The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_clocksource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer,
   10  *    without modification, immediately at the beginning of the file.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.0/sys/kern/kern_clocksource.c 247777 2013-03-04 11:09:56Z davide $");
   29 
   30 /*
   31  * Common routines to manage event timers hardware.
   32  */
   33 
   34 #include "opt_device_polling.h"
   35 #include "opt_kdtrace.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/bus.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/kdb.h>
   43 #include <sys/ktr.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/kernel.h>
   47 #include <sys/sched.h>
   48 #include <sys/smp.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/timeet.h>
   51 #include <sys/timetc.h>
   52 
   53 #include <machine/atomic.h>
   54 #include <machine/clock.h>
   55 #include <machine/cpu.h>
   56 #include <machine/smp.h>
   57 
   58 #ifdef KDTRACE_HOOKS
   59 #include <sys/dtrace_bsd.h>
   60 cyclic_clock_func_t     cyclic_clock_func = NULL;
   61 #endif
   62 
   63 int                     cpu_can_deep_sleep = 0; /* C3 state is available. */
   64 int                     cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
   65 
   66 static void             setuptimer(void);
   67 static void             loadtimer(sbintime_t now, int first);
   68 static int              doconfigtimer(void);
   69 static void             configtimer(int start);
   70 static int              round_freq(struct eventtimer *et, int freq);
   71 
   72 static sbintime_t       getnextcpuevent(int idle);
   73 static sbintime_t       getnextevent(void);
   74 static int              handleevents(sbintime_t now, int fake);
   75 
   76 static struct mtx       et_hw_mtx;
   77 
   78 #define ET_HW_LOCK(state)                                               \
   79         {                                                               \
   80                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
   81                         mtx_lock_spin(&(state)->et_hw_mtx);             \
   82                 else                                                    \
   83                         mtx_lock_spin(&et_hw_mtx);                      \
   84         }
   85 
   86 #define ET_HW_UNLOCK(state)                                             \
   87         {                                                               \
   88                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
   89                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
   90                 else                                                    \
   91                         mtx_unlock_spin(&et_hw_mtx);                    \
   92         }
   93 
   94 static struct eventtimer *timer = NULL;
   95 static sbintime_t       timerperiod;    /* Timer period for periodic mode. */
   96 static sbintime_t       statperiod;     /* statclock() events period. */
   97 static sbintime_t       profperiod;     /* profclock() events period. */
   98 static sbintime_t       nexttick;       /* Next global timer tick time. */
   99 static u_int            busy = 1;       /* Reconfiguration is in progress. */
  100 static int              profiling = 0;  /* Profiling events enabled. */
  101 
  102 static char             timername[32];  /* Wanted timer. */
  103 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
  104 
  105 static int              singlemul = 0;  /* Multiplier for periodic mode. */
  106 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
  107 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
  108     0, "Multiplier for periodic mode");
  109 
  110 static u_int            idletick = 0;   /* Run periodic events when idle. */
  111 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
  112 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
  113     0, "Run periodic events when idle");
  114 
  115 static int              periodic = 0;   /* Periodic or one-shot mode. */
  116 static int              want_periodic = 0; /* What mode to prefer. */
  117 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
  118 
  119 struct pcpu_state {
  120         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
  121         u_int           action;         /* Reconfiguration requests. */
  122         u_int           handle;         /* Immediate handle resuests. */
  123         sbintime_t      now;            /* Last tick time. */
  124         sbintime_t      nextevent;      /* Next scheduled event on this CPU. */
  125         sbintime_t      nexttick;       /* Next timer tick time. */
  126         sbintime_t      nexthard;       /* Next hardlock() event. */
  127         sbintime_t      nextstat;       /* Next statclock() event. */
  128         sbintime_t      nextprof;       /* Next profclock() event. */
  129         sbintime_t      nextcall;       /* Next callout event. */
  130         sbintime_t      nextcallopt;    /* Next optional callout event. */
  131 #ifdef KDTRACE_HOOKS
  132         sbintime_t      nextcyc;        /* Next OpenSolaris cyclics event. */
  133 #endif
  134         int             ipi;            /* This CPU needs IPI. */
  135         int             idle;           /* This CPU is in idle mode. */
  136 };
  137 
  138 static DPCPU_DEFINE(struct pcpu_state, timerstate);
  139 DPCPU_DEFINE(sbintime_t, hardclocktime);
  140 
  141 /*
  142  * Timer broadcast IPI handler.
