The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_clock.c        8.5 (Berkeley) 1/21/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_kdb.h"
   43 #include "opt_device_polling.h"
   44 #include "opt_hwpmc_hooks.h"
   45 #include "opt_ntp.h"
   46 #include "opt_watchdog.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/callout.h>
   51 #include <sys/epoch.h>
   52 #include <sys/eventhandler.h>
   53 #include <sys/gtaskqueue.h>
   54 #include <sys/kdb.h>
   55 #include <sys/kernel.h>
   56 #include <sys/kthread.h>
   57 #include <sys/ktr.h>
   58 #include <sys/lock.h>
   59 #include <sys/mutex.h>
   60 #include <sys/proc.h>
   61 #include <sys/resource.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/sched.h>
   64 #include <sys/sdt.h>
   65 #include <sys/signalvar.h>
   66 #include <sys/sleepqueue.h>
   67 #include <sys/smp.h>
   68 #include <vm/vm.h>
   69 #include <vm/pmap.h>
   70 #include <vm/vm_map.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/bus.h>
   73 #include <sys/interrupt.h>
   74 #include <sys/limits.h>
   75 #include <sys/timetc.h>
   76 
   77 #ifdef GPROF
   78 #include <sys/gmon.h>
   79 #endif
   80 
   81 #ifdef HWPMC_HOOKS
   82 #include <sys/pmckern.h>
   83 PMC_SOFT_DEFINE( , , clock, hard);
   84 PMC_SOFT_DEFINE( , , clock, stat);
   85 PMC_SOFT_DEFINE_EX( , , clock, prof, \
   86     cpu_startprofclock, cpu_stopprofclock);
   87 #endif
   88 
   89 #ifdef DEVICE_POLLING
   90 extern void hardclock_device_poll(void);
   91 #endif /* DEVICE_POLLING */
   92 
   93 /* Spin-lock protecting profiling statistics. */
   94 static struct mtx time_lock;
   95 
   96 SDT_PROVIDER_DECLARE(sched);
   97 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
   98 
   99 static int
  100 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
  101 {
  102         int error;
  103         long cp_time[CPUSTATES];
  104 #ifdef SCTL_MASK32
  105         int i;
  106         unsigned int cp_time32[CPUSTATES];
  107 #endif
  108 
  109         read_cpu_time(cp_time);
  110 #ifdef SCTL_MASK32
  111         if (req->flags & SCTL_MASK32) {
  112                 if (!req->oldptr)
  113                         return SYSCTL_OUT(req, 0, sizeof(cp_time32));
  114                 for (i = 0; i < CPUSTATES; i++)
  115                         cp_time32[i] = (unsigned int)cp_time[i];
  116                 error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
  117         } else
  118 #endif
  119         {
  120                 if (!req->oldptr)
  121                         return SYSCTL_OUT(req, 0, sizeof(cp_time));
  122                 error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
  123         }
  124         return error;
  125 }
  126 
  127 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
  128     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
  129 
  130 static long empty[CPUSTATES];
  131 
  132 static int
  133 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
  134 {
  135         struct pcpu *pcpu;
  136         int error;
  137         int c;
  138         long *cp_time;
  139 #ifdef SCTL_MASK32
  140         unsigned int cp_time32[CPUSTATES];
  141         int i;
  142 #endif
  143 
  144         if (!req->oldptr) {
  145 #ifdef SCTL_MASK32
  146                 if (req->flags & SCTL_MASK32)
  147                         return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
  148                 else
  149 #endif
  150                         return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
  151         }
  152         for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
  153                 if (!CPU_ABSENT(c)) {
  154                         pcpu = pcpu_find(c);
  155                         cp_time = pcpu->pc_cp_time;
  156                 } else {
  157                         cp_time = empty;
  158                 }
  159 #ifdef SCTL_MASK32
  160                 if (req->flags & SCTL_MASK32) {
  161                         for (i = 0; i < CPUSTATES; i++)
  162                                 cp_time32[i] = (unsigned int)cp_time[i];
  163                         error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
  164                 } else
  165 #endif
  166                         error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
  167         }
  168         return error;
  169 }
  170 
  171 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
  172     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
  173 
  174 #ifdef DEADLKRES
  175 static const char *blessed[] = {
  176         "getblk",
  177         "so_snd_sx",
  178         "so_rcv_sx",
  179         NULL
  180 };
  181 static int slptime_threshold = 1800;
  182 static int blktime_threshold = 900;
  183 static int sleepfreq = 3;
  184 
  185 static void
  186 deadlres_td_on_lock(struct proc *p, struct thread *td, int blkticks)
  187 {
  188         int tticks;
  189 
  190         sx_assert(&allproc_lock, SX_LOCKED);
  191         PROC_LOCK_ASSERT(p, MA_OWNED);
  192         THREAD_LOCK_ASSERT(td, MA_OWNED);
  193         /*
  194          * The thread should be blocked on a turnstile, simply check
  195          * if the turnstile channel is in good state.
