The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * Copyright (c) 2009 Apple, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/10.2/sys/kern/kern_event.c 280258 2015-03-19 13:37:36Z rwatson $");
   31 
   32 #include "opt_ktrace.h"
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/capsicum.h>
   37 #include <sys/kernel.h>
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/rwlock.h>
   41 #include <sys/proc.h>
   42 #include <sys/malloc.h>
   43 #include <sys/unistd.h>
   44 #include <sys/file.h>
   45 #include <sys/filedesc.h>
   46 #include <sys/filio.h>
   47 #include <sys/fcntl.h>
   48 #include <sys/kthread.h>
   49 #include <sys/selinfo.h>
   50 #include <sys/stdatomic.h>
   51 #include <sys/queue.h>
   52 #include <sys/event.h>
   53 #include <sys/eventvar.h>
   54 #include <sys/poll.h>
   55 #include <sys/protosw.h>
   56 #include <sys/sigio.h>
   57 #include <sys/signalvar.h>
   58 #include <sys/socket.h>
   59 #include <sys/socketvar.h>
   60 #include <sys/stat.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/syscallsubr.h>
   64 #include <sys/taskqueue.h>
   65 #include <sys/uio.h>
   66 #ifdef KTRACE
   67 #include <sys/ktrace.h>
   68 #endif
   69 
   70 #include <vm/uma.h>
   71 
   72 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   73 
   74 /*
   75  * This lock is used if multiple kq locks are required.  This possibly
   76  * should be made into a per proc lock.
   77  */
   78 static struct mtx       kq_global;
   79 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   80 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   81         if (!haslck)                            \
   82                 mtx_lock(lck);                  \
   83         haslck = 1;                             \
   84 } while (0)
   85 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   86         if (haslck)                             \
   87                 mtx_unlock(lck);                        \
   88         haslck = 0;                             \
   89 } while (0)
   90 
   91 TASKQUEUE_DEFINE_THREAD(kqueue);
   92 
   93 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   94 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   95 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   96                     struct thread *td, int waitok);
   97 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
   98 static void     kqueue_release(struct kqueue *kq, int locked);
   99 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  100                     uintptr_t ident, int waitok);
  101 static void     kqueue_task(void *arg, int pending);
  102 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  103                     struct kevent_copyops *k_ops,
  104                     const struct timespec *timeout,
  105                     struct kevent *keva, struct thread *td);
  106 static void     kqueue_wakeup(struct kqueue *kq);
  107 static struct filterops *kqueue_fo_find(int filt);
  108 static void     kqueue_fo_release(int filt);
  109 
  110 static fo_rdwr_t        kqueue_read;
  111 static fo_rdwr_t        kqueue_write;
  112 static fo_truncate_t    kqueue_truncate;
  113 static fo_ioctl_t       kqueue_ioctl;
  114 static fo_poll_t        kqueue_poll;
  115 static fo_kqfilter_t    kqueue_kqfilter;
  116 static fo_stat_t        kqueue_stat;
  117 static fo_close_t       kqueue_close;
  118 
  119 static struct fileops kqueueops = {
  120         .fo_read = kqueue_read,
  121         .fo_write = kqueue_write,
  122         .fo_truncate = kqueue_truncate,
  123         .fo_ioctl = kqueue_ioctl,
  124         .fo_poll = kqueue_poll,
  125         .fo_kqfilter = kqueue_kqfilter,
  126         .fo_stat = kqueue_stat,
  127         .fo_close = kqueue_close,
  128         .fo_chmod = invfo_chmod,
  129         .fo_chown = invfo_chown,
  130         .fo_sendfile = invfo_sendfile,
  131 };
  132 
  133 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  134 static void     knote_drop(struct knote *kn, struct thread *td);
  135 static void     knote_enqueue(struct knote *kn);
  136 static void     knote_dequeue(struct knote *kn);
  137 static void     knote_init(void);
  138 static struct   knote *knote_alloc(int waitok);
  139 static void     knote_free(struct knote *kn);
  140 
  141 static void     filt_kqdetach(struct knote *kn);
  142 static int      filt_kqueue(struct knote *kn, long hint);
  143 static int      filt_procattach(struct knote *kn);
  144 static void     filt_procdetach(struct knote *kn);
  145 static int      filt_proc(struct knote *kn, long hint);
  146 static int      filt_fileattach(struct knote *kn);
  147 static void     filt_timerexpire(void *knx);
  148 static int      filt_timerattach(struct knote *kn);
  149 static void     filt_timerdetach(struct knote *kn);
  150 static int      filt_timer(struct knote *kn, long hint);
  151 static int      filt_userattach(struct knote *kn);
  152 static void     filt_userdetach(struct knote *kn);
  153 static int      filt_user(struct knote *kn, long hint);
  154 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  155                     u_long type);
  156 
  157 static struct filterops file_filtops = {
  158         .f_isfd = 1,
  159         .f_attach = filt_fileattach,
  160 };
  161 static struct filterops kqread_filtops = {
  162         .f_isfd = 1,
  163         .f_detach = filt_kqdetach,
  164         .f_event = filt_kqueue,
  165 };
  166 /* XXX - move to kern_proc.c?  */
  167 static struct filterops proc_filtops = {
  168         .f_isfd = 0,
  169         .f_attach = filt_procattach,
  170         .f_detach = filt_procdetach,
  171         .f_event = filt_proc,
  172 };
  173 static struct filterops timer_filtops = {
  174         .f_isfd = 0,
  175         .f_attach = filt_timerattach,
  176         .f_detach = filt_timerdetach,
  177         .f_event = filt_timer,
  178 };
  179 static struct filterops user_filtops = {
  180         .f_attach = filt_userattach,
  181         .f_detach = filt_userdetach,
  182         .f_event = filt_user,
  183         .f_touch = filt_usertouch,
  184 };
  185 
  186 static uma_zone_t       knote_zone;
  187 static atomic_uint      kq_ncallouts = ATOMIC_VAR_INIT(0);
  188 static unsigned int     kq_calloutmax = 4 * 1024;
  189 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  190     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  191 
  192 /* XXX - ensure not KN_INFLUX?? */
  193 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  194         if ((islock))                                                   \
  195                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  196         else                                                            \
  197                 KQ_LOCK((kn)->kn_kq);                                   \
  198         (kn)->kn_status |= KN_ACTIVE;                                   \
  199         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  200                 knote_enqueue((kn));                                    \
  201         if (!(islock))                                                  \
  202                 KQ_UNLOCK((kn)->kn_kq);                                 \
  203 } while(0)
  204 #define KQ_LOCK(kq) do {                                                \
  205         mtx_lock(&(kq)->kq_lock);                                       \
  206 } while (0)
  207 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  208         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  209                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  210                 wakeup((kq));                                           \
  211         }                                                               \
  212 } while (0)
  213 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  214         KQ_FLUX_WAKEUP(kq);                                             \
  215         mtx_unlock(&(kq)->kq_lock);                                     \
  216 } while (0)
  217 #define KQ_UNLOCK(kq) do {                                              \
  218         mtx_unlock(&(kq)->kq_lock);                                     \
  219 } while (0)
  220 #define KQ_OWNED(kq) do {                                               \
  221         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  222 } while (0)
  223 #define KQ_NOTOWNED(kq) do {                                            \
  224         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  225 } while (0)
  226 #define KN_LIST_LOCK(kn) do {                                           \
  227         if (kn->kn_knlist != NULL)                                      \
  228                 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);      \
  229 } while (0)
  230 #define KN_LIST_UNLOCK(kn) do {                                         \
  231         if (kn->kn_knlist != NULL)                                      \
  232                 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);    \
  233 } while (0)
  234 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  235         if (islocked)                                                   \
  236                 KNL_ASSERT_LOCKED(knl);                         \
  237         else                                                            \
  238                 KNL_ASSERT_UNLOCKED(knl);                               \
  239 } while (0)
  240 #ifdef INVARIANTS
  241 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  242         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  243 } while (0)
  244 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  245         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  246 } while (0)
  247 #else /* !INVARIANTS */
  248 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  249 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  250 #endif /* INVARIANTS */
  251 
  252 #define KN_HASHSIZE             64              /* XXX should be tunable */
  253 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  254 
  255 static int
  256 filt_nullattach(struct knote *kn)
  257 {
  258 
  259         return (ENXIO);
  260 };
  261 
  262 struct filterops null_filtops = {
  263         .f_isfd = 0,
  264         .f_attach = filt_nullattach,
  265 };
  266 
  267 /* XXX - make SYSINIT to add these, and move into respective modules. */
  268 extern struct filterops sig_filtops;
  269 extern struct filterops fs_filtops;
  270 
  271 /*
  272  * Table for for all system-defined filters.
  273  */
  274 static struct mtx       filterops_lock;
  275 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  276         MTX_DEF);
  277 static struct {
  278         struct filterops *for_fop;
  279         int for_refcnt;
  280 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  281         { &file_filtops },                      /* EVFILT_READ */
  282         { &file_filtops },                      /* EVFILT_WRITE */
  283         { &null_filtops },                      /* EVFILT_AIO */
  284         { &file_filtops },                      /* EVFILT_VNODE */
  285         { &proc_filtops },                      /* EVFILT_PROC */
  286         { &sig_filtops },                       /* EVFILT_SIGNAL */
  287         { &timer_filtops },                     /* EVFILT_TIMER */
  288         { &null_filtops },                      /* former EVFILT_NETDEV */
  289         { &fs_filtops },                        /* EVFILT_FS */
  290         { &null_filtops },                      /* EVFILT_LIO */
  291         { &user_filtops },                      /* EVFILT_USER */
  292 };
  293 
  294 /*
  295  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  296  * method.