  143  */
  144 int
  145 hardclockintr(void)
  146 {
  147         sbintime_t now;
  148         struct pcpu_state *state;
  149         int done;
  150 
  151         if (doconfigtimer() || busy)
  152                 return (FILTER_HANDLED);
  153         state = DPCPU_PTR(timerstate);
  154         now = state->now;
  155         CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
  156             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
  157         done = handleevents(now, 0);
  158         return (done ? FILTER_HANDLED : FILTER_STRAY);
  159 }
  160 
  161 /*
  162  * Handle all events for specified time on this CPU
  163  */
  164 static int
  165 handleevents(sbintime_t now, int fake)
  166 {
  167         sbintime_t t, *hct;
  168         struct trapframe *frame;
  169         struct pcpu_state *state;
  170         int usermode;
  171         int done, runs;
  172 
  173         CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
  174             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
  175         done = 0;
  176         if (fake) {
  177                 frame = NULL;
  178                 usermode = 0;
  179         } else {
  180                 frame = curthread->td_intr_frame;
  181                 usermode = TRAPF_USERMODE(frame);
  182         }
  183 
  184         state = DPCPU_PTR(timerstate);
  185 
  186         runs = 0;
  187         while (now >= state->nexthard) {
  188                 state->nexthard += tick_sbt;
  189                 runs++;
  190         }
  191         if (runs) {
  192                 hct = DPCPU_PTR(hardclocktime);
  193                 *hct = state->nexthard - tick_sbt;
  194                 if (fake < 2) {
  195                         hardclock_cnt(runs, usermode);
  196                         done = 1;
  197                 }
  198         }
  199         runs = 0;
  200         while (now >= state->nextstat) {
  201                 state->nextstat += statperiod;
  202                 runs++;
  203         }
  204         if (runs && fake < 2) {
  205                 statclock_cnt(runs, usermode);
  206                 done = 1;
  207         }
  208         if (profiling) {
  209                 runs = 0;
  210                 while (now >= state->nextprof) {
  211                         state->nextprof += profperiod;
  212                         runs++;
  213                 }
  214                 if (runs && !fake) {
  215                         profclock_cnt(runs, usermode, TRAPF_PC(frame));
  216                         done = 1;
  217                 }
  218         } else
  219                 state->nextprof = state->nextstat;
  220         if (now >= state->nextcallopt) {
  221                 state->nextcall = state->nextcallopt = INT64_MAX;
  222                 callout_process(now);
  223         }
  224 
  225 #ifdef KDTRACE_HOOKS
  226         if (fake == 0 && now >= state->nextcyc && cyclic_clock_func != NULL) {
  227                 state->nextcyc = INT64_MAX;
  228                 (*cyclic_clock_func)(frame);
  229         }
  230 #endif
  231 
  232         t = getnextcpuevent(0);
  233         ET_HW_LOCK(state);
  234         if (!busy) {
  235                 state->idle = 0;
  236                 state->nextevent = t;
  237                 loadtimer(now, 0);
  238         }
  239         ET_HW_UNLOCK(state);
  240         return (done);
  241 }
  242 
  243 /*
  244  * Schedule binuptime of the next event on current CPU.
  245  */
  246 static sbintime_t
  247 getnextcpuevent(int idle)
  248 {
  249         sbintime_t event;
  250         struct pcpu_state *state;
  251         u_int hardfreq;
  252 
  253         state = DPCPU_PTR(timerstate);
  254         /* Handle hardclock() events, skipping some if CPU is idle. */
  255         event = state->nexthard;
  256         if (idle) {
  257                 hardfreq = (u_int)hz / 2;
  258                 if (tc_min_ticktock_freq > 2
  259 #ifdef SMP
  260                     && curcpu == CPU_FIRST()
  261 #endif
  262                     )
  263                         hardfreq = hz / tc_min_ticktock_freq;
  264                 if (hardfreq > 1)
  265                         event += tick_sbt * (hardfreq - 1);
  266         }
  267         /* Handle callout events. */
  268         if (event > state->nextcall)
  269                 event = state->nextcall;
  270         if (!idle) { /* If CPU is active - handle other types of events. */
  271                 if (event > state->nextstat)
  272                         event = state->nextstat;
  273                 if (profiling && event > state->nextprof)
  274                         event = state->nextprof;
  275         }
  276 #ifdef KDTRACE_HOOKS
  277         if (event > state->nextcyc)
  278                 event = state->nextcyc;
  279 #endif
  280         return (event);
  281 }
  282 
  283 /*
  284  * Schedule binuptime of the next event on all CPUs.