  196          */
  197         MPASS(td->td_blocked != NULL);
  198 
  199         tticks = ticks - td->td_blktick;
  200         if (tticks > blkticks)
  201                 /*
  202                  * Accordingly with provided thresholds, this thread is stuck
  203                  * for too long on a turnstile.
  204                  */
  205                 panic("%s: possible deadlock detected for %p (%s), "
  206                     "blocked for %d ticks\n", __func__,
  207                     td, sched_tdname(td), tticks);
  208 }
  209 
  210 static void
  211 deadlres_td_sleep_q(struct proc *p, struct thread *td, int slpticks)
  212 {
  213         const void *wchan;
  214         int i, slptype, tticks;
  215 
  216         sx_assert(&allproc_lock, SX_LOCKED);
  217         PROC_LOCK_ASSERT(p, MA_OWNED);
  218         THREAD_LOCK_ASSERT(td, MA_OWNED);
  219         /*
  220          * Check if the thread is sleeping on a lock, otherwise skip the check.
  221          * Drop the thread lock in order to avoid a LOR with the sleepqueue
  222          * spinlock.
  223          */
  224         wchan = td->td_wchan;
  225         tticks = ticks - td->td_slptick;
  226         slptype = sleepq_type(wchan);
  227         if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) &&
  228             tticks > slpticks) {
  229                 /*
  230                  * Accordingly with provided thresholds, this thread is stuck
  231                  * for too long on a sleepqueue.
  232                  * However, being on a sleepqueue, we might still check for the
  233                  * blessed list.
  234                  */
  235                 for (i = 0; blessed[i] != NULL; i++)
  236                         if (!strcmp(blessed[i], td->td_wmesg))
  237                                 return;
  238 
  239                 panic("%s: possible deadlock detected for %p (%s), "
  240                     "blocked for %d ticks\n", __func__,
  241                     td, sched_tdname(td), tticks);
  242         }
  243 }
  244 
  245 static void
  246 deadlkres(void)
  247 {
  248         struct proc *p;
  249         struct thread *td;
  250         int blkticks, slpticks, tryl;
  251 
  252         tryl = 0;
  253         for (;;) {
  254                 blkticks = blktime_threshold * hz;
  255                 slpticks = slptime_threshold * hz;
  256 
  257                 /*
  258                  * Avoid to sleep on the sx_lock in order to avoid a
  259                  * possible priority inversion problem leading to
  260                  * starvation.
  261                  * If the lock can't be held after 100 tries, panic.
