elf_Ehdr *hdr;
 1108         const Elf_Phdr *phdr;
 1109         Elf_Auxargs *elf_auxargs;
 1110         struct vmspace *vmspace;
 1111         vm_map_t map;
 1112         char *interp;
 1113         Elf_Brandinfo *brand_info;
 1114         struct sysentvec *sv;
 1115         u_long addr, baddr, et_dyn_addr, entry, proghdr;
 1116         u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
 1117         uint32_t fctl0;
 1118         int32_t osrel;
 1119         bool free_interp;
 1120         int error, i, n;
 1121 
 1122         hdr = (const Elf_Ehdr *)imgp->image_header;
 1123 
 1124         /*
 1125          * Do we have a valid ELF header ?
 1126          *
 1127          * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
 1128          * if particular brand doesn't support it.
 1129          */
 1130         if (__elfN(check_header)(hdr) != 0 ||
 1131             (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
 1132                 return (-1);
 1133 
 1134         /*
 1135          * From here on down, we return an errno, not -1, as we've
 1136          * detected an ELF file.
 1137          */
 1138 
 1139         if (!__elfN(phdr_in_zero_page)(hdr)) {
 1140                 uprintf("Program headers not in the first page\n");
 1141                 return (ENOEXEC);
 1142         }
 1143         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 
 1144         if (!aligned(phdr, Elf_Addr)) {
 1145                 uprintf("Unaligned program headers\n");
 1146                 return (ENOEXEC);
 1147         }
 1148 
 1149         n = error = 0;
 1150         baddr = 0;
 1151         osrel = 0;
 1152         fctl0 = 0;
 1153         entry = proghdr = 0;
 1154         interp = NULL;
 1155         free_interp = false;
 1156         td = curthread;
 1157 
 1158         /*
 1159          * Somewhat arbitrary, limit accepted max alignment for the
 1160          * loadable segment to the max supported superpage size. Too
 1161          * large alignment requests are not useful and are indicators
 1162          * of corrupted or outright malicious binary.
 1163          */
 1164         maxalign = PAGE_SIZE;
 1165         maxsalign = PAGE_SIZE * 1024;
 1166         for (i = MAXPAGESIZES - 1; i > 0; i--) {
 1167                 if (pagesizes[i] > maxsalign)
 1168                         maxsalign = pagesizes[i];
 1169         }
 1170 
 1171         mapsz = 0;
 1172 
 1173         for (i = 0; i < hdr->e_phnum; i++) {
 1174                 switch (phdr[i].p_type) {
 1175                 case PT_LOAD:
 1176                         if (n == 0)
 1177                                 baddr = phdr[i].p_vaddr;
 1178                         if (!powerof2(phdr[i].p_align) ||
 1179                             phdr[i].p_align > maxsalign) {
 1180                                 uprintf("Invalid segment alignment\n");
 1181                                 error = ENOEXEC;
 1182                                 goto ret;
 1183                         }
 1184                         if (phdr[i].p_align > maxalign)
 1185                                 maxalign = phdr[i].p_align;
 1186                         if (mapsz + phdr[i].p_memsz < mapsz) {
 1187                                 uprintf("Mapsize overflow\n");
 1188                                 error = ENOEXEC;
 1189                                 goto ret;
 1190                         }
 1191                         mapsz += phdr[i].p_memsz;
 1192                         n++;
 1193 
 1194                         /*
 1195                          * If this segment contains the program headers,
 1196                          * remember their virtual address for the AT_PHDR
 1197                          * aux entry. Static binaries don't usually include
 1198                          * a PT_PHDR entry.
 1199                          */
 1200                         if (phdr[i].p_offset == 0 &&
 1201                             hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
 1202                             phdr[i].p_filesz)
 1203                                 proghdr = phdr[i].p_vaddr + hdr->e_phoff;
 1204                         break;
 1205                 case PT_INTERP:
 1206                         /* Path to interpreter */
 1207                         if (interp != NULL) {
 1208                                 uprintf("Multiple PT_INTERP headers\n");
 1209                                 error = ENOEXEC;
 1210                                 goto ret;
 1211                         }
 1212                         error = __elfN(get_interp)(imgp, &phdr[i], &interp,
 1213                             &free_interp);
 1214                         if (error != 0)
 1215                                 goto ret;
 1216                         break;
 1217                 case PT_GNU_STACK:
 1218                         if (__elfN(nxstack)) {
 1219                                 imgp->stack_prot =
 1220                                     __elfN(trans_prot)(phdr[i].p_flags);
 1221                                 if ((imgp->stack_prot & VM_PROT_RW) !=
 1222                                     VM_PROT_RW) {
 1223                                         uprintf("Invalid PT_GNU_STACK\n");
 1224                                         error = ENOEXEC;
 1225                                         goto ret;
 1226                                 }
 1227                         }
 1228                         imgp->stack_sz = phdr[i].p_memsz;
 1229                         break;
 1230                 case PT_PHDR:   /* Program header table info */
 1231                         proghdr = phdr[i].p_vaddr;
 1232                         break;
 1233                 }
 1234         }
 1235 
 1236         brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
 1237         if (brand_info == NULL) {
 1238                 uprintf("ELF binary type \"%u\" not known.\n",
 1239                     hdr->e_ident[EI_OSABI]);
 1240                 error = ENOEXEC;
 1241                 goto ret;
 1242         }
 1243         sv = brand_info->sysvec;
 1244         et_dyn_addr = 0;
 1245         if (hdr->e_type == ET_DYN) {
 1246                 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
 1247                         uprintf("Cannot execute shared object\n");
 1248                         error = ENOEXEC;
 1249                         goto ret;
 1250                 }
 1251                 /*
 1252                  * Honour the base load address from the dso if it is
 1253                  * non-zero for some reason.
 1254                  */
 1255                 if (baddr == 0) {
 1256                         if ((sv->sv_flags & SV_ASLR) == 0 ||
 1257                             (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
 1258                                 et_dyn_addr = __elfN(pie_base);
 1259                         else if ((__elfN(pie_aslr_enabled) &&
 1260                             (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
 1261                             (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
 1262                                 et_dyn_addr = ET_DYN_ADDR_RAND;
 1263                         else
 1264                                 et_dyn_addr = __elfN(pie_base);
 1265                 }
 1266         }
 1267 
 1268         /*
 1269          * Avoid a possible deadlock if the current address space is destroyed
 1270          * and that address space maps the locked vnode.  In the common case,
 1271          * the locked vnode's v_usecount is decremented but remains greater
 1272          * than zero.  Consequently, the vnode lock is not needed by vrele().
 1273          * However, in cases where the vnode lock is external, such as nullfs,
 1274          * v_usecount may become zero.
 1275          *
 1276          * The VV_TEXT flag prevents modifications to the executable while
 1277          * the vnode is unlocked.
 1278          */
 1279         VOP_UNLOCK(imgp->vp);
 1280 
 1281         /*
 1282          * Decide whether to enable randomization of user mappings.
 1283          * First, reset user preferences for the setid binaries.
 1284          * Then, account for the support of the randomization by the
 1285          * ABI, by user preferences, and make special treatment for
 1286          * PIE binaries.
 1287          */
 1288         if (imgp->credential_setid) {
 1289                 PROC_LOCK(imgp->proc);
 1290                 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
 1291                     P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
 1292                 PROC_UNLOCK(imgp->proc);
 1293         }
 1294         if ((sv->sv_flags & SV_ASLR) == 0 ||
 1295             (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
 1296             (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
 1297                 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
 1298                     ("et_dyn_addr == RAND and !ASLR"));
 1299         } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
 1300             (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
 1301             et_dyn_addr == ET_DYN_ADDR_RAND) {
 1302                 imgp->map_flags |= MAP_ASLR;
 1303                 /*
 1304                  * If user does not care about sbrk, utilize the bss
 1305                  * grow region for mappings as well.  We can select
 1306                  * the base for the image anywere and still not suffer
 1307                  * from the fragmentation.
