FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_clock.c
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_kdb.h"
43 #include "opt_device_polling.h"
44 #include "opt_hwpmc_hooks.h"
45 #include "opt_ntp.h"
46 #include "opt_watchdog.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/epoch.h>
52 #include <sys/eventhandler.h>
53 #include <sys/gtaskqueue.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/resource.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sched.h>
64 #include <sys/sdt.h>
65 #include <sys/signalvar.h>
66 #include <sys/sleepqueue.h>
67 #include <sys/smp.h>
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <sys/sysctl.h>
72 #include <sys/bus.h>
73 #include <sys/interrupt.h>
74 #include <sys/limits.h>
75 #include <sys/timetc.h>
76
77 #ifdef HWPMC_HOOKS
78 #include <sys/pmckern.h>
79 PMC_SOFT_DEFINE( , , clock, hard);
80 PMC_SOFT_DEFINE( , , clock, stat);
81 PMC_SOFT_DEFINE_EX( , , clock, prof, \
82 cpu_startprofclock, cpu_stopprofclock);
83 #endif
84
85 #ifdef DEVICE_POLLING
86 extern void hardclock_device_poll(void);
87 #endif /* DEVICE_POLLING */
88
89 /* Spin-lock protecting profiling statistics. */
90 static struct mtx time_lock;
91
92 SDT_PROVIDER_DECLARE(sched);
93 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
94
95 static int
96 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
97 {
98 int error;
99 long cp_time[CPUSTATES];
100 #ifdef SCTL_MASK32
101 int i;
102 unsigned int cp_time32[CPUSTATES];
103 #endif
104
105 read_cpu_time(cp_time);
106 #ifdef SCTL_MASK32
107 if (req->flags & SCTL_MASK32) {
108 if (!req->oldptr)
109 return SYSCTL_OUT(req, 0, sizeof(cp_time32));
110 for (i = 0; i < CPUSTATES; i++)
111 cp_time32[i] = (unsigned int)cp_time[i];
112 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
113 } else
114 #endif
115 {
116 if (!req->oldptr)
117 return SYSCTL_OUT(req, 0, sizeof(cp_time));
118 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
119 }
120 return error;
121 }
122
123 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
124 0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
125
126 static long empty[CPUSTATES];
127
128 static int
129 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
130 {
131 struct pcpu *pcpu;
132 int error;
133 int c;
134 long *cp_time;
135 #ifdef SCTL_MASK32
136 unsigned int cp_time32[CPUSTATES];
137 int i;
138 #endif
139
140 if (!req->oldptr) {
141 #ifdef SCTL_MASK32
142 if (req->flags & SCTL_MASK32)
143 return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
144 else
145 #endif
146 return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
147 }
148 for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
149 if (!CPU_ABSENT(c)) {
150 pcpu = pcpu_find(c);
151 cp_time = pcpu->pc_cp_time;
152 } else {
153 cp_time = empty;
154 }
155 #ifdef SCTL_MASK32
156 if (req->flags & SCTL_MASK32) {
157 for (i = 0; i < CPUSTATES; i++)
158 cp_time32[i] = (unsigned int)cp_time[i];
159 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
160 } else
161 #endif
162 error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
163 }
164 return error;
165 }
166
167 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
168 0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
169
170 #ifdef DEADLKRES
171 static const char *blessed[] = {
172 "getblk",
173 "so_snd_sx",
174 "so_rcv_sx",
175 NULL
176 };
177 static int slptime_threshold = 1800;
178 static int blktime_threshold = 900;
179 static int sleepfreq = 3;
180
181 static void
182 deadlres_td_on_lock(struct proc *p, struct thread *td, int blkticks)
183 {
184 int tticks;
185
186 sx_assert(&allproc_lock, SX_LOCKED);
187 PROC_LOCK_ASSERT(p, MA_OWNED);
188 THREAD_LOCK_ASSERT(td, MA_OWNED);
189 /*
190 * The thread should be blocked on a turnstile, simply check
191 * if the turnstile channel is in good state.
192 */
193 MPASS(td->td_blocked != NULL);
194
195 tticks = ticks - td->td_blktick;
196 if (tticks > blkticks)
197 /*
198 * Accordingly with provided thresholds, this thread is stuck
199 * for too long on a turnstile.