  262                  */
  263                 if (!sx_try_slock(&allproc_lock)) {
  264                         if (tryl > 100)
  265                                 panic("%s: possible deadlock detected "
  266                                     "on allproc_lock\n", __func__);
  267                         tryl++;
  268                         pause("allproc", sleepfreq * hz);
  269                         continue;
  270                 }
  271                 tryl = 0;
  272                 FOREACH_PROC_IN_SYSTEM(p) {
  273                         PROC_LOCK(p);
  274                         if (p->p_state == PRS_NEW) {
  275                                 PROC_UNLOCK(p);
  276                                 continue;
  277                         }
  278                         FOREACH_THREAD_IN_PROC(p, td) {
  279                                 thread_lock(td);
  280                                 if (TD_ON_LOCK(td))
  281                                         deadlres_td_on_lock(p, td,
  282                                             blkticks);
  283                                 else if (TD_IS_SLEEPING(td))
  284                                         deadlres_td_sleep_q(p, td,
  285                                             slpticks);
  286                                 thread_unlock(td);
  287                         }
  288                         PROC_UNLOCK(p);
  289                 }
  290                 sx_sunlock(&allproc_lock);
  291 
  292                 /* Sleep for sleepfreq seconds. */
  293                 pause("-", sleepfreq * hz);
  294         }
  295 }
  296 
  297 static struct kthread_desc deadlkres_kd = {
  298         "deadlkres",
  299         deadlkres,
  300         (struct thread **)NULL
  301 };
  302 
  303 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
  304 
  305 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  306     "Deadlock resolver");
  307 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
  308     &slptime_threshold, 0,
  309     "Number of seconds within is valid to sleep on a sleepqueue");
  310 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
  311     &blktime_threshold, 0,
  312     "Number of seconds within is valid to block on a turnstile");
  313 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
  314     "Number of seconds between any deadlock resolver thread run");
  315 #endif  /* DEADLKRES */
  316 
  317 void
  318 read_cpu_time(long *cp_time)
  319 {
  320         struct pcpu *pc;
  321         int i, j;
  322 
  323         /* Sum up global cp_time[]. */
  324         bzero(cp_time, sizeof(long) * CPUSTATES);
  325         CPU_FOREACH(i) {
  326                 pc = pcpu_find(i);
  327                 for (j = 0; j < CPUSTATES; j++)
  328                         cp_time[j] += pc->pc_cp_time[j];
  329         }
  330 }
  331 
  332 #include <sys/watchdog.h>
  333 
  334 static int watchdog_ticks;
  335 static int watchdog_enabled;
  336 static void watchdog_fire(void);
  337 static void watchdog_config(void *, u_int, int *);
  338 
  339 static void
  340 watchdog_attach(void)
  341 {
  342         EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
  343 }
  344 
  345 /*
  346  * Clock handling routines.
  347  *
  348  * This code is written to operate with two timers that run independently of
  349  * each other.
  350  *
  351  * The main timer, running hz times per second, is used to trigger interval
  352  * timers, timeouts and rescheduling as needed.
  353  *
  354  * The second timer handles kernel and user profiling,
  355  * and does resource use estimation.  If the second timer is programmable,
  356  * it is randomized to avoid aliasing between the two clocks.  For example,
  357  * the randomization prevents an adversary from always giving up the cpu
  358  * just before its quantum expires.  Otherwise, it would never accumulate
  359  * cpu ticks.  The mean frequency of the second timer is stathz.
  360  *
  361  * If no second timer exists, stathz will be zero; in this case we drive
  362  * profiling and statistics off the main clock.  This WILL NOT be accurate;
  363  * do not do it unless absolutely necessary.
  364  *
  365  * The statistics clock may (or may not) be run at a higher rate while
  366  * profiling.  This profile clock runs at profhz.  We require that profhz
  367  * be an integral multiple of stathz.
  368  *
  369  * If the statistics clock is running fast, it must be divided by the ratio
  370  * profhz/stathz for statistics.  (For profiling, every tick counts.)
  371  *
  372  * Time-of-day is maintained using a "timecounter", which may or may
  373  * not be related to the hardware generating the above mentioned
  374  * interrupts.
  375  */
  376 
  377 int     stathz;
  378 int     profhz;
  379 int     profprocs;
  380 volatile int    ticks;
  381 int     psratio;
  382 
  383 DPCPU_DEFINE_STATIC(int, pcputicks);    /* Per-CPU version of ticks. */
  384 #ifdef DEVICE_POLLING
  385 static int devpoll_run = 0;
  386 #endif
  387 
  388 /*
  389  * Initialize clock frequencies and start both clocks running.
