The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/inflate.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Most parts of this file are not covered by:
    3  * ----------------------------------------------------------------------------
    4  * "THE BEER-WARE LICENSE" (Revision 42):
    5  * <phk@login.dknet.dk> wrote this file.  As long as you retain this notice you
    6  * can do whatever you want with this stuff. If we meet some day, and you think
    7  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
    8  * ----------------------------------------------------------------------------
    9  *
   10  * $FreeBSD: src/sys/kern/inflate.c,v 1.6.4.1 1999/09/05 08:14:47 peter Exp $
   11  *
   12  *
   13  */
   14 
   15 #include <sys/param.h>
   16 #include <sys/inflate.h>
   17 #ifdef KERNEL
   18 #include <sys/systm.h>
   19 #endif
   20 #include <sys/mman.h>
   21 #include <sys/malloc.h>
   22 
   23 /* needed to make inflate() work */
   24 #define uch u_char
   25 #define ush u_short
   26 #define ulg u_long
   27 
   28 /* Stuff to make inflate() work */
   29 #ifdef KERNEL
   30 #define memzero(dest,len)      bzero(dest,len)
   31 #endif
   32 #define NOMEMCPY
   33 #ifdef KERNEL
   34 #define FPRINTF printf
   35 #else
   36 extern void putstr (char *);
   37 #define FPRINTF putstr
   38 #endif
   39 
   40 #define FLUSH(x,y) {                                            \
   41         int foo = (*x->gz_output)(x->gz_private,x->gz_slide,y); \
   42         if (foo)                                                \
   43                 return foo;                                     \
   44         }
   45 
   46 static const int qflag = 0;
   47 
   48 #ifndef KERNEL /* want to use this file in kzip also */
   49 extern unsigned char *malloc (int, int, int);
   50 extern void free (void*, int);
   51 #endif
   52 
   53 /*
   54  * This came from unzip-5.12.  I have changed it the flow to pass
   55  * a structure pointer around, thus hopefully making it re-entrant.
   56  * Poul-Henning
   57  */
   58 
   59 /* inflate.c -- put in the public domain by Mark Adler
   60    version c14o, 23 August 1994 */
   61 
   62 /* You can do whatever you like with this source file, though I would
   63    prefer that if you modify it and redistribute it that you include
   64    comments to that effect with your name and the date.  Thank you.
   65 
   66    History:
   67    vers    date          who           what
   68    ----  ---------  --------------  ------------------------------------
   69     a    ~~ Feb 92  M. Adler        used full (large, one-step) lookup table
   70     b1   21 Mar 92  M. Adler        first version with partial lookup tables
   71     b2   21 Mar 92  M. Adler        fixed bug in fixed-code blocks
   72     b3   22 Mar 92  M. Adler        sped up match copies, cleaned up some
   73     b4   25 Mar 92  M. Adler        added prototypes; removed window[] (now
   74                                     is the responsibility of unzip.h--also
   75                                     changed name to slide[]), so needs diffs
   76                                     for unzip.c and unzip.h (this allows
   77                                     compiling in the small model on MSDOS);
   78                                     fixed cast of q in huft_build();
   79     b5   26 Mar 92  M. Adler        got rid of unintended macro recursion.
   80     b6   27 Mar 92  M. Adler        got rid of nextbyte() routine.  fixed
   81                                     bug in inflate_fixed().
   82     c1   30 Mar 92  M. Adler        removed lbits, dbits environment variables.
   83                                     changed BMAX to 16 for explode.  Removed
   84                                     OUTB usage, and replaced it with flush()--
   85                                     this was a 20% speed improvement!  Added
   86                                     an explode.c (to replace unimplod.c) that
   87                                     uses the huft routines here.  Removed
   88                                     register union.
   89     c2    4 Apr 92  M. Adler        fixed bug for file sizes a multiple of 32k.
   90     c3   10 Apr 92  M. Adler        reduced memory of code tables made by
   91                                     huft_build significantly (factor of two to
   92                                     three).
   93     c4   15 Apr 92  M. Adler        added NOMEMCPY do kill use of memcpy().
   94                                     worked around a Turbo C optimization bug.
   95     c5   21 Apr 92  M. Adler        added the GZ_WSIZE #define to allow reducing
   96                                     the 32K window size for specialized
   97                                     applications.
   98     c6   31 May 92  M. Adler        added some typecasts to eliminate warnings
   99     c7   27 Jun 92  G. Roelofs      added some more typecasts (444:  MSC bug).
  100     c8    5 Oct 92  J-l. Gailly     added ifdef'd code to deal with PKZIP bug.
  101     c9    9 Oct 92  M. Adler        removed a memory error message (~line 416).
  102     c10  17 Oct 92  G. Roelofs      changed ULONG/UWORD/byte to ulg/ush/uch,
  103                                     removed old inflate, renamed inflate_entry
  104                                     to inflate, added Mark's fix to a comment.
  105    c10.5 14 Dec 92  M. Adler        fix up error messages for incomplete trees.
  106     c11   2 Jan 93  M. Adler        fixed bug in detection of incomplete
  107                                     tables, and removed assumption that EOB is
  108                                     the longest code (bad assumption).
  109     c12   3 Jan 93  M. Adler        make tables for fixed blocks only once.
  110     c13   5 Jan 93  M. Adler        allow all zero length codes (pkzip 2.04c
  111                                     outputs one zero length code for an empty
  112                                     distance tree).
  113     c14  12 Mar 93  M. Adler        made inflate.c standalone with the
  114                                     introduction of inflate.h.
  115    c14b  16 Jul 93  G. Roelofs      added (unsigned) typecast to w at 470.
  116    c14c  19 Jul 93  J. Bush         changed v[N_MAX], l[288], ll[28x+3x] arrays
  117                                     to static for Amiga.
  118    c14d  13 Aug 93  J-l. Gailly     de-complicatified Mark's c[*p++]++ thing.
