The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_clock.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_clock.c        8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_clock.c 300110 2016-05-18 03:55:54Z markj $");
   39 
   40 #include "opt_kdb.h"
   41 #include "opt_device_polling.h"
   42 #include "opt_hwpmc_hooks.h"
   43 #include "opt_ntp.h"
   44 #include "opt_watchdog.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/callout.h>
   49 #include <sys/kdb.h>
   50 #include <sys/kernel.h>
   51 #include <sys/kthread.h>
   52 #include <sys/ktr.h>
   53 #include <sys/lock.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/resource.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sched.h>
   59 #include <sys/sdt.h>
   60 #include <sys/signalvar.h>
   61 #include <sys/sleepqueue.h>
   62 #include <sys/smp.h>
   63 #include <vm/vm.h>
   64 #include <vm/pmap.h>
   65 #include <vm/vm_map.h>
   66 #include <sys/sysctl.h>
   67 #include <sys/bus.h>
   68 #include <sys/interrupt.h>
   69 #include <sys/limits.h>
   70 #include <sys/timetc.h>
   71 
   72 #ifdef GPROF
   73 #include <sys/gmon.h>
   74 #endif
   75 
   76 #ifdef HWPMC_HOOKS
   77 #include <sys/pmckern.h>
   78 PMC_SOFT_DEFINE( , , clock, hard);
   79 PMC_SOFT_DEFINE( , , clock, stat);
   80 PMC_SOFT_DEFINE_EX( , , clock, prof, \
   81     cpu_startprofclock, cpu_stopprofclock);
   82 #endif
   83 
   84 #ifdef DEVICE_POLLING
   85 extern void hardclock_device_poll(void);
   86 #endif /* DEVICE_POLLING */
   87 
   88 static void initclocks(void *dummy);
   89 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
   90 
   91 /* Spin-lock protecting profiling statistics. */
   92 static struct mtx time_lock;
   93 
   94 SDT_PROVIDER_DECLARE(sched);
   95 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
   96 
   97 static int
   98 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
   99 {
  100         int error;
  101         long cp_time[CPUSTATES];
  102 #ifdef SCTL_MASK32
  103         int i;
  104         unsigned int cp_time32[CPUSTATES];
  105 #endif
  106 
  107         read_cpu_time(cp_time);
  108 #ifdef SCTL_MASK32
  109         if (req->flags & SCTL_MASK32) {
  110                 if (!req->oldptr)
  111                         return SYSCTL_OUT(req, 0, sizeof(cp_time32));
  112                 for (i = 0; i < CPUSTATES; i++)
  113                         cp_time32[i] = (unsigned int)cp_time[i];
  114                 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
  115         } else
  116 #endif
  117         {
  118                 if (!req->oldptr)
  119                         return SYSCTL_OUT(req, 0, sizeof(cp_time));
  120                 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
  121         }
  122         return error;
  123 }
  124 
  125 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
  126     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
  127 
  128 static long empty[CPUSTATES];
  129 
  130 static int
  131 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
  132 {
  133         struct pcpu *pcpu;
  134         int error;
  135         int c;
  136         long *cp_time;
  137 #ifdef SCTL_MASK32
  138         unsigned int cp_time32[CPUSTATES];
  139         int i;
  140 #endif
  141 
  142         if (!req->oldptr) {
  143 #ifdef SCTL_MASK32
  144                 if (req->flags & SCTL_MASK32)
  145                         return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
  146                 else
  147 #endif
  148                         return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
  149         }
  150         for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
  151                 if (!CPU_ABSENT(c)) {
  152                         pcpu = pcpu_find(c);
  153                         cp_time = pcpu->pc_cp_time;
  154                 } else {
  155                         cp_time = empty;
  156                 }
  157 #ifdef SCTL_MASK32
  158                 if (req->flags & SCTL_MASK32) {
  159                         for (i = 0; i < CPUSTATES; i++)
  160                                 cp_time32[i] = (unsigned int)cp_time[i];
  161                         error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
  162                 } else
  163 #endif
  164                         error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
  165         }
  166         return error;
  167 }
  168 
  169 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
  170     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
  171 
  172 #ifdef DEADLKRES
  173 static const char *blessed[] = {
  174         "getblk",
  175         "so_snd_sx",
  176         "so_rcv_sx",
  177         NULL
  178 };
  179 static int slptime_threshold = 1800;
  180 static int blktime_threshold = 900;
  181 static int sleepfreq = 3;
  182 
  183 static void
  184 deadlkres(void)
  185 {
  186         struct proc *p;
  187         struct thread *td;
  188         void *wchan;
  189         int blkticks, i, slpticks, slptype, tryl, tticks;
  190 
  191         tryl = 0;
  192         for (;;) {
  193                 blkticks = blktime_threshold * hz;
  194                 slpticks = slptime_threshold * hz;
  195 
  196                 /*
  197                  * Avoid to sleep on the sx_lock in order to avoid a possible
  198                  * priority inversion problem leading to starvation.