  390  */
  391 static void
  392 initclocks(void *dummy __unused)
  393 {
  394         int i;
  395 
  396         /*
  397          * Set divisors to 1 (normal case) and let the machine-specific
  398          * code do its bit.
  399          */
  400         mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
  401         cpu_initclocks();
  402 
  403         /*
  404          * Compute profhz/stathz, and fix profhz if needed.
  405          */
  406         i = stathz ? stathz : hz;
  407         if (profhz == 0)
  408                 profhz = i;
  409         psratio = profhz / i;
  410 
  411 #ifdef SW_WATCHDOG
  412         /* Enable hardclock watchdog now, even if a hardware watchdog exists. */
  413         watchdog_attach();
  414 #else
  415         /* Volunteer to run a software watchdog. */
  416         if (wdog_software_attach == NULL)
  417                 wdog_software_attach = watchdog_attach;
  418 #endif
  419 }
  420 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
  421 
  422 static __noinline void
  423 hardclock_itimer(struct thread *td, struct pstats *pstats, int cnt, int usermode)
  424 {
  425         struct proc *p;
  426         int flags;
  427 
  428         flags = 0;
  429         p = td->td_proc;
  430         if (usermode &&
  431             timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
  432                 PROC_ITIMLOCK(p);
  433                 if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
  434                     tick * cnt) == 0)
  435                         flags |= TDF_ALRMPEND | TDF_ASTPENDING;
  436                 PROC_ITIMUNLOCK(p);
  437         }
  438         if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
  439                 PROC_ITIMLOCK(p);
  440                 if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
  441                     tick * cnt) == 0)
  442                         flags |= TDF_PROFPEND | TDF_ASTPENDING;
  443                 PROC_ITIMUNLOCK(p);
  444         }
  445         if (flags != 0) {
  446                 thread_lock(td);
  447                 td->td_flags |= flags;
  448                 thread_unlock(td);
  449         }
  450 }
  451 
  452 void
  453 hardclock(int cnt, int usermode)
  454 {
  455         struct pstats *pstats;
  456         struct thread *td = curthread;
  457         struct proc *p = td->td_proc;
  458         int *t = DPCPU_PTR(pcputicks);
  459         int global, i, newticks;
  460 
  461         /*
  462          * Update per-CPU and possibly global ticks values.
  463          */
  464         *t += cnt;
  465         global = ticks;
  466         do {
  467                 newticks = *t - global;
  468                 if (newticks <= 0) {
  469                         if (newticks < -1)
  470                                 *t = global - 1;
  471                         newticks = 0;
  472                         break;
  473                 }
  474         } while (!atomic_fcmpset_int(&ticks, &global, *t));
  475 
  476         /*
  477          * Run current process's virtual and profile time, as needed.