  297  */
  298 static int
  299 filt_fileattach(struct knote *kn)
  300 {
  301 
  302         return (fo_kqfilter(kn->kn_fp, kn));
  303 }
  304 
  305 /*ARGSUSED*/
  306 static int
  307 kqueue_kqfilter(struct file *fp, struct knote *kn)
  308 {
  309         struct kqueue *kq = kn->kn_fp->f_data;
  310 
  311         if (kn->kn_filter != EVFILT_READ)
  312                 return (EINVAL);
  313 
  314         kn->kn_status |= KN_KQUEUE;
  315         kn->kn_fop = &kqread_filtops;
  316         knlist_add(&kq->kq_sel.si_note, kn, 0);
  317 
  318         return (0);
  319 }
  320 
  321 static void
  322 filt_kqdetach(struct knote *kn)
  323 {
  324         struct kqueue *kq = kn->kn_fp->f_data;
  325 
  326         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  327 }
  328 
  329 /*ARGSUSED*/
  330 static int
  331 filt_kqueue(struct knote *kn, long hint)
  332 {
  333         struct kqueue *kq = kn->kn_fp->f_data;
  334 
  335         kn->kn_data = kq->kq_count;
  336         return (kn->kn_data > 0);
  337 }
  338 
  339 /* XXX - move to kern_proc.c?  */
  340 static int
  341 filt_procattach(struct knote *kn)
  342 {
  343         struct proc *p;
  344         int immediate;
  345         int error;
  346 
  347         immediate = 0;
  348         p = pfind(kn->kn_id);
  349         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  350                 p = zpfind(kn->kn_id);
  351                 immediate = 1;
  352         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  353                 immediate = 1;
  354         }
  355 
  356         if (p == NULL)
  357                 return (ESRCH);
  358         if ((error = p_cansee(curthread, p))) {
  359                 PROC_UNLOCK(p);
  360                 return (error);
  361         }
  362 
  363         kn->kn_ptr.p_proc = p;
  364         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  365 
  366         /*
  367          * internal flag indicating registration done by kernel
  368          */
  369         if (kn->kn_flags & EV_FLAG1) {
  370                 kn->kn_data = kn->kn_sdata;             /* ppid */
  371                 kn->kn_fflags = NOTE_CHILD;
  372                 kn->kn_flags &= ~EV_FLAG1;
  373         }
  374 
  375         if (immediate == 0)
  376                 knlist_add(&p->p_klist, kn, 1);
  377 
  378         /*
  379          * Immediately activate any exit notes if the target process is a
  380          * zombie.  This is necessary to handle the case where the target
  381          * process, e.g. a child, dies before the kevent is registered.
  382          */
  383         if (immediate && filt_proc(kn, NOTE_EXIT))
  384                 KNOTE_ACTIVATE(kn, 0);
  385 
  386         PROC_UNLOCK(p);
  387 
  388         return (0);
  389 }
  390 
  391 /*
  392  * The knote may be attached to a different process, which may exit,
  393  * leaving nothing for the knote to be attached to.  So when the process
  394  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  395  * it will be deleted when read out.  However, as part of the knote deletion,
  396  * this routine is called, so a check is needed to avoid actually performing
  397  * a detach, because the original process does not exist any more.
  398  */
  399 /* XXX - move to kern_proc.c?  */
  400 static void
  401 filt_procdetach(struct knote *kn)
  402 {
  403         struct proc *p;
  404 
  405         p = kn->kn_ptr.p_proc;
  406         knlist_remove(&p->p_klist, kn, 0);
  407         kn->kn_ptr.p_proc = NULL;
  408 }
  409 
  410 /* XXX - move to kern_proc.c?  */
  411 static int
  412 filt_proc(struct knote *kn, long hint)
  413 {
  414         struct proc *p = kn->kn_ptr.p_proc;
  415         u_int event;
  416 
  417         /*
  418          * mask off extra data
  419          */
  420         event = (u_int)hint & NOTE_PCTRLMASK;
  421 
  422         /*
  423          * if the user is interested in this event, record it.
  424          */
  425         if (kn->kn_sfflags & event)
  426                 kn->kn_fflags |= event;
  427 
  428         /*
  429          * process is gone, so flag the event as finished.
  430          */
  431         if (event == NOTE_EXIT) {
  432                 if (!(kn->kn_status & KN_DETACHED))
  433                         knlist_remove_inevent(&p->p_klist, kn);
  434                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  435                 kn->kn_ptr.p_proc = NULL;
  436                 if (kn->kn_fflags & NOTE_EXIT)
  437                         kn->kn_data = p->p_xstat;
  438                 if (kn->kn_fflags == 0)
  439                         kn->kn_flags |= EV_DROP;
  440                 return (1);
  441         }
  442 
  443         return (kn->kn_fflags != 0);
  444 }
  445 
  446 /*
  447  * Called when the process forked. It mostly does the same as the
  448  * knote(), activating all knotes registered to be activated when the
  449  * process forked. Additionally, for each knote attached to the
  450  * parent, check whether user wants to track the new process. If so
  451  * attach a new knote to it, and immediately report an event with the
  452  * child's pid.
  453  */
  454 void
  455 knote_fork(struct knlist *list, int pid)
  456 {
  457         struct kqueue *kq;
  458         struct knote *kn;
  459         struct kevent kev;
  460         int error;
  461 
  462         if (list == NULL)
  463                 return;
  464         list->kl_lock(list->kl_lockarg);
  465 
  466         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  467                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
  468                         continue;
  469                 kq = kn->kn_kq;
  470                 KQ_LOCK(kq);
  471                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
  472                         KQ_UNLOCK(kq);
  473                         continue;
  474                 }
  475 
  476                 /*
  477                  * The same as knote(), activate the event.
  478                  */
  479                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  480                         kn->kn_status |= KN_HASKQLOCK;
  481                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  482                                 KNOTE_ACTIVATE(kn, 1);
  483                         kn->kn_status &= ~KN_HASKQLOCK;
  484                         KQ_UNLOCK(kq);
  485                         continue;
  486                 }
  487 
  488                 /*
  489                  * The NOTE_TRACK case. In addition to the activation
  490                  * of the event, we need to register new event to
  491                  * track the child. Drop the locks in preparation for
  492                  * the call to kqueue_register().
  493                  */
  494                 kn->kn_status |= KN_INFLUX;
  495                 KQ_UNLOCK(kq);
  496                 list->kl_unlock(list->kl_lockarg);
  497 
  498                 /*
  499                  * Activate existing knote and register a knote with
  500                  * new process.
  501                  */
  502                 kev.ident = pid;
  503                 kev.filter = kn->kn_filter;
  504                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  505                 kev.fflags = kn->kn_sfflags;
  506                 kev.data = kn->kn_id;           /* parent */
  507                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  508                 error = kqueue_register(kq, &kev, NULL, 0);
  509                 if (error)
  510                         kn->kn_fflags |= NOTE_TRACKERR;
  511                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  512                         KNOTE_ACTIVATE(kn, 0);
  513                 KQ_LOCK(kq);
  514                 kn->kn_status &= ~KN_INFLUX;
  515                 KQ_UNLOCK_FLUX(kq);
  516                 list->kl_lock(list->kl_lockarg);
  517         }
  518         list->kl_unlock(list->kl_lockarg);
  519 }
  520 
  521 /*
  522  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  523  * interval timer support code.