  119    c14e   8 Oct 93  G. Roelofs      changed memset() to memzero().
  120    c14f  22 Oct 93  G. Roelofs      renamed quietflg to qflag; made Trace()
  121                                     conditional; added inflate_free().
  122    c14g  28 Oct 93  G. Roelofs      changed l/(lx+1) macro to pointer (Cray bug)
  123    c14h   7 Dec 93  C. Ghisler      huft_build() optimizations.
  124    c14i   9 Jan 94  A. Verheijen    set fixed_t{d,l} to NULL after freeing;
  125                     G. Roelofs      check NEXTBYTE macro for GZ_EOF.
  126    c14j  23 Jan 94  G. Roelofs      removed Ghisler "optimizations"; ifdef'd
  127                                     GZ_EOF check.
  128    c14k  27 Feb 94  G. Roelofs      added some typecasts to avoid warnings.
  129    c14l   9 Apr 94  G. Roelofs      fixed split comments on preprocessor lines
  130                                     to avoid bug in Encore compiler.
  131    c14m   7 Jul 94  P. Kienitz      modified to allow assembler version of
  132                                     inflate_codes() (define ASM_INFLATECODES)
  133    c14n  22 Jul 94  G. Roelofs      changed fprintf to FPRINTF for DLL versions
  134    c14o  23 Aug 94  C. Spieler      added a newline to a debug statement;
  135                     G. Roelofs      added another typecast to avoid MSC warning
  136  */
  137 
  138 
  139 /*
  140    Inflate deflated (PKZIP's method 8 compressed) data.  The compression
  141    method searches for as much of the current string of bytes (up to a
  142    length of 258) in the previous 32K bytes.  If it doesn't find any
  143    matches (of at least length 3), it codes the next byte.  Otherwise, it
  144    codes the length of the matched string and its distance backwards from
  145    the current position.  There is a single Huffman code that codes both
  146    single bytes (called "literals") and match lengths.  A second Huffman
  147    code codes the distance information, which follows a length code.  Each
  148    length or distance code actually represents a base value and a number
  149    of "extra" (sometimes zero) bits to get to add to the base value.  At
  150    the end of each deflated block is a special end-of-block (EOB) literal/
  151    length code.  The decoding process is basically: get a literal/length
  152    code; if EOB then done; if a literal, emit the decoded byte; if a
  153    length then get the distance and emit the referred-to bytes from the
  154    sliding window of previously emitted data.
  155 
  156    There are (currently) three kinds of inflate blocks: stored, fixed, and
  157    dynamic.  The compressor outputs a chunk of data at a time and decides
  158    which method to use on a chunk-by-chunk basis.  A chunk might typically
  159    be 32K to 64K, uncompressed.  If the chunk is uncompressible, then the
  160    "stored" method is used.  In this case, the bytes are simply stored as
  161    is, eight bits per byte, with none of the above coding.  The bytes are
  162    preceded by a count, since there is no longer an EOB code.
  163 
  164    If the data is compressible, then either the fixed or dynamic methods
  165    are used.  In the dynamic method, the compressed data is preceded by
  166    an encoding of the literal/length and distance Huffman codes that are
  167    to be used to decode this block.  The representation is itself Huffman
  168    coded, and so is preceded by a description of that code.  These code
  169    descriptions take up a little space, and so for small blocks, there is
  170    a predefined set of codes, called the fixed codes.  The fixed method is
  171    used if the block ends up smaller that way (usually for quite small
  172    chunks); otherwise the dynamic method is used.  In the latter case, the
  173    codes are customized to the probabilities in the current block and so
  174    can code it much better than the pre-determined fixed codes can.
  175 
  176    The Huffman codes themselves are decoded using a mutli-level table
  177    lookup, in order to maximize the speed of decoding plus the speed of
  178    building the decoding tables.  See the comments below that precede the
  179    lbits and dbits tuning parameters.
  180  */
  181 
  182 
  183 /*
  184    Notes beyond the 1.93a appnote.txt:
  185 
  186    1. Distance pointers never point before the beginning of the output
  187       stream.
  188    2. Distance pointers can point back across blocks, up to 32k away.
  189    3. There is an implied maximum of 7 bits for the bit length table and
  190       15 bits for the actual data.
  191    4. If only one code exists, then it is encoded using one bit.  (Zero
  192       would be more efficient, but perhaps a little confusing.)  If two
  193       codes exist, they are coded using one bit each (0 and 1).
  194    5. There is no way of sending zero distance codes--a dummy must be
  195       sent if there are none.  (History: a pre 2.0 version of PKZIP would
  196       store blocks with no distance codes, but this was discovered to be
  197       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
  198       zero distance codes, which is sent as one code of zero bits in
  199       length.
  200    6. There are up to 286 literal/length codes.  Code 256 represents the
  201       end-of-block.  Note however that the static length tree defines
  202       288 codes just to fill out the Huffman codes.  Codes 286 and 287
  203       cannot be used though, since there is no length base or extra bits
  204       defined for them.  Similarily, there are up to 30 distance codes.
  205       However, static trees define 32 codes (all 5 bits) to fill out the
  206       Huffman codes, but the last two had better not show up in the data.
  207    7. Unzip can check dynamic Huffman blocks for complete code sets.
  208       The exception is that a single code would not be complete (see #4).
  209    8. The five bits following the block type is really the number of
  210       literal codes sent minus 257.
  211    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
  212       (1+6+6).  Therefore, to output three times the length, you output
  213       three codes (1+1+1), whereas to output four times the same length,
  214       you only need two codes (1+3).  Hmm.
  215   10. In the tree reconstruction algorithm, Code = Code + Increment
  216       only if BitLength(i) is not zero.  (Pretty obvious.)
  217   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
  218   12. Note: length code 284 can represent 227-258, but length code 285
  219       really is 258.  The last length deserves its own, short code
  220       since it gets used a lot in very redundant files.  The length
  221       258 is special since 258 - 3 (the min match length) is 255.
