The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * Copyright (c) 2009 Apple, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/10.3/sys/kern/kern_event.c 293545 2016-01-09 16:39:15Z dchagin $");
   31 
   32 #include "opt_ktrace.h"
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/capsicum.h>
   37 #include <sys/kernel.h>
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/rwlock.h>
   41 #include <sys/proc.h>
   42 #include <sys/malloc.h>
   43 #include <sys/unistd.h>
   44 #include <sys/file.h>
   45 #include <sys/filedesc.h>
   46 #include <sys/filio.h>
   47 #include <sys/fcntl.h>
   48 #include <sys/kthread.h>
   49 #include <sys/selinfo.h>
   50 #include <sys/stdatomic.h>
   51 #include <sys/queue.h>
   52 #include <sys/event.h>
   53 #include <sys/eventvar.h>
   54 #include <sys/poll.h>
   55 #include <sys/protosw.h>
   56 #include <sys/sigio.h>
   57 #include <sys/signalvar.h>
   58 #include <sys/socket.h>
   59 #include <sys/socketvar.h>
   60 #include <sys/stat.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/syscallsubr.h>
   64 #include <sys/taskqueue.h>
   65 #include <sys/uio.h>
   66 #ifdef KTRACE
   67 #include <sys/ktrace.h>
   68 #endif
   69 
   70 #include <vm/uma.h>
   71 
   72 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   73 
   74 /*
   75  * This lock is used if multiple kq locks are required.  This possibly
   76  * should be made into a per proc lock.
   77  */
   78 static struct mtx       kq_global;
   79 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   80 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   81         if (!haslck)                            \
   82                 mtx_lock(lck);                  \
   83         haslck = 1;                             \
   84 } while (0)
   85 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   86         if (haslck)                             \
   87                 mtx_unlock(lck);                        \
   88         haslck = 0;                             \
   89 } while (0)
   90 
   91 TASKQUEUE_DEFINE_THREAD(kqueue);
   92 
   93 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   94 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   95 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   96                     struct thread *td, int waitok);
   97 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
   98 static void     kqueue_release(struct kqueue *kq, int locked);
   99 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  100                     uintptr_t ident, int waitok);
  101 static void     kqueue_task(void *arg, int pending);
  102 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  103                     struct kevent_copyops *k_ops,
  104                     const struct timespec *timeout,
  105                     struct kevent *keva, struct thread *td);
  106 static void     kqueue_wakeup(struct kqueue *kq);
  107 static struct filterops *kqueue_fo_find(int filt);
  108 static void     kqueue_fo_release(int filt);
  109 
  110 static fo_rdwr_t        kqueue_read;
  111 static fo_rdwr_t        kqueue_write;
  112 static fo_truncate_t    kqueue_truncate;
  113 static fo_ioctl_t       kqueue_ioctl;
  114 static fo_poll_t        kqueue_poll;
  115 static fo_kqfilter_t    kqueue_kqfilter;
  116 static fo_stat_t        kqueue_stat;
  117 static fo_close_t       kqueue_close;
  118 
  119 static struct fileops kqueueops = {
  120         .fo_read = kqueue_read,
  121         .fo_write = kqueue_write,
  122         .fo_truncate = kqueue_truncate,
  123         .fo_ioctl = kqueue_ioctl,
  124         .fo_poll = kqueue_poll,
  125         .fo_kqfilter = kqueue_kqfilter,
  126         .fo_stat = kqueue_stat,
  127         .fo_close = kqueue_close,
  128         .fo_chmod = invfo_chmod,
  129         .fo_chown = invfo_chown,
  130         .fo_sendfile = invfo_sendfile,
  131 };
  132 
  133 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  134 static void     knote_drop(struct knote *kn, struct thread *td);
  135 static void     knote_enqueue(struct knote *kn);
  136 static void     knote_dequeue(struct knote *kn);
  137 static void     knote_init(void);
  138 static struct   knote *knote_alloc(int waitok);
  139 static void     knote_free(struct knote *kn);
  140 
  141 static void     filt_kqdetach(struct knote *kn);
  142 static int      filt_kqueue(struct knote *kn, long hint);
  143 static int      filt_procattach(struct knote *kn);
  144 static void     filt_procdetach(struct knote *kn);
  145 static int      filt_proc(struct knote *kn, long hint);
  146 static int      filt_fileattach(struct knote *kn);
  147 static void     filt_timerexpire(void *knx);
  148 static int      filt_timerattach(struct knote *kn);
  149 static void     filt_timerdetach(struct knote *kn);
  150 static int      filt_timer(struct knote *kn, long hint);
  151 static int      filt_userattach(struct knote *kn);
  152 static void     filt_userdetach(struct knote *kn);
  153 static int      filt_user(struct knote *kn, long hint);
  154 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  155                     u_long type);
  156 
  157 static struct filterops file_filtops = {
  158         .f_isfd = 1,
  159         .f_attach = filt_fileattach,
  160 };