200 */
201 panic("%s: possible deadlock detected for %p (%s), "
202 "blocked for %d ticks\n", __func__,
203 td, sched_tdname(td), tticks);
204 }
205
206 static void
207 deadlres_td_sleep_q(struct proc *p, struct thread *td, int slpticks)
208 {
209 const void *wchan;
210 int i, slptype, tticks;
211
212 sx_assert(&allproc_lock, SX_LOCKED);
213 PROC_LOCK_ASSERT(p, MA_OWNED);
214 THREAD_LOCK_ASSERT(td, MA_OWNED);
215 /*
216 * Check if the thread is sleeping on a lock, otherwise skip the check.
217 * Drop the thread lock in order to avoid a LOR with the sleepqueue
218 * spinlock.
219 */
220 wchan = td->td_wchan;
221 tticks = ticks - td->td_slptick;
222 slptype = sleepq_type(wchan);
223 if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) &&
224 tticks > slpticks) {
225 /*
226 * Accordingly with provided thresholds, this thread is stuck
227 * for too long on a sleepqueue.
228 * However, being on a sleepqueue, we might still check for the
229 * blessed list.
230 */
231 for (i = 0; blessed[i] != NULL; i++)
232 if (!strcmp(blessed[i], td->td_wmesg))
233 return;
234
235 panic("%s: possible deadlock detected for %p (%s), "
236 "blocked for %d ticks\n", __func__,
237 td, sched_tdname(td), tticks);
238 }
239 }
240
241 static void
242 deadlkres(void)
243 {
244 struct proc *p;
245 struct thread *td;
246 int blkticks, slpticks, tryl;
247
248 tryl = 0;
249 for (;;) {
250 blkticks = blktime_threshold * hz;
251 slpticks = slptime_threshold * hz;
252
253 /*
254 * Avoid to sleep on the sx_lock in order to avoid a
255 * possible priority inversion problem leading to
256 * starvation.
257 * If the lock can't be held after 100 tries, panic.
258 */
259 if (!sx_try_slock(&allproc_lock)) {
260 if (tryl > 100)
261 panic("%s: possible deadlock detected "
262 "on allproc_lock\n", __func__);
263 tryl++;
264 pause("allproc", sleepfreq * hz);
265 continue;
266 }
267 tryl = 0;
268 FOREACH_PROC_IN_SYSTEM(p) {
269 PROC_LOCK(p);
270 if (p->p_state == PRS_NEW) {
271 PROC_UNLOCK(p);
272 continue;
273 }
274 FOREACH_THREAD_IN_PROC(p, td) {
275 thread_lock(td);
276 if (TD_ON_LOCK(td))
277 deadlres_td_on_lock(p, td,
278 blkticks);
279 else if (TD_IS_SLEEPING(td))
280 deadlres_td_sleep_q(p, td,
281 slpticks);
282 thread_unlock(td);
283 }
284 PROC_UNLOCK(p);
285 }
286 sx_sunlock(&allproc_lock);
287
288 /* Sleep for sleepfreq seconds. */
289 pause("-", sleepfreq * hz);
290 }
291 }
292
293 static struct kthread_desc deadlkres_kd = {
294 "deadlkres",
295 deadlkres,
296 (struct thread **)NULL
297 };
298
299 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
300
301 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
302 "Deadlock resolver");
303 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
304 &slptime_threshold, 0,
305 "Number of seconds within is valid to sleep on a sleepqueue");
306 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
307 &blktime_threshold, 0,
308 "Number of seconds within is valid to block on a turnstile");
309 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
310 "Number of seconds between any deadlock resolver thread run");
311 #endif /* DEADLKRES */
312
313 void
314 read_cpu_time(long *cp_time)
315 {
316 struct pcpu *pc;
317 int i, j;
318
319 /* Sum up global cp_time[]. */
320 bzero(cp_time, sizeof(long) * CPUSTATES);
321 CPU_FOREACH(i) {
322 pc = pcpu_find(i);
323 for (j = 0; j < CPUSTATES; j++)
324 cp_time[j] += pc->pc_cp_time[j];
325 }
326 }
327
328 #include <sys/watchdog.h>
329
330 static int watchdog_ticks;
331 static int watchdog_enabled;
332 static void watchdog_fire(void);
333 static void watchdog_config(void *, u_int, int *);
334
335 static void
336 watchdog_attach(void)
337 {
338 EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
339 }
340
341 /*
342 * Clock handling routines.