  222   13. The literal/length and distance code bit lengths are read as a
  223       single stream of lengths.  It is possible (and advantageous) for
  224       a repeat code (16, 17, or 18) to go across the boundary between
  225       the two sets of lengths.
  226  */
  227 
  228 
  229 #define PKZIP_BUG_WORKAROUND    /* PKZIP 1.93a problem--live with it */
  230 
  231 /*
  232     inflate.h must supply the uch slide[GZ_WSIZE] array and the NEXTBYTE,
  233     FLUSH() and memzero macros.  If the window size is not 32K, it
  234     should also define GZ_WSIZE.  If INFMOD is defined, it can include
  235     compiled functions to support the NEXTBYTE and/or FLUSH() macros.
  236     There are defaults for NEXTBYTE and FLUSH() below for use as
  237     examples of what those functions need to do.  Normally, you would
  238     also want FLUSH() to compute a crc on the data.  inflate.h also
  239     needs to provide these typedefs:
  240 
  241         typedef unsigned char uch;
  242         typedef unsigned short ush;
  243         typedef unsigned long ulg;
  244 
  245     This module uses the external functions malloc() and free() (and
  246     probably memset() or bzero() in the memzero() macro).  Their
  247     prototypes are normally found in <string.h> and <stdlib.h>.
  248  */
  249 #define INFMOD                  /* tell inflate.h to include code to be
  250                                  * compiled */
  251 
  252 /* Huffman code lookup table entry--this entry is four bytes for machines
  253    that have 16-bit pointers (e.g. PC's in the small or medium model).
  254    Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
  255    means that v is a literal, 16 < e < 32 means that v is a pointer to
  256    the next table, which codes e - 16 bits, and lastly e == 99 indicates
  257    an unused code.  If a code with e == 99 is looked up, this implies an
  258    error in the data. */
  259 struct huft {
  260         uch             e;      /* number of extra bits or operation */
  261         uch             b;      /* number of bits in this code or subcode */
  262         union {
  263                 ush             n;      /* literal, length base, or distance
  264                                          * base */
  265                 struct huft    *t;      /* pointer to next level of table */
  266         }               v;
  267 };
  268 
  269 
  270 /* Function prototypes */
  271 static int huft_build __P((struct inflate *, unsigned *, unsigned, unsigned, const ush *, const ush *, struct huft **, int *));
  272 static int huft_free __P((struct inflate *, struct huft *));
  273 static int inflate_codes __P((struct inflate *, struct huft *, struct huft *, int, int));
  274 static int inflate_stored __P((struct inflate *));
  275 static int xinflate __P((struct inflate *));
  276 static int inflate_fixed __P((struct inflate *));
  277 static int inflate_dynamic __P((struct inflate *));
  278 static int inflate_block __P((struct inflate *, int *));
  279 
  280 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
  281    stream to find repeated byte strings.  This is implemented here as a
  282    circular buffer.  The index is updated simply by incrementing and then
  283    and'ing with 0x7fff (32K-1). */
  284 /* It is left to other modules to supply the 32K area.  It is assumed
  285    to be usable as if it were declared "uch slide[32768];" or as just
  286    "uch *slide;" and then malloc'ed in the latter case.  The definition
  287    must be in unzip.h, included above. */
  288 
  289 
  290 /* Tables for deflate from PKZIP's appnote.txt. */
  291 
  292 /* Order of the bit length code lengths */
  293 static const unsigned border[] = {
  294         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
  295 
  296 static const ush cplens[] = {   /* Copy lengths for literal codes 257..285 */
  297         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
  298         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
  299  /* note: see note #13 above about the 258 in this list. */
  300 
  301 static const ush cplext[] = {   /* Extra bits for literal codes 257..285 */
  302         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
  303         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
  304 
  305 static const ush cpdist[] = {   /* Copy offsets for distance codes 0..29 */
  306         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
  307         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
  308         8193, 12289, 16385, 24577};
  309 
  310 static const ush cpdext[] = {   /* Extra bits for distance codes */
  311         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
  312         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
  313         12, 12, 13, 13};
  314 
  315 /* And'ing with mask[n] masks the lower n bits */
  316 static const ush mask[] = {
  317         0x0000,
  318         0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
  319         0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
  320 };
  321 
  322 
  323 /* Macros for inflate() bit peeking and grabbing.
  324    The usage is:
  325 
  326         NEEDBITS(glbl,j)
  327         x = b & mask[j];
  328         DUMPBITS(j)
  329 
  330    where NEEDBITS makes sure that b has at least j bits in it, and
  331    DUMPBITS removes the bits from b.  The macros use the variable k
  332    for the number of bits in b.  Normally, b and k are register
  333    variables for speed, and are initialized at the begining of a
  334    routine that uses these macros from a global bit buffer and count.
  335 
  336    In order to not ask for more bits than there are in the compressed
  337    stream, the Huffman tables are constructed to only ask for just
  338    enough bits to make up the end-of-block code (value 256).  Then no
  339    bytes need to be "returned" to the buffer at the end of the last
  340    block.  See the huft_build() routine.
  341  */
  342 
  343 /*
  344  * The following 2 were global variables.
  345  * They are now fields of the inflate structure.
  346  */
  347 
  348 #define NEEDBITS(glbl,n) {                                              \
  349                 while(k<(n)) {                                          \
  350                         int c=(*glbl->gz_input)(glbl->gz_private);      \
  351                         if(c==GZ_EOF)                                   \
  352                                 return 1;                               \
  353                         b|=((ulg)c)<<k;                                 \
  354                         k+=8;                                           \
  355                 }                                                       \
  356         }
  357 
  358 #define DUMPBITS(n) {b>>=(n);k-=(n);}
  359 
  360 /*
  361    Huffman code decoding is performed using a multi-level table lookup.
  362    The fastest way to decode is to simply build a lookup table whose
  363    size is determined by the longest code.  However, the time it takes
  364    to build this table can also be a factor if the data being decoded
  365    is not very long.  The most common codes are necessarily the
  366    shortest codes, so those codes dominate the decoding time, and hence
  367    the speed.  The idea is you can have a shorter table that decodes the
  368    shorter, more probable codes, and then point to subsidiary tables for
  369    the longer codes.  The time it costs to decode the longer codes is
  370    then traded against the time it takes to make longer tables.