  161 static struct filterops kqread_filtops = {
  162         .f_isfd = 1,
  163         .f_detach = filt_kqdetach,
  164         .f_event = filt_kqueue,
  165 };
  166 /* XXX - move to kern_proc.c?  */
  167 static struct filterops proc_filtops = {
  168         .f_isfd = 0,
  169         .f_attach = filt_procattach,
  170         .f_detach = filt_procdetach,
  171         .f_event = filt_proc,
  172 };
  173 static struct filterops timer_filtops = {
  174         .f_isfd = 0,
  175         .f_attach = filt_timerattach,
  176         .f_detach = filt_timerdetach,
  177         .f_event = filt_timer,
  178 };
  179 static struct filterops user_filtops = {
  180         .f_attach = filt_userattach,
  181         .f_detach = filt_userdetach,
  182         .f_event = filt_user,
  183         .f_touch = filt_usertouch,
  184 };
  185 
  186 static uma_zone_t       knote_zone;
  187 static atomic_uint      kq_ncallouts = ATOMIC_VAR_INIT(0);
  188 static unsigned int     kq_calloutmax = 4 * 1024;
  189 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  190     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  191 
  192 /* XXX - ensure not KN_INFLUX?? */
  193 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  194         if ((islock))                                                   \
  195                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  196         else                                                            \
  197                 KQ_LOCK((kn)->kn_kq);                                   \
  198         (kn)->kn_status |= KN_ACTIVE;                                   \
  199         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  200                 knote_enqueue((kn));                                    \
  201         if (!(islock))                                                  \
  202                 KQ_UNLOCK((kn)->kn_kq);                                 \
  203 } while(0)
  204 #define KQ_LOCK(kq) do {                                                \
  205         mtx_lock(&(kq)->kq_lock);                                       \
  206 } while (0)
  207 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  208         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  209                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  210                 wakeup((kq));                                           \
  211         }                                                               \
  212 } while (0)
  213 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  214         KQ_FLUX_WAKEUP(kq);                                             \
  215         mtx_unlock(&(kq)->kq_lock);                                     \
  216 } while (0)
  217 #define KQ_UNLOCK(kq) do {                                              \
  218         mtx_unlock(&(kq)->kq_lock);                                     \
  219 } while (0)
  220 #define KQ_OWNED(kq) do {                                               \
  221         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  222 } while (0)
  223 #define KQ_NOTOWNED(kq) do {                                            \
  224         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  225 } while (0)
  226 #define KN_LIST_LOCK(kn) do {                                           \
  227         if (kn->kn_knlist != NULL)                                      \
  228                 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);      \
  229 } while (0)
  230 #define KN_LIST_UNLOCK(kn) do {                                         \
  231         if (kn->kn_knlist != NULL)                                      \
  232                 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);    \
  233 } while (0)
  234 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  235         if (islocked)                                                   \
  236                 KNL_ASSERT_LOCKED(knl);                         \
  237         else                                                            \
  238                 KNL_ASSERT_UNLOCKED(knl);                               \
  239 } while (0)
  240 #ifdef INVARIANTS
  241 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  242         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  243 } while (0)
  244 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  245         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  246 } while (0)
  247 #else /* !INVARIANTS */
  248 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  249 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  250 #endif /* INVARIANTS */
  251 
  252 #define KN_HASHSIZE             64              /* XXX should be tunable */
  253 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  254 
  255 static int
  256 filt_nullattach(struct knote *kn)
  257 {
  258 
  259         return (ENXIO);
  260 };
  261 
  262 struct filterops null_filtops = {
  263         .f_isfd = 0,
  264         .f_attach = filt_nullattach,
  265 };
  266 
  267 /* XXX - make SYSINIT to add these, and move into respective modules. */
  268 extern struct filterops sig_filtops;
  269 extern struct filterops fs_filtops;
  270 
  271 /*
  272  * Table for for all system-defined filters.