  524  */
  525 
  526 #define NOTE_TIMER_PRECMASK     (NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS| \
  527                                 NOTE_NSECONDS)
  528 
  529 static __inline sbintime_t
  530 timer2sbintime(intptr_t data, int flags)
  531 {
  532         sbintime_t modifier;
  533 
  534         switch (flags & NOTE_TIMER_PRECMASK) {
  535         case NOTE_SECONDS:
  536                 modifier = SBT_1S;
  537                 break;
  538         case NOTE_MSECONDS: /* FALLTHROUGH */
  539         case 0:
  540                 modifier = SBT_1MS;
  541                 break;
  542         case NOTE_USECONDS:
  543                 modifier = SBT_1US;
  544                 break;
  545         case NOTE_NSECONDS:
  546                 modifier = SBT_1NS;
  547                 break;
  548         default:
  549                 return (-1);
  550         }
  551 
  552 #ifdef __LP64__
  553         if (data > SBT_MAX / modifier)
  554                 return (SBT_MAX);
  555 #endif
  556         return (modifier * data);
  557 }
  558 
  559 static void
  560 filt_timerexpire(void *knx)
  561 {
  562         struct callout *calloutp;
  563         struct knote *kn;
  564 
  565         kn = knx;
  566         kn->kn_data++;
  567         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  568 
  569         if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
  570                 calloutp = (struct callout *)kn->kn_hook;
  571                 *kn->kn_ptr.p_nexttime += timer2sbintime(kn->kn_sdata,
  572                     kn->kn_sfflags);
  573                 callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
  574                     filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
  575         }
  576 }
  577 
  578 /*
  579  * data contains amount of time to sleep
  580  */
  581 static int
  582 filt_timerattach(struct knote *kn)
  583 {
  584         struct callout *calloutp;
  585         sbintime_t to;
  586         unsigned int ncallouts;
  587 
  588         if ((intptr_t)kn->kn_sdata < 0)
  589                 return (EINVAL);
  590         if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  591                 kn->kn_sdata = 1;
  592         /* Only precision unit are supported in flags so far */
  593         if (kn->kn_sfflags & ~NOTE_TIMER_PRECMASK)
  594                 return (EINVAL);
  595 
  596         to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  597         if (to < 0)
  598                 return (EINVAL);
  599 
  600         ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed);
  601         do {
  602                 if (ncallouts >= kq_calloutmax)
  603                         return (ENOMEM);
  604         } while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts,
  605             &ncallouts, ncallouts + 1, memory_order_relaxed,
  606             memory_order_relaxed));
  607 
  608         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  609         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  610         kn->kn_ptr.p_nexttime = malloc(sizeof(sbintime_t), M_KQUEUE, M_WAITOK);
  611         calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
  612         callout_init(calloutp, CALLOUT_MPSAFE);
  613         kn->kn_hook = calloutp;
  614         *kn->kn_ptr.p_nexttime = to + sbinuptime();
  615         callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
  616             filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
  617 
  618         return (0);
  619 }
  620 
  621 static void
  622 filt_timerdetach(struct knote *kn)
  623 {
  624         struct callout *calloutp;
  625         unsigned int old;
  626 
  627         calloutp = (struct callout *)kn->kn_hook;
  628         callout_drain(calloutp);
  629         free(calloutp, M_KQUEUE);
  630         free(kn->kn_ptr.p_nexttime, M_KQUEUE);
  631         old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed);
  632         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  633         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  634 }
  635 
  636 static int
  637 filt_timer(struct knote *kn, long hint)
  638 {
  639 
  640         return (kn->kn_data != 0);
  641 }
  642 
  643 static int
  644 filt_userattach(struct knote *kn)
  645 {
  646 
  647         /* 
  648          * EVFILT_USER knotes are not attached to anything in the kernel.
  649          */ 
  650         kn->kn_hook = NULL;
  651         if (kn->kn_fflags & NOTE_TRIGGER)
  652                 kn->kn_hookid = 1;
  653         else
  654                 kn->kn_hookid = 0;
  655         return (0);
  656 }
  657 
  658 static void
  659 filt_userdetach(__unused struct knote *kn)
  660 {
  661 
  662         /*
  663          * EVFILT_USER knotes are not attached to anything in the kernel.
  664          */
  665 }
  666 
  667 static int
  668 filt_user(struct knote *kn, __unused long hint)
  669 {
  670 
  671         return (kn->kn_hookid);
  672 }
  673 
  674 static void
  675 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  676 {
  677         u_int ffctrl;
  678 
  679         switch (type) {
  680         case EVENT_REGISTER:
  681                 if (kev->fflags & NOTE_TRIGGER)
  682                         kn->kn_hookid = 1;
  683 
  684                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  685                 kev->fflags &= NOTE_FFLAGSMASK;
  686                 switch (ffctrl) {
  687                 case NOTE_FFNOP:
  688                         break;
  689 
  690                 case NOTE_FFAND:
  691                         kn->kn_sfflags &= kev->fflags;
  692                         break;
  693 
  694                 case NOTE_FFOR:
  695                         kn->kn_sfflags |= kev->fflags;
  696                         break;
  697 
  698                 case NOTE_FFCOPY:
  699                         kn->kn_sfflags = kev->fflags;
  700                         break;
  701 
  702                 default:
  703                         /* XXX Return error? */
  704                         break;
  705                 }
  706                 kn->kn_sdata = kev->data;
  707                 if (kev->flags & EV_CLEAR) {
  708                         kn->kn_hookid = 0;
  709                         kn->kn_data = 0;
  710                         kn->kn_fflags = 0;
  711                 }
  712                 break;
  713 
  714         case EVENT_PROCESS:
  715                 *kev = kn->kn_kevent;
  716                 kev->fflags = kn->kn_sfflags;
  717                 kev->data = kn->kn_sdata;
  718                 if (kn->kn_flags & EV_CLEAR) {
  719                         kn->kn_hookid = 0;
  720                         kn->kn_data = 0;
  721                         kn->kn_fflags = 0;
  722                 }
  723                 break;
  724 
  725         default:
  726                 panic("filt_usertouch() - invalid type (%ld)", type);
  727                 break;
  728         }
  729 }
  730 
  731 int
  732 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  733 {
  734         struct filedesc *fdp;
  735         struct kqueue *kq;
  736         struct file *fp;
  737         int fd, error;
  738 
  739         fdp = td->td_proc->p_fd;
  740         error = falloc(td, &fp, &fd, 0);
  741         if (error)
  742                 goto done2;
  743 
  744         /* An extra reference on `fp' has been held for us by falloc(). */
  745         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  746         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
  747         TAILQ_INIT(&kq->kq_head);
  748         kq->kq_fdp = fdp;
  749         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  750         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  751 
  752         FILEDESC_XLOCK(fdp);
  753         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  754         FILEDESC_XUNLOCK(fdp);
  755 
  756         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
  757         fdrop(fp, td);
  758 
  759         td->td_retval[0] = fd;
  760 done2:
  761         return (error);
  762 }
  763 
  764 #ifndef _SYS_SYSPROTO_H_
  765 struct kevent_args {
  766         int     fd;
  767         const struct kevent *changelist;
  768         int     nchanges;
  769         struct  kevent *eventlist;
  770         int     nevents;
  771         const struct timespec *timeout;
  772 };
  773 #endif
  774 int
  775 sys_kevent(struct thread *td, struct kevent_args *uap)
  776 {
  777         struct timespec ts, *tsp;
  778         struct kevent_copyops k_ops = { uap,
  779                                         kevent_copyout,
  780                                         kevent_copyin};
  781         int error;
  782 #ifdef KTRACE
  783         struct uio ktruio;
  784         struct iovec ktriov;
  785         struct uio *ktruioin = NULL;
  786         struct uio *ktruioout = NULL;
  787 #endif
  788 
  789         if (uap->timeout != NULL) {
  790                 error = copyin(uap->timeout, &ts, sizeof(ts));
  791                 if (error)
  792                         return (error);
  793                 tsp = &ts;
  794         } else
  795                 tsp = NULL;
  796 
  797 #ifdef KTRACE
  798         if (KTRPOINT(td, KTR_GENIO)) {
  799                 ktriov.iov_base = uap->changelist;
  800                 ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
  801                 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
  802                     .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
  803                     .uio_td = td };
  804                 ktruioin = cloneuio(&ktruio);
  805                 ktriov.iov_base = uap->eventlist;
  806                 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
  807                 ktruioout = cloneuio(&ktruio);
  808         }
  809 #endif
  810 
  811         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  812             &k_ops, tsp);
  813 
  814 #ifdef KTRACE
  815         if (ktruioin != NULL) {
  816                 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
  817                 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
  818                 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
  819                 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
  820         }
  821 #endif
  822 
  823         return (error);
  824 }
  825 
  826 /*
  827  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  828  */
  829 static int
  830 kevent_copyout(void *arg, struct kevent *kevp, int count)
  831 {
  832         struct kevent_args *uap;
  833         int error;
  834 
  835         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  836         uap = (struct kevent_args *)arg;
  837 
  838         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  839         if (error == 0)
  840                 uap->eventlist += count;
  841         return (error);
  842 }
  843 
  844 /*
  845  * Copy 'count' items from the list pointed to by uap->changelist.