  371 
  372    This results of this trade are in the variables lbits and dbits
  373    below.  lbits is the number of bits the first level table for literal/
  374    length codes can decode in one step, and dbits is the same thing for
  375    the distance codes.  Subsequent tables are also less than or equal to
  376    those sizes.  These values may be adjusted either when all of the
  377    codes are shorter than that, in which case the longest code length in
  378    bits is used, or when the shortest code is *longer* than the requested
  379    table size, in which case the length of the shortest code in bits is
  380    used.
  381 
  382    There are two different values for the two tables, since they code a
  383    different number of possibilities each.  The literal/length table
  384    codes 286 possible values, or in a flat code, a little over eight
  385    bits.  The distance table codes 30 possible values, or a little less
  386    than five bits, flat.  The optimum values for speed end up being
  387    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
  388    The optimum values may differ though from machine to machine, and
  389    possibly even between compilers.  Your mileage may vary.
  390  */
  391 
  392 static const int lbits = 9;     /* bits in base literal/length lookup table */
  393 static const int dbits = 6;     /* bits in base distance lookup table */
  394 
  395 
  396 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
  397 #define BMAX 16                 /* maximum bit length of any code (16 for
  398                                  * explode) */
  399 #define N_MAX 288               /* maximum number of codes in any set */
  400 
  401 /* Given a list of code lengths and a maximum table size, make a set of
  402    tables to decode that set of codes.  Return zero on success, one if
  403    the given code set is incomplete (the tables are still built in this
  404    case), two if the input is invalid (all zero length codes or an
  405    oversubscribed set of lengths), and three if not enough memory.
  406    The code with value 256 is special, and the tables are constructed
  407    so that no bits beyond that code are fetched when that code is
  408    decoded. */
  409 static int
  410 huft_build(glbl, b, n, s, d, e, t, m)
  411         struct inflate *glbl;
  412         unsigned       *b;      /* code lengths in bits (all assumed <= BMAX) */
  413         unsigned        n;      /* number of codes (assumed <= N_MAX) */
  414         unsigned        s;      /* number of simple-valued codes (0..s-1) */
  415         const ush      *d;      /* list of base values for non-simple codes */
  416         const ush      *e;      /* list of extra bits for non-simple codes */
  417         struct huft   **t;      /* result: starting table */
  418         int            *m;      /* maximum lookup bits, returns actual */
  419 {
  420         unsigned        a;      /* counter for codes of length k */
  421         unsigned        c[BMAX + 1];    /* bit length count table */
  422         unsigned        el;     /* length of EOB code (value 256) */
  423         unsigned        f;      /* i repeats in table every f entries */
  424         int             g;      /* maximum code length */
  425         int             h;      /* table level */
  426         register unsigned i;    /* counter, current code */
  427         register unsigned j;    /* counter */
  428         register int    k;      /* number of bits in current code */
  429         int             lx[BMAX + 1];   /* memory for l[-1..BMAX-1] */
  430         int            *l = lx + 1;     /* stack of bits per table */
  431         register unsigned *p;   /* pointer into c[], b[], or v[] */
  432         register struct huft *q;/* points to current table */
  433         struct huft     r;      /* table entry for structure assignment */
  434         struct huft    *u[BMAX];/* table stack */
  435         unsigned        v[N_MAX];       /* values in order of bit length */
  436         register int    w;      /* bits before this table == (l * h) */
  437         unsigned        x[BMAX + 1];    /* bit offsets, then code stack */
  438         unsigned       *xp;     /* pointer into x */
  439         int             y;      /* number of dummy codes added */
  440         unsigned        z;      /* number of entries in current table */
  441 
  442         /* Generate counts for each bit length */
  443         el = n > 256 ? b[256] : BMAX;   /* set length of EOB code, if any */
  444 #ifdef KERNEL
  445         memzero((char *) c, sizeof(c));
  446 #else
  447         for (i = 0; i < BMAX+1; i++)
  448                 c [i] = 0;
  449 #endif
  450         p = b;
  451         i = n;
  452         do {
  453                 c[*p]++;
  454                 p++;            /* assume all entries <= BMAX */
  455         } while (--i);
  456         if (c[0] == n) {        /* null input--all zero length codes */
  457                 *t = (struct huft *) NULL;
  458                 *m = 0;
  459                 return 0;
  460         }
  461         /* Find minimum and maximum length, bound *m by those */
  462         for (j = 1; j <= BMAX; j++)
  463                 if (c[j])
  464                         break;
  465         k = j;                  /* minimum code length */
  466         if ((unsigned) *m < j)
  467                 *m = j;
  468         for (i = BMAX; i; i--)
  469                 if (c[i])
  470                         break;
  471         g = i;                  /* maximum code length */
  472         if ((unsigned) *m > i)
  473                 *m = i;
  474 
  475         /* Adjust last length count to fill out codes, if needed */
  476         for (y = 1 << j; j < i; j++, y <<= 1)
  477                 if ((y -= c[j]) < 0)
  478                         return 2;       /* bad input: more codes than bits */
  479         if ((y -= c[i]) < 0)
  480                 return 2;
  481         c[i] += y;
  482 
  483         /* Generate starting offsets into the value table for each length */
  484         x[1] = j = 0;
  485         p = c + 1;
  486         xp = x + 2;
  487         while (--i) {           /* note that i == g from above */
  488                 *xp++ = (j += *p++);
  489         }
  490 
  491         /* Make a table of values in order of bit lengths */
  492         p = b;
  493         i = 0;
  494         do {
  495                 if ((j = *p++) != 0)
  496                         v[x[j]++] = i;
  497         } while (++i < n);
  498 
  499         /* Generate the Huffman codes and for each, make the table entries */
  500         x[0] = i = 0;           /* first Huffman code is zero */
  501         p = v;                  /* grab values in bit order */
  502         h = -1;                 /* no tables yet--level -1 */
  503         w = l[-1] = 0;          /* no bits decoded yet */
  504         u[0] = (struct huft *) NULL;    /* just to keep compilers happy */
  505         q = (struct huft *) NULL;       /* ditto */
  506         z = 0;                  /* ditto */
  507 