  273  */
  274 static struct mtx       filterops_lock;
  275 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  276         MTX_DEF);
  277 static struct {
  278         struct filterops *for_fop;
  279         int for_refcnt;
  280 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  281         { &file_filtops },                      /* EVFILT_READ */
  282         { &file_filtops },                      /* EVFILT_WRITE */
  283         { &null_filtops },                      /* EVFILT_AIO */
  284         { &file_filtops },                      /* EVFILT_VNODE */
  285         { &proc_filtops },                      /* EVFILT_PROC */
  286         { &sig_filtops },                       /* EVFILT_SIGNAL */
  287         { &timer_filtops },                     /* EVFILT_TIMER */
  288         { &null_filtops },                      /* former EVFILT_NETDEV */
  289         { &fs_filtops },                        /* EVFILT_FS */
  290         { &null_filtops },                      /* EVFILT_LIO */
  291         { &user_filtops },                      /* EVFILT_USER */
  292 };
  293 
  294 /*
  295  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  296  * method.
  297  */
  298 static int
  299 filt_fileattach(struct knote *kn)
  300 {
  301 
  302         return (fo_kqfilter(kn->kn_fp, kn));
  303 }
  304 
  305 /*ARGSUSED*/
  306 static int
  307 kqueue_kqfilter(struct file *fp, struct knote *kn)
  308 {
  309         struct kqueue *kq = kn->kn_fp->f_data;
  310 
  311         if (kn->kn_filter != EVFILT_READ)
  312                 return (EINVAL);
  313 
  314         kn->kn_status |= KN_KQUEUE;
  315         kn->kn_fop = &kqread_filtops;
  316         knlist_add(&kq->kq_sel.si_note, kn, 0);
  317 
  318         return (0);
  319 }
  320 
  321 static void
  322 filt_kqdetach(struct knote *kn)
  323 {
  324         struct kqueue *kq = kn->kn_fp->f_data;
  325 
  326         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  327 }
  328 
  329 /*ARGSUSED*/
  330 static int
  331 filt_kqueue(struct knote *kn, long hint)
  332 {
  333         struct kqueue *kq = kn->kn_fp->f_data;
  334 
  335         kn->kn_data = kq->kq_count;
  336         return (kn->kn_data > 0);
  337 }
  338 
  339 /* XXX - move to kern_proc.c?  */
  340 static int
  341 filt_procattach(struct knote *kn)
  342 {
  343         struct proc *p;
  344         int immediate;
  345         int error;
  346 
  347         immediate = 0;
  348         p = pfind(kn->kn_id);
  349         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  350                 p = zpfind(kn->kn_id);
  351                 immediate = 1;
  352         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  353                 immediate = 1;
  354         }
  355 
  356         if (p == NULL)
  357                 return (ESRCH);
  358         if ((error = p_cansee(curthread, p))) {
  359                 PROC_UNLOCK(p);
  360                 return (error);
  361         }
  362 
  363         kn->kn_ptr.p_proc = p;
  364         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  365 
  366         /*
  367          * internal flag indicating registration done by kernel
  368          */
  369         if (kn->kn_flags & EV_FLAG1) {
  370                 kn->kn_data = kn->kn_sdata;             /* ppid */
  371                 kn->kn_fflags = NOTE_CHILD;
  372                 kn->kn_flags &= ~EV_FLAG1;
  373         }
  374 
  375         if (immediate == 0)
  376                 knlist_add(&p->p_klist, kn, 1);
  377 
  378         /*
  379          * Immediately activate any exit notes if the target process is a
  380          * zombie.  This is necessary to handle the case where the target
  381          * process, e.g. a child, dies before the kevent is registered.
  382          */
  383         if (immediate && filt_proc(kn, NOTE_EXIT))
  384                 KNOTE_ACTIVATE(kn, 0);
  385 
  386         PROC_UNLOCK(p);
  387 
  388         return (0);
  389 }
  390 
  391 /*
  392  * The knote may be attached to a different process, which may exit,
  393  * leaving nothing for the knote to be attached to.  So when the process
  394  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  395  * it will be deleted when read out.  However, as part of the knote deletion,
  396  * this routine is called, so a check is needed to avoid actually performing
  397  * a detach, because the original process does not exist any more.
