The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    6  * Copyright (c) 2009 Apple, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "opt_ktrace.h"
   35 #include "opt_kqueue.h"
   36 
   37 #ifdef COMPAT_FREEBSD11
   38 #define _WANT_FREEBSD11_KEVENT
   39 #endif
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/capsicum.h>
   44 #include <sys/kernel.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/proc.h>
   49 #include <sys/malloc.h>
   50 #include <sys/unistd.h>
   51 #include <sys/file.h>
   52 #include <sys/filedesc.h>
   53 #include <sys/filio.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/kthread.h>
   56 #include <sys/selinfo.h>
   57 #include <sys/queue.h>
   58 #include <sys/event.h>
   59 #include <sys/eventvar.h>
   60 #include <sys/poll.h>
   61 #include <sys/protosw.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/sigio.h>
   64 #include <sys/signalvar.h>
   65 #include <sys/socket.h>
   66 #include <sys/socketvar.h>
   67 #include <sys/stat.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/sysproto.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/uio.h>
   73 #include <sys/user.h>
   74 #ifdef KTRACE
   75 #include <sys/ktrace.h>
   76 #endif
   77 #include <machine/atomic.h>
   78 
   79 #include <vm/uma.h>
   80 
   81 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   82 
   83 /*
   84  * This lock is used if multiple kq locks are required.  This possibly
   85  * should be made into a per proc lock.
   86  */
   87 static struct mtx       kq_global;
   88 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   89 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   90         if (!haslck)                            \
   91                 mtx_lock(lck);                  \
   92         haslck = 1;                             \
   93 } while (0)
   94 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   95         if (haslck)                             \
   96                 mtx_unlock(lck);                        \
   97         haslck = 0;                             \
   98 } while (0)
   99 
  100 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
  101 
  102 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
  103 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
  104 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
  105                     struct thread *td, int mflag);
  106 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
  107 static void     kqueue_release(struct kqueue *kq, int locked);
  108 static void     kqueue_destroy(struct kqueue *kq);
  109 static void     kqueue_drain(struct kqueue *kq, struct thread *td);
  110 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  111                     uintptr_t ident, int mflag);
  112 static void     kqueue_task(void *arg, int pending);
  113 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  114                     struct kevent_copyops *k_ops,
  115                     const struct timespec *timeout,
  116                     struct kevent *keva, struct thread *td);
  117 static void     kqueue_wakeup(struct kqueue *kq);
  118 static struct filterops *kqueue_fo_find(int filt);
  119 static void     kqueue_fo_release(int filt);
  120 struct g_kevent_args;
  121 static int      kern_kevent_generic(struct thread *td,
  122                     struct g_kevent_args *uap,
  123                     struct kevent_copyops *k_ops, const char *struct_name);
  124 
  125 static fo_ioctl_t       kqueue_ioctl;
  126 static fo_poll_t        kqueue_poll;
  127 static fo_kqfilter_t    kqueue_kqfilter;
  128 static fo_stat_t        kqueue_stat;
  129 static fo_close_t       kqueue_close;
  130 static fo_fill_kinfo_t  kqueue_fill_kinfo;
  131 
  132 static struct fileops kqueueops = {
  133         .fo_read = invfo_rdwr,
  134         .fo_write = invfo_rdwr,
  135         .fo_truncate = invfo_truncate,
  136         .fo_ioctl = kqueue_ioctl,
  137         .fo_poll = kqueue_poll,
  138         .fo_kqfilter = kqueue_kqfilter,
  139         .fo_stat = kqueue_stat,
  140         .fo_close = kqueue_close,
  141         .fo_chmod = invfo_chmod,
  142         .fo_chown = invfo_chown,
  143         .fo_sendfile = invfo_sendfile,
  144         .fo_fill_kinfo = kqueue_fill_kinfo,
  145 };
  146 
  147 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  148 static void     knote_drop(struct knote *kn, struct thread *td);
  149 static void     knote_drop_detached(struct knote *kn, struct thread *td);
  150 static void     knote_enqueue(struct knote *kn);
  151 static void     knote_dequeue(struct knote *kn);
  152 static void     knote_init(void);
  153 static struct   knote *knote_alloc(int mflag);
  154 static void     knote_free(struct knote *kn);
  155 
  156 static void     filt_kqdetach(struct knote *kn);
  157 static int      filt_kqueue(struct knote *kn, long hint);
  158 static int      filt_procattach(struct knote *kn);
  159 static void     filt_procdetach(struct knote *kn);
  160 static int      filt_proc(struct knote *kn, long hint);
  161 static int      filt_fileattach(struct knote *kn);
  162 static void     filt_timerexpire(void *knx);
  163 static void     filt_timerexpire_l(struct knote *kn, bool proc_locked);
  164 static int      filt_timerattach(struct knote *kn);
  165 static void     filt_timerdetach(struct knote *kn);
  166 static void     filt_timerstart(struct knote *kn, sbintime_t to);
  167 static void     filt_timertouch(struct knote *kn, struct kevent *kev,
  168                     u_long type);
  169 static int      filt_timervalidate(struct knote *kn, sbintime_t *to);
  170 static int      filt_timer(struct knote *kn, long hint);
  171 static int      filt_userattach(struct knote *kn);
  172 static void     filt_userdetach(struct knote *kn);
  173 static int      filt_user(struct knote *kn, long hint);
  174 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  175                     u_long type);
  176 
  177 static struct filterops file_filtops = {
  178         .f_isfd = 1,
  179         .f_attach = filt_fileattach,
  180 };
  181 static struct filterops kqread_filtops = {
  182         .f_isfd = 1,
  183         .f_detach = filt_kqdetach,
  184         .f_event = filt_kqueue,
  185 };
  186 /* XXX - move to kern_proc.c?  */
  187 static struct filterops proc_filtops = {
  188         .f_isfd = 0,
  189         .f_attach = filt_procattach,
  190         .f_detach = filt_procdetach,
  191         .f_event = filt_proc,
  192 };
  193 static struct filterops timer_filtops = {
  194         .f_isfd = 0,
  195         .f_attach = filt_timerattach,
  196         .f_detach = filt_timerdetach,
  197         .f_event = filt_timer,
  198         .f_touch = filt_timertouch,
  199 };
  200 static struct filterops user_filtops = {
  201         .f_attach = filt_userattach,
  202         .f_detach = filt_userdetach,
  203         .f_event = filt_user,
  204         .f_touch = filt_usertouch,
  205 };
  206 
  207 static uma_zone_t       knote_zone;
  208 static unsigned int __exclusive_cache_line      kq_ncallouts;
  209 static unsigned int     kq_calloutmax = 4 * 1024;
  210 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  211     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  212 
  213 /* XXX - ensure not influx ? */
  214 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  215         if ((islock))                                                   \
  216                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  217         else                                                            \
  218                 KQ_LOCK((kn)->kn_kq);                                   \
  219         (kn)->kn_status |= KN_ACTIVE;                                   \
  220         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  221                 knote_enqueue((kn));                                    \
  222         if (!(islock))                                                  \
  223                 KQ_UNLOCK((kn)->kn_kq);                                 \
  224 } while (0)
  225 #define KQ_LOCK(kq) do {                                                \
  226         mtx_lock(&(kq)->kq_lock);                                       \
  227 } while (0)
  228 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  229         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  230                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  231                 wakeup((kq));                                           \
  232         }                                                               \
  233 } while (0)
  234 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  235         KQ_FLUX_WAKEUP(kq);                                             \
  236         mtx_unlock(&(kq)->kq_lock);                                     \
  237 } while (0)
  238 #define KQ_UNLOCK(kq) do {                                              \
  239         mtx_unlock(&(kq)->kq_lock);                                     \
  240 } while (0)
  241 #define KQ_OWNED(kq) do {                                               \
  242         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  243 } while (0)
  244 #define KQ_NOTOWNED(kq) do {                                            \
  245         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  246 } while (0)
  247 
  248 static struct knlist *
  249 kn_list_lock(struct knote *kn)
  250 {
  251         struct knlist *knl;
  252 
  253         knl = kn->kn_knlist;
  254         if (knl != NULL)
  255                 knl->kl_lock(knl->kl_lockarg);
  256         return (knl);
  257 }
  258 
  259 static void
  260 kn_list_unlock(struct knlist *knl)
  261 {
  262         bool do_free;
  263 
  264         if (knl == NULL)
  265                 return;
  266         do_free = knl->kl_autodestroy && knlist_empty(knl);
  267         knl->kl_unlock(knl->kl_lockarg);
  268         if (do_free) {
  269                 knlist_destroy(knl);
  270                 free(knl, M_KQUEUE);
  271         }
  272 }
  273 
  274 static bool
  275 kn_in_flux(struct knote *kn)
  276 {
  277 
  278         return (kn->kn_influx > 0);
  279 }
  280 
  281 static void
  282 kn_enter_flux(struct knote *kn)
  283 {
  284 
  285         KQ_OWNED(kn->kn_kq);
  286         MPASS(kn->kn_influx < INT_MAX);
  287         kn->kn_influx++;
  288 }
  289 
  290 static bool
  291 kn_leave_flux(struct knote *kn)
  292 {
  293 
  294         KQ_OWNED(kn->kn_kq);
  295         MPASS(kn->kn_influx > 0);
  296         kn->kn_influx--;
  297         return (kn->kn_influx == 0);
  298 }
  299 
  300 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  301         if (islocked)                                                   \
  302                 KNL_ASSERT_LOCKED(knl);                         \
  303         else                                                            \
  304                 KNL_ASSERT_UNLOCKED(knl);                               \
  305 } while (0)
  306 #ifdef INVARIANTS
  307 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  308         knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED);              \
  309 } while (0)
  310 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  311         knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED);            \
  312 } while (0)
  313 #else /* !INVARIANTS */
  314 #define KNL_ASSERT_LOCKED(knl) do {} while (0)
  315 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  316 #endif /* INVARIANTS */
  317 
  318 #ifndef KN_HASHSIZE
  319 #define KN_HASHSIZE             64              /* XXX should be tunable */
  320 #endif
  321 
  322 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  323 
  324 static int
  325 filt_nullattach(struct knote *kn)
  326 {
  327 
  328         return (ENXIO);
  329 };
  330 
  331 struct filterops null_filtops = {
  332         .f_isfd = 0,
  333         .f_attach = filt_nullattach,
  334 };
  335 
  336 /* XXX - make SYSINIT to add these, and move into respective modules. */
  337 extern struct filterops sig_filtops;
  338 extern struct filterops fs_filtops;
  339 
  340 /*
  341  * Table for all system-defined filters.
  342  */
  343 static struct mtx       filterops_lock;
  344 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  345         MTX_DEF);
  346 static struct {
  347         struct filterops *for_fop;
  348         int for_nolock;
  349         int for_refcnt;
  350 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  351         { &file_filtops, 1 },                   /* EVFILT_READ */
  352         { &file_filtops, 1 },                   /* EVFILT_WRITE */
  353         { &null_filtops },                      /* EVFILT_AIO */
  354         { &file_filtops, 1 },                   /* EVFILT_VNODE */
  355         { &proc_filtops, 1 },                   /* EVFILT_PROC */
  356         { &sig_filtops, 1 },                    /* EVFILT_SIGNAL */
  357         { &timer_filtops, 1 },                  /* EVFILT_TIMER */
  358         { &file_filtops, 1 },                   /* EVFILT_PROCDESC */
  359         { &fs_filtops, 1 },                     /* EVFILT_FS */
  360         { &null_filtops },                      /* EVFILT_LIO */
  361         { &user_filtops, 1 },                   /* EVFILT_USER */
  362         { &null_filtops },                      /* EVFILT_SENDFILE */
  363         { &file_filtops, 1 },                   /* EVFILT_EMPTY */
  364 };
  365 
  366 /*
  367  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  368  * method.