  508         /* go through the bit lengths (k already is bits in shortest code) */
  509         for (; k <= g; k++) {
  510                 a = c[k];
  511                 while (a--) {
  512                         /*
  513                          * here i is the Huffman code of length k bits for
  514                          * value *p
  515                          */
  516                         /* make tables up to required level */
  517                         while (k > w + l[h]) {
  518                                 w += l[h++];    /* add bits already decoded */
  519 
  520                                 /*
  521                                  * compute minimum size table less than or
  522                                  * equal to *m bits
  523                                  */
  524                                 z = (z = g - w) > (unsigned) *m ? *m : z;       /* upper limit */
  525                                 if ((f = 1 << (j = k - w)) > a + 1) {   /* try a k-w bit table *//* t
  526                                                                          * oo few codes for k-w
  527                                                                          * bit table */
  528                                         f -= a + 1;     /* deduct codes from
  529                                                          * patterns left */
  530                                         xp = c + k;
  531                                         while (++j < z) {       /* try smaller tables up
  532                                                                  * to z bits */
  533                                                 if ((f <<= 1) <= *++xp)
  534                                                         break;  /* enough codes to use
  535                                                                  * up j bits */
  536                                                 f -= *xp;       /* else deduct codes
  537                                                                  * from patterns */
  538                                         }
  539                                 }
  540                                 if ((unsigned) w + j > el && (unsigned) w < el)
  541                                         j = el - w;     /* make EOB code end at
  542                                                          * table */
  543                                 z = 1 << j;     /* table entries for j-bit
  544                                                  * table */
  545                                 l[h] = j;       /* set table size in stack */
  546 
  547                                 /* allocate and link in new table */
  548                                 if ((q = (struct huft *) malloc((z + 1) * sizeof(struct huft), M_GZIP, M_WAITOK)) ==
  549                                     (struct huft *) NULL) {
  550                                         if (h)
  551                                                 huft_free(glbl, u[0]);
  552                                         return 3;       /* not enough memory */
  553                                 }
  554                                 glbl->gz_hufts += z + 1;        /* track memory usage */
  555                                 *t = q + 1;     /* link to list for
  556                                                  * huft_free() */
  557                                 *(t = &(q->v.t)) = (struct huft *) NULL;
  558                                 u[h] = ++q;     /* table starts after link */
  559 
  560                                 /* connect to last table, if there is one */
  561                                 if (h) {
  562                                         x[h] = i;       /* save pattern for
  563                                                          * backing up */
  564                                         r.b = (uch) l[h - 1];   /* bits to dump before
  565                                                                  * this table */
  566                                         r.e = (uch) (16 + j);   /* bits in this table */
  567                                         r.v.t = q;      /* pointer to this table */
  568                                         j = (i & ((1 << w) - 1)) >> (w - l[h - 1]);
  569                                         u[h - 1][j] = r;        /* connect to last table */
  570                                 }
  571                         }
  572 
  573                         /* set up table entry in r */
  574                         r.b = (uch) (k - w);
  575                         if (p >= v + n)
  576                                 r.e = 99;       /* out of values--invalid
  577                                                  * code */
  578                         else if (*p < s) {
  579                                 r.e = (uch) (*p < 256 ? 16 : 15);       /* 256 is end-of-block
  580                                                                          * code */
  581                                 r.v.n = *p++;   /* simple code is just the
  582                                                  * value */
  583                         } else {
  584                                 r.e = (uch) e[*p - s];  /* non-simple--look up
  585                                                          * in lists */
  586                                 r.v.n = d[*p++ - s];
  587                         }
  588 
  589                         /* fill code-like entries with r */
  590                         f = 1 << (k - w);
  591                         for (j = i >> w; j < z; j += f)
  592                                 q[j] = r;
  593 
  594                         /* backwards increment the k-bit code i */
  595                         for (j = 1 << (k - 1); i & j; j >>= 1)
  596                                 i ^= j;
  597                         i ^= j;
  598 
  599                         /* backup over finished tables */
  600                         while ((i & ((1 << w) - 1)) != x[h])
  601                                 w -= l[--h];    /* don't need to update q */
  602                 }
  603         }
  604 
  605         /* return actual size of base table */
  606         *m = l[0];
  607 
  608         /* Return true (1) if we were given an incomplete table */
  609         return y != 0 && g != 1;
  610 }
  611 
  612 static int
  613 huft_free(glbl, t)
  614         struct inflate *glbl;
  615         struct huft    *t;      /* table to free */
  616 /* Free the malloc'ed tables built by huft_build(), which makes a linked
  617    list of the tables it made, with the links in a dummy first entry of
  618    each table. */
  619 {
  620         register struct huft *p, *q;
  621 
  622         /* Go through linked list, freeing from the malloced (t[-1]) address. */
  623         p = t;
  624         while (p != (struct huft *) NULL) {
  625                 q = (--p)->v.t;
  626                 free(p, M_GZIP);
  627                 p = q;
  628         }
  629         return 0;
  630 }
  631 
  632 /* inflate (decompress) the codes in a deflated (compressed) block.