  199                  * If the lock can't be held after 100 tries, panic.
  200                  */
  201                 if (!sx_try_slock(&allproc_lock)) {
  202                         if (tryl > 100)
  203                 panic("%s: possible deadlock detected on allproc_lock\n",
  204                                     __func__);
  205                         tryl++;
  206                         pause("allproc", sleepfreq * hz);
  207                         continue;
  208                 }
  209                 tryl = 0;
  210                 FOREACH_PROC_IN_SYSTEM(p) {
  211                         PROC_LOCK(p);
  212                         if (p->p_state == PRS_NEW) {
  213                                 PROC_UNLOCK(p);
  214                                 continue;
  215                         }
  216                         FOREACH_THREAD_IN_PROC(p, td) {
  217 
  218                                 thread_lock(td);
  219                                 if (TD_ON_LOCK(td)) {
  220 
  221                                         /*
  222                                          * The thread should be blocked on a
  223                                          * turnstile, simply check if the
  224                                          * turnstile channel is in good state.
  225                                          */
  226                                         MPASS(td->td_blocked != NULL);
  227 
  228                                         tticks = ticks - td->td_blktick;
  229                                         thread_unlock(td);
  230                                         if (tticks > blkticks) {
  231 
  232                                                 /*
  233                                                  * Accordingly with provided
  234                                                  * thresholds, this thread is
  235                                                  * stuck for too long on a
  236                                                  * turnstile.
  237                                                  */
  238                                                 PROC_UNLOCK(p);
  239                                                 sx_sunlock(&allproc_lock);
  240         panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
  241                                                     __func__, td, tticks);
  242                                         }
  243                                 } else if (TD_IS_SLEEPING(td) &&
  244                                     TD_ON_SLEEPQ(td)) {
  245 
  246                                         /*
  247                                          * Check if the thread is sleeping on a
  248                                          * lock, otherwise skip the check.
  249                                          * Drop the thread lock in order to
  250                                          * avoid a LOR with the sleepqueue
  251                                          * spinlock.
  252                                          */
  253                                         wchan = td->td_wchan;
  254                                         tticks = ticks - td->td_slptick;
  255                                         thread_unlock(td);
  256                                         slptype = sleepq_type(wchan);
  257                                         if ((slptype == SLEEPQ_SX ||
  258                                             slptype == SLEEPQ_LK) &&
  259                                             tticks > slpticks) {
  260 
  261                                                 /*
  262                                                  * Accordingly with provided
  263                                                  * thresholds, this thread is
  264                                                  * stuck for too long on a
  265                                                  * sleepqueue.
  266                                                  * However, being on a
  267                                                  * sleepqueue, we might still
  268                                                  * check for the blessed
  269                                                  * list.