 1308                  */
 1309                 if (!__elfN(aslr_honor_sbrk) ||
 1310                     (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
 1311                         imgp->map_flags |= MAP_ASLR_IGNSTART;
 1312                 if (__elfN(aslr_stack))
 1313                         imgp->map_flags |= MAP_ASLR_STACK;
 1314         }
 1315 
 1316         if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
 1317             (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
 1318             (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
 1319                 imgp->map_flags |= MAP_WXORX;
 1320 
 1321         error = exec_new_vmspace(imgp, sv);
 1322 
 1323         imgp->proc->p_sysent = sv;
 1324         imgp->proc->p_elf_brandinfo = brand_info;
 1325 
 1326         vmspace = imgp->proc->p_vmspace;
 1327         map = &vmspace->vm_map;
 1328         maxv = sv->sv_usrstack;
 1329         if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
 1330                 maxv -= lim_max(td, RLIMIT_STACK);
 1331         if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
 1332                 uprintf("Excessive mapping size\n");
 1333                 error = ENOEXEC;
 1334         }
 1335 
 1336         if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
 1337                 KASSERT((map->flags & MAP_ASLR) != 0,
 1338                     ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
 1339                 error = __CONCAT(rnd_, __elfN(base))(map,
 1340                     vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
 1341                     /* reserve half of the address space to interpreter */
 1342                     maxv / 2, maxalign, &et_dyn_addr);
 1343         }
 1344 
 1345         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1346         if (error != 0)
 1347                 goto ret;
 1348 
 1349         error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
 1350         if (error != 0)
 1351                 goto ret;
 1352 
 1353         error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
 1354         if (error != 0)
 1355                 goto ret;
 1356 
 1357         /*
 1358          * We load the dynamic linker where a userland call
 1359          * to mmap(0, ...) would put it.  The rationale behind this
 1360          * calculation is that it leaves room for the heap to grow to
 1361          * its maximum allowed size.
 1362          */
 1363         addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
 1364             RLIMIT_DATA));
 1365         if ((map->flags & MAP_ASLR) != 0) {
 1366                 maxv1 = maxv / 2 + addr / 2;
 1367                 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
 1368                     (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
 1369                     pagesizes[1] : pagesizes[0], &anon_loc);
 1370                 if (error != 0)
 1371                         goto ret;
 1372                 map->anon_loc = anon_loc;
 1373         } else {
 1374                 map->anon_loc = addr;
 1375         }
 1376 
 1377         entry = (u_long)hdr->e_entry + et_dyn_addr;
 1378         imgp->entry_addr = entry;
 1379 
 1380         if (interp != NULL) {
 1381                 VOP_UNLOCK(imgp->vp);
 1382                 if ((map->flags & MAP_ASLR) != 0) {
 1383                         /* Assume that interpreter fits into 1/4 of AS */
 1384                         maxv1 = maxv / 2 + addr / 2;
 1385                         error = __CONCAT(rnd_, __elfN(base))(map, addr,
 1386                             maxv1, PAGE_SIZE, &addr);
 1387                 }
 1388                 if (error == 0) {
 1389                         error = __elfN(load_interp)(imgp, brand_info, interp,
 1390                             &addr, &imgp->entry_addr);
 1391                 }
 1392                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1393                 if (error != 0)
 1394                         goto ret;
 1395         } else
 1396                 addr = et_dyn_addr;
 1397 
 1398         error = exec_map_stack(imgp);
 1399         if (error != 0)
 1400                 goto ret;
 1401 
 1402         /*
 1403          * Construct auxargs table (used by the copyout_auxargs routine)
 1404          */
 1405         elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
 1406         if (elf_auxargs == NULL) {
 1407                 VOP_UNLOCK(imgp->vp);
 1408                 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
 1409                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 1410         }
 1411         elf_auxargs->execfd = -1;
 1412         elf_auxargs->phdr = proghdr + et_dyn_addr;
 1413         elf_auxargs->phent = hdr->e_phentsize;
 1414         elf_auxargs->phnum = hdr->e_phnum;
 1415         elf_auxargs->pagesz = PAGE_SIZE;
 1416         elf_auxargs->base = addr;
 1417         elf_auxargs->flags = 0;
 1418         elf_auxargs->entry = entry;
 1419         elf_auxargs->hdr_eflags = hdr->e_flags;
 1420 
 1421         imgp->auxargs = elf_auxargs;
 1422         imgp->interpreted = 0;
 1423         imgp->reloc_base = addr;
 1424         imgp->proc->p_osrel = osrel;
 1425         imgp->proc->p_fctl0 = fctl0;
 1426         imgp->proc->p_elf_flags = hdr->e_flags;
 1427 
 1428 ret:
 1429         ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
 1430         if (free_interp)
 1431                 free(interp, M_TEMP);
 1432         return (error);
 1433 }
 1434 
 1435 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
 1436 
 1437 int
 1438 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
 1439 {
 1440         Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
 1441         Elf_Auxinfo *argarray, *pos;
 1442         struct vmspace *vmspace;
 1443         rlim_t stacksz;
 1444         int error, bsdflags, oc;
 1445 
 1446         argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
 1447             M_WAITOK | M_ZERO);
 1448 
 1449         vmspace = imgp->proc->p_vmspace;
 1450 
 1451         if (args->execfd != -1)
 1452                 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
 1453         AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
 1454         AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
 1455         AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
 1456         AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
 1457         AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
 1458         AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
 1459         AUXARGS_ENTRY(pos, AT_BASE, args->base);
 1460         AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
 1461         if (imgp->execpathp != 0)
 1462                 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
 1463         AUXARGS_ENTRY(pos, AT_OSRELDATE,
 1464             imgp->proc->p_ucred->cr_prison->pr_osreldate);
 1465         if (imgp->canary != 0) {
 1466                 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
 1467                 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
 1468         }
 1469         AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
 1470         if (imgp->pagesizes != 0) {
 1471                 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
 1472                 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
 1473         }
 1474         if (imgp->sysent->sv_timekeep_base != 0) {
 1475                 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
 1476                     imgp->sysent->sv_timekeep_base);
 1477         }
 1478         AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
 1479             != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
 1480             imgp->sysent->sv_stackprot);
 1481         if (imgp->sysent->sv_hwcap != NULL)
 1482                 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
 1483         if (imgp->sysent->sv_hwcap2 != NULL)
 1484                 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
 1485         bsdflags = 0;
 1486         bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
 1487         oc = atomic_load_int(&vm_overcommit);
 1488         bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
 1489             0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
 1490         AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
 1491         AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
 1492         AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
 1493         AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
 1494         AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
 1495         AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
 1496         if (imgp->sysent->sv_fxrng_gen_base != 0)
 1497                 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base);
 1498         if (imgp->sysent->sv_vdso_base != 0 && __elfN(vdso) != 0)
 1499                 AUXARGS_ENTRY(pos, AT_KPRELOAD, imgp->sysent->sv_vdso_base);
 1500         AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
 1501         stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
 1502         AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
 1503         AUXARGS_ENTRY(pos, AT_NULL, 0);
 1504 
 1505         free(imgp->auxargs, M_TEMP);
 1506         imgp->auxargs = NULL;
 1507         KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
 1508 
 1509         error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
 1510         free(argarray, M_TEMP);
 1511         return (error);
 1512 }
 1513 
 1514 int
 1515 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
 1516 {
 1517         Elf_Addr *base;
 1518 
 1519         base = (Elf_Addr *)*stack_base;
 1520         base--;
 1521         if (elf_suword(base, imgp->args->argc) == -1)
 1522                 return (EFAULT);
 1523         *stack_base = (uintptr_t)base;
 1524         return (0);
 1525 }
 1526 
 1527 /*
 1528  * Code for generating ELF core dumps.