  633    Return an error code or zero if it all goes ok. */
  634 static int
  635 inflate_codes(glbl, tl, td, bl, bd)
  636         struct inflate *glbl;
  637         struct huft    *tl, *td;/* literal/length and distance decoder tables */
  638         int             bl, bd; /* number of bits decoded by tl[] and td[] */
  639 {
  640         register unsigned e;    /* table entry flag/number of extra bits */
  641         unsigned        n, d;   /* length and index for copy */
  642         unsigned        w;      /* current window position */
  643         struct huft    *t;      /* pointer to table entry */
  644         unsigned        ml, md; /* masks for bl and bd bits */
  645         register ulg    b;      /* bit buffer */
  646         register unsigned k;    /* number of bits in bit buffer */
  647 
  648         /* make local copies of globals */
  649         b = glbl->gz_bb;                        /* initialize bit buffer */
  650         k = glbl->gz_bk;
  651         w = glbl->gz_wp;        /* initialize window position */
  652 
  653         /* inflate the coded data */
  654         ml = mask[bl];          /* precompute masks for speed */
  655         md = mask[bd];
  656         while (1) {             /* do until end of block */
  657                 NEEDBITS(glbl, (unsigned) bl)
  658                         if ((e = (t = tl + ((unsigned) b & ml))->e) > 16)
  659                         do {
  660                                 if (e == 99)
  661                                         return 1;
  662                                 DUMPBITS(t->b)
  663                                         e -= 16;
  664                                 NEEDBITS(glbl, e)
  665                         } while ((e = (t = t->v.t + ((unsigned) b & mask[e]))->e) > 16);
  666                 DUMPBITS(t->b)
  667                         if (e == 16) {  /* then it's a literal */
  668                         glbl->gz_slide[w++] = (uch) t->v.n;
  669                         if (w == GZ_WSIZE) {
  670                                 FLUSH(glbl, w);
  671                                 w = 0;
  672                         }
  673                 } else {        /* it's an EOB or a length */
  674                         /* exit if end of block */
  675                         if (e == 15)
  676                                 break;
  677 
  678                         /* get length of block to copy */
  679                         NEEDBITS(glbl, e)
  680                                 n = t->v.n + ((unsigned) b & mask[e]);
  681                         DUMPBITS(e);
  682 
  683                         /* decode distance of block to copy */
  684                         NEEDBITS(glbl, (unsigned) bd)
  685                                 if ((e = (t = td + ((unsigned) b & md))->e) > 16)
  686                                 do {
  687                                         if (e == 99)
  688                                                 return 1;
  689                                         DUMPBITS(t->b)
  690                                                 e -= 16;
  691                                         NEEDBITS(glbl, e)
  692                                 } while ((e = (t = t->v.t + ((unsigned) b & mask[e]))->e) > 16);
  693                         DUMPBITS(t->b)
  694                                 NEEDBITS(glbl, e)
  695                                 d = w - t->v.n - ((unsigned) b & mask[e]);
  696                         DUMPBITS(e)
  697                         /* do the copy */
  698                                 do {
  699                                 n -= (e = (e = GZ_WSIZE - ((d &= GZ_WSIZE - 1) > w ? d : w)) > n ? n : e);
  700 #ifndef NOMEMCPY
  701                                 if (w - d >= e) {       /* (this test assumes
  702                                                          * unsigned comparison) */
  703                                         memcpy(glbl->gz_slide + w, glbl->gz_slide + d, e);
  704                                         w += e;
  705                                         d += e;
  706                                 } else  /* do it slow to avoid memcpy()
  707                                          * overlap */
  708 #endif                          /* !NOMEMCPY */
  709                                         do {
  710                                                 glbl->gz_slide[w++] = glbl->gz_slide[d++];
  711                                         } while (--e);
  712                                 if (w == GZ_WSIZE) {
  713                                         FLUSH(glbl, w);
  714                                         w = 0;
  715                                 }
  716                         } while (n);
  717                 }
  718         }
  719 
  720         /* restore the globals from the locals */
  721         glbl->gz_wp = w;        /* restore global window pointer */
  722         glbl->gz_bb = b;                        /* restore global bit buffer */
  723         glbl->gz_bk = k;
  724 
  725         /* done */
  726         return 0;
  727 }
  728 
  729 /* "decompress" an inflated type 0 (stored) block. */
  730 static int
  731 inflate_stored(glbl)
  732         struct inflate *glbl;
  733 {
  734         unsigned        n;      /* number of bytes in block */
  735         unsigned        w;      /* current window position */
  736         register ulg    b;      /* bit buffer */
  737         register unsigned k;    /* number of bits in bit buffer */
  738 
  739         /* make local copies of globals */
  740         b = glbl->gz_bb;                        /* initialize bit buffer */
  741         k = glbl->gz_bk;
  742         w = glbl->gz_wp;        /* initialize window position */
  743 
  744         /* go to byte boundary */
  745         n = k & 7;
  746         DUMPBITS(n);
  747 
  748         /* get the length and its complement */
  749         NEEDBITS(glbl, 16)
  750                 n = ((unsigned) b & 0xffff);
  751         DUMPBITS(16)
  752                 NEEDBITS(glbl, 16)
  753                 if (n != (unsigned) ((~b) & 0xffff))
  754                 return 1;       /* error in compressed data */
  755         DUMPBITS(16)
  756         /* read and output the compressed data */
  757                 while (n--) {
  758                 NEEDBITS(glbl, 8)
  759                         glbl->gz_slide[w++] = (uch) b;