343 *
344 * This code is written to operate with two timers that run independently of
345 * each other.
346 *
347 * The main timer, running hz times per second, is used to trigger interval
348 * timers, timeouts and rescheduling as needed.
349 *
350 * The second timer handles kernel and user profiling,
351 * and does resource use estimation. If the second timer is programmable,
352 * it is randomized to avoid aliasing between the two clocks. For example,
353 * the randomization prevents an adversary from always giving up the cpu
354 * just before its quantum expires. Otherwise, it would never accumulate
355 * cpu ticks. The mean frequency of the second timer is stathz.
356 *
357 * If no second timer exists, stathz will be zero; in this case we drive
358 * profiling and statistics off the main clock. This WILL NOT be accurate;
359 * do not do it unless absolutely necessary.
360 *
361 * The statistics clock may (or may not) be run at a higher rate while
362 * profiling. This profile clock runs at profhz. We require that profhz
363 * be an integral multiple of stathz.
364 *
365 * If the statistics clock is running fast, it must be divided by the ratio
366 * profhz/stathz for statistics. (For profiling, every tick counts.)
367 *
368 * Time-of-day is maintained using a "timecounter", which may or may
369 * not be related to the hardware generating the above mentioned
370 * interrupts.
371 */
372
373 int stathz;
374 int profhz;
375 int profprocs;
376 volatile int ticks;
377 int psratio;
378
379 DPCPU_DEFINE_STATIC(int, pcputicks); /* Per-CPU version of ticks. */
380 #ifdef DEVICE_POLLING
381 static int devpoll_run = 0;
382 #endif
383
384 static void
385 ast_oweupc(struct thread *td, int tda __unused)
386 {
387 if ((td->td_proc->p_flag & P_PROFIL) == 0)
388 return;
389 addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
390 td->td_profil_ticks = 0;
391 td->td_pflags &= ~TDP_OWEUPC;
392 }
393
394 static void
395 ast_alrm(struct thread *td, int tda __unused)
396 {
397 struct proc *p;
398
399 p = td->td_proc;
400 PROC_LOCK(p);
401 kern_psignal(p, SIGVTALRM);
402 PROC_UNLOCK(p);
403 }
404
405 static void
406 ast_prof(struct thread *td, int tda __unused)
407 {
408 struct proc *p;
409
410 p = td->td_proc;
411 PROC_LOCK(p);
412 kern_psignal(p, SIGPROF);
413 PROC_UNLOCK(p);
414 }
415
416 /*
417 * Initialize clock frequencies and start both clocks running.
418 */
419 static void
420 initclocks(void *dummy __unused)
421 {
422 int i;
423
424 /*
425 * Set divisors to 1 (normal case) and let the machine-specific
426 * code do its bit.
427 */
428 mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
429 cpu_initclocks();
430
431 /*
432 * Compute profhz/stathz, and fix profhz if needed.
433 */
434 i = stathz ? stathz : hz;
435 if (profhz == 0)
436 profhz = i;
437 psratio = profhz / i;
438
439 ast_register(TDA_OWEUPC, ASTR_ASTF_REQUIRED, 0, ast_oweupc);
440 ast_register(TDA_ALRM, ASTR_ASTF_REQUIRED, 0, ast_alrm);
441 ast_register(TDA_PROF, ASTR_ASTF_REQUIRED, 0, ast_prof);
442
443 #ifdef SW_WATCHDOG
444 /* Enable hardclock watchdog now, even if a hardware watchdog exists. */
445 watchdog_attach();
446 #else
447 /* Volunteer to run a software watchdog. */
448 if (wdog_software_attach == NULL)
449 wdog_software_attach = watchdog_attach;
450 #endif
451 }
452 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
453
454 static __noinline void
455 hardclock_itimer(struct thread *td, struct pstats *pstats, int cnt, int usermode)
456 {
457 struct proc *p;
458 int ast;
459
460 ast = 0;
461 p = td->td_proc;
462 if (usermode &&
463 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
464 PROC_ITIMLOCK(p);
465 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
466 tick * cnt) == 0)
467 ast |= TDAI(TDA_ALRM);
468 PROC_ITIMUNLOCK(p);
469 }
470 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
471 PROC_ITIMLOCK(p);
472 if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
473 tick * cnt) == 0)
474 ast |= TDAI(TDA_PROF);
475 PROC_ITIMUNLOCK(p);
476 }
477 if (ast != 0)
478 ast_sched_mask(td, ast);
479 }
480
481 void
482 hardclock(int cnt, int usermode)
483 {
484 struct pstats *pstats;
485 struct thread *td = curthread;
486 struct proc *p = td->td_proc;
487 int *t = DPCPU_PTR(pcputicks);
488 int global, i, newticks;
489
490 /*
491 * Update per-CPU and possibly global ticks values.