  846  */
  847 static int
  848 kevent_copyin(void *arg, struct kevent *kevp, int count)
  849 {
  850         struct kevent_args *uap;
  851         int error;
  852 
  853         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  854         uap = (struct kevent_args *)arg;
  855 
  856         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  857         if (error == 0)
  858                 uap->changelist += count;
  859         return (error);
  860 }
  861 
  862 int
  863 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  864     struct kevent_copyops *k_ops, const struct timespec *timeout)
  865 {
  866         struct kevent keva[KQ_NEVENTS];
  867         struct kevent *kevp, *changes;
  868         struct kqueue *kq;
  869         struct file *fp;
  870         cap_rights_t rights;
  871         int i, n, nerrors, error;
  872 
  873         cap_rights_init(&rights);
  874         if (nchanges > 0)
  875                 cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
  876         if (nevents > 0)
  877                 cap_rights_set(&rights, CAP_KQUEUE_EVENT);
  878         error = fget(td, fd, &rights, &fp);
  879         if (error != 0)
  880                 return (error);
  881 
  882         error = kqueue_acquire(fp, &kq);
  883         if (error != 0)
  884                 goto done_norel;
  885 
  886         nerrors = 0;
  887 
  888         while (nchanges > 0) {
  889                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  890                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  891                 if (error)
  892                         goto done;
  893                 changes = keva;
  894                 for (i = 0; i < n; i++) {
  895                         kevp = &changes[i];
  896                         if (!kevp->filter)
  897                                 continue;
  898                         kevp->flags &= ~EV_SYSFLAGS;
  899                         error = kqueue_register(kq, kevp, td, 1);
  900                         if (error || (kevp->flags & EV_RECEIPT)) {
  901                                 if (nevents != 0) {
  902                                         kevp->flags = EV_ERROR;
  903                                         kevp->data = error;
  904                                         (void) k_ops->k_copyout(k_ops->arg,
  905                                             kevp, 1);
  906                                         nevents--;
  907                                         nerrors++;
  908                                 } else {
  909                                         goto done;
  910                                 }
  911                         }
  912                 }
  913                 nchanges -= n;
  914         }
  915         if (nerrors) {
  916                 td->td_retval[0] = nerrors;
  917                 error = 0;
  918                 goto done;
  919         }
  920 
  921         error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
  922 done:
  923         kqueue_release(kq, 0);
  924 done_norel:
  925         fdrop(fp, td);
  926         return (error);
  927 }
  928 
  929 int
  930 kqueue_add_filteropts(int filt, struct filterops *filtops)
  931 {
  932         int error;
  933 
  934         error = 0;
  935         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
  936                 printf(
  937 "trying to add a filterop that is out of range: %d is beyond %d\n",
  938                     ~filt, EVFILT_SYSCOUNT);
  939                 return EINVAL;
  940         }
  941         mtx_lock(&filterops_lock);
  942         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
  943             sysfilt_ops[~filt].for_fop != NULL)
  944                 error = EEXIST;
  945         else {
  946                 sysfilt_ops[~filt].for_fop = filtops;
  947                 sysfilt_ops[~filt].for_refcnt = 0;
  948         }
  949         mtx_unlock(&filterops_lock);
  950 
  951         return (error);
  952 }
  953 
  954 int
  955 kqueue_del_filteropts(int filt)
  956 {
  957         int error;
  958 
  959         error = 0;
  960         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  961                 return EINVAL;
  962 
  963         mtx_lock(&filterops_lock);
  964         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
  965             sysfilt_ops[~filt].for_fop == NULL)
  966                 error = EINVAL;
  967         else if (sysfilt_ops[~filt].for_refcnt != 0)
  968                 error = EBUSY;
  969         else {
  970                 sysfilt_ops[~filt].for_fop = &null_filtops;
  971                 sysfilt_ops[~filt].for_refcnt = 0;
  972         }
  973         mtx_unlock(&filterops_lock);
  974 
  975         return error;
  976 }
  977 
  978 static struct filterops *
  979 kqueue_fo_find(int filt)
  980 {
  981 
  982         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  983                 return NULL;
  984 
  985         mtx_lock(&filterops_lock);
  986         sysfilt_ops[~filt].for_refcnt++;
  987         if (sysfilt_ops[~filt].for_fop == NULL)
  988                 sysfilt_ops[~filt].for_fop = &null_filtops;
  989         mtx_unlock(&filterops_lock);
  990 
  991         return sysfilt_ops[~filt].for_fop;
  992 }
  993 
  994 static void
  995 kqueue_fo_release(int filt)
  996 {
  997 
  998         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  999                 return;
 1000 
 1001         mtx_lock(&filterops_lock);
 1002         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1003             ("filter object refcount not valid on release"));
 1004         sysfilt_ops[~filt].for_refcnt--;
 1005         mtx_unlock(&filterops_lock);
 1006 }
 1007 
 1008 /*
 1009  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
 1010  * influence if memory allocation should wait.  Make sure it is 0 if you
 1011  * hold any mutexes.
 1012  */
 1013 static int
 1014 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
 1015 {
 1016         struct filterops *fops;
 1017         struct file *fp;
 1018         struct knote *kn, *tkn;
 1019         cap_rights_t rights;
 1020         int error, filt, event;
 1021         int haskqglobal, filedesc_unlock;
 1022 
 1023         fp = NULL;
 1024         kn = NULL;
 1025         error = 0;
 1026         haskqglobal = 0;
 1027         filedesc_unlock = 0;
 1028 
 1029         filt = kev->filter;
 1030         fops = kqueue_fo_find(filt);
 1031         if (fops == NULL)
 1032                 return EINVAL;
 1033 
 1034         tkn = knote_alloc(waitok);              /* prevent waiting with locks */
 1035 
 1036 findkn:
 1037         if (fops->f_isfd) {
 1038                 KASSERT(td != NULL, ("td is NULL"));
 1039                 error = fget(td, kev->ident,
 1040                     cap_rights_init(&rights, CAP_EVENT), &fp);
 1041                 if (error)
 1042                         goto done;
 1043 
 1044                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1045                     kev->ident, 0) != 0) {
 1046                         /* try again */
 1047                         fdrop(fp, td);
 1048                         fp = NULL;
 1049                         error = kqueue_expand(kq, fops, kev->ident, waitok);
 1050                         if (error)
 1051                                 goto done;
 1052                         goto findkn;
 1053                 }
 1054 
 1055                 if (fp->f_type == DTYPE_KQUEUE) {
 1056                         /*
 1057                          * if we add some inteligence about what we are doing,
 1058                          * we should be able to support events on ourselves.
 1059                          * We need to know when we are doing this to prevent
 1060                          * getting both the knlist lock and the kq lock since
 1061                          * they are the same thing.
 1062                          */
 1063                         if (fp->f_data == kq) {
 1064                                 error = EINVAL;
 1065                                 goto done;
 1066                         }
 1067 
 1068                         /*
 1069                          * Pre-lock the filedesc before the global
 1070                          * lock mutex, see the comment in
 1071                          * kqueue_close().
 1072                          */
 1073                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1074                         filedesc_unlock = 1;
 1075                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1076                 }
 1077 
 1078                 KQ_LOCK(kq);
 1079                 if (kev->ident < kq->kq_knlistsize) {
 1080                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1081                                 if (kev->filter == kn->kn_filter)
 1082                                         break;
 1083                 }
 1084         } else {
 1085                 if ((kev->flags & EV_ADD) == EV_ADD)
 1086                         kqueue_expand(kq, fops, kev->ident, waitok);
 1087 
 1088                 KQ_LOCK(kq);
 1089                 if (kq->kq_knhashmask != 0) {
 1090                         struct klist *list;
 1091 
 1092                         list = &kq->kq_knhash[
 1093                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1094                         SLIST_FOREACH(kn, list, kn_link)
 1095                                 if (kev->ident == kn->kn_id &&
 1096                                     kev->filter == kn->kn_filter)
 1097                                         break;
 1098                 }
 1099         }
 1100 
 1101         /* knote is in the process of changing, wait for it to stablize. */
 1102         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1103                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1104                 if (filedesc_unlock) {
 1105                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1106                         filedesc_unlock = 0;
 1107                 }
 1108                 kq->kq_state |= KQ_FLUXWAIT;
 1109                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1110                 if (fp != NULL) {
 1111                         fdrop(fp, td);
 1112                         fp = NULL;
 1113                 }
 1114                 goto findkn;
 1115         }
 1116 
 1117         /*
 1118          * kn now contains the matching knote, or NULL if no match
 1119          */
 1120         if (kn == NULL) {
 1121                 if (kev->flags & EV_ADD) {
 1122                         kn = tkn;
 1123                         tkn = NULL;
 1124                         if (kn == NULL) {
 1125                                 KQ_UNLOCK(kq);
 1126                                 error = ENOMEM;
 1127                                 goto done;
 1128                         }
 1129                         kn->kn_fp = fp;
 1130                         kn->kn_kq = kq;
 1131                         kn->kn_fop = fops;
 1132                         /*
 1133                          * apply reference counts to knote structure, and
 1134                          * do not release it at the end of this routine.
 1135                          */
 1136                         fops = NULL;
 1137                         fp = NULL;
 1138 
 1139                         kn->kn_sfflags = kev->fflags;
 1140                         kn->kn_sdata = kev->data;
 1141                         kev->fflags = 0;
 1142                         kev->data = 0;
 1143                         kn->kn_kevent = *kev;
 1144                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1145                             EV_ENABLE | EV_DISABLE);
 1146                         kn->kn_status = KN_INFLUX|KN_DETACHED;
 1147 
 1148                         error = knote_attach(kn, kq);
 1149                         KQ_UNLOCK(kq);
 1150                         if (error != 0) {
 1151                                 tkn = kn;
 1152                                 goto done;
 1153                         }
 1154 
 1155                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1156                                 knote_drop(kn, td);
 1157                                 goto done;
 1158                         }
 1159                         KN_LIST_LOCK(kn);
 1160                         goto done_ev_add;
 1161                 } else {
 1162                         /* No matching knote and the EV_ADD flag is not set. */
 1163                         KQ_UNLOCK(kq);
 1164                         error = ENOENT;
 1165                         goto done;
 1166                 }
 1167         }
 1168         
 1169         if (kev->flags & EV_DELETE) {
 1170                 kn->kn_status |= KN_INFLUX;
 1171                 KQ_UNLOCK(kq);
 1172                 if (!(kn->kn_status & KN_DETACHED))
 1173                         kn->kn_fop->f_detach(kn);
 1174                 knote_drop(kn, td);
 1175                 goto done;
 1176         }
 1177 
 1178         /*
 1179          * The user may change some filter values after the initial EV_ADD,
 1180          * but doing so will not reset any filter which has already been
 1181          * triggered.
 1182          */
 1183         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1184         KQ_UNLOCK(kq);
 1185         KN_LIST_LOCK(kn);
 1186         kn->kn_kevent.udata = kev->udata;
 1187         if (!fops->f_isfd && fops->f_touch != NULL) {
 1188                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1189         } else {
 1190                 kn->kn_sfflags = kev->fflags;
 1191                 kn->kn_sdata = kev->data;
 1192         }
 1193 
 1194         /*
 1195          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1196          * the initial attach event decides that the event is "completed" 
 1197          * already.  i.e. filt_procattach is called on a zombie process.  It
 1198          * will call filt_proc which will remove it from the list, and NULL
 1199          * kn_knlist.