  369  */
  370 static int
  371 filt_fileattach(struct knote *kn)
  372 {
  373 
  374         return (fo_kqfilter(kn->kn_fp, kn));
  375 }
  376 
  377 /*ARGSUSED*/
  378 static int
  379 kqueue_kqfilter(struct file *fp, struct knote *kn)
  380 {
  381         struct kqueue *kq = kn->kn_fp->f_data;
  382 
  383         if (kn->kn_filter != EVFILT_READ)
  384                 return (EINVAL);
  385 
  386         kn->kn_status |= KN_KQUEUE;
  387         kn->kn_fop = &kqread_filtops;
  388         knlist_add(&kq->kq_sel.si_note, kn, 0);
  389 
  390         return (0);
  391 }
  392 
  393 static void
  394 filt_kqdetach(struct knote *kn)
  395 {
  396         struct kqueue *kq = kn->kn_fp->f_data;
  397 
  398         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  399 }
  400 
  401 /*ARGSUSED*/
  402 static int
  403 filt_kqueue(struct knote *kn, long hint)
  404 {
  405         struct kqueue *kq = kn->kn_fp->f_data;
  406 
  407         kn->kn_data = kq->kq_count;
  408         return (kn->kn_data > 0);
  409 }
  410 
  411 /* XXX - move to kern_proc.c?  */
  412 static int
  413 filt_procattach(struct knote *kn)
  414 {
  415         struct proc *p;
  416         int error;
  417         bool exiting, immediate;
  418 
  419         exiting = immediate = false;
  420         if (kn->kn_sfflags & NOTE_EXIT)
  421                 p = pfind_any(kn->kn_id);
  422         else
  423                 p = pfind(kn->kn_id);
  424         if (p == NULL)
  425                 return (ESRCH);
  426         if (p->p_flag & P_WEXIT)
  427                 exiting = true;
  428 
  429         if ((error = p_cansee(curthread, p))) {
  430                 PROC_UNLOCK(p);
  431                 return (error);
  432         }
  433 
  434         kn->kn_ptr.p_proc = p;
  435         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  436 
  437         /*
  438          * Internal flag indicating registration done by kernel for the
  439          * purposes of getting a NOTE_CHILD notification.
  440          */
  441         if (kn->kn_flags & EV_FLAG2) {
  442                 kn->kn_flags &= ~EV_FLAG2;
  443                 kn->kn_data = kn->kn_sdata;             /* ppid */
  444                 kn->kn_fflags = NOTE_CHILD;
  445                 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
  446                 immediate = true; /* Force immediate activation of child note. */
  447         }
  448         /*
  449          * Internal flag indicating registration done by kernel (for other than
  450          * NOTE_CHILD).
  451          */
  452         if (kn->kn_flags & EV_FLAG1) {
  453                 kn->kn_flags &= ~EV_FLAG1;
  454         }
  455 
  456         knlist_add(p->p_klist, kn, 1);
  457 
  458         /*
  459          * Immediately activate any child notes or, in the case of a zombie
  460          * target process, exit notes.  The latter is necessary to handle the
  461          * case where the target process, e.g. a child, dies before the kevent
  462          * is registered.
  463          */
  464         if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
  465                 KNOTE_ACTIVATE(kn, 0);
  466 
  467         PROC_UNLOCK(p);
  468 
  469         return (0);
  470 }
  471 
  472 /*
  473  * The knote may be attached to a different process, which may exit,
  474  * leaving nothing for the knote to be attached to.  So when the process
  475  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  476  * it will be deleted when read out.  However, as part of the knote deletion,
  477  * this routine is called, so a check is needed to avoid actually performing
  478  * a detach, because the original process does not exist any more.
  479  */
  480 /* XXX - move to kern_proc.c?  */
  481 static void
  482 filt_procdetach(struct knote *kn)
  483 {
  484 
  485         knlist_remove(kn->kn_knlist, kn, 0);
  486         kn->kn_ptr.p_proc = NULL;
  487 }
  488 
  489 /* XXX - move to kern_proc.c?  */
  490 static int
  491 filt_proc(struct knote *kn, long hint)
  492 {
  493         struct proc *p;
  494         u_int event;
  495 
  496         p = kn->kn_ptr.p_proc;
  497         if (p == NULL) /* already activated, from attach filter */
  498                 return (0);
  499 
  500         /* Mask off extra data. */
  501         event = (u_int)hint & NOTE_PCTRLMASK;
  502 
  503         /* If the user is interested in this event, record it. */
  504         if (kn->kn_sfflags & event)
  505                 kn->kn_fflags |= event;
  506 
  507         /* Process is gone, so flag the event as finished. */
  508         if (event == NOTE_EXIT) {
  509                 kn->kn_flags |= EV_EOF | EV_ONESHOT;
  510                 kn->kn_ptr.p_proc = NULL;
  511                 if (kn->kn_fflags & NOTE_EXIT)
  512                         kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
  513                 if (kn->kn_fflags == 0)
  514                         kn->kn_flags |= EV_DROP;
  515                 return (1);
  516         }
  517 
  518         return (kn->kn_fflags != 0);
  519 }
  520 
  521 /*
  522  * Called when the process forked. It mostly does the same as the
  523  * knote(), activating all knotes registered to be activated when the
  524  * process forked. Additionally, for each knote attached to the
  525  * parent, check whether user wants to track the new process. If so
  526  * attach a new knote to it, and immediately report an event with the
  527  * child's pid.
  528  */
  529 void
  530 knote_fork(struct knlist *list, int pid)
  531 {
  532         struct kqueue *kq;
  533         struct knote *kn;
  534         struct kevent kev;
  535         int error;
  536 
  537         MPASS(list != NULL);
  538         KNL_ASSERT_LOCKED(list);
  539         if (SLIST_EMPTY(&list->kl_list))
  540                 return;
  541 
  542         memset(&kev, 0, sizeof(kev));
  543         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  544                 kq = kn->kn_kq;
  545                 KQ_LOCK(kq);
  546                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
  547                         KQ_UNLOCK(kq);
  548                         continue;
  549                 }
  550 
  551                 /*
  552                  * The same as knote(), activate the event.
  553                  */
  554                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  555                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  556                                 KNOTE_ACTIVATE(kn, 1);
  557                         KQ_UNLOCK(kq);
  558                         continue;
  559                 }
  560 
  561                 /*
  562                  * The NOTE_TRACK case. In addition to the activation
  563                  * of the event, we need to register new events to
  564                  * track the child. Drop the locks in preparation for
  565                  * the call to kqueue_register().
  566                  */
  567                 kn_enter_flux(kn);
  568                 KQ_UNLOCK(kq);
  569                 list->kl_unlock(list->kl_lockarg);
  570 
  571                 /*
  572                  * Activate existing knote and register tracking knotes with
  573                  * new process.
  574                  *
  575                  * First register a knote to get just the child notice. This
  576                  * must be a separate note from a potential NOTE_EXIT
  577                  * notification since both NOTE_CHILD and NOTE_EXIT are defined
  578                  * to use the data field (in conflicting ways).
  579                  */
  580                 kev.ident = pid;
  581                 kev.filter = kn->kn_filter;
  582                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
  583                     EV_FLAG2;
  584                 kev.fflags = kn->kn_sfflags;
  585                 kev.data = kn->kn_id;           /* parent */
  586                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  587                 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
  588                 if (error)
  589                         kn->kn_fflags |= NOTE_TRACKERR;
  590 
  591                 /*
  592                  * Then register another knote to track other potential events
  593                  * from the new process.
  594                  */
  595                 kev.ident = pid;
  596                 kev.filter = kn->kn_filter;
  597                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  598                 kev.fflags = kn->kn_sfflags;
  599                 kev.data = kn->kn_id;           /* parent */
  600                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  601                 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
  602                 if (error)
  603                         kn->kn_fflags |= NOTE_TRACKERR;
  604                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  605                         KNOTE_ACTIVATE(kn, 0);
  606                 list->kl_lock(list->kl_lockarg);
  607                 KQ_LOCK(kq);
  608                 kn_leave_flux(kn);
  609                 KQ_UNLOCK_FLUX(kq);
  610         }
  611 }
  612 
  613 /*
  614  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  615  * interval timer support code.
  616  */
  617 
  618 #define NOTE_TIMER_PRECMASK                                             \
  619     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
  620 
  621 static sbintime_t
  622 timer2sbintime(int64_t data, int flags)
  623 {
  624         int64_t secs;
  625 
  626         /*
  627          * Macros for converting to the fractional second portion of an
  628          * sbintime_t using 64bit multiplication to improve precision.
  629          */
  630 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
  631 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
  632 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
  633         switch (flags & NOTE_TIMER_PRECMASK) {
  634         case NOTE_SECONDS:
  635 #ifdef __LP64__
  636                 if (data > (SBT_MAX / SBT_1S))
  637                         return (SBT_MAX);
  638 #endif
  639                 return ((sbintime_t)data << 32);
  640         case NOTE_MSECONDS: /* FALLTHROUGH */
  641         case 0:
  642                 if (data >= 1000) {
  643                         secs = data / 1000;
  644 #ifdef __LP64__
  645                         if (secs > (SBT_MAX / SBT_1S))
  646                                 return (SBT_MAX);
  647 #endif
  648                         return (secs << 32 | MS_TO_SBT(data % 1000));
  649                 }
  650                 return (MS_TO_SBT(data));
  651         case NOTE_USECONDS:
  652                 if (data >= 1000000) {
  653                         secs = data / 1000000;
  654 #ifdef __LP64__
  655                         if (secs > (SBT_MAX / SBT_1S))
  656                                 return (SBT_MAX);
  657 #endif
  658                         return (secs << 32 | US_TO_SBT(data % 1000000));
  659                 }
  660                 return (US_TO_SBT(data));
  661         case NOTE_NSECONDS:
  662                 if (data >= 1000000000) {
  663                         secs = data / 1000000000;
  664 #ifdef __LP64__
  665                         if (secs > (SBT_MAX / SBT_1S))
  666                                 return (SBT_MAX);
  667 #endif
  668                         return (secs << 32 | NS_TO_SBT(data % 1000000000));
  669                 }
  670                 return (NS_TO_SBT(data));
  671         default:
  672                 break;
  673         }
  674         return (-1);
  675 }
  676 
  677 struct kq_timer_cb_data {
  678         struct callout c;
  679         struct proc *p;
  680         struct knote *kn;
  681         int cpuid;
  682         int flags;
  683         TAILQ_ENTRY(kq_timer_cb_data) link;
  684         sbintime_t next;        /* next timer event fires at */
  685         sbintime_t to;          /* precalculated timer period, 0 for abs */
  686 };
  687 
  688 #define KQ_TIMER_CB_ENQUEUED    0x01
  689 
  690 static void
  691 kqtimer_sched_callout(struct kq_timer_cb_data *kc)
  692 {
  693         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kc->kn,
  694             kc->cpuid, C_ABSOLUTE);
  695 }
  696 
  697 void
  698 kqtimer_proc_continue(struct proc *p)
  699 {
  700         struct kq_timer_cb_data *kc, *kc1;
  701         struct bintime bt;
  702         sbintime_t now;
  703 
  704         PROC_LOCK_ASSERT(p, MA_OWNED);
  705 
  706         getboottimebin(&bt);
  707         now = bttosbt(bt);
  708 
  709         TAILQ_FOREACH_SAFE(kc, &p->p_kqtim_stop, link, kc1) {
  710                 TAILQ_REMOVE(&p->p_kqtim_stop, kc, link);
  711                 kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
  712                 if (kc->next <= now)
  713                         filt_timerexpire_l(kc->kn, true);
  714                 else
  715                         kqtimer_sched_callout(kc);
  716         }
  717 }
  718 
  719 static void
  720 filt_timerexpire_l(struct knote *kn, bool proc_locked)
  721 {
  722         struct kq_timer_cb_data *kc;
  723         struct proc *p;
  724         uint64_t delta;
  725         sbintime_t now;
  726 
  727         kc = kn->kn_ptr.p_v;
  728 
  729         if ((kn->kn_flags & EV_ONESHOT) != 0 || kc->to == 0) {
  730                 kn->kn_data++;
  731                 KNOTE_ACTIVATE(kn, 0);
  732                 return;
  733         }
  734 
  735         now = sbinuptime();
  736         if (now >= kc->next) {
  737                 delta = (now - kc->next) / kc->to;
  738                 if (delta == 0)
  739                         delta = 1;
  740                 kn->kn_data += delta;
  741                 kc->next += delta * kc->to;
  742                 if (now >= kc->next)    /* overflow */
  743                         kc->next = now + kc->to;
  744                 KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  745         }
  746 
  747         /*
  748          * Initial check for stopped kc->p is racy.  It is fine to
  749          * miss the set of the stop flags, at worst we would schedule
  750          * one more callout.  On the other hand, it is not fine to not
  751          * schedule when we we missed clearing of the flags, we
  752          * recheck them under the lock and observe consistent state.