  398  */
  399 /* XXX - move to kern_proc.c?  */
  400 static void
  401 filt_procdetach(struct knote *kn)
  402 {
  403         struct proc *p;
  404 
  405         p = kn->kn_ptr.p_proc;
  406         knlist_remove(&p->p_klist, kn, 0);
  407         kn->kn_ptr.p_proc = NULL;
  408 }
  409 
  410 /* XXX - move to kern_proc.c?  */
  411 static int
  412 filt_proc(struct knote *kn, long hint)
  413 {
  414         struct proc *p = kn->kn_ptr.p_proc;
  415         u_int event;
  416 
  417         /*
  418          * mask off extra data
  419          */
  420         event = (u_int)hint & NOTE_PCTRLMASK;
  421 
  422         /*
  423          * if the user is interested in this event, record it.
  424          */
  425         if (kn->kn_sfflags & event)
  426                 kn->kn_fflags |= event;
  427 
  428         /*
  429          * process is gone, so flag the event as finished.
  430          */
  431         if (event == NOTE_EXIT) {
  432                 if (!(kn->kn_status & KN_DETACHED))
  433                         knlist_remove_inevent(&p->p_klist, kn);
  434                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  435                 kn->kn_ptr.p_proc = NULL;
  436                 if (kn->kn_fflags & NOTE_EXIT)
  437                         kn->kn_data = p->p_xstat;
  438                 if (kn->kn_fflags == 0)
  439                         kn->kn_flags |= EV_DROP;
  440                 return (1);
  441         }
  442 
  443         return (kn->kn_fflags != 0);
  444 }
  445 
  446 /*
  447  * Called when the process forked. It mostly does the same as the
  448  * knote(), activating all knotes registered to be activated when the
  449  * process forked. Additionally, for each knote attached to the
  450  * parent, check whether user wants to track the new process. If so
  451  * attach a new knote to it, and immediately report an event with the
  452  * child's pid.
  453  */
  454 void
  455 knote_fork(struct knlist *list, int pid)
  456 {
  457         struct kqueue *kq;
  458         struct knote *kn;
  459         struct kevent kev;
  460         int error;
  461 
  462         if (list == NULL)
  463                 return;
  464         list->kl_lock(list->kl_lockarg);
  465 
  466         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  467                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
  468                         continue;
  469                 kq = kn->kn_kq;
  470                 KQ_LOCK(kq);
  471                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
  472                         KQ_UNLOCK(kq);
  473                         continue;
  474                 }
  475 
  476                 /*
  477                  * The same as knote(), activate the event.
  478                  */
  479                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  480                         kn->kn_status |= KN_HASKQLOCK;
  481                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  482                                 KNOTE_ACTIVATE(kn, 1);
  483                         kn->kn_status &= ~KN_HASKQLOCK;
  484                         KQ_UNLOCK(kq);
  485                         continue;
  486                 }
  487 
  488                 /*
  489                  * The NOTE_TRACK case. In addition to the activation
  490                  * of the event, we need to register new event to
  491                  * track the child. Drop the locks in preparation for
  492                  * the call to kqueue_register().
  493                  */
  494                 kn->kn_status |= KN_INFLUX;
  495                 KQ_UNLOCK(kq);
  496                 list->kl_unlock(list->kl_lockarg);
  497 
  498                 /*
  499                  * Activate existing knote and register a knote with
  500                  * new process.
  501                  */
  502                 kev.ident = pid;
  503                 kev.filter = kn->kn_filter;
  504                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  505                 kev.fflags = kn->kn_sfflags;
  506                 kev.data = kn->kn_id;           /* parent */
  507                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  508                 error = kqueue_register(kq, &kev, NULL, 0);
  509                 if (error)
  510                         kn->kn_fflags |= NOTE_TRACKERR;
  511                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  512                         KNOTE_ACTIVATE(kn, 0);
  513                 KQ_LOCK(kq);
  514                 kn->kn_status &= ~KN_INFLUX;
  515                 KQ_UNLOCK_FLUX(kq);
  516                 list->kl_lock(list->kl_lockarg);
  517         }
  518         list->kl_unlock(list->kl_lockarg);
  519 }
  520 
  521 /*
  522  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  523  * interval timer support code.
