The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_clock.c        8.5 (Berkeley) 1/21/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_kdb.h"
   43 #include "opt_device_polling.h"
   44 #include "opt_hwpmc_hooks.h"
   45 #include "opt_ntp.h"
   46 #include "opt_watchdog.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/callout.h>
   51 #include <sys/epoch.h>
   52 #include <sys/gtaskqueue.h>
   53 #include <sys/kdb.h>
   54 #include <sys/kernel.h>
   55 #include <sys/kthread.h>
   56 #include <sys/ktr.h>
   57 #include <sys/lock.h>
   58 #include <sys/mutex.h>
   59 #include <sys/proc.h>
   60 #include <sys/resource.h>
   61 #include <sys/resourcevar.h>
   62 #include <sys/sched.h>
   63 #include <sys/sdt.h>
   64 #include <sys/signalvar.h>
   65 #include <sys/sleepqueue.h>
   66 #include <sys/smp.h>
   67 #include <vm/vm.h>
   68 #include <vm/pmap.h>
   69 #include <vm/vm_map.h>
   70 #include <sys/sysctl.h>
   71 #include <sys/bus.h>
   72 #include <sys/interrupt.h>
   73 #include <sys/limits.h>
   74 #include <sys/timetc.h>
   75 
   76 #ifdef GPROF
   77 #include <sys/gmon.h>
   78 #endif
   79 
   80 #ifdef HWPMC_HOOKS
   81 #include <sys/pmckern.h>
   82 PMC_SOFT_DEFINE( , , clock, hard);
   83 PMC_SOFT_DEFINE( , , clock, stat);
   84 PMC_SOFT_DEFINE_EX( , , clock, prof, \
   85     cpu_startprofclock, cpu_stopprofclock);
   86 #endif
   87 
   88 #ifdef DEVICE_POLLING
   89 extern void hardclock_device_poll(void);
   90 #endif /* DEVICE_POLLING */
   91 
   92 static void initclocks(void *dummy);
   93 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
   94 
   95 /* Spin-lock protecting profiling statistics. */
   96 static struct mtx time_lock;
   97 
   98 SDT_PROVIDER_DECLARE(sched);
   99 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
  100 
  101 static int
  102 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
  103 {
  104         int error;
  105         long cp_time[CPUSTATES];
  106 #ifdef SCTL_MASK32
  107         int i;
  108         unsigned int cp_time32[CPUSTATES];
  109 #endif
  110 
  111         read_cpu_time(cp_time);
  112 #ifdef SCTL_MASK32
  113         if (req->flags & SCTL_MASK32) {
  114                 if (!req->oldptr)
  115                         return SYSCTL_OUT(req, 0, sizeof(cp_time32));
  116                 for (i = 0; i < CPUSTATES; i++)
  117                         cp_time32[i] = (unsigned int)cp_time[i];
  118                 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
  119         } else
  120 #endif
  121         {
  122                 if (!req->oldptr)
  123                         return SYSCTL_OUT(req, 0, sizeof(cp_time));
  124                 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
  125         }
  126         return error;
  127 }
  128 
  129 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
  130     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
  131 
  132 static long empty[CPUSTATES];
  133 
  134 static int
  135 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
  136 {
  137         struct pcpu *pcpu;
  138         int error;
  139         int c;
  140         long *cp_time;
  141 #ifdef SCTL_MASK32
  142         unsigned int cp_time32[CPUSTATES];
  143         int i;
  144 #endif
  145 
  146         if (!req->oldptr) {
  147 #ifdef SCTL_MASK32
  148                 if (req->flags & SCTL_MASK32)
  149                         return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
  150                 else
  151 #endif
  152                         return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
  153         }
  154         for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
  155                 if (!CPU_ABSENT(c)) {
  156                         pcpu = pcpu_find(c);
  157                         cp_time = pcpu->pc_cp_time;
  158                 } else {
  159                         cp_time = empty;
  160                 }
  161 #ifdef SCTL_MASK32
  162                 if (req->flags & SCTL_MASK32) {
  163                         for (i = 0; i < CPUSTATES; i++)
  164                                 cp_time32[i] = (unsigned int)cp_time[i];
  165                         error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
  166                 } else
  167 #endif
  168                         error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
  169         }
  170         return error;
  171 }
  172 
  173 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
  174     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
  175 
  176 #ifdef DEADLKRES
  177 static const char *blessed[] = {
  178         "getblk",
  179         "so_snd_sx",
  180         "so_rcv_sx",
  181         NULL
  182 };
  183 static int slptime_threshold = 1800;
  184 static int blktime_threshold = 900;
  185 static int sleepfreq = 3;
  186 
  187 static void
  188 deadlres_td_on_lock(struct proc *p, struct thread *td, int blkticks)
  189 {
  190         int tticks;
  191 
  192         sx_assert(&allproc_lock, SX_LOCKED);
  193         PROC_LOCK_ASSERT(p, MA_OWNED);
  194         THREAD_LOCK_ASSERT(td, MA_OWNED);
  195         /*
  196          * The thread should be blocked on a turnstile, simply check
  197          * if the turnstile channel is in good state.