  285  */
  286 static sbintime_t
  287 getnextevent(void)
  288 {
  289         struct pcpu_state *state;
  290         sbintime_t event;
  291 #ifdef SMP
  292         int     cpu;
  293 #endif
  294         int     c;
  295 
  296         state = DPCPU_PTR(timerstate);
  297         event = state->nextevent;
  298         c = -1;
  299 #ifdef SMP
  300         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
  301                 CPU_FOREACH(cpu) {
  302                         state = DPCPU_ID_PTR(cpu, timerstate);
  303                         if (event > state->nextevent) {
  304                                 event = state->nextevent;
  305                                 c = cpu;
  306                         }
  307                 }
  308         }
  309 #endif
  310         CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
  311             curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
  312         return (event);
  313 }
  314 
  315 /* Hardware timer callback function. */
  316 static void
  317 timercb(struct eventtimer *et, void *arg)
  318 {
  319         sbintime_t now;
  320         sbintime_t *next;
  321         struct pcpu_state *state;
  322 #ifdef SMP
  323         int cpu, bcast;
  324 #endif
  325 
  326         /* Do not touch anything if somebody reconfiguring timers. */
  327         if (busy)
  328                 return;
  329         /* Update present and next tick times. */
  330         state = DPCPU_PTR(timerstate);
  331         if (et->et_flags & ET_FLAGS_PERCPU) {
  332                 next = &state->nexttick;
  333         } else
  334                 next = &nexttick;
  335         now = sbinuptime();
  336         if (periodic)
  337                 *next = now + timerperiod;
  338         else
  339                 *next = -1;     /* Next tick is not scheduled yet. */
  340         state->now = now;
  341         CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
  342             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
  343 
  344 #ifdef SMP
  345         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
  346         bcast = 0;
  347         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
  348                 CPU_FOREACH(cpu) {
  349                         state = DPCPU_ID_PTR(cpu, timerstate);
  350                         ET_HW_LOCK(state);
  351                         state->now = now;
  352                         if (now >= state->nextevent) {
  353                                 state->nextevent += SBT_1S;
  354                                 if (curcpu != cpu) {
  355                                         state->ipi = 1;
  356                                         bcast = 1;
  357                                 }
  358                         }
  359                         ET_HW_UNLOCK(state);
  360                 }
  361         }
  362 #endif
  363 
  364         /* Handle events for this time on this CPU. */
  365         handleevents(now, 0);
  366 
  367 #ifdef SMP
  368         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
  369         if (bcast) {
  370                 CPU_FOREACH(cpu) {
  371                         if (curcpu == cpu)
  372                                 continue;
  373                         state = DPCPU_ID_PTR(cpu, timerstate);
  374                         if (state->ipi) {
  375                                 state->ipi = 0;
  376                                 ipi_cpu(cpu, IPI_HARDCLOCK);
  377                         }
  378                 }
  379         }
  380 #endif
  381 }
  382 
  383 /*
  384  * Load new value into hardware timer.
  385  */
  386 static void
  387 loadtimer(sbintime_t now, int start)
  388 {
  389         struct pcpu_state *state;
  390         sbintime_t new;
  391         sbintime_t *next;
  392         uint64_t tmp;
  393         int eq;
  394 
  395         if (timer->et_flags & ET_FLAGS_PERCPU) {
  396                 state = DPCPU_PTR(timerstate);
  397                 next = &state->nexttick;
  398         } else
  399                 next = &nexttick;
  400         if (periodic) {
  401                 if (start) {
  402                         /*
  403                          * Try to start all periodic timers aligned
  404                          * to period to make events synchronous.