  753          */
  754         p = kc->p;
  755         if (P_SHOULDSTOP(p) || P_KILLED(p)) {
  756                 if (!proc_locked)
  757                         PROC_LOCK(p);
  758                 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
  759                         if ((kc->flags & KQ_TIMER_CB_ENQUEUED) == 0) {
  760                                 kc->flags |= KQ_TIMER_CB_ENQUEUED;
  761                                 TAILQ_INSERT_TAIL(&p->p_kqtim_stop, kc, link);
  762                         }
  763                         if (!proc_locked)
  764                                 PROC_UNLOCK(p);
  765                         return;
  766                 }
  767                 if (!proc_locked)
  768                         PROC_UNLOCK(p);
  769         }
  770         kqtimer_sched_callout(kc);
  771 }
  772 
  773 static void
  774 filt_timerexpire(void *knx)
  775 {
  776         filt_timerexpire_l(knx, false);
  777 }
  778 
  779 /*
  780  * data contains amount of time to sleep
  781  */
  782 static int
  783 filt_timervalidate(struct knote *kn, sbintime_t *to)
  784 {
  785         struct bintime bt;
  786         sbintime_t sbt;
  787 
  788         if (kn->kn_sdata < 0)
  789                 return (EINVAL);
  790         if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  791                 kn->kn_sdata = 1;
  792         /*
  793          * The only fflags values supported are the timer unit
  794          * (precision) and the absolute time indicator.
  795          */
  796         if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
  797                 return (EINVAL);
  798 
  799         *to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  800         if (*to < 0)
  801                 return (EINVAL);
  802         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  803                 getboottimebin(&bt);
  804                 sbt = bttosbt(bt);
  805                 *to = MAX(0, *to - sbt);
  806         }
  807         return (0);
  808 }
  809 
  810 static int
  811 filt_timerattach(struct knote *kn)
  812 {
  813         struct kq_timer_cb_data *kc;
  814         sbintime_t to;
  815         int error;
  816 
  817         to = -1;
  818         error = filt_timervalidate(kn, &to);
  819         if (error != 0)
  820                 return (error);
  821         KASSERT(to > 0 || (kn->kn_flags & EV_ONESHOT) != 0 ||
  822             (kn->kn_sfflags & NOTE_ABSTIME) != 0,
  823             ("%s: periodic timer has a calculated zero timeout", __func__));
  824         KASSERT(to >= 0,
  825             ("%s: timer has a calculated negative timeout", __func__));
  826 
  827         if (atomic_fetchadd_int(&kq_ncallouts, 1) + 1 > kq_calloutmax) {
  828                 atomic_subtract_int(&kq_ncallouts, 1);
  829                 return (ENOMEM);
  830         }
  831 
  832         if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
  833                 kn->kn_flags |= EV_CLEAR;       /* automatically set */
  834         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  835         kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
  836         kc->kn = kn;
  837         kc->p = curproc;
  838         kc->cpuid = PCPU_GET(cpuid);
  839         kc->flags = 0;
  840         callout_init(&kc->c, 1);
  841         filt_timerstart(kn, to);
  842 
  843         return (0);
  844 }
  845 
  846 static void
  847 filt_timerstart(struct knote *kn, sbintime_t to)
  848 {
  849         struct kq_timer_cb_data *kc;
  850 
  851         kc = kn->kn_ptr.p_v;
  852         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  853                 kc->next = to;
  854                 kc->to = 0;
  855         } else {
  856                 kc->next = to + sbinuptime();
  857                 kc->to = to;
  858         }
  859         kqtimer_sched_callout(kc);
  860 }
  861 
  862 static void
  863 filt_timerdetach(struct knote *kn)
  864 {
  865         struct kq_timer_cb_data *kc;
  866         unsigned int old __unused;
  867         bool pending;
  868 
  869         kc = kn->kn_ptr.p_v;
  870         do {
  871                 callout_drain(&kc->c);
  872 
  873                 /*
  874                  * kqtimer_proc_continue() might have rescheduled this callout.
  875                  * Double-check, using the process mutex as an interlock.
  876                  */
  877                 PROC_LOCK(kc->p);
  878                 if ((kc->flags & KQ_TIMER_CB_ENQUEUED) != 0) {
  879                         kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
  880                         TAILQ_REMOVE(&kc->p->p_kqtim_stop, kc, link);
  881                 }
  882                 pending = callout_pending(&kc->c);
  883                 PROC_UNLOCK(kc->p);
  884         } while (pending);
  885         free(kc, M_KQUEUE);
  886         old = atomic_fetchadd_int(&kq_ncallouts, -1);
  887         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  888         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  889 }
  890 
  891 static void
  892 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
  893 {
  894         struct kq_timer_cb_data *kc;
  895         struct kqueue *kq;
  896         sbintime_t to;
  897         int error;
  898 
  899         switch (type) {
  900         case EVENT_REGISTER:
  901                 /* Handle re-added timers that update data/fflags */
  902                 if (kev->flags & EV_ADD) {
  903                         kc = kn->kn_ptr.p_v;
  904 
  905                         /* Drain any existing callout. */
  906                         callout_drain(&kc->c);
  907 
  908                         /* Throw away any existing undelivered record
  909                          * of the timer expiration. This is done under
  910                          * the presumption that if a process is
  911                          * re-adding this timer with new parameters,
  912                          * it is no longer interested in what may have
  913                          * happened under the old parameters. If it is
  914                          * interested, it can wait for the expiration,
  915                          * delete the old timer definition, and then
  916                          * add the new one.
  917                          *
  918                          * This has to be done while the kq is locked:
  919                          *   - if enqueued, dequeue
  920                          *   - make it no longer active
  921                          *   - clear the count of expiration events
  922                          */
  923                         kq = kn->kn_kq;
  924                         KQ_LOCK(kq);
  925                         if (kn->kn_status & KN_QUEUED)
  926                                 knote_dequeue(kn);
  927 
  928                         kn->kn_status &= ~KN_ACTIVE;
  929                         kn->kn_data = 0;
  930                         KQ_UNLOCK(kq);
  931 
  932                         /* Reschedule timer based on new data/fflags */
  933                         kn->kn_sfflags = kev->fflags;
  934                         kn->kn_sdata = kev->data;
  935                         error = filt_timervalidate(kn, &to);
  936                         if (error != 0) {
  937                                 kn->kn_flags |= EV_ERROR;
  938                                 kn->kn_data = error;
  939                         } else
  940                                 filt_timerstart(kn, to);
  941                 }
  942                 break;
  943 
  944         case EVENT_PROCESS:
  945                 *kev = kn->kn_kevent;
  946                 if (kn->kn_flags & EV_CLEAR) {
  947                         kn->kn_data = 0;
  948                         kn->kn_fflags = 0;
  949                 }
  950                 break;
  951 
  952         default:
  953                 panic("filt_timertouch() - invalid type (%ld)", type);
  954                 break;
  955         }
  956 }
  957 
  958 static int
  959 filt_timer(struct knote *kn, long hint)
  960 {
  961 
  962         return (kn->kn_data != 0);
  963 }
  964 
  965 static int
  966 filt_userattach(struct knote *kn)
  967 {
  968 
  969         /*
  970          * EVFILT_USER knotes are not attached to anything in the kernel.
  971          */
  972         kn->kn_hook = NULL;
  973         if (kn->kn_fflags & NOTE_TRIGGER)
  974                 kn->kn_hookid = 1;
  975         else
  976                 kn->kn_hookid = 0;
  977         return (0);
  978 }
  979 
  980 static void
  981 filt_userdetach(__unused struct knote *kn)
  982 {
  983 
  984         /*
  985          * EVFILT_USER knotes are not attached to anything in the kernel.