  198          */
  199         MPASS(td->td_blocked != NULL);
  200 
  201         tticks = ticks - td->td_blktick;
  202         if (tticks > blkticks)
  203                 /*
  204                  * Accordingly with provided thresholds, this thread is stuck
  205                  * for too long on a turnstile.
  206                  */
  207                 panic("%s: possible deadlock detected for %p (%s), "
  208                     "blocked for %d ticks\n", __func__,
  209                     td, sched_tdname(td), tticks);
  210 }
  211 
  212 static void
  213 deadlres_td_sleep_q(struct proc *p, struct thread *td, int slpticks)
  214 {
  215         void *wchan;
  216         int i, slptype, tticks;
  217 
  218         sx_assert(&allproc_lock, SX_LOCKED);
  219         PROC_LOCK_ASSERT(p, MA_OWNED);
  220         THREAD_LOCK_ASSERT(td, MA_OWNED);
  221         /*
  222          * Check if the thread is sleeping on a lock, otherwise skip the check.
  223          * Drop the thread lock in order to avoid a LOR with the sleepqueue
  224          * spinlock.
  225          */
  226         wchan = td->td_wchan;
  227         tticks = ticks - td->td_slptick;
  228         slptype = sleepq_type(wchan);
  229         if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) &&
  230             tticks > slpticks) {
  231 
  232                 /*
  233                  * Accordingly with provided thresholds, this thread is stuck
  234                  * for too long on a sleepqueue.
  235                  * However, being on a sleepqueue, we might still check for the
  236                  * blessed list.
  237                  */
  238                 for (i = 0; blessed[i] != NULL; i++)
  239                         if (!strcmp(blessed[i], td->td_wmesg))
  240                                 return;
  241 
  242                 panic("%s: possible deadlock detected for %p (%s), "
  243                     "blocked for %d ticks\n", __func__,
  244                     td, sched_tdname(td), tticks);
  245         }
  246 }
  247 
  248 static void
  249 deadlkres(void)
  250 {
  251         struct proc *p;
  252         struct thread *td;
  253         int blkticks, slpticks, tryl;
  254 
  255         tryl = 0;
  256         for (;;) {
  257                 blkticks = blktime_threshold * hz;
  258                 slpticks = slptime_threshold * hz;
  259 
  260                 /*
  261                  * Avoid to sleep on the sx_lock in order to avoid a
  262                  * possible priority inversion problem leading to
  263                  * starvation.
  264                  * If the lock can't be held after 100 tries, panic.