  524  */
  525 
  526 #define NOTE_TIMER_PRECMASK     (NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS| \
  527                                 NOTE_NSECONDS)
  528 
  529 static __inline sbintime_t
  530 timer2sbintime(intptr_t data, int flags)
  531 {
  532         sbintime_t modifier;
  533 
  534         switch (flags & NOTE_TIMER_PRECMASK) {
  535         case NOTE_SECONDS:
  536                 modifier = SBT_1S;
  537                 break;
  538         case NOTE_MSECONDS: /* FALLTHROUGH */
  539         case 0:
  540                 modifier = SBT_1MS;
  541                 break;
  542         case NOTE_USECONDS:
  543                 modifier = SBT_1US;
  544                 break;
  545         case NOTE_NSECONDS:
  546                 modifier = SBT_1NS;
  547                 break;
  548         default:
  549                 return (-1);
  550         }
  551 
  552 #ifdef __LP64__
  553         if (data > SBT_MAX / modifier)
  554                 return (SBT_MAX);
  555 #endif
  556         return (modifier * data);
  557 }
  558 
  559 static void
  560 filt_timerexpire(void *knx)
  561 {
  562         struct callout *calloutp;
  563         struct knote *kn;
  564 
  565         kn = knx;
  566         kn->kn_data++;
  567         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  568 
  569         if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
  570                 calloutp = (struct callout *)kn->kn_hook;
  571                 *kn->kn_ptr.p_nexttime += timer2sbintime(kn->kn_sdata,
  572                     kn->kn_sfflags);
  573                 callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
  574                     filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
  575         }
  576 }
  577 
  578 /*
  579  * data contains amount of time to sleep
  580  */
  581 static int
  582 filt_timerattach(struct knote *kn)
  583 {
  584         struct callout *calloutp;
  585         sbintime_t to;
  586         unsigned int ncallouts;
  587 
  588         if ((intptr_t)kn->kn_sdata < 0)
  589                 return (EINVAL);
  590         if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  591                 kn->kn_sdata = 1;
  592         /* Only precision unit are supported in flags so far */
  593         if (kn->kn_sfflags & ~NOTE_TIMER_PRECMASK)
  594                 return (EINVAL);
  595 
  596         to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  597         if (to < 0)
  598                 return (EINVAL);
  599 
  600         ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed);
  601         do {
  602                 if (ncallouts >= kq_calloutmax)
  603                         return (ENOMEM);
  604         } while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts,
  605             &ncallouts, ncallouts + 1, memory_order_relaxed,
  606             memory_order_relaxed));
  607 
  608         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  609         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  610         kn->kn_ptr.p_nexttime = malloc(sizeof(sbintime_t), M_KQUEUE, M_WAITOK);
  611         calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
  612         callout_init(calloutp, CALLOUT_MPSAFE);
  613         kn->kn_hook = calloutp;
  614         *kn->kn_ptr.p_nexttime = to + sbinuptime();
  615         callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
  616             filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
  617 
  618         return (0);
  619 }
  620 
  621 static void
  622 filt_timerdetach(struct knote *kn)
  623 {
  624         struct callout *calloutp;
  625         unsigned int old;
  626 
  627         calloutp = (struct callout *)kn->kn_hook;
  628         callout_drain(calloutp);
  629         free(calloutp, M_KQUEUE);
  630         free(kn->kn_ptr.p_nexttime, M_KQUEUE);
  631         old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed);
  632         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  633         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  634 }
  635 
  636 static int
  637 filt_timer(struct knote *kn, long hint)
  638 {
  639 
  640         return (kn->kn_data != 0);
  641 }
  642 
  643 static int
  644 filt_userattach(struct knote *kn)
  645 {
  646 
  647         /* 
  648          * EVFILT_USER knotes are not attached to anything in the kernel.