  986          */
  987 }
  988 
  989 static int
  990 filt_user(struct knote *kn, __unused long hint)
  991 {
  992 
  993         return (kn->kn_hookid);
  994 }
  995 
  996 static void
  997 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  998 {
  999         u_int ffctrl;
 1000 
 1001         switch (type) {
 1002         case EVENT_REGISTER:
 1003                 if (kev->fflags & NOTE_TRIGGER)
 1004                         kn->kn_hookid = 1;
 1005 
 1006                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
 1007                 kev->fflags &= NOTE_FFLAGSMASK;
 1008                 switch (ffctrl) {
 1009                 case NOTE_FFNOP:
 1010                         break;
 1011 
 1012                 case NOTE_FFAND:
 1013                         kn->kn_sfflags &= kev->fflags;
 1014                         break;
 1015 
 1016                 case NOTE_FFOR:
 1017                         kn->kn_sfflags |= kev->fflags;
 1018                         break;
 1019 
 1020                 case NOTE_FFCOPY:
 1021                         kn->kn_sfflags = kev->fflags;
 1022                         break;
 1023 
 1024                 default:
 1025                         /* XXX Return error? */
 1026                         break;
 1027                 }
 1028                 kn->kn_sdata = kev->data;
 1029                 if (kev->flags & EV_CLEAR) {
 1030                         kn->kn_hookid = 0;
 1031                         kn->kn_data = 0;
 1032                         kn->kn_fflags = 0;
 1033                 }
 1034                 break;
 1035 
 1036         case EVENT_PROCESS:
 1037                 *kev = kn->kn_kevent;
 1038                 kev->fflags = kn->kn_sfflags;
 1039                 kev->data = kn->kn_sdata;
 1040                 if (kn->kn_flags & EV_CLEAR) {
 1041                         kn->kn_hookid = 0;
 1042                         kn->kn_data = 0;
 1043                         kn->kn_fflags = 0;
 1044                 }
 1045                 break;
 1046 
 1047         default:
 1048                 panic("filt_usertouch() - invalid type (%ld)", type);
 1049                 break;
 1050         }
 1051 }
 1052 
 1053 int
 1054 sys_kqueue(struct thread *td, struct kqueue_args *uap)
 1055 {
 1056 
 1057         return (kern_kqueue(td, 0, NULL));
 1058 }
 1059 
 1060 static void
 1061 kqueue_init(struct kqueue *kq)
 1062 {
 1063 
 1064         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
 1065         TAILQ_INIT(&kq->kq_head);
 1066         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
 1067         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
 1068 }
 1069 
 1070 int
 1071 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
 1072 {
 1073         struct filedesc *fdp;
 1074         struct kqueue *kq;
 1075         struct file *fp;
 1076         struct ucred *cred;
 1077         int fd, error;
 1078 
 1079         fdp = td->td_proc->p_fd;
 1080         cred = td->td_ucred;
 1081         if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
 1082                 return (ENOMEM);
 1083 
 1084         error = falloc_caps(td, &fp, &fd, flags, fcaps);
 1085         if (error != 0) {
 1086                 chgkqcnt(cred->cr_ruidinfo, -1, 0);
 1087                 return (error);
 1088         }
 1089 
 1090         /* An extra reference on `fp' has been held for us by falloc(). */
 1091         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
 1092         kqueue_init(kq);
 1093         kq->kq_fdp = fdp;
 1094         kq->kq_cred = crhold(cred);
 1095 
 1096         FILEDESC_XLOCK(fdp);
 1097         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
 1098         FILEDESC_XUNLOCK(fdp);
 1099 
 1100         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
 1101         fdrop(fp, td);
 1102 
 1103         td->td_retval[0] = fd;
 1104         return (0);
 1105 }
 1106 
 1107 struct g_kevent_args {
 1108         int     fd;
 1109         const void *changelist;
 1110         int     nchanges;
 1111         void    *eventlist;
 1112         int     nevents;
 1113         const struct timespec *timeout;
 1114 };
 1115 
 1116 int
 1117 sys_kevent(struct thread *td, struct kevent_args *uap)
 1118 {
 1119         struct kevent_copyops k_ops = {
 1120                 .arg = uap,
 1121                 .k_copyout = kevent_copyout,
 1122                 .k_copyin = kevent_copyin,
 1123                 .kevent_size = sizeof(struct kevent),
 1124         };
 1125         struct g_kevent_args gk_args = {
 1126                 .fd = uap->fd,
 1127                 .changelist = uap->changelist,
 1128                 .nchanges = uap->nchanges,
 1129                 .eventlist = uap->eventlist,
 1130                 .nevents = uap->nevents,
 1131                 .timeout = uap->timeout,
 1132         };
 1133 
 1134         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
 1135 }
 1136 
 1137 static int
 1138 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
 1139     struct kevent_copyops *k_ops, const char *struct_name)
 1140 {
 1141         struct timespec ts, *tsp;
 1142 #ifdef KTRACE
 1143         struct kevent *eventlist = uap->eventlist;
 1144 #endif
 1145         int error;
 1146 
 1147         if (uap->timeout != NULL) {
 1148                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1149                 if (error)
 1150                         return (error);
 1151                 tsp = &ts;
 1152         } else
 1153                 tsp = NULL;
 1154 
 1155 #ifdef KTRACE
 1156         if (KTRPOINT(td, KTR_STRUCT_ARRAY))
 1157                 ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
 1158                     uap->nchanges, k_ops->kevent_size);
 1159 #endif
 1160 
 1161         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
 1162             k_ops, tsp);
 1163 
 1164 #ifdef KTRACE
 1165         if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
 1166                 ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
 1167                     td->td_retval[0], k_ops->kevent_size);
 1168 #endif
 1169 
 1170         return (error);
 1171 }
 1172 
 1173 /*
 1174  * Copy 'count' items into the destination list pointed to by uap->eventlist.
 1175  */
 1176 static int
 1177 kevent_copyout(void *arg, struct kevent *kevp, int count)
 1178 {
 1179         struct kevent_args *uap;
 1180         int error;
 1181 
 1182         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1183         uap = (struct kevent_args *)arg;
 1184 
 1185         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
 1186         if (error == 0)
 1187                 uap->eventlist += count;
 1188         return (error);
 1189 }
 1190 
 1191 /*
 1192  * Copy 'count' items from the list pointed to by uap->changelist.
 1193  */
 1194 static int
 1195 kevent_copyin(void *arg, struct kevent *kevp, int count)
 1196 {
 1197         struct kevent_args *uap;
 1198         int error;
 1199 
 1200         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1201         uap = (struct kevent_args *)arg;
 1202 
 1203         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
 1204         if (error == 0)
 1205                 uap->changelist += count;
 1206         return (error);
 1207 }
 1208 
 1209 #ifdef COMPAT_FREEBSD11
 1210 static int
 1211 kevent11_copyout(void *arg, struct kevent *kevp, int count)
 1212 {
 1213         struct freebsd11_kevent_args *uap;
 1214         struct freebsd11_kevent kev11;
 1215         int error, i;
 1216 
 1217         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1218         uap = (struct freebsd11_kevent_args *)arg;
 1219 
 1220         for (i = 0; i < count; i++) {
 1221                 kev11.ident = kevp->ident;
 1222                 kev11.filter = kevp->filter;
 1223                 kev11.flags = kevp->flags;
 1224                 kev11.fflags = kevp->fflags;
 1225                 kev11.data = kevp->data;
 1226                 kev11.udata = kevp->udata;
 1227                 error = copyout(&kev11, uap->eventlist, sizeof(kev11));
 1228                 if (error != 0)
 1229                         break;
 1230                 uap->eventlist++;
 1231                 kevp++;
 1232         }
 1233         return (error);
 1234 }
 1235 
 1236 /*
 1237  * Copy 'count' items from the list pointed to by uap->changelist.
 1238  */
 1239 static int
 1240 kevent11_copyin(void *arg, struct kevent *kevp, int count)
 1241 {
 1242         struct freebsd11_kevent_args *uap;
 1243         struct freebsd11_kevent kev11;
 1244         int error, i;
 1245 
 1246         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1247         uap = (struct freebsd11_kevent_args *)arg;
 1248 
 1249         for (i = 0; i < count; i++) {
 1250                 error = copyin(uap->changelist, &kev11, sizeof(kev11));
 1251                 if (error != 0)
 1252                         break;
 1253                 kevp->ident = kev11.ident;
 1254                 kevp->filter = kev11.filter;
 1255                 kevp->flags = kev11.flags;
 1256                 kevp->fflags = kev11.fflags;
 1257                 kevp->data = (uintptr_t)kev11.data;
 1258                 kevp->udata = kev11.udata;
 1259                 bzero(&kevp->ext, sizeof(kevp->ext));
 1260                 uap->changelist++;
 1261                 kevp++;
 1262         }
 1263         return (error);
 1264 }
 1265 
 1266 int
 1267 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
 1268 {
 1269         struct kevent_copyops k_ops = {
 1270                 .arg = uap,
 1271                 .k_copyout = kevent11_copyout,
 1272                 .k_copyin = kevent11_copyin,
 1273                 .kevent_size = sizeof(struct freebsd11_kevent),
 1274         };
 1275         struct g_kevent_args gk_args = {
 1276                 .fd = uap->fd,
 1277                 .changelist = uap->changelist,
 1278                 .nchanges = uap->nchanges,
 1279                 .eventlist = uap->eventlist,
 1280                 .nevents = uap->nevents,
 1281                 .timeout = uap->timeout,
 1282         };
 1283 
 1284         return (kern_kevent_generic(td, &gk_args, &k_ops, "freebsd11_kevent"));
 1285 }
 1286 #endif
 1287 
 1288 int
 1289 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
 1290     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1291 {
 1292         cap_rights_t rights;
 1293         struct file *fp;
 1294         int error;
 1295 
 1296         cap_rights_init_zero(&rights);
 1297         if (nchanges > 0)
 1298                 cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
 1299         if (nevents > 0)
 1300                 cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
 1301         error = fget(td, fd, &rights, &fp);
 1302         if (error != 0)
 1303                 return (error);
 1304 
 1305         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
 1306         fdrop(fp, td);
 1307 
 1308         return (error);
 1309 }
 1310 
 1311 static int
 1312 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
 1313     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1314 {
 1315         struct kevent keva[KQ_NEVENTS];
 1316         struct kevent *kevp, *changes;
 1317         int i, n, nerrors, error;
 1318 
 1319         if (nchanges < 0)
 1320                 return (EINVAL);
 1321 
 1322         nerrors = 0;
 1323         while (nchanges > 0) {
 1324                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
 1325                 error = k_ops->k_copyin(k_ops->arg, keva, n);
 1326                 if (error)
 1327                         return (error);
 1328                 changes = keva;
 1329                 for (i = 0; i < n; i++) {
 1330                         kevp = &changes[i];
 1331                         if (!kevp->filter)
 1332                                 continue;
 1333                         kevp->flags &= ~EV_SYSFLAGS;
 1334                         error = kqueue_register(kq, kevp, td, M_WAITOK);
 1335                         if (error || (kevp->flags & EV_RECEIPT)) {
 1336                                 if (nevents == 0)
 1337                                         return (error);
 1338                                 kevp->flags = EV_ERROR;
 1339                                 kevp->data = error;
 1340                                 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
 1341                                 nevents--;
 1342                                 nerrors++;
 1343                         }
 1344                 }
 1345                 nchanges -= n;
 1346         }
 1347         if (nerrors) {
 1348                 td->td_retval[0] = nerrors;
 1349                 return (0);
 1350         }
 1351 
 1352         return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
 1353 }
 1354 
 1355 int
 1356 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
 1357     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1358 {
 1359         struct kqueue *kq;
 1360         int error;
 1361 
 1362         error = kqueue_acquire(fp, &kq);
 1363         if (error != 0)
 1364                 return (error);
 1365         error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
 1366         kqueue_release(kq, 0);
 1367         return (error);
 1368 }
 1369 
 1370 /*
 1371  * Performs a kevent() call on a temporarily created kqueue. This can be
 1372  * used to perform one-shot polling, similar to poll() and select().
 1373  */
 1374 int
 1375 kern_kevent_anonymous(struct thread *td, int nevents,
 1376     struct kevent_copyops *k_ops)
 1377 {
 1378         struct kqueue kq = {};
 1379         int error;
 1380 
 1381         kqueue_init(&kq);
 1382         kq.kq_refcnt = 1;
 1383         error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
 1384         kqueue_drain(&kq, td);
 1385         kqueue_destroy(&kq);
 1386         return (error);
 1387 }
 1388 
 1389 int
 1390 kqueue_add_filteropts(int filt, struct filterops *filtops)
 1391 {
 1392         int error;
 1393 
 1394         error = 0;
 1395         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
 1396                 printf(
 1397 "trying to add a filterop that is out of range: %d is beyond %d\n",
 1398                     ~filt, EVFILT_SYSCOUNT);
 1399                 return EINVAL;
 1400         }
 1401         mtx_lock(&filterops_lock);
 1402         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
 1403             sysfilt_ops[~filt].for_fop != NULL)
 1404                 error = EEXIST;
 1405         else {
 1406                 sysfilt_ops[~filt].for_fop = filtops;
 1407                 sysfilt_ops[~filt].for_refcnt = 0;
 1408         }
 1409         mtx_unlock(&filterops_lock);
 1410 
 1411         return (error);
 1412 }
 1413 
 1414 int
 1415 kqueue_del_filteropts(int filt)
 1416 {
 1417         int error;
 1418 
 1419         error = 0;
 1420         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1421                 return EINVAL;
 1422 
 1423         mtx_lock(&filterops_lock);
 1424         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
 1425             sysfilt_ops[~filt].for_fop == NULL)
 1426                 error = EINVAL;
 1427         else if (sysfilt_ops[~filt].for_refcnt != 0)
 1428                 error = EBUSY;
 1429         else {
 1430                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1431                 sysfilt_ops[~filt].for_refcnt = 0;
 1432         }
 1433         mtx_unlock(&filterops_lock);
 1434 
 1435         return error;
 1436 }
 1437 
 1438 static struct filterops *
 1439 kqueue_fo_find(int filt)
 1440 {
 1441 
 1442         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1443                 return NULL;
 1444 
 1445         if (sysfilt_ops[~filt].for_nolock)
 1446                 return sysfilt_ops[~filt].for_fop;
 1447 
 1448         mtx_lock(&filterops_lock);
 1449         sysfilt_ops[~filt].for_refcnt++;
 1450         if (sysfilt_ops[~filt].for_fop == NULL)
 1451                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1452         mtx_unlock(&filterops_lock);
 1453 
 1454         return sysfilt_ops[~filt].for_fop;
 1455 }
 1456 
 1457 static void
 1458 kqueue_fo_release(int filt)
 1459 {
 1460 
 1461         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1462                 return;
 1463 
 1464         if (sysfilt_ops[~filt].for_nolock)
 1465                 return;
 1466 
 1467         mtx_lock(&filterops_lock);
 1468         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1469             ("filter object refcount not valid on release"));
 1470         sysfilt_ops[~filt].for_refcnt--;
 1471         mtx_unlock(&filterops_lock);
 1472 }
 1473 
 1474 /*
 1475  * A ref to kq (obtained via kqueue_acquire) must be held.