 1529  */
 1530 
 1531 typedef void (*segment_callback)(vm_map_entry_t, void *);
 1532 
 1533 /* Closure for cb_put_phdr(). */
 1534 struct phdr_closure {
 1535         Elf_Phdr *phdr;         /* Program header to fill in */
 1536         Elf_Off offset;         /* Offset of segment in core file */
 1537 };
 1538 
 1539 struct note_info {
 1540         int             type;           /* Note type. */
 1541         struct regset   *regset;        /* Register set. */
 1542         outfunc_t       outfunc;        /* Output function. */
 1543         void            *outarg;        /* Argument for the output function. */
 1544         size_t          outsize;        /* Output size. */
 1545         TAILQ_ENTRY(note_info) link;    /* Link to the next note info. */
 1546 };
 1547 
 1548 TAILQ_HEAD(note_info_list, note_info);
 1549 
 1550 extern int compress_user_cores;
 1551 extern int compress_user_cores_level;
 1552 
 1553 static void cb_put_phdr(vm_map_entry_t, void *);
 1554 static void cb_size_segment(vm_map_entry_t, void *);
 1555 static void each_dumpable_segment(struct thread *, segment_callback, void *,
 1556     int);
 1557 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
 1558     struct note_info_list *, size_t, int);
 1559 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
 1560 
 1561 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
 1562 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
 1563 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
 1564 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
 1565 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
 1566 static void note_procstat_files(void *, struct sbuf *, size_t *);
 1567 static void note_procstat_groups(void *, struct sbuf *, size_t *);
 1568 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
 1569 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
 1570 static void note_procstat_umask(void *, struct sbuf *, size_t *);
 1571 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
 1572 
 1573 static int
 1574 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
 1575 {
 1576 
 1577         return (core_write((struct coredump_params *)arg, base, len, offset,
 1578             UIO_SYSSPACE, NULL));
 1579 }
 1580 
 1581 int
 1582 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
 1583 {
 1584         struct ucred *cred = td->td_ucred;
 1585         int compm, error = 0;
 1586         struct sseg_closure seginfo;
 1587         struct note_info_list notelst;
 1588         struct coredump_params params;
 1589         struct note_info *ninfo;
 1590         void *hdr, *tmpbuf;
 1591         size_t hdrsize, notesz, coresize;
 1592 
 1593         hdr = NULL;
 1594         tmpbuf = NULL;
 1595         TAILQ_INIT(&notelst);
 1596 
 1597         /* Size the program segments. */
 1598         __elfN(size_segments)(td, &seginfo, flags);
 1599 
 1600         /*
 1601          * Collect info about the core file header area.
 1602          */
 1603         hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
 1604         if (seginfo.count + 1 >= PN_XNUM)
 1605                 hdrsize += sizeof(Elf_Shdr);
 1606         td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
 1607         coresize = round_page(hdrsize + notesz) + seginfo.size;
 1608 
 1609         /* Set up core dump parameters. */
 1610         params.offset = 0;
 1611         params.active_cred = cred;
 1612         params.file_cred = NOCRED;
 1613         params.td = td;
 1614         params.vp = vp;
 1615         params.comp = NULL;
 1616 
 1617 #ifdef RACCT
 1618         if (racct_enable) {
 1619                 PROC_LOCK(td->td_proc);
 1620                 error = racct_add(td->td_proc, RACCT_CORE, coresize);
 1621                 PROC_UNLOCK(td->td_proc);
 1622                 if (error != 0) {
 1623                         error = EFAULT;
 1624                         goto done;
 1625                 }
 1626         }
 1627 #endif
 1628         if (coresize >= limit) {
 1629                 error = EFAULT;
 1630                 goto done;
 1631         }
 1632 
 1633         /* Create a compression stream if necessary. */
 1634         compm = compress_user_cores;
 1635         if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
 1636             compm == 0)
 1637                 compm = COMPRESS_GZIP;
 1638         if (compm != 0) {
 1639                 params.comp = compressor_init(core_compressed_write,
 1640                     compm, CORE_BUF_SIZE,
 1641                     compress_user_cores_level, &params);
 1642                 if (params.comp == NULL) {
 1643                         error = EFAULT;
 1644                         goto done;
 1645                 }
 1646                 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
 1647         }
 1648 
 1649         /*
 1650          * Allocate memory for building the header, fill it up,
 1651          * and write it out following the notes.
 1652          */
 1653         hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
 1654         error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
 1655             notesz, flags);
 1656 
 1657         /* Write the contents of all of the writable segments. */
 1658         if (error == 0) {
 1659                 Elf_Phdr *php;
 1660                 off_t offset;
 1661                 int i;
 1662 
 1663                 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
 1664                 offset = round_page(hdrsize + notesz);
 1665                 for (i = 0; i < seginfo.count; i++) {
 1666                         error = core_output((char *)(uintptr_t)php->p_vaddr,
 1667                             php->p_filesz, offset, &params, tmpbuf);
 1668                         if (error != 0)
 1669                                 break;
 1670                         offset += php->p_filesz;
 1671                         php++;
 1672                 }
 1673                 if (error == 0 && params.comp != NULL)
 1674                         error = compressor_flush(params.comp);
 1675         }
 1676         if (error) {
 1677                 log(LOG_WARNING,
 1678                     "Failed to write core file for process %s (error %d)\n",
 1679                     curproc->p_comm, error);
 1680         }
 1681 
 1682 done:
 1683         free(tmpbuf, M_TEMP);
 1684         if (params.comp != NULL)
 1685                 compressor_fini(params.comp);
 1686         while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
 1687                 TAILQ_REMOVE(&notelst, ninfo, link);
 1688                 free(ninfo, M_TEMP);
 1689         }
 1690         if (hdr != NULL)
 1691                 free(hdr, M_TEMP);
 1692 
 1693         return (error);
 1694 }
 1695 
 1696 /*
 1697  * A callback for each_dumpable_segment() to write out the segment's
 1698  * program header entry.
 1699  */
 1700 static void
 1701 cb_put_phdr(vm_map_entry_t entry, void *closure)
 1702 {
 1703         struct phdr_closure *phc = (struct phdr_closure *)closure;
 1704         Elf_Phdr *phdr = phc->phdr;
 1705 
 1706         phc->offset = round_page(phc->offset);
 1707 
 1708         phdr->p_type = PT_LOAD;
 1709         phdr->p_offset = phc->offset;
 1710         phdr->p_vaddr = entry->start;
 1711         phdr->p_paddr = 0;
 1712         phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
 1713         phdr->p_align = PAGE_SIZE;
 1714         phdr->p_flags = __elfN(untrans_prot)(entry->protection);
 1715 
 1716         phc->offset += phdr->p_filesz;
 1717         phc->phdr++;
 1718 }
 1719 
 1720 /*
 1721  * A callback for each_dumpable_segment() to gather information about
 1722  * the number of segments and their total size.
 1723  */
 1724 static void
 1725 cb_size_segment(vm_map_entry_t entry, void *closure)
 1726 {
 1727         struct sseg_closure *ssc = (struct sseg_closure *)closure;
 1728 
 1729         ssc->count++;
 1730         ssc->size += entry->end - entry->start;
 1731 }
 1732 
 1733 void
 1734 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
 1735     int flags)
 1736 {
 1737         seginfo->count = 0;
 1738         seginfo->size = 0;
 1739 
 1740         each_dumpable_segment(td, cb_size_segment, seginfo, flags);
 1741 }
 1742 
 1743 /*
 1744  * For each writable segment in the process's memory map, call the given
 1745  * function with a pointer to the map entry and some arbitrary
 1746  * caller-supplied data.
 1747  */
 1748 static void
 1749 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
 1750     int flags)
 1751 {
 1752         struct proc *p = td->td_proc;
 1753         vm_map_t map = &p->p_vmspace->vm_map;
 1754         vm_map_entry_t entry;
 1755         vm_object_t backing_object, object;
 1756         bool ignore_entry;
 1757 
 1758         vm_map_lock_read(map);
 1759         VM_MAP_ENTRY_FOREACH(entry, map) {
 1760                 /*
 1761                  * Don't dump inaccessible mappings, deal with legacy
 1762                  * coredump mode.
 1763                  *
 1764                  * Note that read-only segments related to the elf binary
 1765                  * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
 1766                  * need to arbitrarily ignore such segments.