 1200          */
 1201 done_ev_add:
 1202         event = kn->kn_fop->f_event(kn, 0);
 1203         KQ_LOCK(kq);
 1204         if (event)
 1205                 KNOTE_ACTIVATE(kn, 1);
 1206         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1207         KN_LIST_UNLOCK(kn);
 1208 
 1209         if ((kev->flags & EV_DISABLE) &&
 1210             ((kn->kn_status & KN_DISABLED) == 0)) {
 1211                 kn->kn_status |= KN_DISABLED;
 1212         }
 1213 
 1214         if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
 1215                 kn->kn_status &= ~KN_DISABLED;
 1216                 if ((kn->kn_status & KN_ACTIVE) &&
 1217                     ((kn->kn_status & KN_QUEUED) == 0))
 1218                         knote_enqueue(kn);
 1219         }
 1220         KQ_UNLOCK_FLUX(kq);
 1221 
 1222 done:
 1223         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1224         if (filedesc_unlock)
 1225                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1226         if (fp != NULL)
 1227                 fdrop(fp, td);
 1228         if (tkn != NULL)
 1229                 knote_free(tkn);
 1230         if (fops != NULL)
 1231                 kqueue_fo_release(filt);
 1232         return (error);
 1233 }
 1234 
 1235 static int
 1236 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1237 {
 1238         int error;
 1239         struct kqueue *kq;
 1240 
 1241         error = 0;
 1242 
 1243         kq = fp->f_data;
 1244         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1245                 return (EBADF);
 1246         *kqp = kq;
 1247         KQ_LOCK(kq);
 1248         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1249                 KQ_UNLOCK(kq);
 1250                 return (EBADF);
 1251         }
 1252         kq->kq_refcnt++;
 1253         KQ_UNLOCK(kq);
 1254 
 1255         return error;
 1256 }
 1257 
 1258 static void
 1259 kqueue_release(struct kqueue *kq, int locked)
 1260 {
 1261         if (locked)
 1262                 KQ_OWNED(kq);
 1263         else
 1264                 KQ_LOCK(kq);
 1265         kq->kq_refcnt--;
 1266         if (kq->kq_refcnt == 1)
 1267                 wakeup(&kq->kq_refcnt);
 1268         if (!locked)
 1269                 KQ_UNLOCK(kq);
 1270 }
 1271 
 1272 static void
 1273 kqueue_schedtask(struct kqueue *kq)
 1274 {
 1275 
 1276         KQ_OWNED(kq);
 1277         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1278             ("scheduling kqueue task while draining"));
 1279 
 1280         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1281                 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
 1282                 kq->kq_state |= KQ_TASKSCHED;
 1283         }
 1284 }
 1285 
 1286 /*
 1287  * Expand the kq to make sure we have storage for fops/ident pair.
 1288  *
 1289  * Return 0 on success (or no work necessary), return errno on failure.
 1290  *
 1291  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1292  * If kqueue_register is called from a non-fd context, there usually/should
 1293  * be no locks held.
 1294  */
 1295 static int
 1296 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1297         int waitok)
 1298 {
 1299         struct klist *list, *tmp_knhash, *to_free;
 1300         u_long tmp_knhashmask;
 1301         int size;
 1302         int fd;
 1303         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1304 
 1305         KQ_NOTOWNED(kq);
 1306 
 1307         to_free = NULL;
 1308         if (fops->f_isfd) {
 1309                 fd = ident;
 1310                 if (kq->kq_knlistsize <= fd) {
 1311                         size = kq->kq_knlistsize;
 1312                         while (size <= fd)
 1313                                 size += KQEXTENT;
 1314                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1315                         if (list == NULL)
 1316                                 return ENOMEM;
 1317                         KQ_LOCK(kq);
 1318                         if (kq->kq_knlistsize > fd) {
 1319                                 to_free = list;
 1320                                 list = NULL;
 1321                         } else {
 1322                                 if (kq->kq_knlist != NULL) {
 1323                                         bcopy(kq->kq_knlist, list,
 1324                                             kq->kq_knlistsize * sizeof(*list));
 1325                                         to_free = kq->kq_knlist;
 1326                                         kq->kq_knlist = NULL;
 1327                                 }
 1328                                 bzero((caddr_t)list +
 1329                                     kq->kq_knlistsize * sizeof(*list),
 1330                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1331                                 kq->kq_knlistsize = size;
 1332                                 kq->kq_knlist = list;
 1333                         }
 1334                         KQ_UNLOCK(kq);
 1335                 }
 1336         } else {
 1337                 if (kq->kq_knhashmask == 0) {
 1338                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1339                             &tmp_knhashmask);
 1340                         if (tmp_knhash == NULL)
 1341                                 return ENOMEM;
 1342                         KQ_LOCK(kq);
 1343                         if (kq->kq_knhashmask == 0) {
 1344                                 kq->kq_knhash = tmp_knhash;
 1345                                 kq->kq_knhashmask = tmp_knhashmask;
 1346                         } else {
 1347                                 to_free = tmp_knhash;
 1348                         }
 1349                         KQ_UNLOCK(kq);
 1350                 }
 1351         }
 1352         free(to_free, M_KQUEUE);
 1353 
 1354         KQ_NOTOWNED(kq);
 1355         return 0;
 1356 }
 1357 
 1358 static void
 1359 kqueue_task(void *arg, int pending)
 1360 {
 1361         struct kqueue *kq;
 1362         int haskqglobal;
 1363 
 1364         haskqglobal = 0;
 1365         kq = arg;
 1366 
 1367         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1368         KQ_LOCK(kq);
 1369 
 1370         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1371 
 1372         kq->kq_state &= ~KQ_TASKSCHED;
 1373         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1374                 wakeup(&kq->kq_state);
 1375         }
 1376         KQ_UNLOCK(kq);
 1377         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1378 }
 1379 
 1380 /*
 1381  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1382  * We treat KN_MARKER knotes as if they are INFLUX.
 1383  */
 1384 static int
 1385 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1386     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1387 {
 1388         struct kevent *kevp;
 1389         struct knote *kn, *marker;
 1390         sbintime_t asbt, rsbt;
 1391         int count, error, haskqglobal, influx, nkev, touch;
 1392 
 1393         count = maxevents;
 1394         nkev = 0;
 1395         error = 0;
 1396         haskqglobal = 0;
 1397 
 1398         if (maxevents == 0)
 1399                 goto done_nl;
 1400 
 1401         rsbt = 0;
 1402         if (tsp != NULL) {
 1403                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1404                     tsp->tv_nsec >= 1000000000) {
 1405                         error = EINVAL;
 1406                         goto done_nl;
 1407                 }
 1408                 if (timespecisset(tsp)) {
 1409                         if (tsp->tv_sec <= INT32_MAX) {
 1410                                 rsbt = tstosbt(*tsp);
 1411                                 if (TIMESEL(&asbt, rsbt))
 1412                                         asbt += tc_tick_sbt;
 1413                                 if (asbt <= INT64_MAX - rsbt)
 1414                                         asbt += rsbt;
 1415                                 else
 1416                                         asbt = 0;
 1417                                 rsbt >>= tc_precexp;
 1418                         } else
 1419                                 asbt = 0;
 1420                 } else
 1421                         asbt = -1;
 1422         } else
 1423                 asbt = 0;
 1424         marker = knote_alloc(1);
 1425         if (marker == NULL) {
 1426                 error = ENOMEM;
 1427                 goto done_nl;
 1428         }
 1429         marker->kn_status = KN_MARKER;
 1430         KQ_LOCK(kq);
 1431 
 1432 retry:
 1433         kevp = keva;
 1434         if (kq->kq_count == 0) {
 1435                 if (asbt == -1) {
 1436                         error = EWOULDBLOCK;
 1437                 } else {
 1438                         kq->kq_state |= KQ_SLEEP;
 1439                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1440                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1441                 }
 1442                 if (error == 0)
 1443                         goto retry;
 1444                 /* don't restart after signals... */
 1445                 if (error == ERESTART)
 1446                         error = EINTR;
 1447                 else if (error == EWOULDBLOCK)
 1448                         error = 0;
 1449                 goto done;
 1450         }
 1451 
 1452         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1453         influx = 0;
 1454         while (count) {
 1455                 KQ_OWNED(kq);
 1456                 kn = TAILQ_FIRST(&kq->kq_head);
 1457 
 1458                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1459                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1460                         if (influx) {
 1461                                 influx = 0;
 1462                                 KQ_FLUX_WAKEUP(kq);
 1463                         }
 1464                         kq->kq_state |= KQ_FLUXWAIT;
 1465                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1466                             "kqflxwt", 0);
 1467                         continue;
 1468                 }
 1469 
 1470                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1471                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1472                         kn->kn_status &= ~KN_QUEUED;
 1473                         kq->kq_count--;
 1474                         continue;
 1475                 }
 1476                 if (kn == marker) {
 1477                         KQ_FLUX_WAKEUP(kq);
 1478                         if (count == maxevents)
 1479                                 goto retry;
 1480                         goto done;
 1481                 }
 1482                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1483                     ("KN_INFLUX set when not suppose to be"));
 1484 
 1485                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1486                         kn->kn_status &= ~KN_QUEUED;
 1487                         kn->kn_status |= KN_INFLUX;
 1488                         kq->kq_count--;
 1489                         KQ_UNLOCK(kq);
 1490                         /*
 1491                          * We don't need to lock the list since we've marked
 1492                          * it _INFLUX.