 1476  */
 1477 static int
 1478 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
 1479     int mflag)
 1480 {
 1481         struct filterops *fops;
 1482         struct file *fp;
 1483         struct knote *kn, *tkn;
 1484         struct knlist *knl;
 1485         int error, filt, event;
 1486         int haskqglobal, filedesc_unlock;
 1487 
 1488         if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
 1489                 return (EINVAL);
 1490 
 1491         fp = NULL;
 1492         kn = NULL;
 1493         knl = NULL;
 1494         error = 0;
 1495         haskqglobal = 0;
 1496         filedesc_unlock = 0;
 1497 
 1498         filt = kev->filter;
 1499         fops = kqueue_fo_find(filt);
 1500         if (fops == NULL)
 1501                 return EINVAL;
 1502 
 1503         if (kev->flags & EV_ADD) {
 1504                 /* Reject an invalid flag pair early */
 1505                 if (kev->flags & EV_KEEPUDATA) {
 1506                         tkn = NULL;
 1507                         error = EINVAL;
 1508                         goto done;
 1509                 }
 1510 
 1511                 /*
 1512                  * Prevent waiting with locks.  Non-sleepable
 1513                  * allocation failures are handled in the loop, only
 1514                  * if the spare knote appears to be actually required.
 1515                  */
 1516                 tkn = knote_alloc(mflag);
 1517         } else {
 1518                 tkn = NULL;
 1519         }
 1520 
 1521 findkn:
 1522         if (fops->f_isfd) {
 1523                 KASSERT(td != NULL, ("td is NULL"));
 1524                 if (kev->ident > INT_MAX)
 1525                         error = EBADF;
 1526                 else
 1527                         error = fget(td, kev->ident, &cap_event_rights, &fp);
 1528                 if (error)
 1529                         goto done;
 1530 
 1531                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1532                     kev->ident, M_NOWAIT) != 0) {
 1533                         /* try again */
 1534                         fdrop(fp, td);
 1535                         fp = NULL;
 1536                         error = kqueue_expand(kq, fops, kev->ident, mflag);
 1537                         if (error)
 1538                                 goto done;
 1539                         goto findkn;
 1540                 }
 1541 
 1542                 if (fp->f_type == DTYPE_KQUEUE) {
 1543                         /*
 1544                          * If we add some intelligence about what we are doing,
 1545                          * we should be able to support events on ourselves.
 1546                          * We need to know when we are doing this to prevent
 1547                          * getting both the knlist lock and the kq lock since
 1548                          * they are the same thing.
 1549                          */
 1550                         if (fp->f_data == kq) {
 1551                                 error = EINVAL;
 1552                                 goto done;
 1553                         }
 1554 
 1555                         /*
 1556                          * Pre-lock the filedesc before the global
 1557                          * lock mutex, see the comment in
 1558                          * kqueue_close().
 1559                          */
 1560                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1561                         filedesc_unlock = 1;
 1562                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1563                 }
 1564 
 1565                 KQ_LOCK(kq);
 1566                 if (kev->ident < kq->kq_knlistsize) {
 1567                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1568                                 if (kev->filter == kn->kn_filter)
 1569                                         break;
 1570                 }
 1571         } else {
 1572                 if ((kev->flags & EV_ADD) == EV_ADD) {
 1573                         error = kqueue_expand(kq, fops, kev->ident, mflag);
 1574                         if (error != 0)
 1575                                 goto done;
 1576                 }
 1577 
 1578                 KQ_LOCK(kq);
 1579 
 1580                 /*
 1581                  * If possible, find an existing knote to use for this kevent.
 1582                  */
 1583                 if (kev->filter == EVFILT_PROC &&
 1584                     (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
 1585                         /* This is an internal creation of a process tracking
 1586                          * note. Don't attempt to coalesce this with an
 1587                          * existing note.
 1588                          */
 1589                         ;
 1590                 } else if (kq->kq_knhashmask != 0) {
 1591                         struct klist *list;
 1592 
 1593                         list = &kq->kq_knhash[
 1594                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1595                         SLIST_FOREACH(kn, list, kn_link)
 1596                                 if (kev->ident == kn->kn_id &&
 1597                                     kev->filter == kn->kn_filter)
 1598                                         break;
 1599                 }
 1600         }
 1601 
 1602         /* knote is in the process of changing, wait for it to stabilize. */
 1603         if (kn != NULL && kn_in_flux(kn)) {
 1604                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1605                 if (filedesc_unlock) {
 1606                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1607                         filedesc_unlock = 0;
 1608                 }
 1609                 kq->kq_state |= KQ_FLUXWAIT;
 1610                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1611                 if (fp != NULL) {
 1612                         fdrop(fp, td);
 1613                         fp = NULL;
 1614                 }
 1615                 goto findkn;
 1616         }
 1617 
 1618         /*
 1619          * kn now contains the matching knote, or NULL if no match
 1620          */
 1621         if (kn == NULL) {
 1622                 if (kev->flags & EV_ADD) {
 1623                         kn = tkn;
 1624                         tkn = NULL;
 1625                         if (kn == NULL) {
 1626                                 KQ_UNLOCK(kq);
 1627                                 error = ENOMEM;
 1628                                 goto done;
 1629                         }
 1630                         kn->kn_fp = fp;
 1631                         kn->kn_kq = kq;
 1632                         kn->kn_fop = fops;
 1633                         /*
 1634                          * apply reference counts to knote structure, and
 1635                          * do not release it at the end of this routine.
 1636                          */
 1637                         fops = NULL;
 1638                         fp = NULL;
 1639 
 1640                         kn->kn_sfflags = kev->fflags;
 1641                         kn->kn_sdata = kev->data;
 1642                         kev->fflags = 0;
 1643                         kev->data = 0;
 1644                         kn->kn_kevent = *kev;
 1645                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1646                             EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
 1647                         kn->kn_status = KN_DETACHED;
 1648                         if ((kev->flags & EV_DISABLE) != 0)
 1649                                 kn->kn_status |= KN_DISABLED;
 1650                         kn_enter_flux(kn);
 1651 
 1652                         error = knote_attach(kn, kq);
 1653                         KQ_UNLOCK(kq);
 1654                         if (error != 0) {
 1655                                 tkn = kn;
 1656                                 goto done;
 1657                         }
 1658 
 1659                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1660                                 knote_drop_detached(kn, td);
 1661                                 goto done;
 1662                         }
 1663                         knl = kn_list_lock(kn);
 1664                         goto done_ev_add;
 1665                 } else {
 1666                         /* No matching knote and the EV_ADD flag is not set. */
 1667                         KQ_UNLOCK(kq);
 1668                         error = ENOENT;
 1669                         goto done;
 1670                 }
 1671         }
 1672 
 1673         if (kev->flags & EV_DELETE) {
 1674                 kn_enter_flux(kn);
 1675                 KQ_UNLOCK(kq);
 1676                 knote_drop(kn, td);
 1677                 goto done;
 1678         }
 1679 
 1680         if (kev->flags & EV_FORCEONESHOT) {
 1681                 kn->kn_flags |= EV_ONESHOT;
 1682                 KNOTE_ACTIVATE(kn, 1);
 1683         }
 1684 
 1685         if ((kev->flags & EV_ENABLE) != 0)
 1686                 kn->kn_status &= ~KN_DISABLED;
 1687         else if ((kev->flags & EV_DISABLE) != 0)
 1688                 kn->kn_status |= KN_DISABLED;
 1689 
 1690         /*
 1691          * The user may change some filter values after the initial EV_ADD,
 1692          * but doing so will not reset any filter which has already been
 1693          * triggered.
 1694          */
 1695         kn->kn_status |= KN_SCAN;
 1696         kn_enter_flux(kn);
 1697         KQ_UNLOCK(kq);
 1698         knl = kn_list_lock(kn);
 1699         if ((kev->flags & EV_KEEPUDATA) == 0)
 1700                 kn->kn_kevent.udata = kev->udata;
 1701         if (!fops->f_isfd && fops->f_touch != NULL) {
 1702                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1703         } else {
 1704                 kn->kn_sfflags = kev->fflags;
 1705                 kn->kn_sdata = kev->data;
 1706         }
 1707 
 1708 done_ev_add:
 1709         /*
 1710          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1711          * the initial attach event decides that the event is "completed"
 1712          * already, e.g., filt_procattach() is called on a zombie process.  It
 1713          * will call filt_proc() which will remove it from the list, and NULL
 1714          * kn_knlist.
 1715          *
 1716          * KN_DISABLED will be stable while the knote is in flux, so the
 1717          * unlocked read will not race with an update.
 1718          */
 1719         if ((kn->kn_status & KN_DISABLED) == 0)
 1720                 event = kn->kn_fop->f_event(kn, 0);
 1721         else
 1722                 event = 0;
 1723 
 1724         KQ_LOCK(kq);
 1725         if (event)
 1726                 kn->kn_status |= KN_ACTIVE;
 1727         if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
 1728             KN_ACTIVE)
 1729                 knote_enqueue(kn);
 1730         kn->kn_status &= ~KN_SCAN;
 1731         kn_leave_flux(kn);
 1732         kn_list_unlock(knl);
 1733         KQ_UNLOCK_FLUX(kq);
 1734 
 1735 done:
 1736         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1737         if (filedesc_unlock)
 1738                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1739         if (fp != NULL)
 1740                 fdrop(fp, td);
 1741         knote_free(tkn);
 1742         if (fops != NULL)
 1743                 kqueue_fo_release(filt);
 1744         return (error);
 1745 }
 1746 
 1747 static int
 1748 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1749 {
 1750         int error;
 1751         struct kqueue *kq;
 1752 
 1753         error = 0;
 1754 
 1755         kq = fp->f_data;
 1756         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1757                 return (EBADF);
 1758         *kqp = kq;
 1759         KQ_LOCK(kq);
 1760         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1761                 KQ_UNLOCK(kq);
 1762                 return (EBADF);
 1763         }
 1764         kq->kq_refcnt++;
 1765         KQ_UNLOCK(kq);
 1766 
 1767         return error;
 1768 }
 1769 
 1770 static void
 1771 kqueue_release(struct kqueue *kq, int locked)
 1772 {
 1773         if (locked)
 1774                 KQ_OWNED(kq);
 1775         else
 1776                 KQ_LOCK(kq);
 1777         kq->kq_refcnt--;
 1778         if (kq->kq_refcnt == 1)
 1779                 wakeup(&kq->kq_refcnt);
 1780         if (!locked)
 1781                 KQ_UNLOCK(kq);
 1782 }
 1783 
 1784 static void
 1785 ast_kqueue(struct thread *td, int tda __unused)
 1786 {
 1787         taskqueue_quiesce(taskqueue_kqueue_ctx);
 1788 }
 1789 
 1790 static void
 1791 kqueue_schedtask(struct kqueue *kq)
 1792 {
 1793         KQ_OWNED(kq);
 1794         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1795             ("scheduling kqueue task while draining"));
 1796 
 1797         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1798                 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
 1799                 kq->kq_state |= KQ_TASKSCHED;
 1800                 ast_sched(curthread, TDA_KQUEUE);
 1801         }
 1802 }
 1803 
 1804 /*
 1805  * Expand the kq to make sure we have storage for fops/ident pair.