  405                          */
  406                         tmp = now % timerperiod;
  407                         new = timerperiod - tmp;
  408                         if (new < tmp)          /* Left less then passed. */
  409                                 new += timerperiod;
  410                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
  411                             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
  412                             (int)(new >> 32), (u_int)(new & 0xffffffff));
  413                         *next = new + now;
  414                         et_start(timer, new, timerperiod);
  415                 }
  416         } else {
  417                 new = getnextevent();
  418                 eq = (new == *next);
  419                 CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
  420                     curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
  421                 if (!eq) {
  422                         *next = new;
  423                         et_start(timer, new - now, 0);
  424                 }
  425         }
  426 }
  427 
  428 /*
  429  * Prepare event timer parameters after configuration changes.
  430  */
  431 static void
  432 setuptimer(void)
  433 {
  434         int freq;
  435 
  436         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
  437                 periodic = 0;
  438         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
  439                 periodic = 1;
  440         singlemul = MIN(MAX(singlemul, 1), 20);
  441         freq = hz * singlemul;
  442         while (freq < (profiling ? profhz : stathz))
  443                 freq += hz;
  444         freq = round_freq(timer, freq);
  445         timerperiod = SBT_1S / freq;
  446 }
  447 
  448 /*
  449  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
  450  */
  451 static int
  452 doconfigtimer(void)
  453 {
  454         sbintime_t now;
  455         struct pcpu_state *state;
  456 
  457         state = DPCPU_PTR(timerstate);
  458         switch (atomic_load_acq_int(&state->action)) {
  459         case 1:
  460                 now = sbinuptime();
  461                 ET_HW_LOCK(state);
  462                 loadtimer(now, 1);
  463                 ET_HW_UNLOCK(state);
  464                 state->handle = 0;
  465                 atomic_store_rel_int(&state->action, 0);
  466                 return (1);
  467         case 2:
  468                 ET_HW_LOCK(state);
  469                 et_stop(timer);
  470                 ET_HW_UNLOCK(state);
  471                 state->handle = 0;
  472                 atomic_store_rel_int(&state->action, 0);
  473                 return (1);
  474         }
  475         if (atomic_readandclear_int(&state->handle) && !busy) {
  476                 now = sbinuptime();
  477                 handleevents(now, 0);
  478                 return (1);
  479         }
  480         return (0);
  481 }
  482 
  483 /*
  484  * Reconfigure specified timer.
  485  * For per-CPU timers use IPI to make other CPUs to reconfigure.
  486  */
  487 static void
  488 configtimer(int start)
  489 {
  490         sbintime_t now, next;
  491         struct pcpu_state *state;
  492         int cpu;
  493 
  494         if (start) {
  495                 setuptimer();
  496                 now = sbinuptime();
  497         } else
  498                 now = 0;
  499         critical_enter();
  500         ET_HW_LOCK(DPCPU_PTR(timerstate));
  501         if (start) {
  502                 /* Initialize time machine parameters. */
  503                 next = now + timerperiod;
  504                 if (periodic)
  505                         nexttick = next;
  506                 else
  507                         nexttick = -1;
  508                 CPU_FOREACH(cpu) {
  509                         state = DPCPU_ID_PTR(cpu, timerstate);
  510                         state->now = now;
  511                         if (!smp_started && cpu != CPU_FIRST())
  512                                 state->nextevent = INT64_MAX;
  513                         else
  514                                 state->nextevent = next;
  515                         if (periodic)
  516                                 state->nexttick = next;
  517                         else
  518                                 state->nexttick = -1;
  519                         state->nexthard = next;
  520                         state->nextstat = next;
  521                         state->nextprof = next;
  522                         state->nextcall = next;
  523                         state->nextcallopt = next;
  524                         hardclock_sync(cpu);
  525                 }
  526                 busy = 0;
  527                 /* Start global timer or per-CPU timer of this CPU. */
  528                 loadtimer(now, 1);
  529         } else {
  530                 busy = 1;
  531                 /* Stop global timer or per-CPU timer of this CPU. */
  532                 et_stop(timer);
  533         }
  534         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
  535 #ifdef SMP
  536         /* If timer is global or there is no other CPUs yet - we are done. */
  537         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
  538                 critical_exit();
  539                 return;
  540         }
  541         /* Set reconfigure flags for other CPUs. */
  542         CPU_FOREACH(cpu) {
  543                 state = DPCPU_ID_PTR(cpu, timerstate);
  544                 atomic_store_rel_int(&state->action,
  545                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
  546         }
  547         /* Broadcast reconfigure IPI. */
  548         ipi_all_but_self(IPI_HARDCLOCK);
  549         /* Wait for reconfiguration completed. */
  550 restart:
  551         cpu_spinwait();
  552         CPU_FOREACH(cpu) {
  553                 if (cpu == curcpu)
  554                         continue;
  555                 state = DPCPU_ID_PTR(cpu, timerstate);
  556                 if (atomic_load_acq_int(&state->action))
  557                         goto restart;
  558         }
  559 #endif
  560         critical_exit();
  561 }
  562 
  563 /*
  564  * Calculate nearest frequency supported by hardware timer.