  265                  */
  266                 if (!sx_try_slock(&allproc_lock)) {
  267                         if (tryl > 100)
  268                                 panic("%s: possible deadlock detected "
  269                                     "on allproc_lock\n", __func__);
  270                         tryl++;
  271                         pause("allproc", sleepfreq * hz);
  272                         continue;
  273                 }
  274                 tryl = 0;
  275                 FOREACH_PROC_IN_SYSTEM(p) {
  276                         PROC_LOCK(p);
  277                         if (p->p_state == PRS_NEW) {
  278                                 PROC_UNLOCK(p);
  279                                 continue;
  280                         }
  281                         FOREACH_THREAD_IN_PROC(p, td) {
  282                                 thread_lock(td);
  283                                 if (TD_ON_LOCK(td))
  284                                         deadlres_td_on_lock(p, td,
  285                                             blkticks);
  286                                 else if (TD_IS_SLEEPING(td) &&
  287                                     TD_ON_SLEEPQ(td))
  288                                         deadlres_td_sleep_q(p, td,
  289                                             slpticks);
  290                                 thread_unlock(td);
  291                         }
  292                         PROC_UNLOCK(p);
  293                 }
  294                 sx_sunlock(&allproc_lock);
  295 
  296                 /* Sleep for sleepfreq seconds. */
  297                 pause("-", sleepfreq * hz);
  298         }
  299 }
  300 
  301 static struct kthread_desc deadlkres_kd = {
  302         "deadlkres",
  303         deadlkres,
  304         (struct thread **)NULL
  305 };
  306 
  307 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
  308 
  309 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
  310     "Deadlock resolver");
  311 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
  312     &slptime_threshold, 0,
  313     "Number of seconds within is valid to sleep on a sleepqueue");
  314 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
  315     &blktime_threshold, 0,
  316     "Number of seconds within is valid to block on a turnstile");
  317 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
  318     "Number of seconds between any deadlock resolver thread run");
  319 #endif  /* DEADLKRES */
  320 
  321 void
  322 read_cpu_time(long *cp_time)
  323 {
  324         struct pcpu *pc;
  325         int i, j;
  326 
  327         /* Sum up global cp_time[]. */
  328         bzero(cp_time, sizeof(long) * CPUSTATES);
  329         CPU_FOREACH(i) {
  330                 pc = pcpu_find(i);
  331                 for (j = 0; j < CPUSTATES; j++)
  332                         cp_time[j] += pc->pc_cp_time[j];
  333         }
  334 }
  335 
  336 #include <sys/watchdog.h>
  337 
  338 static int watchdog_ticks;
  339 static int watchdog_enabled;
  340 static void watchdog_fire(void);
  341 static void watchdog_config(void *, u_int, int *);
  342 
  343 static void
  344 watchdog_attach(void)
  345 {
  346         EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
  347 }
  348 
  349 /*
  350  * Clock handling routines.
  351  *
  352  * This code is written to operate with two timers that run independently of
  353  * each other.
  354  *
  355  * The main timer, running hz times per second, is used to trigger interval
  356  * timers, timeouts and rescheduling as needed.
  357  *
  358  * The second timer handles kernel and user profiling,
  359  * and does resource use estimation.  If the second timer is programmable,
  360  * it is randomized to avoid aliasing between the two clocks.  For example,
  361  * the randomization prevents an adversary from always giving up the cpu
  362  * just before its quantum expires.  Otherwise, it would never accumulate
  363  * cpu ticks.  The mean frequency of the second timer is stathz.
  364  *
  365  * If no second timer exists, stathz will be zero; in this case we drive
  366  * profiling and statistics off the main clock.  This WILL NOT be accurate;
  367  * do not do it unless absolutely necessary.
  368  *
  369  * The statistics clock may (or may not) be run at a higher rate while
  370  * profiling.  This profile clock runs at profhz.  We require that profhz
  371  * be an integral multiple of stathz.
  372  *
  373  * If the statistics clock is running fast, it must be divided by the ratio
  374  * profhz/stathz for statistics.  (For profiling, every tick counts.)
  375  *
  376  * Time-of-day is maintained using a "timecounter", which may or may
  377  * not be related to the hardware generating the above mentioned
  378  * interrupts.
  379  */
  380 
  381 int     stathz;
  382 int     profhz;
  383 int     profprocs;
  384 volatile int    ticks;
  385 int     psratio;
  386 
  387 DPCPU_DEFINE_STATIC(int, pcputicks);    /* Per-CPU version of ticks. */
  388 #ifdef DEVICE_POLLING
  389 static int devpoll_run = 0;
  390 #endif
  391 
  392 /*
  393  * Initialize clock frequencies and start both clocks running.
  394  */
  395 /* ARGSUSED*/
  396 static void
  397 initclocks(void *dummy)
  398 {
  399         int i;
  400 
  401         /*
  402          * Set divisors to 1 (normal case) and let the machine-specific
  403          * code do its bit.
  404          */
  405         mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
  406         cpu_initclocks();
  407 
  408         /*
  409          * Compute profhz/stathz, and fix profhz if needed.
  410          */
  411         i = stathz ? stathz : hz;
  412         if (profhz == 0)
  413                 profhz = i;
  414         psratio = profhz / i;
  415 
  416 #ifdef SW_WATCHDOG
  417         /* Enable hardclock watchdog now, even if a hardware watchdog exists. */
  418         watchdog_attach();
  419 #else
  420         /* Volunteer to run a software watchdog. */
  421         if (wdog_software_attach == NULL)
  422                 wdog_software_attach = watchdog_attach;
  423 #endif
  424 }
  425 
  426 void
  427 hardclock(int cnt, int usermode)
  428 {
  429         struct pstats *pstats;
  430         struct thread *td = curthread;
  431         struct proc *p = td->td_proc;
  432         int *t = DPCPU_PTR(pcputicks);
  433         int flags, global, newticks;
  434         int i;
  435 
  436         /*
  437          * Update per-CPU and possibly global ticks values.