 1806  *
 1807  * Return 0 on success (or no work necessary), return errno on failure.
 1808  */
 1809 static int
 1810 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1811     int mflag)
 1812 {
 1813         struct klist *list, *tmp_knhash, *to_free;
 1814         u_long tmp_knhashmask;
 1815         int error, fd, size;
 1816 
 1817         KQ_NOTOWNED(kq);
 1818 
 1819         error = 0;
 1820         to_free = NULL;
 1821         if (fops->f_isfd) {
 1822                 fd = ident;
 1823                 if (kq->kq_knlistsize <= fd) {
 1824                         size = kq->kq_knlistsize;
 1825                         while (size <= fd)
 1826                                 size += KQEXTENT;
 1827                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1828                         if (list == NULL)
 1829                                 return ENOMEM;
 1830                         KQ_LOCK(kq);
 1831                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1832                                 to_free = list;
 1833                                 error = EBADF;
 1834                         } else if (kq->kq_knlistsize > fd) {
 1835                                 to_free = list;
 1836                         } else {
 1837                                 if (kq->kq_knlist != NULL) {
 1838                                         bcopy(kq->kq_knlist, list,
 1839                                             kq->kq_knlistsize * sizeof(*list));
 1840                                         to_free = kq->kq_knlist;
 1841                                         kq->kq_knlist = NULL;
 1842                                 }
 1843                                 bzero((caddr_t)list +
 1844                                     kq->kq_knlistsize * sizeof(*list),
 1845                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1846                                 kq->kq_knlistsize = size;
 1847                                 kq->kq_knlist = list;
 1848                         }
 1849                         KQ_UNLOCK(kq);
 1850                 }
 1851         } else {
 1852                 if (kq->kq_knhashmask == 0) {
 1853                         tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
 1854                             &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
 1855                             HASH_WAITOK : HASH_NOWAIT);
 1856                         if (tmp_knhash == NULL)
 1857                                 return (ENOMEM);
 1858                         KQ_LOCK(kq);
 1859                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1860                                 to_free = tmp_knhash;
 1861                                 error = EBADF;
 1862                         } else if (kq->kq_knhashmask == 0) {
 1863                                 kq->kq_knhash = tmp_knhash;
 1864                                 kq->kq_knhashmask = tmp_knhashmask;
 1865                         } else {
 1866                                 to_free = tmp_knhash;
 1867                         }
 1868                         KQ_UNLOCK(kq);
 1869                 }
 1870         }
 1871         free(to_free, M_KQUEUE);
 1872 
 1873         KQ_NOTOWNED(kq);
 1874         return (error);
 1875 }
 1876 
 1877 static void
 1878 kqueue_task(void *arg, int pending)
 1879 {
 1880         struct kqueue *kq;
 1881         int haskqglobal;
 1882 
 1883         haskqglobal = 0;
 1884         kq = arg;
 1885 
 1886         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1887         KQ_LOCK(kq);
 1888 
 1889         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1890 
 1891         kq->kq_state &= ~KQ_TASKSCHED;
 1892         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1893                 wakeup(&kq->kq_state);
 1894         }
 1895         KQ_UNLOCK(kq);
 1896         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1897 }
 1898 
 1899 /*
 1900  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1901  * We treat KN_MARKER knotes as if they are in flux.
 1902  */
 1903 static int
 1904 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1905     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1906 {
 1907         struct kevent *kevp;
 1908         struct knote *kn, *marker;
 1909         struct knlist *knl;
 1910         sbintime_t asbt, rsbt;
 1911         int count, error, haskqglobal, influx, nkev, touch;
 1912 
 1913         count = maxevents;
 1914         nkev = 0;
 1915         error = 0;
 1916         haskqglobal = 0;
 1917 
 1918         if (maxevents == 0)
 1919                 goto done_nl;
 1920         if (maxevents < 0) {
 1921                 error = EINVAL;
 1922                 goto done_nl;
 1923         }
 1924 
 1925         rsbt = 0;
 1926         if (tsp != NULL) {
 1927                 if (!timespecvalid_interval(tsp)) {
 1928                         error = EINVAL;
 1929                         goto done_nl;
 1930                 }
 1931                 if (timespecisset(tsp)) {
 1932                         if (tsp->tv_sec <= INT32_MAX) {
 1933                                 rsbt = tstosbt(*tsp);
 1934                                 if (TIMESEL(&asbt, rsbt))
 1935                                         asbt += tc_tick_sbt;
 1936                                 if (asbt <= SBT_MAX - rsbt)
 1937                                         asbt += rsbt;
 1938                                 else
 1939                                         asbt = 0;
 1940                                 rsbt >>= tc_precexp;
 1941                         } else
 1942                                 asbt = 0;
 1943                 } else
 1944                         asbt = -1;
 1945         } else
 1946                 asbt = 0;
 1947         marker = knote_alloc(M_WAITOK);
 1948         marker->kn_status = KN_MARKER;
 1949         KQ_LOCK(kq);
 1950 
 1951 retry:
 1952         kevp = keva;
 1953         if (kq->kq_count == 0) {
 1954                 if (asbt == -1) {
 1955                         error = EWOULDBLOCK;
 1956                 } else {
 1957                         kq->kq_state |= KQ_SLEEP;
 1958                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1959                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1960                 }
 1961                 if (error == 0)
 1962                         goto retry;
 1963                 /* don't restart after signals... */
 1964                 if (error == ERESTART)
 1965                         error = EINTR;
 1966                 else if (error == EWOULDBLOCK)
 1967                         error = 0;
 1968                 goto done;
 1969         }
 1970 
 1971         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1972         influx = 0;
 1973         while (count) {
 1974                 KQ_OWNED(kq);
 1975                 kn = TAILQ_FIRST(&kq->kq_head);
 1976 
 1977                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1978                     kn_in_flux(kn)) {
 1979                         if (influx) {
 1980                                 influx = 0;
 1981                                 KQ_FLUX_WAKEUP(kq);
 1982                         }
 1983                         kq->kq_state |= KQ_FLUXWAIT;
 1984                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1985                             "kqflxwt", 0);
 1986                         continue;
 1987                 }
 1988 
 1989                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1990                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1991                         kn->kn_status &= ~KN_QUEUED;
 1992                         kq->kq_count--;
 1993                         continue;
 1994                 }
 1995                 if (kn == marker) {
 1996                         KQ_FLUX_WAKEUP(kq);
 1997                         if (count == maxevents)
 1998                                 goto retry;
 1999                         goto done;
 2000                 }
 2001                 KASSERT(!kn_in_flux(kn),
 2002                     ("knote %p is unexpectedly in flux", kn));
 2003 
 2004                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 2005                         kn->kn_status &= ~KN_QUEUED;
 2006                         kn_enter_flux(kn);
 2007                         kq->kq_count--;
 2008                         KQ_UNLOCK(kq);
 2009                         /*
 2010                          * We don't need to lock the list since we've
 2011                          * marked it as in flux.
 2012                          */
 2013                         knote_drop(kn, td);
 2014                         KQ_LOCK(kq);
 2015                         continue;
 2016                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 2017                         kn->kn_status &= ~KN_QUEUED;
 2018                         kn_enter_flux(kn);
 2019                         kq->kq_count--;
 2020                         KQ_UNLOCK(kq);
 2021                         /*
 2022                          * We don't need to lock the list since we've
 2023                          * marked the knote as being in flux.
 2024                          */
 2025                         *kevp = kn->kn_kevent;
 2026                         knote_drop(kn, td);
 2027                         KQ_LOCK(kq);
 2028                         kn = NULL;
 2029                 } else {
 2030                         kn->kn_status |= KN_SCAN;
 2031                         kn_enter_flux(kn);
 2032                         KQ_UNLOCK(kq);
 2033                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 2034                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 2035                         knl = kn_list_lock(kn);
 2036                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 2037                                 KQ_LOCK(kq);
 2038                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 2039                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
 2040                                     KN_SCAN);
 2041                                 kn_leave_flux(kn);
 2042                                 kq->kq_count--;
 2043                                 kn_list_unlock(knl);
 2044                                 influx = 1;
 2045                                 continue;
 2046                         }
 2047                         touch = (!kn->kn_fop->f_isfd &&
 2048                             kn->kn_fop->f_touch != NULL);
 2049                         if (touch)
 2050                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 2051                         else
 2052                                 *kevp = kn->kn_kevent;
 2053                         KQ_LOCK(kq);
 2054                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 2055                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 2056                                 /*
 2057                                  * Manually clear knotes who weren't
 2058                                  * 'touch'ed.
 2059                                  */
 2060                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 2061                                         kn->kn_data = 0;
 2062                                         kn->kn_fflags = 0;
 2063                                 }
 2064                                 if (kn->kn_flags & EV_DISPATCH)
 2065                                         kn->kn_status |= KN_DISABLED;
 2066                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 2067                                 kq->kq_count--;
 2068                         } else
 2069                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2070 
 2071                         kn->kn_status &= ~KN_SCAN;
 2072                         kn_leave_flux(kn);
 2073                         kn_list_unlock(knl);
 2074                         influx = 1;
 2075                 }
 2076 
 2077                 /* we are returning a copy to the user */
 2078                 kevp++;
 2079                 nkev++;
 2080                 count--;
 2081 
 2082                 if (nkev == KQ_NEVENTS) {
 2083                         influx = 0;
 2084                         KQ_UNLOCK_FLUX(kq);
 2085                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 2086                         nkev = 0;
 2087                         kevp = keva;
 2088                         KQ_LOCK(kq);
 2089                         if (error)
 2090                                 break;
 2091                 }
 2092         }
 2093         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 2094 done:
 2095         KQ_OWNED(kq);
 2096         KQ_UNLOCK_FLUX(kq);
 2097         knote_free(marker);
 2098 done_nl:
 2099         KQ_NOTOWNED(kq);
 2100         if (nkev != 0)
 2101                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 2102         td->td_retval[0] = maxevents - count;
 2103         return (error);
 2104 }
 2105 
 2106 /*ARGSUSED*/
 2107 static int
 2108 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 2109         struct ucred *active_cred, struct thread *td)
 2110 {
 2111         /*
 2112          * Enabling sigio causes two major problems:
 2113          * 1) infinite recursion:
 2114          * Synopsys: kevent is being used to track signals and have FIOASYNC
 2115          * set.  On receipt of a signal this will cause a kqueue to recurse
 2116          * into itself over and over.  Sending the sigio causes the kqueue
 2117          * to become ready, which in turn posts sigio again, forever.
 2118          * Solution: this can be solved by setting a flag in the kqueue that
 2119          * we have a SIGIO in progress.
 2120          * 2) locking problems:
 2121          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 2122          * us above the proc and pgrp locks.
 2123          * Solution: Post a signal using an async mechanism, being sure to
 2124          * record a generation count in the delivery so that we do not deliver
 2125          * a signal to the wrong process.
 2126          *
 2127          * Note, these two mechanisms are somewhat mutually exclusive!