 1493                          */
 1494                         if (!(kn->kn_status & KN_DETACHED))
 1495                                 kn->kn_fop->f_detach(kn);
 1496                         knote_drop(kn, td);
 1497                         KQ_LOCK(kq);
 1498                         continue;
 1499                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1500                         kn->kn_status &= ~KN_QUEUED;
 1501                         kn->kn_status |= KN_INFLUX;
 1502                         kq->kq_count--;
 1503                         KQ_UNLOCK(kq);
 1504                         /*
 1505                          * We don't need to lock the list since we've marked
 1506                          * it _INFLUX.
 1507                          */
 1508                         *kevp = kn->kn_kevent;
 1509                         if (!(kn->kn_status & KN_DETACHED))
 1510                                 kn->kn_fop->f_detach(kn);
 1511                         knote_drop(kn, td);
 1512                         KQ_LOCK(kq);
 1513                         kn = NULL;
 1514                 } else {
 1515                         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1516                         KQ_UNLOCK(kq);
 1517                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1518                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1519                         KN_LIST_LOCK(kn);
 1520                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1521                                 KQ_LOCK(kq);
 1522                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1523                                 kn->kn_status &=
 1524                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
 1525                                     KN_SCAN);
 1526                                 kq->kq_count--;
 1527                                 KN_LIST_UNLOCK(kn);
 1528                                 influx = 1;
 1529                                 continue;
 1530                         }
 1531                         touch = (!kn->kn_fop->f_isfd &&
 1532                             kn->kn_fop->f_touch != NULL);
 1533                         if (touch)
 1534                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1535                         else
 1536                                 *kevp = kn->kn_kevent;
 1537                         KQ_LOCK(kq);
 1538                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1539                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1540                                 /* 
 1541                                  * Manually clear knotes who weren't 
 1542                                  * 'touch'ed.
 1543                                  */
 1544                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1545                                         kn->kn_data = 0;
 1546                                         kn->kn_fflags = 0;
 1547                                 }
 1548                                 if (kn->kn_flags & EV_DISPATCH)
 1549                                         kn->kn_status |= KN_DISABLED;
 1550                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1551                                 kq->kq_count--;
 1552                         } else
 1553                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1554                         
 1555                         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1556                         KN_LIST_UNLOCK(kn);
 1557                         influx = 1;
 1558                 }
 1559 
 1560                 /* we are returning a copy to the user */
 1561                 kevp++;
 1562                 nkev++;
 1563                 count--;
 1564 
 1565                 if (nkev == KQ_NEVENTS) {
 1566                         influx = 0;
 1567                         KQ_UNLOCK_FLUX(kq);
 1568                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1569                         nkev = 0;
 1570                         kevp = keva;
 1571                         KQ_LOCK(kq);
 1572                         if (error)
 1573                                 break;
 1574                 }
 1575         }
 1576         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1577 done:
 1578         KQ_OWNED(kq);
 1579         KQ_UNLOCK_FLUX(kq);
 1580         knote_free(marker);
 1581 done_nl:
 1582         KQ_NOTOWNED(kq);
 1583         if (nkev != 0)
 1584                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1585         td->td_retval[0] = maxevents - count;
 1586         return (error);
 1587 }
 1588 
 1589 /*
 1590  * XXX
 1591  * This could be expanded to call kqueue_scan, if desired.
 1592  */
 1593 /*ARGSUSED*/
 1594 static int
 1595 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1596         int flags, struct thread *td)
 1597 {
 1598         return (ENXIO);
 1599 }
 1600 
 1601 /*ARGSUSED*/
 1602 static int
 1603 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1604          int flags, struct thread *td)
 1605 {
 1606         return (ENXIO);
 1607 }
 1608 
 1609 /*ARGSUSED*/
 1610 static int
 1611 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1612         struct thread *td)
 1613 {
 1614 
 1615         return (EINVAL);
 1616 }
 1617 
 1618 /*ARGSUSED*/
 1619 static int
 1620 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1621         struct ucred *active_cred, struct thread *td)
 1622 {
 1623         /*
 1624          * Enabling sigio causes two major problems:
 1625          * 1) infinite recursion:
 1626          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1627          * set.  On receipt of a signal this will cause a kqueue to recurse
 1628          * into itself over and over.  Sending the sigio causes the kqueue
 1629          * to become ready, which in turn posts sigio again, forever.
 1630          * Solution: this can be solved by setting a flag in the kqueue that
 1631          * we have a SIGIO in progress.
 1632          * 2) locking problems:
 1633          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1634          * us above the proc and pgrp locks.
 1635          * Solution: Post a signal using an async mechanism, being sure to
 1636          * record a generation count in the delivery so that we do not deliver
 1637          * a signal to the wrong process.
 1638          *
 1639          * Note, these two mechanisms are somewhat mutually exclusive!
 1640          */
 1641 #if 0
 1642         struct kqueue *kq;
 1643 
 1644         kq = fp->f_data;
 1645         switch (cmd) {
 1646         case FIOASYNC:
 1647                 if (*(int *)data) {
 1648                         kq->kq_state |= KQ_ASYNC;
 1649                 } else {
 1650                         kq->kq_state &= ~KQ_ASYNC;
 1651                 }
 1652                 return (0);
 1653 
 1654         case FIOSETOWN:
 1655                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1656 
 1657         case FIOGETOWN:
 1658                 *(int *)data = fgetown(&kq->kq_sigio);
 1659                 return (0);
 1660         }
 1661 #endif
 1662 
 1663         return (ENOTTY);
 1664 }
 1665 
 1666 /*ARGSUSED*/
 1667 static int
 1668 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1669         struct thread *td)
 1670 {
 1671         struct kqueue *kq;
 1672         int revents = 0;
 1673         int error;
 1674 
 1675         if ((error = kqueue_acquire(fp, &kq)))
 1676                 return POLLERR;
 1677 
 1678         KQ_LOCK(kq);
 1679         if (events & (POLLIN | POLLRDNORM)) {
 1680                 if (kq->kq_count) {
 1681                         revents |= events & (POLLIN | POLLRDNORM);
 1682                 } else {
 1683                         selrecord(td, &kq->kq_sel);
 1684                         if (SEL_WAITING(&kq->kq_sel))
 1685                                 kq->kq_state |= KQ_SEL;
 1686                 }
 1687         }
 1688         kqueue_release(kq, 1);
 1689         KQ_UNLOCK(kq);
 1690         return (revents);
 1691 }
 1692 
 1693 /*ARGSUSED*/
 1694 static int
 1695 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1696         struct thread *td)
 1697 {
 1698 
 1699         bzero((void *)st, sizeof *st);
 1700         /*
 1701          * We no longer return kq_count because the unlocked value is useless.
 1702          * If you spent all this time getting the count, why not spend your
 1703          * syscall better by calling kevent?
 1704          *
 1705          * XXX - This is needed for libc_r.
 1706          */
 1707         st->st_mode = S_IFIFO;
 1708         return (0);
 1709 }
 1710 
 1711 /*ARGSUSED*/
 1712 static int
 1713 kqueue_close(struct file *fp, struct thread *td)
 1714 {
 1715         struct kqueue *kq = fp->f_data;
 1716         struct filedesc *fdp;
 1717         struct knote *kn;
 1718         int i;
 1719         int error;
 1720         int filedesc_unlock;
 1721 
 1722         if ((error = kqueue_acquire(fp, &kq)))
 1723                 return error;
 1724 
 1725         filedesc_unlock = 0;
 1726         KQ_LOCK(kq);
 1727 
 1728         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1729             ("kqueue already closing"));
 1730         kq->kq_state |= KQ_CLOSING;
 1731         if (kq->kq_refcnt > 1)
 1732                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1733 
 1734         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1735         fdp = kq->kq_fdp;
 1736 
 1737         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1738             ("kqueue's knlist not empty"));
 1739 
 1740         for (i = 0; i < kq->kq_knlistsize; i++) {
 1741                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1742                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1743                                 kq->kq_state |= KQ_FLUXWAIT;
 1744                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1745                                 continue;
 1746                         }
 1747                         kn->kn_status |= KN_INFLUX;
 1748                         KQ_UNLOCK(kq);
 1749                         if (!(kn->kn_status & KN_DETACHED))
 1750                                 kn->kn_fop->f_detach(kn);
 1751                         knote_drop(kn, td);
 1752                         KQ_LOCK(kq);
 1753                 }
 1754         }
 1755         if (kq->kq_knhashmask != 0) {
 1756                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1757                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1758                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1759                                         kq->kq_state |= KQ_FLUXWAIT;
 1760                                         msleep(kq, &kq->kq_lock, PSOCK,
 1761                                                "kqclo2", 0);
 1762                                         continue;
 1763                                 }
 1764                                 kn->kn_status |= KN_INFLUX;
 1765                                 KQ_UNLOCK(kq);
 1766                                 if (!(kn->kn_status & KN_DETACHED))
 1767                                         kn->kn_fop->f_detach(kn);
 1768                                 knote_drop(kn, td);
 1769                                 KQ_LOCK(kq);
 1770                         }
 1771                 }
 1772         }
 1773 
 1774         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1775                 kq->kq_state |= KQ_TASKDRAIN;
 1776                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1777         }
 1778 
 1779         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1780                 selwakeuppri(&kq->kq_sel, PSOCK);
 1781                 if (!SEL_WAITING(&kq->kq_sel))
 1782                         kq->kq_state &= ~KQ_SEL;
 1783         }
 1784 
 1785         KQ_UNLOCK(kq);
 1786 
 1787         /*
 1788          * We could be called due to the knote_drop() doing fdrop(),
 1789          * called from kqueue_register().  In this case the global
 1790          * lock is owned, and filedesc sx is locked before, to not
 1791          * take the sleepable lock after non-sleepable.