  478          */
  479         pstats = p->p_stats;
  480         if (__predict_false(
  481             timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) ||
  482             timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)))
  483                 hardclock_itimer(td, pstats, cnt, usermode);
  484 
  485 #ifdef  HWPMC_HOOKS
  486         if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
  487                 PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
  488         if (td->td_intr_frame != NULL)
  489                 PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
  490 #endif
  491         /* We are in charge to handle this tick duty. */
  492         if (newticks > 0) {
  493                 tc_ticktock(newticks);
  494 #ifdef DEVICE_POLLING
  495                 /* Dangerous and no need to call these things concurrently. */
  496                 if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
  497                         /* This is very short and quick. */
  498                         hardclock_device_poll();
  499                         atomic_store_rel_int(&devpoll_run, 0);
  500                 }
  501 #endif /* DEVICE_POLLING */
  502                 if (watchdog_enabled > 0) {
  503                         i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
  504                         if (i > 0 && i <= newticks)
  505                                 watchdog_fire();
  506                 }
  507                 intr_event_handle(clk_intr_event, NULL);
  508         }
  509         if (curcpu == CPU_FIRST())
  510                 cpu_tick_calibration();
  511         if (__predict_false(DPCPU_GET(epoch_cb_count)))
  512                 GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task));
  513 }
  514 
  515 void
  516 hardclock_sync(int cpu)
  517 {
  518         int *t;
  519         KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
  520         t = DPCPU_ID_PTR(cpu, pcputicks);
  521 
  522         *t = ticks;
  523 }
  524 
  525 /*
  526  * Regular integer scaling formula without losing precision:
  527  */
  528 #define TIME_INT_SCALE(value, mul, div) \
  529         (((value) / (div)) * (mul) + (((value) % (div)) * (mul)) / (div))
  530 
  531 /*
  532  * Macro for converting seconds and microseconds into actual ticks,
  533  * based on the given hz value:
  534  */
  535 #define TIME_TO_TICKS(sec, usec, hz) \
  536         ((sec) * (hz) + TIME_INT_SCALE(usec, hz, 1 << 6) / (1000000 >> 6))
  537 
  538 #define TIME_ASSERT_VALID_HZ(hz)        \
  539         _Static_assert(TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) >= 0 && \
  540                        TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) < INT_MAX, \
  541                        "tvtohz() can overflow the regular integer type")
  542 
  543 /*
  544  * Compile time assert the maximum and minimum values to fit into a
  545  * regular integer when computing TIME_TO_TICKS():
  546  */
  547 TIME_ASSERT_VALID_HZ(HZ_MAXIMUM);
  548 TIME_ASSERT_VALID_HZ(HZ_MINIMUM);
  549 
  550 /*
  551  * The formula is mostly linear, but test some more common values just
  552  * in case:
  553  */
  554 TIME_ASSERT_VALID_HZ(1024);
  555 TIME_ASSERT_VALID_HZ(1000);
  556 TIME_ASSERT_VALID_HZ(128);
  557 TIME_ASSERT_VALID_HZ(100);
  558 
  559 /*
  560  * Compute number of ticks representing the specified amount of time.
  561  * If the specified time is negative, a value of 1 is returned. This
  562  * function returns a value from 1 up to and including INT_MAX.
  563  */
  564 int
  565 tvtohz(struct timeval *tv)
  566 {
  567         int retval;
  568 
  569         /*
  570          * The values passed here may come from user-space and these
  571          * checks ensure "tv_usec" is within its allowed range:
  572          */
  573 
  574         /* check for tv_usec underflow */
  575         if (__predict_false(tv->tv_usec < 0)) {
  576                 tv->tv_sec += tv->tv_usec / 1000000;
  577                 tv->tv_usec = tv->tv_usec % 1000000;
  578                 /* convert tv_usec to a positive value */
  579                 if (__predict_true(tv->tv_usec < 0)) {
  580                         tv->tv_usec += 1000000;
  581                         tv->tv_sec -= 1;
  582                 }
  583         /* check for tv_usec overflow */
  584         } else if (__predict_false(tv->tv_usec >= 1000000)) {
  585                 tv->tv_sec += tv->tv_usec / 1000000;
  586                 tv->tv_usec = tv->tv_usec % 1000000;
  587         }
  588 
  589         /* check for tv_sec underflow */
  590         if (__predict_false(tv->tv_sec < 0))
  591                 return (1);
  592         /* check for tv_sec overflow (including room for the tv_usec part) */
  593         else if (__predict_false(tv->tv_sec >= tick_seconds_max))
  594                 return (INT_MAX);
  595 
  596         /* cast to "int" to avoid platform differences */
  597         retval = TIME_TO_TICKS((int)tv->tv_sec, (int)tv->tv_usec, hz);
  598 
  599         /* add one additional tick */
  600         return (retval + 1);
  601 }
  602 
  603 /*
  604  * Start profiling on a process.
  605  *
  606  * Kernel profiling passes proc0 which never exits and hence
  607  * keeps the profile clock running constantly.