  438          */
  439         *t += cnt;
  440         do {
  441                 global = ticks;
  442                 newticks = *t - global;
  443                 if (newticks <= 0) {
  444                         if (newticks < -1)
  445                                 *t = global - 1;
  446                         newticks = 0;
  447                         break;
  448                 }
  449         } while (!atomic_cmpset_int(&ticks, global, *t));
  450 
  451         /*
  452          * Run current process's virtual and profile time, as needed.
  453          */
  454         pstats = p->p_stats;
  455         flags = 0;
  456         if (usermode &&
  457             timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
  458                 PROC_ITIMLOCK(p);
  459                 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
  460                     tick * cnt) == 0)
  461                         flags |= TDF_ALRMPEND | TDF_ASTPENDING;
  462                 PROC_ITIMUNLOCK(p);
  463         }
  464         if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
  465                 PROC_ITIMLOCK(p);
  466                 if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
  467                     tick * cnt) == 0)
  468                         flags |= TDF_PROFPEND | TDF_ASTPENDING;
  469                 PROC_ITIMUNLOCK(p);
  470         }
  471         if (flags != 0) {
  472                 thread_lock(td);
  473                 td->td_flags |= flags;
  474                 thread_unlock(td);
  475         }
  476 
  477 #ifdef  HWPMC_HOOKS
  478         if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
  479                 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
  480         if (td->td_intr_frame != NULL)
  481                 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
  482 #endif
  483         /* We are in charge to handle this tick duty. */
  484         if (newticks > 0) {
  485                 tc_ticktock(newticks);
  486 #ifdef DEVICE_POLLING
  487                 /* Dangerous and no need to call these things concurrently. */
  488                 if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
  489                         /* This is very short and quick. */
  490                         hardclock_device_poll();
  491                         atomic_store_rel_int(&devpoll_run, 0);
  492                 }
  493 #endif /* DEVICE_POLLING */
  494                 if (watchdog_enabled > 0) {
  495                         i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
  496                         if (i > 0 && i <= newticks)
  497                                 watchdog_fire();
  498                 }
  499         }
  500         if (curcpu == CPU_FIRST())
  501                 cpu_tick_calibration();
  502         if (__predict_false(DPCPU_GET(epoch_cb_count)))
  503                 GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task));
  504 }
  505 
  506 void
  507 hardclock_sync(int cpu)
  508 {
  509         int *t;
  510         KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
  511         t = DPCPU_ID_PTR(cpu, pcputicks);
  512 
  513         *t = ticks;
  514 }
  515 
  516 /*
  517  * Compute number of ticks in the specified amount of time.
  518  */
  519 int
  520 tvtohz(struct timeval *tv)
  521 {
  522         unsigned long ticks;
  523         long sec, usec;
  524 
  525         /*
  526          * If the number of usecs in the whole seconds part of the time
  527          * difference fits in a long, then the total number of usecs will
  528          * fit in an unsigned long.  Compute the total and convert it to
  529          * ticks, rounding up and adding 1 to allow for the current tick
  530          * to expire.  Rounding also depends on unsigned long arithmetic
  531          * to avoid overflow.
  532          *
  533          * Otherwise, if the number of ticks in the whole seconds part of
  534          * the time difference fits in a long, then convert the parts to
  535          * ticks separately and add, using similar rounding methods and
  536          * overflow avoidance.  This method would work in the previous
  537          * case but it is slightly slower and assumes that hz is integral.
  538          *
  539          * Otherwise, round the time difference down to the maximum
  540          * representable value.
  541          *
  542          * If ints have 32 bits, then the maximum value for any timeout in
  543          * 10ms ticks is 248 days.