 1792          */
 1793         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 1794                 FILEDESC_XLOCK(fdp);
 1795                 filedesc_unlock = 1;
 1796         } else
 1797                 filedesc_unlock = 0;
 1798         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 1799         if (filedesc_unlock)
 1800                 FILEDESC_XUNLOCK(fdp);
 1801 
 1802         seldrain(&kq->kq_sel);
 1803         knlist_destroy(&kq->kq_sel.si_note);
 1804         mtx_destroy(&kq->kq_lock);
 1805         kq->kq_fdp = NULL;
 1806 
 1807         if (kq->kq_knhash != NULL)
 1808                 free(kq->kq_knhash, M_KQUEUE);
 1809         if (kq->kq_knlist != NULL)
 1810                 free(kq->kq_knlist, M_KQUEUE);
 1811 
 1812         funsetown(&kq->kq_sigio);
 1813         free(kq, M_KQUEUE);
 1814         fp->f_data = NULL;
 1815 
 1816         return (0);
 1817 }
 1818 
 1819 static void
 1820 kqueue_wakeup(struct kqueue *kq)
 1821 {
 1822         KQ_OWNED(kq);
 1823 
 1824         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1825                 kq->kq_state &= ~KQ_SLEEP;
 1826                 wakeup(kq);
 1827         }
 1828         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1829                 selwakeuppri(&kq->kq_sel, PSOCK);
 1830                 if (!SEL_WAITING(&kq->kq_sel))
 1831                         kq->kq_state &= ~KQ_SEL;
 1832         }
 1833         if (!knlist_empty(&kq->kq_sel.si_note))
 1834                 kqueue_schedtask(kq);
 1835         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1836                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1837         }
 1838 }
 1839 
 1840 /*
 1841  * Walk down a list of knotes, activating them if their event has triggered.
 1842  *
 1843  * There is a possibility to optimize in the case of one kq watching another.
 1844  * Instead of scheduling a task to wake it up, you could pass enough state
 1845  * down the chain to make up the parent kqueue.  Make this code functional
 1846  * first.
 1847  */
 1848 void
 1849 knote(struct knlist *list, long hint, int lockflags)
 1850 {
 1851         struct kqueue *kq;
 1852         struct knote *kn;
 1853         int error;
 1854 
 1855         if (list == NULL)
 1856                 return;
 1857 
 1858         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 1859 
 1860         if ((lockflags & KNF_LISTLOCKED) == 0)
 1861                 list->kl_lock(list->kl_lockarg); 
 1862 
 1863         /*
 1864          * If we unlock the list lock (and set KN_INFLUX), we can eliminate
 1865          * the kqueue scheduling, but this will introduce four
 1866          * lock/unlock's for each knote to test.  If we do, continue to use
 1867          * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
 1868          * only safe if you want to remove the current item, which we are
 1869          * not doing.
 1870          */
 1871         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
 1872                 kq = kn->kn_kq;
 1873                 KQ_LOCK(kq);
 1874                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
 1875                         /*
 1876                          * Do not process the influx notes, except for
 1877                          * the influx coming from the kq unlock in the
 1878                          * kqueue_scan().  In the later case, we do
 1879                          * not interfere with the scan, since the code
 1880                          * fragment in kqueue_scan() locks the knlist,
 1881                          * and cannot proceed until we finished.
 1882                          */
 1883                         KQ_UNLOCK(kq);
 1884                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 1885                         kn->kn_status |= KN_INFLUX;
 1886                         KQ_UNLOCK(kq);
 1887                         error = kn->kn_fop->f_event(kn, hint);
 1888                         KQ_LOCK(kq);
 1889                         kn->kn_status &= ~KN_INFLUX;
 1890                         if (error)
 1891                                 KNOTE_ACTIVATE(kn, 1);
 1892                         KQ_UNLOCK_FLUX(kq);
 1893                 } else {
 1894                         kn->kn_status |= KN_HASKQLOCK;
 1895                         if (kn->kn_fop->f_event(kn, hint))
 1896                                 KNOTE_ACTIVATE(kn, 1);
 1897                         kn->kn_status &= ~KN_HASKQLOCK;
 1898                         KQ_UNLOCK(kq);
 1899                 }
 1900         }
 1901         if ((lockflags & KNF_LISTLOCKED) == 0)
 1902                 list->kl_unlock(list->kl_lockarg); 
 1903 }
 1904 
 1905 /*
 1906  * add a knote to a knlist
 1907  */
 1908 void
 1909 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 1910 {
 1911         KNL_ASSERT_LOCK(knl, islocked);
 1912         KQ_NOTOWNED(kn->kn_kq);
 1913         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 1914             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 1915         if (!islocked)
 1916                 knl->kl_lock(knl->kl_lockarg);
 1917         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 1918         if (!islocked)
 1919                 knl->kl_unlock(knl->kl_lockarg);
 1920         KQ_LOCK(kn->kn_kq);
 1921         kn->kn_knlist = knl;
 1922         kn->kn_status &= ~KN_DETACHED;
 1923         KQ_UNLOCK(kn->kn_kq);
 1924 }
 1925 
 1926 static void
 1927 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
 1928 {
 1929         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 1930         KNL_ASSERT_LOCK(knl, knlislocked);
 1931         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 1932         if (!kqislocked)
 1933                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 1934     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 1935         if (!knlislocked)
 1936                 knl->kl_lock(knl->kl_lockarg);
 1937         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 1938         kn->kn_knlist = NULL;
 1939         if (!knlislocked)
 1940                 knl->kl_unlock(knl->kl_lockarg);
 1941         if (!kqislocked)
 1942                 KQ_LOCK(kn->kn_kq);
 1943         kn->kn_status |= KN_DETACHED;
 1944         if (!kqislocked)
 1945                 KQ_UNLOCK(kn->kn_kq);
 1946 }
 1947 
 1948 /*
 1949  * remove knote from the specified knlist
 1950  */
 1951 void
 1952 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 1953 {
 1954 
 1955         knlist_remove_kq(knl, kn, islocked, 0);
 1956 }
 1957 
 1958 /*
 1959  * remove knote from the specified knlist while in f_event handler.
 1960  */
 1961 void
 1962 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
 1963 {
 1964 
 1965         knlist_remove_kq(knl, kn, 1,
 1966             (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
 1967 }
 1968 
 1969 int
 1970 knlist_empty(struct knlist *knl)
 1971 {
 1972 
 1973         KNL_ASSERT_LOCKED(knl);
 1974         return SLIST_EMPTY(&knl->kl_list);
 1975 }
 1976 
 1977 static struct mtx       knlist_lock;
 1978 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 1979         MTX_DEF);
 1980 static void knlist_mtx_lock(void *arg);
 1981 static void knlist_mtx_unlock(void *arg);
 1982 
 1983 static void
 1984 knlist_mtx_lock(void *arg)
 1985 {
 1986 
 1987         mtx_lock((struct mtx *)arg);
 1988 }
 1989 
 1990 static void
 1991 knlist_mtx_unlock(void *arg)
 1992 {
 1993 
 1994         mtx_unlock((struct mtx *)arg);
 1995 }
 1996 
 1997 static void
 1998 knlist_mtx_assert_locked(void *arg)
 1999 {
 2000 
 2001         mtx_assert((struct mtx *)arg, MA_OWNED);
 2002 }
 2003 
 2004 static void
 2005 knlist_mtx_assert_unlocked(void *arg)
 2006 {
 2007 
 2008         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2009 }
 2010 
 2011 static void
 2012 knlist_rw_rlock(void *arg)
 2013 {
 2014 
 2015         rw_rlock((struct rwlock *)arg);
 2016 }
 2017 
 2018 static void
 2019 knlist_rw_runlock(void *arg)
 2020 {
 2021 
 2022         rw_runlock((struct rwlock *)arg);
 2023 }
 2024 
 2025 static void
 2026 knlist_rw_assert_locked(void *arg)
 2027 {
 2028 
 2029         rw_assert((struct rwlock *)arg, RA_LOCKED);
 2030 }
 2031 
 2032 static void
 2033 knlist_rw_assert_unlocked(void *arg)
 2034 {
 2035 
 2036         rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2037 }
 2038 
 2039 void
 2040 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2041     void (*kl_unlock)(void *),
 2042     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 2043 {
 2044 
 2045         if (lock == NULL)
 2046                 knl->kl_lockarg = &knlist_lock;
 2047         else
 2048                 knl->kl_lockarg = lock;
 2049 
 2050         if (kl_lock == NULL)
 2051                 knl->kl_lock = knlist_mtx_lock;
 2052         else
 2053                 knl->kl_lock = kl_lock;
 2054         if (kl_unlock == NULL)
 2055                 knl->kl_unlock = knlist_mtx_unlock;
 2056         else
 2057                 knl->kl_unlock = kl_unlock;
 2058         if (kl_assert_locked == NULL)
 2059                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 2060         else
 2061                 knl->kl_assert_locked = kl_assert_locked;
 2062         if (kl_assert_unlocked == NULL)
 2063                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 2064         else
 2065                 knl->kl_assert_unlocked = kl_assert_unlocked;
 2066 
 2067         SLIST_INIT(&knl->kl_list);
 2068 }
 2069 
 2070 void
 2071 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2072 {
 2073 
 2074         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 2075 }
 2076 
 2077 void
 2078 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2079 {
 2080 
 2081         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2082             knlist_rw_assert_locked, knlist_rw_assert_unlocked);
 2083 }
 2084 
 2085 void
 2086 knlist_destroy(struct knlist *knl)
 2087 {
 2088 
 2089 #ifdef INVARIANTS
 2090         /*
 2091          * if we run across this error, we need to find the offending
 2092          * driver and have it call knlist_clear or knlist_delete.