 2128          */
 2129 #if 0
 2130         struct kqueue *kq;
 2131 
 2132         kq = fp->f_data;
 2133         switch (cmd) {
 2134         case FIOASYNC:
 2135                 if (*(int *)data) {
 2136                         kq->kq_state |= KQ_ASYNC;
 2137                 } else {
 2138                         kq->kq_state &= ~KQ_ASYNC;
 2139                 }
 2140                 return (0);
 2141 
 2142         case FIOSETOWN:
 2143                 return (fsetown(*(int *)data, &kq->kq_sigio));
 2144 
 2145         case FIOGETOWN:
 2146                 *(int *)data = fgetown(&kq->kq_sigio);
 2147                 return (0);
 2148         }
 2149 #endif
 2150 
 2151         return (ENOTTY);
 2152 }
 2153 
 2154 /*ARGSUSED*/
 2155 static int
 2156 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 2157         struct thread *td)
 2158 {
 2159         struct kqueue *kq;
 2160         int revents = 0;
 2161         int error;
 2162 
 2163         if ((error = kqueue_acquire(fp, &kq)))
 2164                 return POLLERR;
 2165 
 2166         KQ_LOCK(kq);
 2167         if (events & (POLLIN | POLLRDNORM)) {
 2168                 if (kq->kq_count) {
 2169                         revents |= events & (POLLIN | POLLRDNORM);
 2170                 } else {
 2171                         selrecord(td, &kq->kq_sel);
 2172                         if (SEL_WAITING(&kq->kq_sel))
 2173                                 kq->kq_state |= KQ_SEL;
 2174                 }
 2175         }
 2176         kqueue_release(kq, 1);
 2177         KQ_UNLOCK(kq);
 2178         return (revents);
 2179 }
 2180 
 2181 /*ARGSUSED*/
 2182 static int
 2183 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred)
 2184 {
 2185 
 2186         bzero((void *)st, sizeof *st);
 2187         /*
 2188          * We no longer return kq_count because the unlocked value is useless.
 2189          * If you spent all this time getting the count, why not spend your
 2190          * syscall better by calling kevent?
 2191          *
 2192          * XXX - This is needed for libc_r.
 2193          */
 2194         st->st_mode = S_IFIFO;
 2195         return (0);
 2196 }
 2197 
 2198 static void
 2199 kqueue_drain(struct kqueue *kq, struct thread *td)
 2200 {
 2201         struct knote *kn;
 2202         int i;
 2203 
 2204         KQ_LOCK(kq);
 2205 
 2206         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 2207             ("kqueue already closing"));
 2208         kq->kq_state |= KQ_CLOSING;
 2209         if (kq->kq_refcnt > 1)
 2210                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 2211 
 2212         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 2213 
 2214         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 2215             ("kqueue's knlist not empty"));
 2216 
 2217         for (i = 0; i < kq->kq_knlistsize; i++) {
 2218                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 2219                         if (kn_in_flux(kn)) {
 2220                                 kq->kq_state |= KQ_FLUXWAIT;
 2221                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 2222                                 continue;
 2223                         }
 2224                         kn_enter_flux(kn);
 2225                         KQ_UNLOCK(kq);
 2226                         knote_drop(kn, td);
 2227                         KQ_LOCK(kq);
 2228                 }
 2229         }
 2230         if (kq->kq_knhashmask != 0) {
 2231                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 2232                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 2233                                 if (kn_in_flux(kn)) {
 2234                                         kq->kq_state |= KQ_FLUXWAIT;
 2235                                         msleep(kq, &kq->kq_lock, PSOCK,
 2236                                                "kqclo2", 0);
 2237                                         continue;
 2238                                 }
 2239                                 kn_enter_flux(kn);
 2240                                 KQ_UNLOCK(kq);
 2241                                 knote_drop(kn, td);
 2242                                 KQ_LOCK(kq);
 2243                         }
 2244                 }
 2245         }
 2246 
 2247         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 2248                 kq->kq_state |= KQ_TASKDRAIN;
 2249                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 2250         }
 2251 
 2252         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2253                 selwakeuppri(&kq->kq_sel, PSOCK);
 2254                 if (!SEL_WAITING(&kq->kq_sel))
 2255                         kq->kq_state &= ~KQ_SEL;
 2256         }
 2257 
 2258         KQ_UNLOCK(kq);
 2259 }
 2260 
 2261 static void
 2262 kqueue_destroy(struct kqueue *kq)
 2263 {
 2264 
 2265         KASSERT(kq->kq_fdp == NULL,
 2266             ("kqueue still attached to a file descriptor"));
 2267         seldrain(&kq->kq_sel);
 2268         knlist_destroy(&kq->kq_sel.si_note);
 2269         mtx_destroy(&kq->kq_lock);
 2270 
 2271         if (kq->kq_knhash != NULL)
 2272                 free(kq->kq_knhash, M_KQUEUE);
 2273         if (kq->kq_knlist != NULL)
 2274                 free(kq->kq_knlist, M_KQUEUE);
 2275 
 2276         funsetown(&kq->kq_sigio);
 2277 }
 2278 
 2279 /*ARGSUSED*/
 2280 static int
 2281 kqueue_close(struct file *fp, struct thread *td)
 2282 {
 2283         struct kqueue *kq = fp->f_data;
 2284         struct filedesc *fdp;
 2285         int error;
 2286         int filedesc_unlock;
 2287 
 2288         if ((error = kqueue_acquire(fp, &kq)))
 2289                 return error;
 2290         kqueue_drain(kq, td);
 2291 
 2292         /*
 2293          * We could be called due to the knote_drop() doing fdrop(),
 2294          * called from kqueue_register().  In this case the global
 2295          * lock is owned, and filedesc sx is locked before, to not
 2296          * take the sleepable lock after non-sleepable.
 2297          */
 2298         fdp = kq->kq_fdp;
 2299         kq->kq_fdp = NULL;
 2300         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 2301                 FILEDESC_XLOCK(fdp);
 2302                 filedesc_unlock = 1;
 2303         } else
 2304                 filedesc_unlock = 0;
 2305         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 2306         if (filedesc_unlock)
 2307                 FILEDESC_XUNLOCK(fdp);
 2308 
 2309         kqueue_destroy(kq);
 2310         chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
 2311         crfree(kq->kq_cred);
 2312         free(kq, M_KQUEUE);
 2313         fp->f_data = NULL;
 2314 
 2315         return (0);
 2316 }
 2317 
 2318 static int
 2319 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2320 {
 2321         struct kqueue *kq = fp->f_data;
 2322 
 2323         kif->kf_type = KF_TYPE_KQUEUE;
 2324         kif->kf_un.kf_kqueue.kf_kqueue_addr = (uintptr_t)kq;
 2325         kif->kf_un.kf_kqueue.kf_kqueue_count = kq->kq_count;
 2326         kif->kf_un.kf_kqueue.kf_kqueue_state = kq->kq_state;
 2327         return (0);
 2328 }
 2329 
 2330 static void
 2331 kqueue_wakeup(struct kqueue *kq)
 2332 {
 2333         KQ_OWNED(kq);
 2334 
 2335         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 2336                 kq->kq_state &= ~KQ_SLEEP;
 2337                 wakeup(kq);
 2338         }
 2339         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2340                 selwakeuppri(&kq->kq_sel, PSOCK);
 2341                 if (!SEL_WAITING(&kq->kq_sel))
 2342                         kq->kq_state &= ~KQ_SEL;
 2343         }
 2344         if (!knlist_empty(&kq->kq_sel.si_note))
 2345                 kqueue_schedtask(kq);
 2346         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 2347                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 2348         }
 2349 }
 2350 
 2351 /*
 2352  * Walk down a list of knotes, activating them if their event has triggered.
 2353  *
 2354  * There is a possibility to optimize in the case of one kq watching another.
 2355  * Instead of scheduling a task to wake it up, you could pass enough state
 2356  * down the chain to make up the parent kqueue.  Make this code functional
 2357  * first.
 2358  */
 2359 void
 2360 knote(struct knlist *list, long hint, int lockflags)
 2361 {
 2362         struct kqueue *kq;
 2363         struct knote *kn, *tkn;
 2364         int error;
 2365 
 2366         if (list == NULL)
 2367                 return;
 2368 
 2369         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 2370 
 2371         if ((lockflags & KNF_LISTLOCKED) == 0)
 2372                 list->kl_lock(list->kl_lockarg); 
 2373 
 2374         /*
 2375          * If we unlock the list lock (and enter influx), we can
 2376          * eliminate the kqueue scheduling, but this will introduce
 2377          * four lock/unlock's for each knote to test.  Also, marker
 2378          * would be needed to keep iteration position, since filters
 2379          * or other threads could remove events.
 2380          */
 2381         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 2382                 kq = kn->kn_kq;
 2383                 KQ_LOCK(kq);
 2384                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
 2385                         /*
 2386                          * Do not process the influx notes, except for
 2387                          * the influx coming from the kq unlock in the
 2388                          * kqueue_scan().  In the later case, we do
 2389                          * not interfere with the scan, since the code
 2390                          * fragment in kqueue_scan() locks the knlist,
 2391                          * and cannot proceed until we finished.