  649          */ 
  650         kn->kn_hook = NULL;
  651         if (kn->kn_fflags & NOTE_TRIGGER)
  652                 kn->kn_hookid = 1;
  653         else
  654                 kn->kn_hookid = 0;
  655         return (0);
  656 }
  657 
  658 static void
  659 filt_userdetach(__unused struct knote *kn)
  660 {
  661 
  662         /*
  663          * EVFILT_USER knotes are not attached to anything in the kernel.
  664          */
  665 }
  666 
  667 static int
  668 filt_user(struct knote *kn, __unused long hint)
  669 {
  670 
  671         return (kn->kn_hookid);
  672 }
  673 
  674 static void
  675 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  676 {
  677         u_int ffctrl;
  678 
  679         switch (type) {
  680         case EVENT_REGISTER:
  681                 if (kev->fflags & NOTE_TRIGGER)
  682                         kn->kn_hookid = 1;
  683 
  684                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  685                 kev->fflags &= NOTE_FFLAGSMASK;
  686                 switch (ffctrl) {
  687                 case NOTE_FFNOP:
  688                         break;
  689 
  690                 case NOTE_FFAND:
  691                         kn->kn_sfflags &= kev->fflags;
  692                         break;
  693 
  694                 case NOTE_FFOR:
  695                         kn->kn_sfflags |= kev->fflags;
  696                         break;
  697 
  698                 case NOTE_FFCOPY:
  699                         kn->kn_sfflags = kev->fflags;
  700                         break;
  701 
  702                 default:
  703                         /* XXX Return error? */
  704                         break;
  705                 }
  706                 kn->kn_sdata = kev->data;
  707                 if (kev->flags & EV_CLEAR) {
  708                         kn->kn_hookid = 0;
  709                         kn->kn_data = 0;
  710                         kn->kn_fflags = 0;
  711                 }
  712                 break;
  713 
  714         case EVENT_PROCESS:
  715                 *kev = kn->kn_kevent;
  716                 kev->fflags = kn->kn_sfflags;
  717                 kev->data = kn->kn_sdata;
  718                 if (kn->kn_flags & EV_CLEAR) {
  719                         kn->kn_hookid = 0;
  720                         kn->kn_data = 0;
  721                         kn->kn_fflags = 0;
  722                 }
  723                 break;
  724 
  725         default:
  726                 panic("filt_usertouch() - invalid type (%ld)", type);
  727                 break;
  728         }
  729 }
  730 
  731 int
  732 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  733 {
  734 
  735         return (kern_kqueue(td, 0));
  736 }
  737 
  738 int
  739 kern_kqueue(struct thread *td, int flags)
  740 {
  741         struct filedesc *fdp;
  742         struct kqueue *kq;
  743         struct file *fp;
  744         int fd, error;
  745 
  746         fdp = td->td_proc->p_fd;
  747         error = falloc(td, &fp, &fd, flags);
  748         if (error)
  749                 goto done2;
  750 
  751         /* An extra reference on `fp' has been held for us by falloc(). */
  752         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  753         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
  754         TAILQ_INIT(&kq->kq_head);
  755         kq->kq_fdp = fdp;
  756         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  757         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  758 
  759         FILEDESC_XLOCK(fdp);
  760         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  761         FILEDESC_XUNLOCK(fdp);
  762 
  763         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
  764         fdrop(fp, td);
  765 
  766         td->td_retval[0] = fd;
  767 done2:
  768         return (error);
  769 }
  770 
  771 #ifndef _SYS_SYSPROTO_H_
  772 struct kevent_args {
  773         int     fd;
  774         const struct kevent *changelist;
  775         int     nchanges;
  776         struct  kevent *eventlist;
  777         int     nevents;
  778         const struct timespec *timeout;
  779 };
  780 #endif
  781 int
  782 sys_kevent(struct thread *td, struct kevent_args *uap)
  783 {
  784         struct timespec ts, *tsp;
  785         struct kevent_copyops k_ops = { uap,
  786                                         kevent_copyout,
  787                                         kevent_copyin};
  788         int error;
  789 #ifdef KTRACE
  790         struct uio ktruio;
  791         struct iovec ktriov;
  792         struct uio *ktruioin = NULL;
  793         struct uio *ktruioout = NULL;
  794 #endif
  795 
  796         if (uap->timeout != NULL) {
  797                 error = copyin(uap->timeout, &ts, sizeof(ts));
  798                 if (error)
  799                         return (error);
  800                 tsp = &ts;
  801         } else
  802                 tsp = NULL;
  803 
  804 #ifdef KTRACE
  805         if (KTRPOINT(td, KTR_GENIO)) {
  806                 ktriov.iov_base = uap->changelist;
  807                 ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
  808                 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
  809                     .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