 1767                  */
 1768                 if ((flags & SVC_ALL) == 0) {
 1769                         if (elf_legacy_coredump) {
 1770                                 if ((entry->protection & VM_PROT_RW) !=
 1771                                     VM_PROT_RW)
 1772                                         continue;
 1773                         } else {
 1774                                 if ((entry->protection & VM_PROT_ALL) == 0)
 1775                                         continue;
 1776                         }
 1777                 }
 1778 
 1779                 /*
 1780                  * Dont include memory segment in the coredump if
 1781                  * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
 1782                  * madvise(2).  Do not dump submaps (i.e. parts of the
 1783                  * kernel map).
 1784                  */
 1785                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 1786                         continue;
 1787                 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
 1788                     (flags & SVC_ALL) == 0)
 1789                         continue;
 1790                 if ((object = entry->object.vm_object) == NULL)
 1791                         continue;
 1792 
 1793                 /* Ignore memory-mapped devices and such things. */
 1794                 VM_OBJECT_RLOCK(object);
 1795                 while ((backing_object = object->backing_object) != NULL) {
 1796                         VM_OBJECT_RLOCK(backing_object);
 1797                         VM_OBJECT_RUNLOCK(object);
 1798                         object = backing_object;
 1799                 }
 1800                 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
 1801                 VM_OBJECT_RUNLOCK(object);
 1802                 if (ignore_entry)
 1803                         continue;
 1804 
 1805                 (*func)(entry, closure);
 1806         }
 1807         vm_map_unlock_read(map);
 1808 }
 1809 
 1810 /*
 1811  * Write the core file header to the file, including padding up to
 1812  * the page boundary.
 1813  */
 1814 static int
 1815 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
 1816     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
 1817     int flags)
 1818 {
 1819         struct note_info *ninfo;
 1820         struct sbuf *sb;
 1821         int error;
 1822 
 1823         /* Fill in the header. */
 1824         bzero(hdr, hdrsize);
 1825         __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
 1826 
 1827         sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
 1828         sbuf_set_drain(sb, sbuf_drain_core_output, p);
 1829         sbuf_start_section(sb, NULL);
 1830         sbuf_bcat(sb, hdr, hdrsize);
 1831         TAILQ_FOREACH(ninfo, notelst, link)
 1832             __elfN(putnote)(p->td, ninfo, sb);
 1833         /* Align up to a page boundary for the program segments. */
 1834         sbuf_end_section(sb, -1, PAGE_SIZE, 0);
 1835         error = sbuf_finish(sb);
 1836         sbuf_delete(sb);
 1837 
 1838         return (error);
 1839 }
 1840 
 1841 void
 1842 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
 1843     size_t *sizep)
 1844 {
 1845         struct proc *p;
 1846         struct thread *thr;
 1847         size_t size;
 1848 
 1849         p = td->td_proc;
 1850         size = 0;
 1851 
 1852         size += __elfN(register_note)(td, list, NT_PRPSINFO,
 1853             __elfN(note_prpsinfo), p);
 1854 
 1855         /*
 1856          * To have the debugger select the right thread (LWP) as the initial
 1857          * thread, we dump the state of the thread passed to us in td first.
 1858          * This is the thread that causes the core dump and thus likely to
 1859          * be the right thread one wants to have selected in the debugger.
 1860          */
 1861         thr = td;
 1862         while (thr != NULL) {
 1863                 size += __elfN(prepare_register_notes)(td, list, thr);
 1864                 size += __elfN(register_note)(td, list, -1,
 1865                     __elfN(note_threadmd), thr);
 1866 
 1867                 thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
 1868                     TAILQ_NEXT(thr, td_plist);
 1869                 if (thr == td)
 1870                         thr = TAILQ_NEXT(thr, td_plist);
 1871         }
 1872 
 1873         size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
 1874             __elfN(note_procstat_proc), p);
 1875         size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
 1876             note_procstat_files, p);
 1877         size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
 1878             note_procstat_vmmap, p);
 1879         size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
 1880             note_procstat_groups, p);
 1881         size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
 1882             note_procstat_umask, p);
 1883         size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
 1884             note_procstat_rlimit, p);
 1885         size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
 1886             note_procstat_osrel, p);
 1887         size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
 1888             __elfN(note_procstat_psstrings), p);
 1889         size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
 1890             __elfN(note_procstat_auxv), p);
 1891 
 1892         *sizep = size;
 1893 }
 1894 
 1895 void
 1896 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
 1897     size_t notesz, int flags)
 1898 {
 1899         Elf_Ehdr *ehdr;
 1900         Elf_Phdr *phdr;
 1901         Elf_Shdr *shdr;
 1902         struct phdr_closure phc;
 1903         Elf_Brandinfo *bi;
 1904 
 1905         ehdr = (Elf_Ehdr *)hdr;
 1906         bi = td->td_proc->p_elf_brandinfo;
 1907 
 1908         ehdr->e_ident[EI_MAG0] = ELFMAG0;
 1909         ehdr->e_ident[EI_MAG1] = ELFMAG1;
 1910         ehdr->e_ident[EI_MAG2] = ELFMAG2;
 1911         ehdr->e_ident[EI_MAG3] = ELFMAG3;
 1912         ehdr->e_ident[EI_CLASS] = ELF_CLASS;
 1913         ehdr->e_ident[EI_DATA] = ELF_DATA;
 1914         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 1915         ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
 1916         ehdr->e_ident[EI_ABIVERSION] = 0;
 1917         ehdr->e_ident[EI_PAD] = 0;
 1918         ehdr->e_type = ET_CORE;
 1919         ehdr->e_machine = bi->machine;
 1920         ehdr->e_version = EV_CURRENT;
 1921         ehdr->e_entry = 0;
 1922         ehdr->e_phoff = sizeof(Elf_Ehdr);
 1923         ehdr->e_flags = td->td_proc->p_elf_flags;
 1924         ehdr->e_ehsize = sizeof(Elf_Ehdr);
 1925         ehdr->e_phentsize = sizeof(Elf_Phdr);
 1926         ehdr->e_shentsize = sizeof(Elf_Shdr);
 1927         ehdr->e_shstrndx = SHN_UNDEF;
 1928         if (numsegs + 1 < PN_XNUM) {
 1929                 ehdr->e_phnum = numsegs + 1;
 1930                 ehdr->e_shnum = 0;
 1931         } else {
 1932                 ehdr->e_phnum = PN_XNUM;
 1933                 ehdr->e_shnum = 1;
 1934 
 1935                 ehdr->e_shoff = ehdr->e_phoff +
 1936                     (numsegs + 1) * ehdr->e_phentsize;
 1937                 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
 1938                     ("e_shoff: %zu, hdrsize - shdr: %zu",
 1939                      (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
 1940 
 1941                 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
 1942                 memset(shdr, 0, sizeof(*shdr));
 1943                 /*
 1944                  * A special first section is used to hold large segment and
 1945                  * section counts.  This was proposed by Sun Microsystems in
 1946                  * Solaris and has been adopted by Linux; the standard ELF
 1947                  * tools are already familiar with the technique.
 1948                  *
 1949                  * See table 7-7 of the Solaris "Linker and Libraries Guide"
 1950                  * (or 12-7 depending on the version of the document) for more
 1951                  * details.
 1952                  */
 1953                 shdr->sh_type = SHT_NULL;
 1954                 shdr->sh_size = ehdr->e_shnum;
 1955                 shdr->sh_link = ehdr->e_shstrndx;
 1956                 shdr->sh_info = numsegs + 1;
 1957         }
 1958 
 1959         /*
 1960          * Fill in the program header entries.