  608  */
  609 void
  610 startprofclock(struct proc *p)
  611 {
  612 
  613         PROC_LOCK_ASSERT(p, MA_OWNED);
  614         if (p->p_flag & P_STOPPROF)
  615                 return;
  616         if ((p->p_flag & P_PROFIL) == 0) {
  617                 p->p_flag |= P_PROFIL;
  618                 mtx_lock(&time_lock);
  619                 if (++profprocs == 1)
  620                         cpu_startprofclock();
  621                 mtx_unlock(&time_lock);
  622         }
  623 }
  624 
  625 /*
  626  * Stop profiling on a process.
  627  */
  628 void
  629 stopprofclock(struct proc *p)
  630 {
  631 
  632         PROC_LOCK_ASSERT(p, MA_OWNED);
  633         if (p->p_flag & P_PROFIL) {
  634                 if (p->p_profthreads != 0) {
  635                         while (p->p_profthreads != 0) {
  636                                 p->p_flag |= P_STOPPROF;
  637                                 msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
  638                                     "stopprof", 0);
  639                         }
  640                 }
  641                 if ((p->p_flag & P_PROFIL) == 0)
  642                         return;
  643                 p->p_flag &= ~P_PROFIL;
  644                 mtx_lock(&time_lock);
  645                 if (--profprocs == 0)
  646                         cpu_stopprofclock();
  647                 mtx_unlock(&time_lock);
  648         }
  649 }
  650 
  651 /*
  652  * Statistics clock.  Updates rusage information and calls the scheduler
  653  * to adjust priorities of the active thread.
  654  *
  655  * This should be called by all active processors.
  656  */
  657 void
  658 statclock(int cnt, int usermode)
  659 {
  660         struct rusage *ru;
  661         struct vmspace *vm;
  662         struct thread *td;
  663         struct proc *p;
  664         long rss;
  665         long *cp_time;
  666         uint64_t runtime, new_switchtime;
  667 
  668         td = curthread;
  669         p = td->td_proc;
  670 
  671         cp_time = (long *)PCPU_PTR(cp_time);
  672         if (usermode) {
  673                 /*
  674                  * Charge the time as appropriate.
  675                  */
  676                 td->td_uticks += cnt;
  677                 if (p->p_nice > NZERO)
  678                         cp_time[CP_NICE] += cnt;
  679                 else
  680                         cp_time[CP_USER] += cnt;
  681         } else {
  682                 /*
  683                  * Came from kernel mode, so we were:
  684                  * - handling an interrupt,
  685                  * - doing syscall or trap work on behalf of the current
  686                  *   user process, or
  687                  * - spinning in the idle loop.
  688                  * Whichever it is, charge the time as appropriate.
  689                  * Note that we charge interrupts to the current process,
  690                  * regardless of whether they are ``for'' that process,
  691                  * so that we know how much of its real time was spent
  692                  * in ``non-process'' (i.e., interrupt) work.
  693                  */
  694                 if ((td->td_pflags & TDP_ITHREAD) ||
  695                     td->td_intr_nesting_level >= 2) {
  696                         td->td_iticks += cnt;
  697                         cp_time[CP_INTR] += cnt;
  698                 } else {
  699                         td->td_pticks += cnt;
  700                         td->td_sticks += cnt;
  701                         if (!TD_IS_IDLETHREAD(td))
  702                                 cp_time[CP_SYS] += cnt;
  703                         else
  704                                 cp_time[CP_IDLE] += cnt;
  705                 }
  706         }
  707 
  708         /* Update resource usage integrals and maximums. */
  709         MPASS(p->p_vmspace != NULL);
  710         vm = p->p_vmspace;
  711         ru = &td->td_ru;
  712         ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
  713         ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
  714         ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
  715         rss = pgtok(vmspace_resident_count(vm));
  716         if (ru->ru_maxrss < rss)
  717                 ru->ru_maxrss = rss;
  718         KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
  719             "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
  720         SDT_PROBE2(sched, , , tick, td, td->td_proc);
  721         thread_lock_flags(td, MTX_QUIET);
  722 
  723         /*
  724          * Compute the amount of time during which the current
  725          * thread was running, and add that to its total so far.