  270                                                  */
  271                                                 tryl = 0;
  272                                                 for (i = 0; blessed[i] != NULL;
  273                                                     i++) {
  274                                                         if (!strcmp(blessed[i],
  275                                                             td->td_wmesg)) {
  276                                                                 tryl = 1;
  277                                                                 break;
  278                                                         }
  279                                                 }
  280                                                 if (tryl != 0) {
  281                                                         tryl = 0;
  282                                                         continue;
  283                                                 }
  284                                                 PROC_UNLOCK(p);
  285                                                 sx_sunlock(&allproc_lock);
  286         panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
  287                                                     __func__, td, tticks);
  288                                         }
  289                                 } else
  290                                         thread_unlock(td);
  291                         }
  292                         PROC_UNLOCK(p);
  293                 }
  294                 sx_sunlock(&allproc_lock);
  295 
  296                 /* Sleep for sleepfreq seconds. */
  297                 pause("-", sleepfreq * hz);
  298         }
  299 }
  300 
  301 static struct kthread_desc deadlkres_kd = {
  302         "deadlkres",
  303         deadlkres,
  304         (struct thread **)NULL
  305 };
  306 
  307 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
  308 
  309 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
  310     "Deadlock resolver");
  311 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
  312     &slptime_threshold, 0,
  313     "Number of seconds within is valid to sleep on a sleepqueue");
  314 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
  315     &blktime_threshold, 0,
  316     "Number of seconds within is valid to block on a turnstile");
  317 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
  318     "Number of seconds between any deadlock resolver thread run");
  319 #endif  /* DEADLKRES */
  320 
  321 void
  322 read_cpu_time(long *cp_time)
  323 {
  324         struct pcpu *pc;
  325         int i, j;
  326 
  327         /* Sum up global cp_time[]. */
  328         bzero(cp_time, sizeof(long) * CPUSTATES);
  329         CPU_FOREACH(i) {
  330                 pc = pcpu_find(i);
  331                 for (j = 0; j < CPUSTATES; j++)
  332                         cp_time[j] += pc->pc_cp_time[j];
  333         }
  334 }
  335 
  336 #ifdef SW_WATCHDOG
  337 #include <sys/watchdog.h>
  338 
  339 static int watchdog_ticks;
  340 static int watchdog_enabled;
  341 static void watchdog_fire(void);
  342 static void watchdog_config(void *, u_int, int *);
  343 #endif /* SW_WATCHDOG */
  344 
  345 /*
  346  * Clock handling routines.
  347  *
  348  * This code is written to operate with two timers that run independently of
  349  * each other.
  350  *
  351  * The main timer, running hz times per second, is used to trigger interval
  352  * timers, timeouts and rescheduling as needed.
  353  *
  354  * The second timer handles kernel and user profiling,
  355  * and does resource use estimation.  If the second timer is programmable,
  356  * it is randomized to avoid aliasing between the two clocks.  For example,
  357  * the randomization prevents an adversary from always giving up the cpu
  358  * just before its quantum expires.  Otherwise, it would never accumulate
  359  * cpu ticks.  The mean frequency of the second timer is stathz.
  360  *
  361  * If no second timer exists, stathz will be zero; in this case we drive
  362  * profiling and statistics off the main clock.  This WILL NOT be accurate;
  363  * do not do it unless absolutely necessary.
  364  *
  365  * The statistics clock may (or may not) be run at a higher rate while
  366  * profiling.  This profile clock runs at profhz.  We require that profhz
  367  * be an integral multiple of stathz.
  368  *
  369  * If the statistics clock is running fast, it must be divided by the ratio
  370  * profhz/stathz for statistics.  (For profiling, every tick counts.)
  371  *
  372  * Time-of-day is maintained using a "timecounter", which may or may
  373  * not be related to the hardware generating the above mentioned
  374  * interrupts.
  375  */
  376 
  377 int     stathz;
  378 int     profhz;
  379 int     profprocs;
  380 volatile int    ticks;
  381 int     psratio;
  382 
  383 static DPCPU_DEFINE(int, pcputicks);    /* Per-CPU version of ticks. */
  384 static int global_hardclock_run = 0;
  385 
  386 /*
  387  * Initialize clock frequencies and start both clocks running.
  388  */
  389 /* ARGSUSED*/
  390 static void
  391 initclocks(dummy)
  392         void *dummy;
  393 {
  394 #ifdef EARLY_AP_STARTUP
  395         struct proc *p;
  396         struct thread *td;
  397 #endif
  398         register int i;
  399 
  400         /*
  401          * Set divisors to 1 (normal case) and let the machine-specific
  402          * code do its bit.
  403          */
  404         mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
  405         cpu_initclocks();
  406 
  407         /*
  408          * Compute profhz/stathz, and fix profhz if needed.
  409          */
  410         i = stathz ? stathz : hz;
  411         if (profhz == 0)
  412                 profhz = i;
  413         psratio = profhz / i;
  414 #ifdef SW_WATCHDOG
  415         EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
  416 #endif
  417         /*
  418          * Arrange for ticks to wrap 10 minutes after boot to help catch
  419          * sign problems sooner.