492 */
493 *t += cnt;
494 global = ticks;
495 do {
496 newticks = *t - global;
497 if (newticks <= 0) {
498 if (newticks < -1)
499 *t = global - 1;
500 newticks = 0;
501 break;
502 }
503 } while (!atomic_fcmpset_int(&ticks, &global, *t));
504
505 /*
506 * Run current process's virtual and profile time, as needed.
507 */
508 pstats = p->p_stats;
509 if (__predict_false(
510 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) ||
511 timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)))
512 hardclock_itimer(td, pstats, cnt, usermode);
513
514 #ifdef HWPMC_HOOKS
515 if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
516 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
517 if (td->td_intr_frame != NULL)
518 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
519 #endif
520 /* We are in charge to handle this tick duty. */
521 if (newticks > 0) {
522 tc_ticktock(newticks);
523 #ifdef DEVICE_POLLING
524 /* Dangerous and no need to call these things concurrently. */
525 if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
526 /* This is very short and quick. */
527 hardclock_device_poll();
528 atomic_store_rel_int(&devpoll_run, 0);
529 }
530 #endif /* DEVICE_POLLING */
531 if (watchdog_enabled > 0) {
532 i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
533 if (i > 0 && i <= newticks)
534 watchdog_fire();
535 }
536 intr_event_handle(clk_intr_event, NULL);
537 }
538 if (curcpu == CPU_FIRST())
539 cpu_tick_calibration();
540 if (__predict_false(DPCPU_GET(epoch_cb_count)))
541 GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task));
542 }
543
544 void
545 hardclock_sync(int cpu)
546 {
547 int *t;
548 KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
549 t = DPCPU_ID_PTR(cpu, pcputicks);
550
551 *t = ticks;
552 }
553
554 /*
555 * Regular integer scaling formula without losing precision:
556 */
557 #define TIME_INT_SCALE(value, mul, div) \
558 (((value) / (div)) * (mul) + (((value) % (div)) * (mul)) / (div))
559
560 /*
561 * Macro for converting seconds and microseconds into actual ticks,
562 * based on the given hz value:
563 */
564 #define TIME_TO_TICKS(sec, usec, hz) \
565 ((sec) * (hz) + TIME_INT_SCALE(usec, hz, 1 << 6) / (1000000 >> 6))
566
567 #define TIME_ASSERT_VALID_HZ(hz) \
568 _Static_assert(TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) >= 0 && \
569 TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) < INT_MAX, \
570 "tvtohz() can overflow the regular integer type")
571
572 /*
573 * Compile time assert the maximum and minimum values to fit into a
574 * regular integer when computing TIME_TO_TICKS():
575 */
576 TIME_ASSERT_VALID_HZ(HZ_MAXIMUM);
577 TIME_ASSERT_VALID_HZ(HZ_MINIMUM);
578
579 /*
580 * The formula is mostly linear, but test some more common values just
581 * in case:
582 */
583 TIME_ASSERT_VALID_HZ(1024);
584 TIME_ASSERT_VALID_HZ(1000);
585 TIME_ASSERT_VALID_HZ(128);
586 TIME_ASSERT_VALID_HZ(100);
587
588 /*
589 * Compute number of ticks representing the specified amount of time.
590 * If the specified time is negative, a value of 1 is returned. This
591 * function returns a value from 1 up to and including INT_MAX.