  760                 if (w == GZ_WSIZE) {
  761                         FLUSH(glbl, w);
  762                         w = 0;
  763                 }
  764                 DUMPBITS(8)
  765         }
  766 
  767         /* restore the globals from the locals */
  768         glbl->gz_wp = w;        /* restore global window pointer */
  769         glbl->gz_bb = b;                        /* restore global bit buffer */
  770         glbl->gz_bk = k;
  771         return 0;
  772 }
  773 
  774 /* decompress an inflated type 1 (fixed Huffman codes) block.  We should
  775    either replace this with a custom decoder, or at least precompute the
  776    Huffman tables. */
  777 static int
  778 inflate_fixed(glbl)
  779         struct inflate *glbl;
  780 {
  781         /* if first time, set up tables for fixed blocks */
  782         if (glbl->gz_fixed_tl == (struct huft *) NULL) {
  783                 int             i;      /* temporary variable */
  784                 static unsigned l[288]; /* length list for huft_build */
  785 
  786                 /* literal table */
  787                 for (i = 0; i < 144; i++)
  788                         l[i] = 8;
  789                 for (; i < 256; i++)
  790                         l[i] = 9;
  791                 for (; i < 280; i++)
  792                         l[i] = 7;
  793                 for (; i < 288; i++)    /* make a complete, but wrong code
  794                                          * set */
  795                         l[i] = 8;
  796                 glbl->gz_fixed_bl = 7;
  797                 if ((i = huft_build(glbl, l, 288, 257, cplens, cplext,
  798                             &glbl->gz_fixed_tl, &glbl->gz_fixed_bl)) != 0) {
  799                         glbl->gz_fixed_tl = (struct huft *) NULL;
  800                         return i;
  801                 }
  802                 /* distance table */
  803                 for (i = 0; i < 30; i++)        /* make an incomplete code
  804                                                  * set */
  805                         l[i] = 5;
  806                 glbl->gz_fixed_bd = 5;
  807                 if ((i = huft_build(glbl, l, 30, 0, cpdist, cpdext,
  808                              &glbl->gz_fixed_td, &glbl->gz_fixed_bd)) > 1) {
  809                         huft_free(glbl, glbl->gz_fixed_tl);
  810                         glbl->gz_fixed_tl = (struct huft *) NULL;
  811                         return i;
  812                 }
  813         }
  814         /* decompress until an end-of-block code */
  815         return inflate_codes(glbl, glbl->gz_fixed_tl, glbl->gz_fixed_td, glbl->gz_fixed_bl, glbl->gz_fixed_bd) != 0;
  816 }
  817 
  818 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
  819 static int
  820 inflate_dynamic(glbl)
  821         struct inflate *glbl;
  822 {
  823         int             i;      /* temporary variables */
  824         unsigned        j;
  825         unsigned        l;      /* last length */
  826         unsigned        m;      /* mask for bit lengths table */
  827         unsigned        n;      /* number of lengths to get */
  828         struct huft    *tl;     /* literal/length code table */
  829         struct huft    *td;     /* distance code table */
  830         int             bl;     /* lookup bits for tl */
  831         int             bd;     /* lookup bits for td */
  832         unsigned        nb;     /* number of bit length codes */
  833         unsigned        nl;     /* number of literal/length codes */
  834         unsigned        nd;     /* number of distance codes */
  835 #ifdef PKZIP_BUG_WORKAROUND
  836         unsigned        ll[288 + 32];   /* literal/length and distance code
  837                                          * lengths */
  838 #else
  839         unsigned        ll[286 + 30];   /* literal/length and distance code
  840                                          * lengths */
  841 #endif
  842         register ulg    b;      /* bit buffer */
  843         register unsigned k;    /* number of bits in bit buffer */
  844 
  845         /* make local bit buffer */
  846         b = glbl->gz_bb;
  847         k = glbl->gz_bk;
  848 
  849         /* read in table lengths */
  850         NEEDBITS(glbl, 5)
  851                 nl = 257 + ((unsigned) b & 0x1f);       /* number of
  852                                                          * literal/length codes */
  853         DUMPBITS(5)
  854                 NEEDBITS(glbl, 5)
  855                 nd = 1 + ((unsigned) b & 0x1f); /* number of distance codes */
  856         DUMPBITS(5)
  857                 NEEDBITS(glbl, 4)
  858                 nb = 4 + ((unsigned) b & 0xf);  /* number of bit length codes */
  859         DUMPBITS(4)
  860 #ifdef PKZIP_BUG_WORKAROUND
  861                 if (nl > 288 || nd > 32)
  862 #else
  863                 if (nl > 286 || nd > 30)
  864 #endif
  865                 return 1;       /* bad lengths */
  866         /* read in bit-length-code lengths */
  867         for (j = 0; j < nb; j++) {
  868                 NEEDBITS(glbl, 3)
  869                         ll[border[j]] = (unsigned) b & 7;
  870                 DUMPBITS(3)
  871         }
  872         for (; j < 19; j++)
  873                 ll[border[j]] = 0;
  874 
  875         /* build decoding table for trees--single level, 7 bit lookup */
  876         bl = 7;
  877         if ((i = huft_build(glbl, ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) {
  878                 if (i == 1)
  879                         huft_free(glbl, tl);
  880                 return i;       /* incomplete code set */
  881         }
  882         /* read in literal and distance code lengths */
  883         n = nl + nd;
  884         m = mask[bl];
  885         i = l = 0;
  886         while ((unsigned) i < n) {
  887                 NEEDBITS(glbl, (unsigned) bl)
  888                         j = (td = tl + ((unsigned) b & m))->b;
  889                 DUMPBITS(j)
  890                         j = td->v.n;
  891                 if (j < 16)     /* length of code in bits (0..15) */
  892                         ll[i++] = l = j;        /* save last length in l */
  893                 else if (j == 16) {     /* repeat last length 3 to 6 times */
  894                         NEEDBITS(glbl, 2)
  895                                 j = 3 + ((unsigned) b & 3);
  896                         DUMPBITS(2)