  544          */
  545         sec = tv->tv_sec;
  546         usec = tv->tv_usec;
  547         if (usec < 0) {
  548                 sec--;
  549                 usec += 1000000;
  550         }
  551         if (sec < 0) {
  552 #ifdef DIAGNOSTIC
  553                 if (usec > 0) {
  554                         sec++;
  555                         usec -= 1000000;
  556                 }
  557                 printf("tvotohz: negative time difference %ld sec %ld usec\n",
  558                        sec, usec);
  559 #endif
  560                 ticks = 1;
  561         } else if (sec <= LONG_MAX / 1000000)
  562                 ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1;
  563         else if (sec <= LONG_MAX / hz)
  564                 ticks = sec * hz
  565                         + howmany((unsigned long)usec, tick) + 1;
  566         else
  567                 ticks = LONG_MAX;
  568         if (ticks > INT_MAX)
  569                 ticks = INT_MAX;
  570         return ((int)ticks);
  571 }
  572 
  573 /*
  574  * Start profiling on a process.
  575  *
  576  * Kernel profiling passes proc0 which never exits and hence
  577  * keeps the profile clock running constantly.
  578  */
  579 void
  580 startprofclock(struct proc *p)
  581 {
  582 
  583         PROC_LOCK_ASSERT(p, MA_OWNED);
  584         if (p->p_flag & P_STOPPROF)
  585                 return;
  586         if ((p->p_flag & P_PROFIL) == 0) {
  587                 p->p_flag |= P_PROFIL;
  588                 mtx_lock(&time_lock);
  589                 if (++profprocs == 1)
  590                         cpu_startprofclock();
  591                 mtx_unlock(&time_lock);
  592         }
  593 }
  594 
  595 /*
  596  * Stop profiling on a process.
  597  */
  598 void
  599 stopprofclock(struct proc *p)
  600 {
  601 
  602         PROC_LOCK_ASSERT(p, MA_OWNED);
  603         if (p->p_flag & P_PROFIL) {
  604                 if (p->p_profthreads != 0) {
  605                         while (p->p_profthreads != 0) {
  606                                 p->p_flag |= P_STOPPROF;
  607                                 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
  608                                     "stopprof", 0);
  609                         }
  610                 }
  611                 if ((p->p_flag & P_PROFIL) == 0)
  612                         return;
  613                 p->p_flag &= ~P_PROFIL;
  614                 mtx_lock(&time_lock);
  615                 if (--profprocs == 0)
  616                         cpu_stopprofclock();
  617                 mtx_unlock(&time_lock);
  618         }
  619 }
  620 
  621 /*
  622  * Statistics clock.  Updates rusage information and calls the scheduler
  623  * to adjust priorities of the active thread.
  624  *
  625  * This should be called by all active processors.
  626  */
  627 void
  628 statclock(int cnt, int usermode)
  629 {
  630         struct rusage *ru;
  631         struct vmspace *vm;
  632         struct thread *td;
  633         struct proc *p;
  634         long rss;
  635         long *cp_time;
  636         uint64_t runtime, new_switchtime;
  637 
  638         td = curthread;
  639         p = td->td_proc;
  640 
  641         cp_time = (long *)PCPU_PTR(cp_time);
  642         if (usermode) {
  643                 /*
  644                  * Charge the time as appropriate.
  645                  */
  646                 td->td_uticks += cnt;
  647                 if (p->p_nice > NZERO)
  648                         cp_time[CP_NICE] += cnt;
  649                 else
  650                         cp_time[CP_USER] += cnt;
  651         } else {
  652                 /*
  653                  * Came from kernel mode, so we were:
  654                  * - handling an interrupt,
  655                  * - doing syscall or trap work on behalf of the current
  656                  *   user process, or
  657                  * - spinning in the idle loop.
  658                  * Whichever it is, charge the time as appropriate.
  659                  * Note that we charge interrupts to the current process,
  660                  * regardless of whether they are ``for'' that process,
  661                  * so that we know how much of its real time was spent
  662                  * in ``non-process'' (i.e., interrupt) work.
  663                  */
  664                 if ((td->td_pflags & TDP_ITHREAD) ||
  665                     td->td_intr_nesting_level >= 2) {
  666                         td->td_iticks += cnt;
  667                         cp_time[CP_INTR] += cnt;
  668                 } else {
  669                         td->td_pticks += cnt;
  670                         td->td_sticks += cnt;
  671                         if (!TD_IS_IDLETHREAD(td))
  672                                 cp_time[CP_SYS] += cnt;
  673                         else
  674                                 cp_time[CP_IDLE] += cnt;
  675                 }
  676         }
  677 
  678         /* Update resource usage integrals and maximums. */
  679         MPASS(p->p_vmspace != NULL);
  680         vm = p->p_vmspace;
  681         ru = &td->td_ru;
  682         ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
  683         ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
  684         ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
  685         rss = pgtok(vmspace_resident_count(vm));
  686         if (ru->ru_maxrss < rss)
  687                 ru->ru_maxrss = rss;
  688         KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
  689             "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
  690         SDT_PROBE2(sched, , , tick, td, td->td_proc);
  691         thread_lock_flags(td, MTX_QUIET);
  692 
  693         /*
  694          * Compute the amount of time during which the current
  695          * thread was running, and add that to its total so far.