 1961          */
 1962         phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
 1963 
 1964         /* The note segement. */
 1965         phdr->p_type = PT_NOTE;
 1966         phdr->p_offset = hdrsize;
 1967         phdr->p_vaddr = 0;
 1968         phdr->p_paddr = 0;
 1969         phdr->p_filesz = notesz;
 1970         phdr->p_memsz = 0;
 1971         phdr->p_flags = PF_R;
 1972         phdr->p_align = ELF_NOTE_ROUNDSIZE;
 1973         phdr++;
 1974 
 1975         /* All the writable segments from the program. */
 1976         phc.phdr = phdr;
 1977         phc.offset = round_page(hdrsize + notesz);
 1978         each_dumpable_segment(td, cb_put_phdr, &phc, flags);
 1979 }
 1980 
 1981 static size_t
 1982 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
 1983     struct regset *regset, struct thread *target_td)
 1984 {
 1985         const struct sysentvec *sv;
 1986         struct note_info *ninfo;
 1987         size_t size, notesize;
 1988 
 1989         size = 0;
 1990         if (!regset->get(regset, target_td, NULL, &size) || size == 0)
 1991                 return (0);
 1992 
 1993         ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
 1994         ninfo->type = regset->note;
 1995         ninfo->regset = regset;
 1996         ninfo->outarg = target_td;
 1997         ninfo->outsize = size;
 1998         TAILQ_INSERT_TAIL(list, ninfo, link);
 1999 
 2000         sv = td->td_proc->p_sysent;
 2001         notesize = sizeof(Elf_Note) +           /* note header */
 2002             roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
 2003                                                 /* note name */
 2004             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2005 
 2006         return (notesize);
 2007 }
 2008 
 2009 size_t
 2010 __elfN(register_note)(struct thread *td, struct note_info_list *list,
 2011     int type, outfunc_t out, void *arg)
 2012 {
 2013         const struct sysentvec *sv;
 2014         struct note_info *ninfo;
 2015         size_t size, notesize;
 2016 
 2017         sv = td->td_proc->p_sysent;
 2018         size = 0;
 2019         out(arg, NULL, &size);
 2020         ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
 2021         ninfo->type = type;
 2022         ninfo->outfunc = out;
 2023         ninfo->outarg = arg;
 2024         ninfo->outsize = size;
 2025         TAILQ_INSERT_TAIL(list, ninfo, link);
 2026 
 2027         if (type == -1)
 2028                 return (size);
 2029 
 2030         notesize = sizeof(Elf_Note) +           /* note header */
 2031             roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
 2032                                                 /* note name */
 2033             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2034 
 2035         return (notesize);
 2036 }
 2037 
 2038 static size_t
 2039 append_note_data(const void *src, void *dst, size_t len)
 2040 {
 2041         size_t padded_len;
 2042 
 2043         padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
 2044         if (dst != NULL) {
 2045                 bcopy(src, dst, len);
 2046                 bzero((char *)dst + len, padded_len - len);
 2047         }
 2048         return (padded_len);
 2049 }
 2050 
 2051 size_t
 2052 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
 2053 {
 2054         Elf_Note *note;
 2055         char *buf;
 2056         size_t notesize;
 2057 
 2058         buf = dst;
 2059         if (buf != NULL) {
 2060                 note = (Elf_Note *)buf;
 2061                 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
 2062                 note->n_descsz = size;
 2063                 note->n_type = type;
 2064                 buf += sizeof(*note);
 2065                 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
 2066                     sizeof(FREEBSD_ABI_VENDOR));
 2067                 append_note_data(src, buf, size);
 2068                 if (descp != NULL)
 2069                         *descp = buf;
 2070         }
 2071 
 2072         notesize = sizeof(Elf_Note) +           /* note header */
 2073             roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
 2074                                                 /* note name */
 2075             roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
 2076 
 2077         return (notesize);
 2078 }
 2079 
 2080 static void
 2081 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
 2082 {
 2083         Elf_Note note;
 2084         const struct sysentvec *sv;
 2085         ssize_t old_len, sect_len;
 2086         size_t new_len, descsz, i;
 2087 
 2088         if (ninfo->type == -1) {
 2089                 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 2090                 return;
 2091         }
 2092 
 2093         sv = td->td_proc->p_sysent;
 2094 
 2095         note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
 2096         note.n_descsz = ninfo->outsize;
 2097         note.n_type = ninfo->type;
 2098 
 2099         sbuf_bcat(sb, &note, sizeof(note));
 2100         sbuf_start_section(sb, &old_len);
 2101         sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
 2102             strlen(sv->sv_elf_core_abi_vendor) + 1);
 2103         sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 2104         if (note.n_descsz == 0)
 2105                 return;
 2106         sbuf_start_section(sb, &old_len);
 2107         if (ninfo->regset != NULL) {
 2108                 struct regset *regset = ninfo->regset;
 2109                 void *buf;
 2110 
 2111                 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
 2112                 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
 2113                 sbuf_bcat(sb, buf, ninfo->outsize);
 2114                 free(buf, M_TEMP);
 2115         } else
 2116                 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
 2117         sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
 2118         if (sect_len < 0)
 2119                 return;
 2120 
 2121         new_len = (size_t)sect_len;
 2122         descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
 2123         if (new_len < descsz) {
 2124                 /*
 2125                  * It is expected that individual note emitters will correctly
 2126                  * predict their expected output size and fill up to that size
 2127                  * themselves, padding in a format-specific way if needed.
 2128                  * However, in case they don't, just do it here with zeros.
 2129                  */
 2130                 for (i = 0; i < descsz - new_len; i++)
 2131                         sbuf_putc(sb, 0);
 2132         } else if (new_len > descsz) {
 2133                 /*
 2134                  * We can't always truncate sb -- we may have drained some
 2135                  * of it already.
 2136                  */
 2137                 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
 2138                     "read it (%zu > %zu).  Since it is longer than "
 2139                     "expected, this coredump's notes are corrupt.  THIS "
 2140                     "IS A BUG in the note_procstat routine for type %u.\n",
 2141                     __func__, (unsigned)note.n_type, new_len, descsz,
 2142                     (unsigned)note.n_type));
 2143         }
 2144 }
 2145 
 2146 /*
 2147  * Miscellaneous note out functions.