 2392                          */
 2393                         KQ_UNLOCK(kq);
 2394                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 2395                         kn_enter_flux(kn);
 2396                         KQ_UNLOCK(kq);
 2397                         error = kn->kn_fop->f_event(kn, hint);
 2398                         KQ_LOCK(kq);
 2399                         kn_leave_flux(kn);
 2400                         if (error)
 2401                                 KNOTE_ACTIVATE(kn, 1);
 2402                         KQ_UNLOCK_FLUX(kq);
 2403                 } else {
 2404                         if (kn->kn_fop->f_event(kn, hint))
 2405                                 KNOTE_ACTIVATE(kn, 1);
 2406                         KQ_UNLOCK(kq);
 2407                 }
 2408         }
 2409         if ((lockflags & KNF_LISTLOCKED) == 0)
 2410                 list->kl_unlock(list->kl_lockarg); 
 2411 }
 2412 
 2413 /*
 2414  * add a knote to a knlist
 2415  */
 2416 void
 2417 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 2418 {
 2419 
 2420         KNL_ASSERT_LOCK(knl, islocked);
 2421         KQ_NOTOWNED(kn->kn_kq);
 2422         KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
 2423         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2424             ("knote %p was not detached", kn));
 2425         if (!islocked)
 2426                 knl->kl_lock(knl->kl_lockarg);
 2427         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 2428         if (!islocked)
 2429                 knl->kl_unlock(knl->kl_lockarg);
 2430         KQ_LOCK(kn->kn_kq);
 2431         kn->kn_knlist = knl;
 2432         kn->kn_status &= ~KN_DETACHED;
 2433         KQ_UNLOCK(kn->kn_kq);
 2434 }
 2435 
 2436 static void
 2437 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
 2438     int kqislocked)
 2439 {
 2440 
 2441         KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
 2442         KNL_ASSERT_LOCK(knl, knlislocked);
 2443         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 2444         KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
 2445         KASSERT((kn->kn_status & KN_DETACHED) == 0,
 2446             ("knote %p was already detached", kn));
 2447         if (!knlislocked)
 2448                 knl->kl_lock(knl->kl_lockarg);
 2449         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 2450         kn->kn_knlist = NULL;
 2451         if (!knlislocked)
 2452                 kn_list_unlock(knl);
 2453         if (!kqislocked)
 2454                 KQ_LOCK(kn->kn_kq);
 2455         kn->kn_status |= KN_DETACHED;
 2456         if (!kqislocked)
 2457                 KQ_UNLOCK(kn->kn_kq);
 2458 }
 2459 
 2460 /*
 2461  * remove knote from the specified knlist
 2462  */
 2463 void
 2464 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 2465 {
 2466 
 2467         knlist_remove_kq(knl, kn, islocked, 0);
 2468 }
 2469 
 2470 int
 2471 knlist_empty(struct knlist *knl)
 2472 {
 2473 
 2474         KNL_ASSERT_LOCKED(knl);
 2475         return (SLIST_EMPTY(&knl->kl_list));
 2476 }
 2477 
 2478 static struct mtx knlist_lock;
 2479 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 2480     MTX_DEF);
 2481 static void knlist_mtx_lock(void *arg);
 2482 static void knlist_mtx_unlock(void *arg);
 2483 
 2484 static void
 2485 knlist_mtx_lock(void *arg)
 2486 {
 2487 
 2488         mtx_lock((struct mtx *)arg);
 2489 }
 2490 
 2491 static void
 2492 knlist_mtx_unlock(void *arg)
 2493 {
 2494 
 2495         mtx_unlock((struct mtx *)arg);
 2496 }
 2497 
 2498 static void
 2499 knlist_mtx_assert_lock(void *arg, int what)
 2500 {
 2501 
 2502         if (what == LA_LOCKED)
 2503                 mtx_assert((struct mtx *)arg, MA_OWNED);
 2504         else
 2505                 mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2506 }
 2507 
 2508 void
 2509 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2510     void (*kl_unlock)(void *),
 2511     void (*kl_assert_lock)(void *, int))
 2512 {
 2513 
 2514         if (lock == NULL)
 2515                 knl->kl_lockarg = &knlist_lock;
 2516         else
 2517                 knl->kl_lockarg = lock;
 2518 
 2519         if (kl_lock == NULL)
 2520                 knl->kl_lock = knlist_mtx_lock;
 2521         else
 2522                 knl->kl_lock = kl_lock;
 2523         if (kl_unlock == NULL)
 2524                 knl->kl_unlock = knlist_mtx_unlock;
 2525         else
 2526                 knl->kl_unlock = kl_unlock;
 2527         if (kl_assert_lock == NULL)
 2528                 knl->kl_assert_lock = knlist_mtx_assert_lock;
 2529         else
 2530                 knl->kl_assert_lock = kl_assert_lock;
 2531 
 2532         knl->kl_autodestroy = 0;
 2533         SLIST_INIT(&knl->kl_list);
 2534 }
 2535 
 2536 void
 2537 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2538 {
 2539 
 2540         knlist_init(knl, lock, NULL, NULL, NULL);
 2541 }
 2542 
 2543 struct knlist *
 2544 knlist_alloc(struct mtx *lock)
 2545 {
 2546         struct knlist *knl;
 2547 
 2548         knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
 2549         knlist_init_mtx(knl, lock);
 2550         return (knl);
 2551 }
 2552 
 2553 void
 2554 knlist_destroy(struct knlist *knl)
 2555 {
 2556 
 2557         KASSERT(KNLIST_EMPTY(knl),
 2558             ("destroying knlist %p with knotes on it", knl));
 2559 }
 2560 
 2561 void
 2562 knlist_detach(struct knlist *knl)
 2563 {
 2564 
 2565         KNL_ASSERT_LOCKED(knl);
 2566         knl->kl_autodestroy = 1;
 2567         if (knlist_empty(knl)) {
 2568                 knlist_destroy(knl);
 2569                 free(knl, M_KQUEUE);
 2570         }
 2571 }
 2572 
 2573 /*
 2574  * Even if we are locked, we may need to drop the lock to allow any influx
 2575  * knotes time to "settle".
 2576  */
 2577 void
 2578 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2579 {
 2580         struct knote *kn, *kn2;
 2581         struct kqueue *kq;
 2582 
 2583         KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
 2584         if (islocked)
 2585                 KNL_ASSERT_LOCKED(knl);
 2586         else {
 2587                 KNL_ASSERT_UNLOCKED(knl);
 2588 again:          /* need to reacquire lock since we have dropped it */
 2589                 knl->kl_lock(knl->kl_lockarg);
 2590         }
 2591 
 2592         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2593                 kq = kn->kn_kq;
 2594                 KQ_LOCK(kq);
 2595                 if (kn_in_flux(kn)) {
 2596                         KQ_UNLOCK(kq);
 2597                         continue;
 2598                 }
 2599                 knlist_remove_kq(knl, kn, 1, 1);
 2600                 if (killkn) {
 2601                         kn_enter_flux(kn);
 2602                         KQ_UNLOCK(kq);
 2603                         knote_drop_detached(kn, td);
 2604                 } else {
 2605                         /* Make sure cleared knotes disappear soon */
 2606                         kn->kn_flags |= EV_EOF | EV_ONESHOT;
 2607                         KQ_UNLOCK(kq);
 2608                 }
 2609                 kq = NULL;
 2610         }
 2611 
 2612         if (!SLIST_EMPTY(&knl->kl_list)) {
 2613                 /* there are still in flux knotes remaining */
 2614                 kn = SLIST_FIRST(&knl->kl_list);
 2615                 kq = kn->kn_kq;
 2616                 KQ_LOCK(kq);
 2617                 KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
 2618                 knl->kl_unlock(knl->kl_lockarg);
 2619                 kq->kq_state |= KQ_FLUXWAIT;
 2620                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2621                 kq = NULL;
 2622                 goto again;
 2623         }
 2624 
 2625         if (islocked)
 2626                 KNL_ASSERT_LOCKED(knl);
 2627         else {
 2628                 knl->kl_unlock(knl->kl_lockarg);
 2629                 KNL_ASSERT_UNLOCKED(knl);
 2630         }
 2631 }
 2632 
 2633 /*
 2634  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2635  * lock.  This prevents a race where a new fd comes along and occupies the
 2636  * entry and we attach a knote to the fd.
 2637  */
 2638 void
 2639 knote_fdclose(struct thread *td, int fd)
 2640 {
 2641         struct filedesc *fdp = td->td_proc->p_fd;
 2642         struct kqueue *kq;
 2643         struct knote *kn;
 2644         int influx;
 2645 
 2646         FILEDESC_XLOCK_ASSERT(fdp);
 2647 
 2648         /*
 2649          * We shouldn't have to worry about new kevents appearing on fd
 2650          * since filedesc is locked.
 2651          */
 2652         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2653                 KQ_LOCK(kq);
 2654 
 2655 again:
 2656                 influx = 0;
 2657                 while (kq->kq_knlistsize > fd &&
 2658                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2659                         if (kn_in_flux(kn)) {
 2660                                 /* someone else might be waiting on our knote */
 2661                                 if (influx)
 2662                                         wakeup(kq);
 2663                                 kq->kq_state |= KQ_FLUXWAIT;
 2664                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2665                                 goto again;
 2666                         }
 2667                         kn_enter_flux(kn);
 2668                         KQ_UNLOCK(kq);
 2669                         influx = 1;
 2670                         knote_drop(kn, td);
 2671                         KQ_LOCK(kq);
 2672                 }
 2673                 KQ_UNLOCK_FLUX(kq);
 2674         }
 2675 }
 2676 
 2677 static int
 2678 knote_attach(struct knote *kn, struct kqueue *kq)
 2679 {
 2680         struct klist *list;
 2681 
 2682         KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
 2683         KQ_OWNED(kq);
 2684 
 2685         if ((kq->kq_state & KQ_CLOSING) != 0)
 2686                 return (EBADF);
 2687         if (kn->kn_fop->f_isfd) {
 2688                 if (kn->kn_id >= kq->kq_knlistsize)
 2689                         return (ENOMEM);
 2690                 list = &kq->kq_knlist[kn->kn_id];
 2691         } else {
 2692                 if (kq->kq_knhash == NULL)
 2693                         return (ENOMEM);
 2694                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2695         }
 2696         SLIST_INSERT_HEAD(list, kn, kn_link);
 2697         return (0);
 2698 }
 2699 
 2700 static void
 2701 knote_drop(struct knote *kn, struct thread *td)
 2702 {
 2703 
 2704         if ((kn->kn_status & KN_DETACHED) == 0)
 2705                 kn->kn_fop->f_detach(kn);
 2706         knote_drop_detached(kn, td);
 2707 }
 2708 
 2709 static void
 2710 knote_drop_detached(struct knote *kn, struct thread *td)
 2711 {
 2712         struct kqueue *kq;
 2713         struct klist *list;
 2714 
 2715         kq = kn->kn_kq;
 2716 
 2717         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2718             ("knote %p still attached", kn));
 2719         KQ_NOTOWNED(kq);
 2720 
 2721         KQ_LOCK(kq);
 2722         KASSERT(kn->kn_influx == 1,
 2723             ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
 2724 
 2725         if (kn->kn_fop->f_isfd)
 2726                 list = &kq->kq_knlist[kn->kn_id];
 2727         else
 2728                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2729 
 2730         if (!SLIST_EMPTY(list))
 2731                 SLIST_REMOVE(list, kn, knote, kn_link);
 2732         if (kn->kn_status & KN_QUEUED)
 2733                 knote_dequeue(kn);
 2734         KQ_UNLOCK_FLUX(kq);
 2735 
 2736         if (kn->kn_fop->f_isfd) {
 2737                 fdrop(kn->kn_fp, td);
 2738                 kn->kn_fp = NULL;
 2739         }
 2740         kqueue_fo_release(kn->kn_kevent.filter);
 2741         kn->kn_fop = NULL;
 2742         knote_free(kn);
 2743 }
 2744 
 2745 static void
 2746 knote_enqueue(struct knote *kn)
 2747 {
 2748         struct kqueue *kq = kn->kn_kq;
 2749 
 2750         KQ_OWNED(kn->kn_kq);
 2751         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2752 
 2753         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2754         kn->kn_status |= KN_QUEUED;
 2755         kq->kq_count++;
 2756         kqueue_wakeup(kq);
 2757 }
 2758 
 2759 static void
 2760 knote_dequeue(struct knote *kn)
 2761 {
 2762         struct kqueue *kq = kn->kn_kq;
 2763 
 2764         KQ_OWNED(kn->kn_kq);
 2765         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2766 
 2767         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2768         kn->kn_status &= ~KN_QUEUED;
 2769         kq->kq_count--;
 2770 }
 2771 
 2772 static void
 2773 knote_init(void)
 2774 {
 2775 
 2776         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2777             NULL, NULL, UMA_ALIGN_PTR, 0);
 2778         ast_register(TDA_KQUEUE, ASTR_ASTF_REQUIRED, 0, ast_kqueue);
 2779 }
 2780 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2781 
 2782 static struct knote *
 2783 knote_alloc(int mflag)
 2784 {
 2785 
 2786         return (uma_zalloc(knote_zone, mflag | M_ZERO));
 2787 }
 2788 
 2789 static void
 2790 knote_free(struct knote *kn)
 2791 {
 2792 
 2793         uma_zfree(knote_zone, kn);
 2794 }
 2795 
 2796 /*
 2797  * Register the kev w/ the kq specified by fd.
 2798  */
 2799 int
 2800 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
 2801 {
 2802         struct kqueue *kq;
 2803         struct file *fp;
 2804         cap_rights_t rights;
 2805         int error;
 2806 
 2807         error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
 2808             &fp);
 2809         if (error != 0)
 2810                 return (error);
 2811         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2812                 goto noacquire;
 2813 
 2814         error = kqueue_register(kq, kev, td, mflag);
 2815         kqueue_release(kq, 0);
 2816 
 2817 noacquire:
 2818         fdrop(fp, td);
 2819         return (error);
 2820 }

Cache object: 202095e31abb9f3fe4ed14336f785fbf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.