  565  */
  566 static int
  567 round_freq(struct eventtimer *et, int freq)
  568 {
  569         uint64_t div;
  570 
  571         if (et->et_frequency != 0) {
  572                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
  573                 if (et->et_flags & ET_FLAGS_POW2DIV)
  574                         div = 1 << (flsl(div + div / 2) - 1);
  575                 freq = (et->et_frequency + div / 2) / div;
  576         }
  577         if (et->et_min_period > SBT_1S)
  578                 panic("Event timer \"%s\" doesn't support sub-second periods!",
  579                     et->et_name);
  580         else if (et->et_min_period != 0)
  581                 freq = min(freq, SBT2FREQ(et->et_min_period));
  582         if (et->et_max_period < SBT_1S && et->et_max_period != 0)
  583                 freq = max(freq, SBT2FREQ(et->et_max_period));
  584         return (freq);
  585 }
  586 
  587 /*
  588  * Configure and start event timers (BSP part).
  589  */
  590 void
  591 cpu_initclocks_bsp(void)
  592 {
  593         struct pcpu_state *state;
  594         int base, div, cpu;
  595 
  596         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
  597         CPU_FOREACH(cpu) {
  598                 state = DPCPU_ID_PTR(cpu, timerstate);
  599                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
  600 #ifdef KDTRACE_HOOKS
  601                 state->nextcyc = INT64_MAX;
  602 #endif
  603                 state->nextcall = INT64_MAX;
  604                 state->nextcallopt = INT64_MAX;
  605         }
  606         periodic = want_periodic;
  607         /* Grab requested timer or the best of present. */
  608         if (timername[0])
  609                 timer = et_find(timername, 0, 0);
  610         if (timer == NULL && periodic) {
  611                 timer = et_find(NULL,
  612                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
  613         }
  614         if (timer == NULL) {
  615                 timer = et_find(NULL,
  616                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
  617         }
  618         if (timer == NULL && !periodic) {
  619                 timer = et_find(NULL,
  620                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
  621         }
  622         if (timer == NULL)
  623                 panic("No usable event timer found!");
  624         et_init(timer, timercb, NULL, NULL);
  625 
  626         /* Adapt to timer capabilities. */
  627         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
  628                 periodic = 0;
  629         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
  630                 periodic = 1;
  631         if (timer->et_flags & ET_FLAGS_C3STOP)
  632                 cpu_disable_deep_sleep++;
  633 
  634         /*
  635          * We honor the requested 'hz' value.
  636          * We want to run stathz in the neighborhood of 128hz.
  637          * We would like profhz to run as often as possible.
  638          */
  639         if (singlemul <= 0 || singlemul > 20) {
  640                 if (hz >= 1500 || (hz % 128) == 0)
  641                         singlemul = 1;
  642                 else if (hz >= 750)
  643                         singlemul = 2;
  644                 else
  645                         singlemul = 4;
  646         }
  647         if (periodic) {
  648                 base = round_freq(timer, hz * singlemul);
  649                 singlemul = max((base + hz / 2) / hz, 1);
  650                 hz = (base + singlemul / 2) / singlemul;
  651                 if (base <= 128)
  652                         stathz = base;
  653                 else {
  654                         div = base / 128;
  655                         if (div >= singlemul && (div % singlemul) == 0)
  656                                 div++;
  657                         stathz = base / div;
  658                 }
  659                 profhz = stathz;
  660                 while ((profhz + stathz) <= 128 * 64)
  661                         profhz += stathz;
  662                 profhz = round_freq(timer, profhz);
  663         } else {
  664                 hz = round_freq(timer, hz);
  665                 stathz = round_freq(timer, 127);
  666                 profhz = round_freq(timer, stathz * 64);
  667         }
  668         tick = 1000000 / hz;
  669         tick_sbt = SBT_1S / hz;
  670         tick_bt = sbttobt(tick_sbt);
  671         statperiod = SBT_1S / stathz;
  672         profperiod = SBT_1S / profhz;
  673         ET_LOCK();
  674         configtimer(1);
  675         ET_UNLOCK();
  676 }
  677 
  678 /*
  679  * Start per-CPU event timers on APs.