  420          */
  421         ticks = INT_MAX - (hz * 10 * 60);
  422 
  423 #ifdef EARLY_AP_STARTUP
  424         /*
  425          * Fixup the tick counts in any blocked or sleeping threads to
  426          * account for the jump above.
  427          */
  428         sx_slock(&allproc_lock);
  429         FOREACH_PROC_IN_SYSTEM(p) {
  430                 PROC_LOCK(p);
  431                 if (p->p_state == PRS_NEW) {
  432                         PROC_UNLOCK(p);
  433                         continue;
  434                 }
  435                 FOREACH_THREAD_IN_PROC(p, td) {
  436                         thread_lock(td);
  437                         if (TD_ON_LOCK(td)) {
  438                                 MPASS(td->td_blktick == 0);
  439                                 td->td_blktick = ticks;
  440                         }
  441                         if (TD_ON_SLEEPQ(td)) {
  442                                 MPASS(td->td_slptick == 0);
  443                                 td->td_slptick = ticks;
  444                         }
  445                         thread_unlock(td);
  446                 }
  447                 PROC_UNLOCK(p);
  448         }
  449         sx_sunlock(&allproc_lock);
  450 #endif
  451 }
  452 
  453 /*
  454  * Each time the real-time timer fires, this function is called on all CPUs.
  455  * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
  456  * the other CPUs in the system need to call this function.
  457  */
  458 void
  459 hardclock_cpu(int usermode)
  460 {
  461         struct pstats *pstats;
  462         struct thread *td = curthread;
  463         struct proc *p = td->td_proc;
  464         int flags;
  465 
  466         /*
  467          * Run current process's virtual and profile time, as needed.
  468          */
  469         pstats = p->p_stats;
  470         flags = 0;
  471         if (usermode &&
  472             timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
  473                 PROC_ITIMLOCK(p);
  474                 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
  475                         flags |= TDF_ALRMPEND | TDF_ASTPENDING;
  476                 PROC_ITIMUNLOCK(p);
  477         }
  478         if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
  479                 PROC_ITIMLOCK(p);
  480                 if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
  481                         flags |= TDF_PROFPEND | TDF_ASTPENDING;
  482                 PROC_ITIMUNLOCK(p);
  483         }
  484         thread_lock(td);
  485         td->td_flags |= flags;
  486         thread_unlock(td);
  487 
  488 #ifdef HWPMC_HOOKS
  489         if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
  490                 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
  491         if (td->td_intr_frame != NULL)
  492                 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
  493 #endif
  494         callout_process(sbinuptime());
  495 }
  496 
  497 /*
  498  * The real-time timer, interrupting hz times per second.
  499  */
  500 void
  501 hardclock(int usermode, uintfptr_t pc)
  502 {
  503 
  504         atomic_add_int(&ticks, 1);
  505         hardclock_cpu(usermode);
  506         tc_ticktock(1);
  507         cpu_tick_calibration();
  508         /*
  509          * If no separate statistics clock is available, run it from here.
  510          *
  511          * XXX: this only works for UP
  512          */
  513         if (stathz == 0) {
  514                 profclock(usermode, pc);
  515                 statclock(usermode);
  516         }
  517 #ifdef DEVICE_POLLING
  518         hardclock_device_poll();        /* this is very short and quick */
  519 #endif /* DEVICE_POLLING */
  520 #ifdef SW_WATCHDOG
  521         if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
  522                 watchdog_fire();
  523 #endif /* SW_WATCHDOG */
  524 }
  525 
  526 void
  527 hardclock_cnt(int cnt, int usermode)
  528 {
  529         struct pstats *pstats;
  530         struct thread *td = curthread;
  531         struct proc *p = td->td_proc;
  532         int *t = DPCPU_PTR(pcputicks);
  533         int flags, global, newticks;
  534 #ifdef SW_WATCHDOG
  535         int i;
  536 #endif /* SW_WATCHDOG */
  537 
  538         /*
  539          * Update per-CPU and possibly global ticks values.