 2093          */
 2094         if (!SLIST_EMPTY(&knl->kl_list))
 2095                 printf("WARNING: destroying knlist w/ knotes on it!\n");
 2096 #endif
 2097 
 2098         knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
 2099         SLIST_INIT(&knl->kl_list);
 2100 }
 2101 
 2102 /*
 2103  * Even if we are locked, we may need to drop the lock to allow any influx
 2104  * knotes time to "settle".
 2105  */
 2106 void
 2107 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2108 {
 2109         struct knote *kn, *kn2;
 2110         struct kqueue *kq;
 2111 
 2112         if (islocked)
 2113                 KNL_ASSERT_LOCKED(knl);
 2114         else {
 2115                 KNL_ASSERT_UNLOCKED(knl);
 2116 again:          /* need to reacquire lock since we have dropped it */
 2117                 knl->kl_lock(knl->kl_lockarg);
 2118         }
 2119 
 2120         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2121                 kq = kn->kn_kq;
 2122                 KQ_LOCK(kq);
 2123                 if ((kn->kn_status & KN_INFLUX)) {
 2124                         KQ_UNLOCK(kq);
 2125                         continue;
 2126                 }
 2127                 knlist_remove_kq(knl, kn, 1, 1);
 2128                 if (killkn) {
 2129                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 2130                         KQ_UNLOCK(kq);
 2131                         knote_drop(kn, td);
 2132                 } else {
 2133                         /* Make sure cleared knotes disappear soon */
 2134                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 2135                         KQ_UNLOCK(kq);
 2136                 }
 2137                 kq = NULL;
 2138         }
 2139 
 2140         if (!SLIST_EMPTY(&knl->kl_list)) {
 2141                 /* there are still KN_INFLUX remaining */
 2142                 kn = SLIST_FIRST(&knl->kl_list);
 2143                 kq = kn->kn_kq;
 2144                 KQ_LOCK(kq);
 2145                 KASSERT(kn->kn_status & KN_INFLUX,
 2146                     ("knote removed w/o list lock"));
 2147                 knl->kl_unlock(knl->kl_lockarg);
 2148                 kq->kq_state |= KQ_FLUXWAIT;
 2149                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2150                 kq = NULL;
 2151                 goto again;
 2152         }
 2153 
 2154         if (islocked)
 2155                 KNL_ASSERT_LOCKED(knl);
 2156         else {
 2157                 knl->kl_unlock(knl->kl_lockarg);
 2158                 KNL_ASSERT_UNLOCKED(knl);
 2159         }
 2160 }
 2161 
 2162 /*
 2163  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2164  * lock.  This prevents a race where a new fd comes along and occupies the
 2165  * entry and we attach a knote to the fd.
 2166  */
 2167 void
 2168 knote_fdclose(struct thread *td, int fd)
 2169 {
 2170         struct filedesc *fdp = td->td_proc->p_fd;
 2171         struct kqueue *kq;
 2172         struct knote *kn;
 2173         int influx;
 2174 
 2175         FILEDESC_XLOCK_ASSERT(fdp);
 2176 
 2177         /*
 2178          * We shouldn't have to worry about new kevents appearing on fd
 2179          * since filedesc is locked.
 2180          */
 2181         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2182                 KQ_LOCK(kq);
 2183 
 2184 again:
 2185                 influx = 0;
 2186                 while (kq->kq_knlistsize > fd &&
 2187                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2188                         if (kn->kn_status & KN_INFLUX) {
 2189                                 /* someone else might be waiting on our knote */
 2190                                 if (influx)
 2191                                         wakeup(kq);
 2192                                 kq->kq_state |= KQ_FLUXWAIT;
 2193                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2194                                 goto again;
 2195                         }
 2196                         kn->kn_status |= KN_INFLUX;
 2197                         KQ_UNLOCK(kq);
 2198                         if (!(kn->kn_status & KN_DETACHED))
 2199                                 kn->kn_fop->f_detach(kn);
 2200                         knote_drop(kn, td);
 2201                         influx = 1;
 2202                         KQ_LOCK(kq);
 2203                 }
 2204                 KQ_UNLOCK_FLUX(kq);
 2205         }
 2206 }
 2207 
 2208 static int
 2209 knote_attach(struct knote *kn, struct kqueue *kq)
 2210 {
 2211         struct klist *list;
 2212 
 2213         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 2214         KQ_OWNED(kq);
 2215 
 2216         if (kn->kn_fop->f_isfd) {
 2217                 if (kn->kn_id >= kq->kq_knlistsize)
 2218                         return ENOMEM;
 2219                 list = &kq->kq_knlist[kn->kn_id];
 2220         } else {
 2221                 if (kq->kq_knhash == NULL)
 2222                         return ENOMEM;
 2223                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2224         }
 2225 
 2226         SLIST_INSERT_HEAD(list, kn, kn_link);
 2227 
 2228         return 0;
 2229 }
 2230 
 2231 /*
 2232  * knote must already have been detached using the f_detach method.
 2233  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 2234  * to prevent other removal.
 2235  */
 2236 static void
 2237 knote_drop(struct knote *kn, struct thread *td)
 2238 {
 2239         struct kqueue *kq;
 2240         struct klist *list;
 2241 
 2242         kq = kn->kn_kq;
 2243 
 2244         KQ_NOTOWNED(kq);
 2245         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 2246             ("knote_drop called without KN_INFLUX set in kn_status"));
 2247 
 2248         KQ_LOCK(kq);
 2249         if (kn->kn_fop->f_isfd)
 2250                 list = &kq->kq_knlist[kn->kn_id];
 2251         else
 2252                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2253 
 2254         if (!SLIST_EMPTY(list))
 2255                 SLIST_REMOVE(list, kn, knote, kn_link);
 2256         if (kn->kn_status & KN_QUEUED)
 2257                 knote_dequeue(kn);
 2258         KQ_UNLOCK_FLUX(kq);
 2259 
 2260         if (kn->kn_fop->f_isfd) {
 2261                 fdrop(kn->kn_fp, td);
 2262                 kn->kn_fp = NULL;
 2263         }
 2264         kqueue_fo_release(kn->kn_kevent.filter);
 2265         kn->kn_fop = NULL;
 2266         knote_free(kn);
 2267 }
 2268 
 2269 static void
 2270 knote_enqueue(struct knote *kn)
 2271 {
 2272         struct kqueue *kq = kn->kn_kq;
 2273 
 2274         KQ_OWNED(kn->kn_kq);
 2275         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2276 
 2277         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2278         kn->kn_status |= KN_QUEUED;
 2279         kq->kq_count++;
 2280         kqueue_wakeup(kq);
 2281 }
 2282 
 2283 static void
 2284 knote_dequeue(struct knote *kn)
 2285 {
 2286         struct kqueue *kq = kn->kn_kq;
 2287 
 2288         KQ_OWNED(kn->kn_kq);
 2289         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2290 
 2291         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2292         kn->kn_status &= ~KN_QUEUED;
 2293         kq->kq_count--;
 2294 }
 2295 
 2296 static void
 2297 knote_init(void)
 2298 {
 2299 
 2300         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2301             NULL, NULL, UMA_ALIGN_PTR, 0);
 2302 }
 2303 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2304 
 2305 static struct knote *
 2306 knote_alloc(int waitok)
 2307 {
 2308         return ((struct knote *)uma_zalloc(knote_zone,
 2309             (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
 2310 }
 2311 
 2312 static void
 2313 knote_free(struct knote *kn)
 2314 {
 2315         if (kn != NULL)
 2316                 uma_zfree(knote_zone, kn);
 2317 }
 2318 
 2319 /*
 2320  * Register the kev w/ the kq specified by fd.
 2321  */
 2322 int 
 2323 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2324 {
 2325         struct kqueue *kq;
 2326         struct file *fp;
 2327         cap_rights_t rights;
 2328         int error;
 2329 
 2330         error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
 2331         if (error != 0)
 2332                 return (error);
 2333         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2334                 goto noacquire;
 2335 
 2336         error = kqueue_register(kq, kev, td, waitok);
 2337 
 2338         kqueue_release(kq, 0);
 2339 
 2340 noacquire:
 2341         fdrop(fp, td);
 2342 
 2343         return error;
 2344 }

Cache object: 556e2208a4d0d569d886f2adffc999d1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.