  680  */
  681 void
  682 cpu_initclocks_ap(void)
  683 {
  684         sbintime_t now;
  685         struct pcpu_state *state;
  686         struct thread *td;
  687 
  688         state = DPCPU_PTR(timerstate);
  689         now = sbinuptime();
  690         ET_HW_LOCK(state);
  691         state->now = now;
  692         hardclock_sync(curcpu);
  693         spinlock_enter();
  694         ET_HW_UNLOCK(state);
  695         td = curthread;
  696         td->td_intr_nesting_level++;
  697         handleevents(state->now, 2);
  698         td->td_intr_nesting_level--;
  699         spinlock_exit();
  700 }
  701 
  702 /*
  703  * Switch to profiling clock rates.
  704  */
  705 void
  706 cpu_startprofclock(void)
  707 {
  708 
  709         ET_LOCK();
  710         if (profiling == 0) {
  711                 if (periodic) {
  712                         configtimer(0);
  713                         profiling = 1;
  714                         configtimer(1);
  715                 } else
  716                         profiling = 1;
  717         } else
  718                 profiling++;
  719         ET_UNLOCK();
  720 }
  721 
  722 /*
  723  * Switch to regular clock rates.
  724  */
  725 void
  726 cpu_stopprofclock(void)
  727 {
  728 
  729         ET_LOCK();
  730         if (profiling == 1) {
  731                 if (periodic) {
  732                         configtimer(0);
  733                         profiling = 0;
  734                         configtimer(1);
  735                 } else
  736                 profiling = 0;
  737         } else
  738                 profiling--;
  739         ET_UNLOCK();
  740 }
  741 
  742 /*
  743  * Switch to idle mode (all ticks handled).
  744  */
  745 sbintime_t
  746 cpu_idleclock(void)
  747 {
  748         sbintime_t now, t;
  749         struct pcpu_state *state;
  750 
  751         if (idletick || busy ||
  752             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
  753 #ifdef DEVICE_POLLING
  754             || curcpu == CPU_FIRST()
  755 #endif
  756             )
  757                 return (-1);
  758         state = DPCPU_PTR(timerstate);
  759         if (periodic)
  760                 now = state->now;
  761         else
  762                 now = sbinuptime();
  763         CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
  764             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
  765         t = getnextcpuevent(1);
  766         ET_HW_LOCK(state);
  767         state->idle = 1;
  768         state->nextevent = t;
  769         if (!periodic)
  770                 loadtimer(now, 0);
  771         ET_HW_UNLOCK(state);
  772         return (MAX(t - now, 0));
  773 }
  774 
  775 /*
  776  * Switch to active mode (skip empty ticks).