 2148  */
 2149 
 2150 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2151 #include <compat/freebsd32/freebsd32.h>
 2152 #include <compat/freebsd32/freebsd32_signal.h>
 2153 
 2154 typedef struct prstatus32 elf_prstatus_t;
 2155 typedef struct prpsinfo32 elf_prpsinfo_t;
 2156 typedef struct fpreg32 elf_prfpregset_t;
 2157 typedef struct fpreg32 elf_fpregset_t;
 2158 typedef struct reg32 elf_gregset_t;
 2159 typedef struct thrmisc32 elf_thrmisc_t;
 2160 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
 2161 #define ELF_KERN_PROC_MASK      KERN_PROC_MASK32
 2162 typedef struct kinfo_proc32 elf_kinfo_proc_t;
 2163 typedef uint32_t elf_ps_strings_t;
 2164 #else
 2165 typedef prstatus_t elf_prstatus_t;
 2166 typedef prpsinfo_t elf_prpsinfo_t;
 2167 typedef prfpregset_t elf_prfpregset_t;
 2168 typedef prfpregset_t elf_fpregset_t;
 2169 typedef gregset_t elf_gregset_t;
 2170 typedef thrmisc_t elf_thrmisc_t;
 2171 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
 2172 #define ELF_KERN_PROC_MASK      0
 2173 typedef struct kinfo_proc elf_kinfo_proc_t;
 2174 typedef vm_offset_t elf_ps_strings_t;
 2175 #endif
 2176 
 2177 static void
 2178 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
 2179 {
 2180         struct sbuf sbarg;
 2181         size_t len;
 2182         char *cp, *end;
 2183         struct proc *p;
 2184         elf_prpsinfo_t *psinfo;
 2185         int error;
 2186 
 2187         p = arg;
 2188         if (sb != NULL) {
 2189                 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
 2190                 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
 2191                 psinfo->pr_version = PRPSINFO_VERSION;
 2192                 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
 2193                 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
 2194                 PROC_LOCK(p);
 2195                 if (p->p_args != NULL) {
 2196                         len = sizeof(psinfo->pr_psargs) - 1;
 2197                         if (len > p->p_args->ar_length)
 2198                                 len = p->p_args->ar_length;
 2199                         memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
 2200                         PROC_UNLOCK(p);
 2201                         error = 0;
 2202                 } else {
 2203                         _PHOLD(p);
 2204                         PROC_UNLOCK(p);
 2205                         sbuf_new(&sbarg, psinfo->pr_psargs,
 2206                             sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
 2207                         error = proc_getargv(curthread, p, &sbarg);
 2208                         PRELE(p);
 2209                         if (sbuf_finish(&sbarg) == 0) {
 2210                                 len = sbuf_len(&sbarg);
 2211                                 if (len > 0)
 2212                                         len--;
 2213                         } else {
 2214                                 len = sizeof(psinfo->pr_psargs) - 1;
 2215                         }
 2216                         sbuf_delete(&sbarg);
 2217                 }
 2218                 if (error != 0 || len == 0 || (ssize_t)len == -1)
 2219                         strlcpy(psinfo->pr_psargs, p->p_comm,
 2220                             sizeof(psinfo->pr_psargs));
 2221                 else {
 2222                         KASSERT(len < sizeof(psinfo->pr_psargs),
 2223                             ("len is too long: %zu vs %zu", len,
 2224                             sizeof(psinfo->pr_psargs)));
 2225                         cp = psinfo->pr_psargs;
 2226                         end = cp + len - 1;
 2227                         for (;;) {
 2228                                 cp = memchr(cp, '\0', end - cp);
 2229                                 if (cp == NULL)
 2230                                         break;
 2231                                 *cp = ' ';
 2232                         }
 2233                 }
 2234                 psinfo->pr_pid = p->p_pid;
 2235                 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
 2236                 free(psinfo, M_TEMP);
 2237         }
 2238         *sizep = sizeof(*psinfo);
 2239 }
 2240 
 2241 static bool
 2242 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
 2243     size_t *sizep)
 2244 {
 2245         elf_prstatus_t *status;
 2246 
 2247         if (buf != NULL) {
 2248                 KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
 2249                     __func__));
 2250                 status = buf;
 2251                 memset(status, 0, *sizep);
 2252                 status->pr_version = PRSTATUS_VERSION;
 2253                 status->pr_statussz = sizeof(elf_prstatus_t);
 2254                 status->pr_gregsetsz = sizeof(elf_gregset_t);
 2255                 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
 2256                 status->pr_osreldate = osreldate;
 2257                 status->pr_cursig = td->td_proc->p_sig;
 2258                 status->pr_pid = td->td_tid;
 2259 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2260                 fill_regs32(td, &status->pr_reg);
 2261 #else
 2262                 fill_regs(td, &status->pr_reg);
 2263 #endif
 2264         }
 2265         *sizep = sizeof(*status);
 2266         return (true);
 2267 }
 2268 
 2269 static bool
 2270 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
 2271     size_t size)
 2272 {
 2273         elf_prstatus_t *status;
 2274 
 2275         KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
 2276         status = buf;
 2277 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2278         set_regs32(td, &status->pr_reg);
 2279 #else
 2280         set_regs(td, &status->pr_reg);
 2281 #endif
 2282         return (true);
 2283 }
 2284 
 2285 static struct regset __elfN(regset_prstatus) = {
 2286         .note = NT_PRSTATUS,
 2287         .size = sizeof(elf_prstatus_t),
 2288         .get = __elfN(get_prstatus),
 2289         .set = __elfN(set_prstatus),
 2290 };
 2291 ELF_REGSET(__elfN(regset_prstatus));
 2292 
 2293 static bool
 2294 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
 2295     size_t *sizep)
 2296 {
 2297         elf_prfpregset_t *fpregset;
 2298 
 2299         if (buf != NULL) {
 2300                 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
 2301                     __func__));
 2302                 fpregset = buf;
 2303 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2304                 fill_fpregs32(td, fpregset);
 2305 #else
 2306                 fill_fpregs(td, fpregset);
 2307 #endif
 2308         }
 2309         *sizep = sizeof(*fpregset);
 2310         return (true);
 2311 }
 2312 
 2313 static bool
 2314 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
 2315     size_t size)
 2316 {
 2317         elf_prfpregset_t *fpregset;
 2318 
 2319         fpregset = buf;
 2320         KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
 2321 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2322         set_fpregs32(td, fpregset);
 2323 #else
 2324         set_fpregs(td, fpregset);
 2325 #endif
 2326         return (true);
 2327 }
 2328 
 2329 static struct regset __elfN(regset_fpregset) = {
 2330         .note = NT_FPREGSET,
 2331         .size = sizeof(elf_prfpregset_t),
 2332         .get = __elfN(get_fpregset),
 2333         .set = __elfN(set_fpregset),
 2334 };
 2335 ELF_REGSET(__elfN(regset_fpregset));
 2336 
 2337 static bool
 2338 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
 2339     size_t *sizep)
 2340 {
 2341         elf_thrmisc_t *thrmisc;
 2342 
 2343         if (buf != NULL) {
 2344                 KASSERT(*sizep == sizeof(*thrmisc),
 2345                     ("%s: invalid size", __func__));
 2346                 thrmisc = buf;
 2347                 bzero(thrmisc, sizeof(*thrmisc));
 2348                 strcpy(thrmisc->pr_tname, td->td_name);
 2349         }
 2350         *sizep = sizeof(*thrmisc);
 2351         return (true);
 2352 }
 2353 
 2354 static struct regset __elfN(regset_thrmisc) = {
 2355         .note = NT_THRMISC,
 2356         .size = sizeof(elf_thrmisc_t),
 2357         .get = __elfN(get_thrmisc),
 2358 };
 2359 ELF_REGSET(__elfN(regset_thrmisc));
 2360 
 2361 static bool
 2362 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
 2363     size_t *sizep)
 2364 {
 2365         elf_lwpinfo_t pl;
 2366         size_t size;
 2367         int structsize;
 2368 
 2369         size = sizeof(structsize) + sizeof(pl);
 2370         if (buf != NULL) {
 2371                 KASSERT(*sizep == size, ("%s: invalid size", __func__));
 2372                 structsize = sizeof(pl);
 2373                 memcpy(buf, &structsize, sizeof(structsize));
 2374                 bzero(&pl, sizeof(pl));
 2375                 pl.pl_lwpid = td->td_tid;
 2376                 pl.pl_event = PL_EVENT_NONE;
 2377                 pl.pl_sigmask = td->td_sigmask;
 2378                 pl.pl_siglist = td->td_siglist;
 2379                 if (td->td_si.si_signo != 0) {
 2380                         pl.pl_event = PL_EVENT_SIGNAL;
 2381                         pl.pl_flags |= PL_FLAG_SI;
 2382 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2383                         siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
 2384 #else
 2385                         pl.pl_siginfo = td->td_si;
 2386 #endif
 2387                 }
 2388                 strcpy(pl.pl_tdname, td->td_name);
 2389                 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/
 2390                 memcpy((int *)buf + 1, &pl, sizeof(pl));
 2391         }
 2392         *sizep = size;
 2393         return (true);
 2394 }
 2395 
 2396 static struct regset __elfN(regset_lwpinfo) = {
 2397         .note = NT_PTLWPINFO,
 2398         .size = sizeof(int) + sizeof(elf_lwpinfo_t),
 2399         .get = __elfN(get_lwpinfo),
 2400 };
 2401 ELF_REGSET(__elfN(regset_lwpinfo));
 2402 
 2403 static size_t
 2404 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
 2405     struct thread *target_td)
 2406 {
 2407         struct sysentvec *sv = td->td_proc->p_sysent;
 2408         struct regset **regsetp, **regset_end, *regset;
 2409         size_t size;
 2410 
 2411         size = 0;
 2412 
 2413         /* NT_PRSTATUS must be the first register set note. */
 2414         size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
 2415             target_td);
 2416 
 2417         regsetp = sv->sv_regset_begin;
 2418         if (regsetp == NULL) {
 2419                 /* XXX: This shouldn't be true for any FreeBSD ABIs. */
 2420                 size += __elfN(register_regset_note)(td, list,
 2421                     &__elfN(regset_fpregset), target_td);
 2422                 return (size);
 2423         }
 2424         regset_end = sv->sv_regset_end;
 2425         MPASS(regset_end != NULL);
 2426         for (; regsetp < regset_end; regsetp++) {
 2427                 regset = *regsetp;
 2428                 if (regset->note == NT_PRSTATUS)
 2429                         continue;
 2430                 size += __elfN(register_regset_note)(td, list, regset,
 2431                     target_td);
 2432         }
 2433         return (size);
 2434 }
 2435 
 2436 /*
 2437  * Allow for MD specific notes, as well as any MD
 2438  * specific preparations for writing MI notes.