592 */
593 int
594 tvtohz(struct timeval *tv)
595 {
596 int retval;
597
598 /*
599 * The values passed here may come from user-space and these
600 * checks ensure "tv_usec" is within its allowed range:
601 */
602
603 /* check for tv_usec underflow */
604 if (__predict_false(tv->tv_usec < 0)) {
605 tv->tv_sec += tv->tv_usec / 1000000;
606 tv->tv_usec = tv->tv_usec % 1000000;
607 /* convert tv_usec to a positive value */
608 if (__predict_true(tv->tv_usec < 0)) {
609 tv->tv_usec += 1000000;
610 tv->tv_sec -= 1;
611 }
612 /* check for tv_usec overflow */
613 } else if (__predict_false(tv->tv_usec >= 1000000)) {
614 tv->tv_sec += tv->tv_usec / 1000000;
615 tv->tv_usec = tv->tv_usec % 1000000;
616 }
617
618 /* check for tv_sec underflow */
619 if (__predict_false(tv->tv_sec < 0))
620 return (1);
621 /* check for tv_sec overflow (including room for the tv_usec part) */
622 else if (__predict_false(tv->tv_sec >= tick_seconds_max))
623 return (INT_MAX);
624
625 /* cast to "int" to avoid platform differences */
626 retval = TIME_TO_TICKS((int)tv->tv_sec, (int)tv->tv_usec, hz);
627
628 /* add one additional tick */
629 return (retval + 1);
630 }
631
632 /*
633 * Start profiling on a process.
634 *
635 * Kernel profiling passes proc0 which never exits and hence
636 * keeps the profile clock running constantly.
637 */
638 void
639 startprofclock(struct proc *p)
640 {
641
642 PROC_LOCK_ASSERT(p, MA_OWNED);
643 if (p->p_flag & P_STOPPROF)
644 return;
645 if ((p->p_flag & P_PROFIL) == 0) {
646 p->p_flag |= P_PROFIL;
647 mtx_lock(&time_lock);
648 if (++profprocs == 1)
649 cpu_startprofclock();
650 mtx_unlock(&time_lock);
651 }
652 }
653
654 /*
655 * Stop profiling on a process.
656 */
657 void
658 stopprofclock(struct proc *p)
659 {
660
661 PROC_LOCK_ASSERT(p, MA_OWNED);
662 if (p->p_flag & P_PROFIL) {
663 if (p->p_profthreads != 0) {
664 while (p->p_profthreads != 0) {
665 p->p_flag |= P_STOPPROF;
666 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
667 "stopprof", 0);
668 }
669 }
670 if ((p->p_flag & P_PROFIL) == 0)
671 return;
672 p->p_flag &= ~P_PROFIL;
673 mtx_lock(&time_lock);
674 if (--profprocs == 0)
675 cpu_stopprofclock();
676 mtx_unlock(&time_lock);
677 }
678 }
679
680 /*
681 * Statistics clock. Updates rusage information and calls the scheduler
682 * to adjust priorities of the active thread.
683 *
684 * This should be called by all active processors.
685 */
686 void
687 statclock(int cnt, int usermode)
688 {
689 struct rusage *ru;
690 struct vmspace *vm;
691 struct thread *td;
692 struct proc *p;
693 long rss;
694 long *cp_time;
695 uint64_t runtime, new_switchtime;
696
697 td = curthread;
698 p = td->td_proc;
699
700 cp_time = (long *)PCPU_PTR(cp_time);
701 if (usermode) {
702 /*
703 * Charge the time as appropriate.
704 */
705 td->td_uticks += cnt;
706 if (p->p_nice > NZERO)
707 cp_time[CP_NICE] += cnt;
708 else
709 cp_time[CP_USER] += cnt;
710 } else {
711 /*
712 * Came from kernel mode, so we were:
713 * - handling an interrupt,
714 * - doing syscall or trap work on behalf of the current
715 * user process, or
716 * - spinning in the idle loop.
717 * Whichever it is, charge the time as appropriate.
718 * Note that we charge interrupts to the current process,
719 * regardless of whether they are ``for'' that process,
720 * so that we know how much of its real time was spent
721 * in ``non-process'' (i.e., interrupt) work.