  897                                 if ((unsigned) i + j > n)
  898                                 return 1;
  899                         while (j--)
  900                                 ll[i++] = l;
  901                 } else if (j == 17) {   /* 3 to 10 zero length codes */
  902                         NEEDBITS(glbl, 3)
  903                                 j = 3 + ((unsigned) b & 7);
  904                         DUMPBITS(3)
  905                                 if ((unsigned) i + j > n)
  906                                 return 1;
  907                         while (j--)
  908                                 ll[i++] = 0;
  909                         l = 0;
  910                 } else {        /* j == 18: 11 to 138 zero length codes */
  911                         NEEDBITS(glbl, 7)
  912                                 j = 11 + ((unsigned) b & 0x7f);
  913                         DUMPBITS(7)
  914                                 if ((unsigned) i + j > n)
  915                                 return 1;
  916                         while (j--)
  917                                 ll[i++] = 0;
  918                         l = 0;
  919                 }
  920         }
  921 
  922         /* free decoding table for trees */
  923         huft_free(glbl, tl);
  924 
  925         /* restore the global bit buffer */
  926         glbl->gz_bb = b;
  927         glbl->gz_bk = k;
  928 
  929         /* build the decoding tables for literal/length and distance codes */
  930         bl = lbits;
  931         i = huft_build(glbl, ll, nl, 257, cplens, cplext, &tl, &bl);
  932         if (i != 0) {
  933                 if (i == 1 && !qflag) {
  934                         FPRINTF("(incomplete l-tree)  ");
  935                         huft_free(glbl, tl);
  936                 }
  937                 return i;       /* incomplete code set */
  938         }
  939         bd = dbits;
  940         i = huft_build(glbl, ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
  941         if (i != 0) {
  942                 if (i == 1 && !qflag) {
  943                         FPRINTF("(incomplete d-tree)  ");
  944 #ifdef PKZIP_BUG_WORKAROUND
  945                         i = 0;
  946                 }
  947 #else
  948                         huft_free(glbl, td);
  949                 }
  950                 huft_free(glbl, tl);
  951                 return i;       /* incomplete code set */
  952 #endif
  953         }
  954         /* decompress until an end-of-block code */
  955         if (inflate_codes(glbl, tl, td, bl, bd))
  956                 return 1;
  957 
  958         /* free the decoding tables, return */
  959         huft_free(glbl, tl);
  960         huft_free(glbl, td);
  961         return 0;
  962 }
  963 
  964 /* decompress an inflated block */
  965 static int
  966 inflate_block(glbl, e)
  967         struct inflate *glbl;
  968         int            *e;      /* last block flag */
  969 {
  970         unsigned        t;      /* block type */
  971         register ulg    b;      /* bit buffer */
  972         register unsigned k;    /* number of bits in bit buffer */
  973 
  974         /* make local bit buffer */
  975         b = glbl->gz_bb;
  976         k = glbl->gz_bk;
  977 
  978         /* read in last block bit */
  979         NEEDBITS(glbl, 1)
  980                 * e = (int) b & 1;
  981         DUMPBITS(1)
  982         /* read in block type */
  983                 NEEDBITS(glbl, 2)
  984                 t = (unsigned) b & 3;
  985         DUMPBITS(2)
  986         /* restore the global bit buffer */
  987                 glbl->gz_bb = b;
  988         glbl->gz_bk = k;
  989 
  990         /* inflate that block type */
  991         if (t == 2)
  992                 return inflate_dynamic(glbl);
  993         if (t == 0)
  994                 return inflate_stored(glbl);
  995         if (t == 1)
  996                 return inflate_fixed(glbl);
  997         /* bad block type */
  998         return 2;
  999 }
 1000 
 1001 
 1002 
 1003 /* decompress an inflated entry */
 1004 static int
 1005 xinflate(glbl)
 1006         struct inflate *glbl;
 1007 {
 1008         int             e;      /* last block flag */
 1009         int             r;      /* result code */
 1010         unsigned        h;      /* maximum struct huft's malloc'ed */
 1011 
 1012         glbl->gz_fixed_tl = (struct huft *) NULL;
 1013 
 1014         /* initialize window, bit buffer */
 1015         glbl->gz_wp = 0;
 1016         glbl->gz_bk = 0;
 1017         glbl->gz_bb = 0;
 1018 
 1019         /* decompress until the last block */
 1020         h = 0;
 1021         do {
 1022                 glbl->gz_hufts = 0;
 1023                 if ((r = inflate_block(glbl, &e)) != 0)
 1024                         return r;
 1025                 if (glbl->gz_hufts > h)
 1026                         h = glbl->gz_hufts;
 1027         } while (!e);
 1028 
 1029         /* flush out slide */
 1030         FLUSH(glbl, glbl->gz_wp);
 1031 
 1032         /* return success */
 1033         return 0;
 1034 }
 1035 
 1036 /* Nobody uses this - why not? */
 1037 int
 1038 inflate(glbl)
 1039         struct inflate *glbl;
 1040 {
 1041         int             i;
 1042 #ifdef KERNEL
 1043         u_char          *p = NULL;
 1044 
 1045         if (!glbl->gz_slide)
 1046                 p = glbl->gz_slide = malloc(GZ_WSIZE, M_GZIP, M_WAITOK);
 1047 #endif
 1048         if (!glbl->gz_slide)
 1049 #ifdef KERNEL
 1050                 return(ENOMEM);
 1051 #else
 1052                 return 3; /* kzip expects 3 */
 1053 #endif
 1054         i = xinflate(glbl);
 1055 
 1056         if (glbl->gz_fixed_td != (struct huft *) NULL) {
 1057                 huft_free(glbl, glbl->gz_fixed_td);
 1058                 glbl->gz_fixed_td = (struct huft *) NULL;
 1059         }
 1060         if (glbl->gz_fixed_tl != (struct huft *) NULL) {
 1061                 huft_free(glbl, glbl->gz_fixed_tl);
 1062                 glbl->gz_fixed_tl = (struct huft *) NULL;
 1063         }
 1064 #ifdef KERNEL
 1065         if (p == glbl->gz_slide) {
 1066                 free(glbl->gz_slide, M_GZIP);
 1067                 glbl->gz_slide = NULL;
 1068         }
 1069 #endif
 1070         return i;
 1071 }
 1072 /* ----------------------- END INFLATE.C */

Cache object: 7525aaee2a2c1918ec69edf056bdc5d3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.