  540          */
  541         *t += cnt;
  542         do {
  543                 global = ticks;
  544                 newticks = *t - global;
  545                 if (newticks <= 0) {
  546                         if (newticks < -1)
  547                                 *t = global - 1;
  548                         newticks = 0;
  549                         break;
  550                 }
  551         } while (!atomic_cmpset_int(&ticks, global, *t));
  552 
  553         /*
  554          * Run current process's virtual and profile time, as needed.
  555          */
  556         pstats = p->p_stats;
  557         flags = 0;
  558         if (usermode &&
  559             timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
  560                 PROC_ITIMLOCK(p);
  561                 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
  562                     tick * cnt) == 0)
  563                         flags |= TDF_ALRMPEND | TDF_ASTPENDING;
  564                 PROC_ITIMUNLOCK(p);
  565         }
  566         if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
  567                 PROC_ITIMLOCK(p);
  568                 if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
  569                     tick * cnt) == 0)
  570                         flags |= TDF_PROFPEND | TDF_ASTPENDING;
  571                 PROC_ITIMUNLOCK(p);
  572         }
  573         if (flags != 0) {
  574                 thread_lock(td);
  575                 td->td_flags |= flags;
  576                 thread_unlock(td);
  577         }
  578 
  579 #ifdef  HWPMC_HOOKS
  580         if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
  581                 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
  582         if (td->td_intr_frame != NULL)
  583                 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
  584 #endif
  585         /* We are in charge to handle this tick duty. */
  586         if (newticks > 0) {
  587                 /* Dangerous and no need to call these things concurrently. */
  588                 if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
  589                         tc_ticktock(newticks);
  590 #ifdef DEVICE_POLLING
  591                         /* This is very short and quick. */
  592                         hardclock_device_poll();
  593 #endif /* DEVICE_POLLING */
  594                         atomic_store_rel_int(&global_hardclock_run, 0);
  595                 }
  596 #ifdef SW_WATCHDOG
  597                 if (watchdog_enabled > 0) {
  598                         i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
  599                         if (i > 0 && i <= newticks)
  600                                 watchdog_fire();
  601                 }
  602 #endif /* SW_WATCHDOG */
  603         }
  604         if (curcpu == CPU_FIRST())
  605                 cpu_tick_calibration();
  606 }
  607 
  608 void
  609 hardclock_sync(int cpu)
  610 {
  611         int     *t = DPCPU_ID_PTR(cpu, pcputicks);
  612 
  613         *t = ticks;
  614 }
  615 
  616 /*
  617  * Compute number of ticks in the specified amount of time.
  618  */
  619 int
  620 tvtohz(tv)
  621         struct timeval *tv;
  622 {
  623         register unsigned long ticks;
  624         register long sec, usec;
  625 
  626         /*
  627          * If the number of usecs in the whole seconds part of the time
  628          * difference fits in a long, then the total number of usecs will
  629          * fit in an unsigned long.  Compute the total and convert it to
  630          * ticks, rounding up and adding 1 to allow for the current tick
  631          * to expire.  Rounding also depends on unsigned long arithmetic
  632          * to avoid overflow.
  633          *
  634          * Otherwise, if the number of ticks in the whole seconds part of
  635          * the time difference fits in a long, then convert the parts to
  636          * ticks separately and add, using similar rounding methods and
  637          * overflow avoidance.  This method would work in the previous
  638          * case but it is slightly slower and assumes that hz is integral.
  639          *
  640          * Otherwise, round the time difference down to the maximum
  641          * representable value.
  642          *
  643          * If ints have 32 bits, then the maximum value for any timeout in
  644          * 10ms ticks is 248 days.
  645          */
  646         sec = tv->tv_sec;
  647         usec = tv->tv_usec;
  648         if (usec < 0) {
  649                 sec--;
  650                 usec += 1000000;
  651         }
  652         if (sec < 0) {
  653 #ifdef DIAGNOSTIC
  654                 if (usec > 0) {
  655                         sec++;
  656                         usec -= 1000000;
  657                 }
  658                 printf("tvotohz: negative time difference %ld sec %ld usec\n",
  659                        sec, usec);
  660 #endif
  661                 ticks = 1;
  662         } else if (sec <= LONG_MAX / 1000000)
  663                 ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1;
  664         else if (sec <= LONG_MAX / hz)
  665                 ticks = sec * hz
  666                         + howmany((unsigned long)usec, tick) + 1;
  667         else
  668                 ticks = LONG_MAX;
  669         if (ticks > INT_MAX)
  670                 ticks = INT_MAX;
  671         return ((int)ticks);
  672 }
  673 
  674 /*
  675  * Start profiling on a process.