  726          */
  727         new_switchtime = cpu_ticks();
  728         runtime = new_switchtime - PCPU_GET(switchtime);
  729         td->td_runtime += runtime;
  730         td->td_incruntime += runtime;
  731         PCPU_SET(switchtime, new_switchtime);
  732 
  733         sched_clock(td, cnt);
  734         thread_unlock(td);
  735 #ifdef HWPMC_HOOKS
  736         if (td->td_intr_frame != NULL)
  737                 PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
  738 #endif
  739 }
  740 
  741 void
  742 profclock(int cnt, int usermode, uintfptr_t pc)
  743 {
  744         struct thread *td;
  745 #ifdef GPROF
  746         struct gmonparam *g;
  747         uintfptr_t i;
  748 #endif
  749 
  750         td = curthread;
  751         if (usermode) {
  752                 /*
  753                  * Came from user mode; CPU was in user state.
  754                  * If this process is being profiled, record the tick.
  755                  * if there is no related user location yet, don't
  756                  * bother trying to count it.
  757                  */
  758                 if (td->td_proc->p_flag & P_PROFIL)
  759                         addupc_intr(td, pc, cnt);
  760         }
  761 #ifdef GPROF
  762         else {
  763                 /*
  764                  * Kernel statistics are just like addupc_intr, only easier.
  765                  */
  766                 g = &_gmonparam;
  767                 if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
  768                         i = PC_TO_I(g, pc);
  769                         if (i < g->textsize) {
  770                                 KCOUNT(g, i) += cnt;
  771                         }
  772                 }
  773         }
  774 #endif
  775 #ifdef HWPMC_HOOKS
  776         if (td->td_intr_frame != NULL)
  777                 PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
  778 #endif
  779 }
  780 
  781 /*
  782  * Return information about system clocks.
  783  */
  784 static int
  785 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
  786 {
  787         struct clockinfo clkinfo;
  788         /*
  789          * Construct clockinfo structure.
  790          */
  791         bzero(&clkinfo, sizeof(clkinfo));
  792         clkinfo.hz = hz;
  793         clkinfo.tick = tick;
  794         clkinfo.profhz = profhz;
  795         clkinfo.stathz = stathz ? stathz : hz;
  796         return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
  797 }
  798 
  799 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
  800         CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
  801         0, 0, sysctl_kern_clockrate, "S,clockinfo",
  802         "Rate and period of various kernel clocks");
  803 
  804 static void
  805 watchdog_config(void *unused __unused, u_int cmd, int *error)
  806 {
  807         u_int u;
  808 
  809         u = cmd & WD_INTERVAL;
  810         if (u >= WD_TO_1SEC) {
  811                 watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
  812                 watchdog_enabled = 1;
  813                 *error = 0;
  814         } else {
  815                 watchdog_enabled = 0;
  816         }
  817 }
  818 
  819 /*
  820  * Handle a watchdog timeout by dumping interrupt information and
  821  * then either dropping to DDB or panicking.
  822  */
  823 static void
  824 watchdog_fire(void)
  825 {
  826         int nintr;
  827         uint64_t inttotal;
  828         u_long *curintr;
  829         char *curname;
  830 
  831         curintr = intrcnt;
  832         curname = intrnames;
  833         inttotal = 0;
  834         nintr = sintrcnt / sizeof(u_long);
  835 
  836         printf("interrupt                   total\n");
  837         while (--nintr >= 0) {
  838                 if (*curintr)
  839                         printf("%-12s %20lu\n", curname, *curintr);
  840                 curname += strlen(curname) + 1;
  841                 inttotal += *curintr++;
  842         }
  843         printf("Total        %20ju\n", (uintmax_t)inttotal);
  844 
  845 #if defined(KDB) && !defined(KDB_UNATTENDED)
  846         kdb_backtrace();
  847         kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
  848 #else
  849         panic("watchdog timeout");
  850 #endif
  851 }

Cache object: b26d85477b1cc30ed4c56c4ade0f96d8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.