  777  */
  778 void
  779 cpu_activeclock(void)
  780 {
  781         sbintime_t now;
  782         struct pcpu_state *state;
  783         struct thread *td;
  784 
  785         state = DPCPU_PTR(timerstate);
  786         if (state->idle == 0 || busy)
  787                 return;
  788         if (periodic)
  789                 now = state->now;
  790         else
  791                 now = sbinuptime();
  792         CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
  793             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
  794         spinlock_enter();
  795         td = curthread;
  796         td->td_intr_nesting_level++;
  797         handleevents(now, 1);
  798         td->td_intr_nesting_level--;
  799         spinlock_exit();
  800 }
  801 
  802 #ifdef KDTRACE_HOOKS
  803 void
  804 clocksource_cyc_set(const struct bintime *bt)
  805 {
  806         sbintime_t now, t;
  807         struct pcpu_state *state;
  808 
  809         /* Do not touch anything if somebody reconfiguring timers. */
  810         if (busy)
  811                 return;
  812         t = bttosbt(*bt);
  813         state = DPCPU_PTR(timerstate);
  814         if (periodic)
  815                 now = state->now;
  816         else
  817                 now = sbinuptime();
  818 
  819         CTR5(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x  t  %d.%08x",
  820             curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
  821             (int)(t >> 32), (u_int)(t & 0xffffffff));
  822 
  823         ET_HW_LOCK(state);
  824         if (t == state->nextcyc)
  825                 goto done;
  826         state->nextcyc = t;
  827         if (t >= state->nextevent)
  828                 goto done;
  829         state->nextevent = t;
  830         if (!periodic)
  831                 loadtimer(now, 0);
  832 done:
  833         ET_HW_UNLOCK(state);
  834 }
  835 #endif
  836 
  837 void
  838 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
  839 {
  840         struct pcpu_state *state;
  841 
  842         /* Do not touch anything if somebody reconfiguring timers. */
  843         if (busy)
  844                 return;
  845         CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
  846             curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
  847             (int)(bt >> 32), (u_int)(bt & 0xffffffff));
  848         state = DPCPU_ID_PTR(cpu, timerstate);
  849         ET_HW_LOCK(state);
  850 
  851         /*
  852          * If there is callout time already set earlier -- do nothing.
  853          * This check may appear redundant because we check already in
  854          * callout_process() but this double check guarantees we're safe
  855          * with respect to race conditions between interrupts execution
  856          * and scheduling.
  857          */
  858         state->nextcallopt = bt_opt;
  859         if (bt >= state->nextcall)
  860                 goto done;
  861         state->nextcall = bt;
  862         /* If there is some other event set earlier -- do nothing. */
  863         if (bt >= state->nextevent)
  864                 goto done;
  865         state->nextevent = bt;
  866         /* If timer is periodic -- there is nothing to reprogram. */
  867         if (periodic)
  868                 goto done;
  869         /* If timer is global or of the current CPU -- reprogram it. */
  870         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
  871                 loadtimer(sbinuptime(), 0);
  872 done:
  873                 ET_HW_UNLOCK(state);
  874                 return;
  875         }
  876         /* Otherwise make other CPU to reprogram it. */
  877         state->handle = 1;
  878         ET_HW_UNLOCK(state);
  879 #ifdef SMP
  880         ipi_cpu(cpu, IPI_HARDCLOCK);
  881 #endif
  882 }
  883 
  884 /*
  885  * Report or change the active event timers hardware.
  886  */
  887 static int
  888 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
  889 {
  890         char buf[32];
  891         struct eventtimer *et;
  892         int error;
  893 
  894         ET_LOCK();
  895         et = timer;
  896         snprintf(buf, sizeof(buf), "%s", et->et_name);
  897         ET_UNLOCK();
  898         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  899         ET_LOCK();
  900         et = timer;
  901         if (error != 0 || req->newptr == NULL ||
  902             strcasecmp(buf, et->et_name) == 0) {
  903                 ET_UNLOCK();
  904                 return (error);
  905         }
  906         et = et_find(buf, 0, 0);
  907         if (et == NULL) {
  908                 ET_UNLOCK();
  909                 return (ENOENT);
  910         }
  911         configtimer(0);
  912         et_free(timer);
  913         if (et->et_flags & ET_FLAGS_C3STOP)
  914                 cpu_disable_deep_sleep++;
  915         if (timer->et_flags & ET_FLAGS_C3STOP)
  916                 cpu_disable_deep_sleep--;
  917         periodic = want_periodic;
  918         timer = et;
  919         et_init(timer, timercb, NULL, NULL);
  920         configtimer(1);
  921         ET_UNLOCK();
  922         return (error);
  923 }
  924 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
  925     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
  926     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
  927 
  928 /*
  929  * Report or change the active event timer periodicity.
  930  */
  931 static int
  932 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
  933 {
  934         int error, val;
  935 
  936         val = periodic;
  937         error = sysctl_handle_int(oidp, &val, 0, req);
  938         if (error != 0 || req->newptr == NULL)
  939                 return (error);
  940         ET_LOCK();
  941         configtimer(0);
  942         periodic = want_periodic = val;
  943         configtimer(1);
  944         ET_UNLOCK();
  945         return (error);
  946 }
  947 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
  948     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
  949     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");

Cache object: df11b6fab4b378a5deab922b573cdd00


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.