  676  *
  677  * Kernel profiling passes proc0 which never exits and hence
  678  * keeps the profile clock running constantly.
  679  */
  680 void
  681 startprofclock(p)
  682         register struct proc *p;
  683 {
  684 
  685         PROC_LOCK_ASSERT(p, MA_OWNED);
  686         if (p->p_flag & P_STOPPROF)
  687                 return;
  688         if ((p->p_flag & P_PROFIL) == 0) {
  689                 p->p_flag |= P_PROFIL;
  690                 mtx_lock(&time_lock);
  691                 if (++profprocs == 1)
  692                         cpu_startprofclock();
  693                 mtx_unlock(&time_lock);
  694         }
  695 }
  696 
  697 /*
  698  * Stop profiling on a process.
  699  */
  700 void
  701 stopprofclock(p)
  702         register struct proc *p;
  703 {
  704 
  705         PROC_LOCK_ASSERT(p, MA_OWNED);
  706         if (p->p_flag & P_PROFIL) {
  707                 if (p->p_profthreads != 0) {
  708                         while (p->p_profthreads != 0) {
  709                                 p->p_flag |= P_STOPPROF;
  710                                 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
  711                                     "stopprof", 0);
  712                         }
  713                 }
  714                 if ((p->p_flag & P_PROFIL) == 0)
  715                         return;
  716                 p->p_flag &= ~P_PROFIL;
  717                 mtx_lock(&time_lock);
  718                 if (--profprocs == 0)
  719                         cpu_stopprofclock();
  720                 mtx_unlock(&time_lock);
  721         }
  722 }
  723 
  724 /*
  725  * Statistics clock.  Updates rusage information and calls the scheduler
  726  * to adjust priorities of the active thread.
  727  *
  728  * This should be called by all active processors.
  729  */
  730 void
  731 statclock(int usermode)
  732 {
  733 
  734         statclock_cnt(1, usermode);
  735 }
  736 
  737 void
  738 statclock_cnt(int cnt, int usermode)
  739 {
  740         struct rusage *ru;
  741         struct vmspace *vm;
  742         struct thread *td;
  743         struct proc *p;
  744         long rss;
  745         long *cp_time;
  746 
  747         td = curthread;
  748         p = td->td_proc;
  749 
  750         cp_time = (long *)PCPU_PTR(cp_time);
  751         if (usermode) {
  752                 /*
  753                  * Charge the time as appropriate.
  754                  */
  755                 td->td_uticks += cnt;
  756                 if (p->p_nice > NZERO)
  757                         cp_time[CP_NICE] += cnt;
  758                 else
  759                         cp_time[CP_USER] += cnt;
  760         } else {
  761                 /*
  762                  * Came from kernel mode, so we were:
  763                  * - handling an interrupt,
  764                  * - doing syscall or trap work on behalf of the current
  765                  *   user process, or
  766                  * - spinning in the idle loop.
  767                  * Whichever it is, charge the time as appropriate.
  768                  * Note that we charge interrupts to the current process,
  769                  * regardless of whether they are ``for'' that process,
  770                  * so that we know how much of its real time was spent
  771                  * in ``non-process'' (i.e., interrupt) work.