  696          */
  697         new_switchtime = cpu_ticks();
  698         runtime = new_switchtime - PCPU_GET(switchtime);
  699         td->td_runtime += runtime;
  700         td->td_incruntime += runtime;
  701         PCPU_SET(switchtime, new_switchtime);
  702 
  703         for ( ; cnt > 0; cnt--)
  704                 sched_clock(td);
  705         thread_unlock(td);
  706 #ifdef HWPMC_HOOKS
  707         if (td->td_intr_frame != NULL)
  708                 PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
  709 #endif
  710 }
  711 
  712 void
  713 profclock(int cnt, int usermode, uintfptr_t pc)
  714 {
  715         struct thread *td;
  716 #ifdef GPROF
  717         struct gmonparam *g;
  718         uintfptr_t i;
  719 #endif
  720 
  721         td = curthread;
  722         if (usermode) {
  723                 /*
  724                  * Came from user mode; CPU was in user state.
  725                  * If this process is being profiled, record the tick.
  726                  * if there is no related user location yet, don't
  727                  * bother trying to count it.
  728                  */
  729                 if (td->td_proc->p_flag & P_PROFIL)
  730                         addupc_intr(td, pc, cnt);
  731         }
  732 #ifdef GPROF
  733         else {
  734                 /*
  735                  * Kernel statistics are just like addupc_intr, only easier.
  736                  */
  737                 g = &_gmonparam;
  738                 if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
  739                         i = PC_TO_I(g, pc);
  740                         if (i < g->textsize) {
  741                                 KCOUNT(g, i) += cnt;
  742                         }
  743                 }
  744         }
  745 #endif
  746 #ifdef HWPMC_HOOKS
  747         if (td->td_intr_frame != NULL)
  748                 PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
  749 #endif
  750 }
  751 
  752 /*
  753  * Return information about system clocks.
  754  */
  755 static int
  756 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
  757 {
  758         struct clockinfo clkinfo;
  759         /*
  760          * Construct clockinfo structure.
  761          */
  762         bzero(&clkinfo, sizeof(clkinfo));
  763         clkinfo.hz = hz;
  764         clkinfo.tick = tick;
  765         clkinfo.profhz = profhz;
  766         clkinfo.stathz = stathz ? stathz : hz;
  767         return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
  768 }
  769 
  770 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
  771         CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
  772         0, 0, sysctl_kern_clockrate, "S,clockinfo",
  773         "Rate and period of various kernel clocks");
  774 
  775 static void
  776 watchdog_config(void *unused __unused, u_int cmd, int *error)
  777 {
  778         u_int u;
  779 
  780         u = cmd & WD_INTERVAL;
  781         if (u >= WD_TO_1SEC) {
  782                 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
  783                 watchdog_enabled = 1;
  784                 *error = 0;
  785         } else {
  786                 watchdog_enabled = 0;
  787         }
  788 }
  789 
  790 /*
  791  * Handle a watchdog timeout by dumping interrupt information and
  792  * then either dropping to DDB or panicking.
  793  */
  794 static void
  795 watchdog_fire(void)
  796 {
  797         int nintr;
  798         uint64_t inttotal;
  799         u_long *curintr;
  800         char *curname;
  801 
  802         curintr = intrcnt;
  803         curname = intrnames;
  804         inttotal = 0;
  805         nintr = sintrcnt / sizeof(u_long);
  806 
  807         printf("interrupt                   total\n");
  808         while (--nintr >= 0) {
  809                 if (*curintr)
  810                         printf("%-12s %20lu\n", curname, *curintr);
  811                 curname += strlen(curname) + 1;
  812                 inttotal += *curintr++;
  813         }
  814         printf("Total        %20ju\n", (uintmax_t)inttotal);
  815 
  816 #if defined(KDB) && !defined(KDB_UNATTENDED)
  817         kdb_backtrace();
  818         kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
  819 #else
  820         panic("watchdog timeout");
  821 #endif
  822 }

Cache object: 5f39e58f82a22e6e7db86722a64d7f11


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.