 2439  */
 2440 static void
 2441 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
 2442 {
 2443         struct thread *td;
 2444         void *buf;
 2445         size_t size;
 2446 
 2447         td = (struct thread *)arg;
 2448         size = *sizep;
 2449         if (size != 0 && sb != NULL)
 2450                 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
 2451         else
 2452                 buf = NULL;
 2453         size = 0;
 2454         __elfN(dump_thread)(td, buf, &size);
 2455         KASSERT(sb == NULL || *sizep == size, ("invalid size"));
 2456         if (size != 0 && sb != NULL)
 2457                 sbuf_bcat(sb, buf, size);
 2458         free(buf, M_TEMP);
 2459         *sizep = size;
 2460 }
 2461 
 2462 #ifdef KINFO_PROC_SIZE
 2463 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
 2464 #endif
 2465 
 2466 static void
 2467 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
 2468 {
 2469         struct proc *p;
 2470         size_t size;
 2471         int structsize;
 2472 
 2473         p = arg;
 2474         size = sizeof(structsize) + p->p_numthreads *
 2475             sizeof(elf_kinfo_proc_t);
 2476 
 2477         if (sb != NULL) {
 2478                 KASSERT(*sizep == size, ("invalid size"));
 2479                 structsize = sizeof(elf_kinfo_proc_t);
 2480                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2481                 sx_slock(&proctree_lock);
 2482                 PROC_LOCK(p);
 2483                 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
 2484                 sx_sunlock(&proctree_lock);
 2485         }
 2486         *sizep = size;
 2487 }
 2488 
 2489 #ifdef KINFO_FILE_SIZE
 2490 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
 2491 #endif
 2492 
 2493 static void
 2494 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
 2495 {
 2496         struct proc *p;
 2497         size_t size, sect_sz, i;
 2498         ssize_t start_len, sect_len;
 2499         int structsize, filedesc_flags;
 2500 
 2501         if (coredump_pack_fileinfo)
 2502                 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
 2503         else
 2504                 filedesc_flags = 0;
 2505 
 2506         p = arg;
 2507         structsize = sizeof(struct kinfo_file);
 2508         if (sb == NULL) {
 2509                 size = 0;
 2510                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2511                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2512                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2513                 PROC_LOCK(p);
 2514                 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
 2515                 sbuf_finish(sb);
 2516                 sbuf_delete(sb);
 2517                 *sizep = size;
 2518         } else {
 2519                 sbuf_start_section(sb, &start_len);
 2520 
 2521                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2522                 PROC_LOCK(p);
 2523                 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
 2524                     filedesc_flags);
 2525 
 2526                 sect_len = sbuf_end_section(sb, start_len, 0, 0);
 2527                 if (sect_len < 0)
 2528                         return;
 2529                 sect_sz = sect_len;
 2530 
 2531                 KASSERT(sect_sz <= *sizep,
 2532                     ("kern_proc_filedesc_out did not respect maxlen; "
 2533                      "requested %zu, got %zu", *sizep - sizeof(structsize),
 2534                      sect_sz - sizeof(structsize)));
 2535 
 2536                 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
 2537                         sbuf_putc(sb, 0);
 2538         }
 2539 }
 2540 
 2541 #ifdef KINFO_VMENTRY_SIZE
 2542 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2543 #endif
 2544 
 2545 static void
 2546 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
 2547 {
 2548         struct proc *p;
 2549         size_t size;
 2550         int structsize, vmmap_flags;
 2551 
 2552         if (coredump_pack_vmmapinfo)
 2553                 vmmap_flags = KERN_VMMAP_PACK_KINFO;
 2554         else
 2555                 vmmap_flags = 0;
 2556 
 2557         p = arg;
 2558         structsize = sizeof(struct kinfo_vmentry);
 2559         if (sb == NULL) {
 2560                 size = 0;
 2561                 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
 2562                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2563                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2564                 PROC_LOCK(p);
 2565                 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
 2566                 sbuf_finish(sb);
 2567                 sbuf_delete(sb);
 2568                 *sizep = size;
 2569         } else {
 2570                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2571                 PROC_LOCK(p);
 2572                 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
 2573                     vmmap_flags);
 2574         }
 2575 }
 2576 
 2577 static void
 2578 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
 2579 {
 2580         struct proc *p;
 2581         size_t size;
 2582         int structsize;
 2583 
 2584         p = arg;
 2585         size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
 2586         if (sb != NULL) {
 2587                 KASSERT(*sizep == size, ("invalid size"));
 2588                 structsize = sizeof(gid_t);
 2589                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2590                 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
 2591                     sizeof(gid_t));
 2592         }
 2593         *sizep = size;
 2594 }
 2595 
 2596 static void
 2597 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
 2598 {
 2599         struct proc *p;
 2600         size_t size;
 2601         int structsize;
 2602 
 2603         p = arg;
 2604         size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
 2605         if (sb != NULL) {
 2606                 KASSERT(*sizep == size, ("invalid size"));
 2607                 structsize = sizeof(p->p_pd->pd_cmask);
 2608                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2609                 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
 2610         }
 2611         *sizep = size;
 2612 }
 2613 
 2614 static void
 2615 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
 2616 {
 2617         struct proc *p;
 2618         struct rlimit rlim[RLIM_NLIMITS];
 2619         size_t size;
 2620         int structsize, i;
 2621 
 2622         p = arg;
 2623         size = sizeof(structsize) + sizeof(rlim);
 2624         if (sb != NULL) {
 2625                 KASSERT(*sizep == size, ("invalid size"));
 2626                 structsize = sizeof(rlim);
 2627                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2628                 PROC_LOCK(p);
 2629                 for (i = 0; i < RLIM_NLIMITS; i++)
 2630                         lim_rlimit_proc(p, i, &rlim[i]);
 2631                 PROC_UNLOCK(p);
 2632                 sbuf_bcat(sb, rlim, sizeof(rlim));
 2633         }
 2634         *sizep = size;
 2635 }
 2636 
 2637 static void
 2638 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
 2639 {
 2640         struct proc *p;
 2641         size_t size;
 2642         int structsize;
 2643 
 2644         p = arg;
 2645         size = sizeof(structsize) + sizeof(p->p_osrel);
 2646         if (sb != NULL) {
 2647                 KASSERT(*sizep == size, ("invalid size"));
 2648                 structsize = sizeof(p->p_osrel);
 2649                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2650                 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
 2651         }
 2652         *sizep = size;
 2653 }
 2654 
 2655 static void
 2656 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
 2657 {
 2658         struct proc *p;
 2659         elf_ps_strings_t ps_strings;
 2660         size_t size;
 2661         int structsize;
 2662 
 2663         p = arg;
 2664         size = sizeof(structsize) + sizeof(ps_strings);
 2665         if (sb != NULL) {
 2666                 KASSERT(*sizep == size, ("invalid size"));
 2667                 structsize = sizeof(ps_strings);
 2668 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
 2669                 ps_strings = PTROUT(PROC_PS_STRINGS(p));
 2670 #else
 2671                 ps_strings = PROC_PS_STRINGS(p);
 2672 #endif
 2673                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2674                 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
 2675         }
 2676         *sizep = size;
 2677 }
 2678 
 2679 static void
 2680 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
 2681 {
 2682         struct proc *p;
 2683         size_t size;