  772                  */
  773                 if ((td->td_pflags & TDP_ITHREAD) ||
  774                     td->td_intr_nesting_level >= 2) {
  775                         td->td_iticks += cnt;
  776                         cp_time[CP_INTR] += cnt;
  777                 } else {
  778                         td->td_pticks += cnt;
  779                         td->td_sticks += cnt;
  780                         if (!TD_IS_IDLETHREAD(td))
  781                                 cp_time[CP_SYS] += cnt;
  782                         else
  783                                 cp_time[CP_IDLE] += cnt;
  784                 }
  785         }
  786 
  787         /* Update resource usage integrals and maximums. */
  788         MPASS(p->p_vmspace != NULL);
  789         vm = p->p_vmspace;
  790         ru = &td->td_ru;
  791         ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
  792         ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
  793         ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
  794         rss = pgtok(vmspace_resident_count(vm));
  795         if (ru->ru_maxrss < rss)
  796                 ru->ru_maxrss = rss;
  797         KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
  798             "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
  799         SDT_PROBE2(sched, , , tick, td, td->td_proc);
  800         thread_lock_flags(td, MTX_QUIET);
  801         for ( ; cnt > 0; cnt--)
  802                 sched_clock(td);
  803         thread_unlock(td);
  804 #ifdef HWPMC_HOOKS
  805         if (td->td_intr_frame != NULL)
  806                 PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
  807 #endif
  808 }
  809 
  810 void
  811 profclock(int usermode, uintfptr_t pc)
  812 {
  813 
  814         profclock_cnt(1, usermode, pc);
  815 }
  816 
  817 void
  818 profclock_cnt(int cnt, int usermode, uintfptr_t pc)
  819 {
  820         struct thread *td;
  821 #ifdef GPROF
  822         struct gmonparam *g;
  823         uintfptr_t i;
  824 #endif
  825 
  826         td = curthread;
  827         if (usermode) {
  828                 /*
  829                  * Came from user mode; CPU was in user state.
  830                  * If this process is being profiled, record the tick.
  831                  * if there is no related user location yet, don't
  832                  * bother trying to count it.
  833                  */
  834                 if (td->td_proc->p_flag & P_PROFIL)
  835                         addupc_intr(td, pc, cnt);
  836         }
  837 #ifdef GPROF
  838         else {
  839                 /*
  840                  * Kernel statistics are just like addupc_intr, only easier.
  841                  */
  842                 g = &_gmonparam;
  843                 if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
  844                         i = PC_TO_I(g, pc);
  845                         if (i < g->textsize) {
  846                                 KCOUNT(g, i) += cnt;
  847                         }
  848                 }
  849         }
  850 #endif
  851 #ifdef HWPMC_HOOKS
  852         if (td->td_intr_frame != NULL)
  853                 PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
  854 #endif
  855 }
  856 
  857 /*
  858  * Return information about system clocks.
  859  */
  860 static int
  861 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
  862 {
  863         struct clockinfo clkinfo;
  864         /*
  865          * Construct clockinfo structure.
  866          */
  867         bzero(&clkinfo, sizeof(clkinfo));
  868         clkinfo.hz = hz;
  869         clkinfo.tick = tick;
  870         clkinfo.profhz = profhz;
  871         clkinfo.stathz = stathz ? stathz : hz;
  872         return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
  873 }
  874 
  875 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
  876         CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
  877         0, 0, sysctl_kern_clockrate, "S,clockinfo",
  878         "Rate and period of various kernel clocks");
  879 
  880 #ifdef SW_WATCHDOG
  881 
  882 static void
  883 watchdog_config(void *unused __unused, u_int cmd, int *error)
  884 {
  885         u_int u;
  886 
  887         u = cmd & WD_INTERVAL;
  888         if (u >= WD_TO_1SEC) {
  889                 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
  890                 watchdog_enabled = 1;
  891                 *error = 0;
  892         } else {
  893                 watchdog_enabled = 0;
  894         }
  895 }
  896 
  897 /*
  898  * Handle a watchdog timeout by dumping interrupt information and
  899  * then either dropping to DDB or panicking.
  900  */
  901 static void
  902 watchdog_fire(void)
  903 {
  904         int nintr;
  905         uint64_t inttotal;
  906         u_long *curintr;
  907         char *curname;
  908 
  909         curintr = intrcnt;
  910         curname = intrnames;
  911         inttotal = 0;
  912         nintr = sintrcnt / sizeof(u_long);
  913 
  914         printf("interrupt                   total\n");
  915         while (--nintr >= 0) {
  916                 if (*curintr)
  917                         printf("%-12s %20lu\n", curname, *curintr);
  918                 curname += strlen(curname) + 1;
  919                 inttotal += *curintr++;
  920         }
  921         printf("Total        %20ju\n", (uintmax_t)inttotal);
  922 
  923 #if defined(KDB) && !defined(KDB_UNATTENDED)
  924         kdb_backtrace();
  925         kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
  926 #else
  927         panic("watchdog timeout");
  928 #endif
  929 }
  930 
  931 #endif /* SW_WATCHDOG */

Cache object: 54e30294b85278ddf4bbfd2130d18871


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.