722 */
723 if ((td->td_pflags & TDP_ITHREAD) ||
724 td->td_intr_nesting_level >= 2) {
725 td->td_iticks += cnt;
726 cp_time[CP_INTR] += cnt;
727 } else {
728 td->td_pticks += cnt;
729 td->td_sticks += cnt;
730 if (!TD_IS_IDLETHREAD(td))
731 cp_time[CP_SYS] += cnt;
732 else
733 cp_time[CP_IDLE] += cnt;
734 }
735 }
736
737 /* Update resource usage integrals and maximums. */
738 MPASS(p->p_vmspace != NULL);
739 vm = p->p_vmspace;
740 ru = &td->td_ru;
741 ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
742 ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
743 ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
744 rss = pgtok(vmspace_resident_count(vm));
745 if (ru->ru_maxrss < rss)
746 ru->ru_maxrss = rss;
747 KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
748 "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
749 SDT_PROBE2(sched, , , tick, td, td->td_proc);
750 thread_lock_flags(td, MTX_QUIET);
751
752 /*
753 * Compute the amount of time during which the current
754 * thread was running, and add that to its total so far.
755 */
756 new_switchtime = cpu_ticks();
757 runtime = new_switchtime - PCPU_GET(switchtime);
758 td->td_runtime += runtime;
759 td->td_incruntime += runtime;
760 PCPU_SET(switchtime, new_switchtime);
761
762 sched_clock(td, cnt);
763 thread_unlock(td);
764 #ifdef HWPMC_HOOKS
765 if (td->td_intr_frame != NULL)
766 PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
767 #endif
768 }
769
770 void
771 profclock(int cnt, int usermode, uintfptr_t pc)
772 {
773 struct thread *td;
774
775 td = curthread;
776 if (usermode) {
777 /*
778 * Came from user mode; CPU was in user state.
779 * If this process is being profiled, record the tick.
780 * if there is no related user location yet, don't
781 * bother trying to count it.
782 */
783 if (td->td_proc->p_flag & P_PROFIL)
784 addupc_intr(td, pc, cnt);
785 }
786 #ifdef HWPMC_HOOKS
787 if (td->td_intr_frame != NULL)
788 PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
789 #endif
790 }
791
792 /*
793 * Return information about system clocks.
794 */
795 static int
796 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
797 {
798 struct clockinfo clkinfo;
799 /*
800 * Construct clockinfo structure.
801 */
802 bzero(&clkinfo, sizeof(clkinfo));
803 clkinfo.hz = hz;
804 clkinfo.tick = tick;
805 clkinfo.profhz = profhz;
806 clkinfo.stathz = stathz ? stathz : hz;
807 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
808 }
809
810 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
811 CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
812 0, 0, sysctl_kern_clockrate, "S,clockinfo",
813 "Rate and period of various kernel clocks");
814
815 static void
816 watchdog_config(void *unused __unused, u_int cmd, int *error)
817 {
818 u_int u;
819
820 u = cmd & WD_INTERVAL;
821 if (u >= WD_TO_1SEC) {
822 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
823 watchdog_enabled = 1;
824 *error = 0;
825 } else {
826 watchdog_enabled = 0;
827 }
828 }
829
830 /*
831 * Handle a watchdog timeout by dumping interrupt information and
832 * then either dropping to DDB or panicking.
833 */
834 static void
835 watchdog_fire(void)
836 {
837 int nintr;
838 uint64_t inttotal;
839 u_long *curintr;
840 char *curname;
841
842 curintr = intrcnt;
843 curname = intrnames;
844 inttotal = 0;
845 nintr = sintrcnt / sizeof(u_long);
846
847 printf("interrupt total\n");
848 while (--nintr >= 0) {
849 if (*curintr)
850 printf("%-12s %20lu\n", curname, *curintr);
851 curname += strlen(curname) + 1;
852 inttotal += *curintr++;
853 }
854 printf("Total %20ju\n", (uintmax_t)inttotal);
855
856 #if defined(KDB) && !defined(KDB_UNATTENDED)
857 kdb_backtrace();
858 kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
859 #else
860 panic("watchdog timeout");
861 #endif
862 }
Cache object: 641da87ef76c250215322bd5f54b325f
|