 2684         int structsize;
 2685 
 2686         p = arg;
 2687         if (sb == NULL) {
 2688                 size = 0;
 2689                 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
 2690                     SBUF_FIXEDLEN);
 2691                 sbuf_set_drain(sb, sbuf_count_drain, &size);
 2692                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2693                 PHOLD(p);
 2694                 proc_getauxv(curthread, p, sb);
 2695                 PRELE(p);
 2696                 sbuf_finish(sb);
 2697                 sbuf_delete(sb);
 2698                 *sizep = size;
 2699         } else {
 2700                 structsize = sizeof(Elf_Auxinfo);
 2701                 sbuf_bcat(sb, &structsize, sizeof(structsize));
 2702                 PHOLD(p);
 2703                 proc_getauxv(curthread, p, sb);
 2704                 PRELE(p);
 2705         }
 2706 }
 2707 
 2708 static boolean_t
 2709 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
 2710     const char *note_vendor, const Elf_Phdr *pnote,
 2711     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
 2712 {
 2713         const Elf_Note *note, *note0, *note_end;
 2714         const char *note_name;
 2715         char *buf;
 2716         int i, error;
 2717         boolean_t res;
 2718 
 2719         /* We need some limit, might as well use PAGE_SIZE. */
 2720         if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
 2721                 return (FALSE);
 2722         ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
 2723         if (pnote->p_offset > PAGE_SIZE ||
 2724             pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
 2725                 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
 2726                 if (buf == NULL) {
 2727                         VOP_UNLOCK(imgp->vp);
 2728                         buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
 2729                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 2730                 }
 2731                 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
 2732                     pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
 2733                     curthread->td_ucred, NOCRED, NULL, curthread);
 2734                 if (error != 0) {
 2735                         uprintf("i/o error PT_NOTE\n");
 2736                         goto retf;
 2737                 }
 2738                 note = note0 = (const Elf_Note *)buf;
 2739                 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
 2740         } else {
 2741                 note = note0 = (const Elf_Note *)(imgp->image_header +
 2742                     pnote->p_offset);
 2743                 note_end = (const Elf_Note *)(imgp->image_header +
 2744                     pnote->p_offset + pnote->p_filesz);
 2745                 buf = NULL;
 2746         }
 2747         for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
 2748                 if (!aligned(note, Elf32_Addr) || (const char *)note_end -
 2749                     (const char *)note < sizeof(Elf_Note)) {
 2750                         goto retf;
 2751                 }
 2752                 if (note->n_namesz != checknote->n_namesz ||
 2753                     note->n_descsz != checknote->n_descsz ||
 2754                     note->n_type != checknote->n_type)
 2755                         goto nextnote;
 2756                 note_name = (const char *)(note + 1);
 2757                 if (note_name + checknote->n_namesz >=
 2758                     (const char *)note_end || strncmp(note_vendor,
 2759                     note_name, checknote->n_namesz) != 0)
 2760                         goto nextnote;
 2761 
 2762                 if (cb(note, cb_arg, &res))
 2763                         goto ret;
 2764 nextnote:
 2765                 note = (const Elf_Note *)((const char *)(note + 1) +
 2766                     roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
 2767                     roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
 2768         }
 2769 retf:
 2770         res = FALSE;
 2771 ret:
 2772         free(buf, M_TEMP);
 2773         return (res);
 2774 }
 2775 
 2776 struct brandnote_cb_arg {
 2777         Elf_Brandnote *brandnote;
 2778         int32_t *osrel;
 2779 };
 2780 
 2781 static boolean_t
 2782 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
 2783 {
 2784         struct brandnote_cb_arg *arg;
 2785 
 2786         arg = arg0;
 2787 
 2788         /*
 2789          * Fetch the osreldate for binary from the ELF OSABI-note if
 2790          * necessary.
 2791          */
 2792         *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
 2793             arg->brandnote->trans_osrel != NULL ?
 2794             arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
 2795 
 2796         return (TRUE);
 2797 }
 2798 
 2799 static Elf_Note fctl_note = {
 2800         .n_namesz = sizeof(FREEBSD_ABI_VENDOR),
 2801         .n_descsz = sizeof(uint32_t),
 2802         .n_type = NT_FREEBSD_FEATURE_CTL,
 2803 };
 2804 
 2805 struct fctl_cb_arg {
 2806         boolean_t *has_fctl0;
 2807         uint32_t *fctl0;
 2808 };
 2809 
 2810 static boolean_t
 2811 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
 2812 {
 2813         struct fctl_cb_arg *arg;
 2814         const Elf32_Word *desc;
 2815         uintptr_t p;
 2816 
 2817         arg = arg0;
 2818         p = (uintptr_t)(note + 1);
 2819         p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
 2820         desc = (const Elf32_Word *)p;
 2821         *arg->has_fctl0 = TRUE;
 2822         *arg->fctl0 = desc[0];
 2823         *res = TRUE;
 2824         return (TRUE);
 2825 }
 2826 
 2827 /*
 2828  * Try to find the appropriate ABI-note section for checknote, fetch
 2829  * the osreldate and feature control flags for binary from the ELF
 2830  * OSABI-note.  Only the first page of the image is searched, the same
 2831  * as for headers.
 2832  */
 2833 static boolean_t
 2834 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
 2835     int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0)
 2836 {
 2837         const Elf_Phdr *phdr;
 2838         const Elf_Ehdr *hdr;
 2839         struct brandnote_cb_arg b_arg;
 2840         struct fctl_cb_arg f_arg;
 2841         int i, j;
 2842 
 2843         hdr = (const Elf_Ehdr *)imgp->image_header;
 2844         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
 2845         b_arg.brandnote = brandnote;
 2846         b_arg.osrel = osrel;
 2847         f_arg.has_fctl0 = has_fctl0;
 2848         f_arg.fctl0 = fctl0;
 2849 
 2850         for (i = 0; i < hdr->e_phnum; i++) {
 2851                 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
 2852                     &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
 2853                     &b_arg)) {
 2854                         for (j = 0; j < hdr->e_phnum; j++) {
 2855                                 if (phdr[j].p_type == PT_NOTE &&
 2856                                     __elfN(parse_notes)(imgp, &fctl_note,
 2857                                     FREEBSD_ABI_VENDOR, &phdr[j],
 2858                                     note_fctl_cb, &f_arg))
 2859                                         break;
 2860                         }
 2861                         return (TRUE);
 2862                 }
 2863         }
 2864         return (FALSE);
 2865 
 2866 }
 2867 
 2868 /*
 2869  * Tell kern_execve.c about it, with a little help from the linker.
 2870  */
 2871 static struct execsw __elfN(execsw) = {
 2872         .ex_imgact = __CONCAT(exec_, __elfN(imgact)),
 2873         .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
 2874 };
 2875 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
 2876 
 2877 static vm_prot_t
 2878 __elfN(trans_prot)(Elf_Word flags)
 2879 {
 2880         vm_prot_t prot;
 2881 
 2882         prot = 0;
 2883         if (flags & PF_X)
 2884                 prot |= VM_PROT_EXECUTE;
 2885         if (flags & PF_W)
 2886                 prot |= VM_PROT_WRITE;
 2887         if (flags & PF_R)
 2888                 prot |= VM_PROT_READ;
 2889 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
 2890         if (i386_read_exec && (flags & PF_R))
 2891                 prot |= VM_PROT_EXECUTE;
 2892 #endif
 2893         return (prot);
 2894 }
 2895 
 2896 static Elf_Word
 2897 __elfN(untrans_prot)(vm_prot_t prot)
 2898 {
 2899         Elf_Word flags;
 2900 
 2901         flags = 0;
 2902         if (prot & VM_PROT_EXECUTE)
 2903                 flags |= PF_X;
 2904         if (prot & VM_PROT_READ)
 2905                 flags |= PF_R;
 2906         if (prot & VM_PROT_WRITE)
 2907                 flags |= PF_W;
 2908         return (flags);
 2909 }

Cache object: d19c0ff0c9085c8bf46b2f7cf294cc76


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.