  810                     .uio_td = td };
  811                 ktruioin = cloneuio(&ktruio);
  812                 ktriov.iov_base = uap->eventlist;
  813                 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
  814                 ktruioout = cloneuio(&ktruio);
  815         }
  816 #endif
  817 
  818         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  819             &k_ops, tsp);
  820 
  821 #ifdef KTRACE
  822         if (ktruioin != NULL) {
  823                 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
  824                 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
  825                 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
  826                 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
  827         }
  828 #endif
  829 
  830         return (error);
  831 }
  832 
  833 /*
  834  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  835  */
  836 static int
  837 kevent_copyout(void *arg, struct kevent *kevp, int count)
  838 {
  839         struct kevent_args *uap;
  840         int error;
  841 
  842         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  843         uap = (struct kevent_args *)arg;
  844 
  845         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  846         if (error == 0)
  847                 uap->eventlist += count;
  848         return (error);
  849 }
  850 
  851 /*
  852  * Copy 'count' items from the list pointed to by uap->changelist.
  853  */
  854 static int
  855 kevent_copyin(void *arg, struct kevent *kevp, int count)
  856 {
  857         struct kevent_args *uap;
  858         int error;
  859 
  860         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  861         uap = (struct kevent_args *)arg;
  862 
  863         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  864         if (error == 0)
  865                 uap->changelist += count;
  866         return (error);
  867 }
  868 
  869 int
  870 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  871     struct kevent_copyops *k_ops, const struct timespec *timeout)
  872 {
  873         cap_rights_t rights;
  874         struct file *fp;
  875         int error;
  876 
  877         cap_rights_init(&rights);
  878         if (nchanges > 0)
  879                 cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
  880         if (nevents > 0)
  881                 cap_rights_set(&rights, CAP_KQUEUE_EVENT);
  882         error = fget(td, fd, &rights, &fp);
  883         if (error != 0)
  884                 return (error);
  885 
  886         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
  887         fdrop(fp, td);
  888 
  889         return (error);
  890 }
  891 
  892 int
  893 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
  894     struct kevent_copyops *k_ops, const struct timespec *timeout)
  895 {
  896         struct kevent keva[KQ_NEVENTS];
  897         struct kevent *kevp, *changes;
  898         struct kqueue *kq;
  899         int i, n, nerrors, error;
  900 
  901         error = kqueue_acquire(fp, &kq);
  902         if (error != 0)
  903                 return (error);
  904 
  905         nerrors = 0;
  906 
  907         while (nchanges > 0) {
  908                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  909                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  910                 if (error)
  911                         goto done;
  912                 changes = keva;
  913                 for (i = 0; i < n; i++) {
  914                         kevp = &changes[i];
  915                         if (!kevp->filter)
  916                                 continue;
  917                         kevp->flags &= ~EV_SYSFLAGS;
  918                         error = kqueue_register(kq, kevp, td, 1);
  919                         if (error || (kevp->flags & EV_RECEIPT)) {
  920                                 if (nevents != 0) {
  921                                         kevp->flags = EV_ERROR;
  922                                         kevp->data = error;
  923                                         (void) k_ops->k_copyout(k_ops->arg,
  924                                             kevp, 1);
  925                                         nevents--;
  926                                         nerrors++;
  927                                 } else {
  928                                         goto done;
  929                                 }
  930                         }
  931                 }
  932                 nchanges -= n;
  933         }
  934         if (nerrors) {
  935                 td->td_retval[0] = nerrors;
  936                 error = 0;
  937                 goto done;
  938         }
  939 
  940         error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
  941 done:
  942         kqueue_release(kq, 0);
  943         return (error);
  944 }
  945 
  946 int
  947 kqueue_add_filteropts(int filt, struct filterops *filtops)
  948 {
  949         int error;
  950 
  951         error = 0;
  952         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
  953                 printf(
  954 "trying to add a filterop that is out of range: %d is beyond %d\n",
  955                     ~filt, EVFILT_SYSCOUNT);
  956                 return EINVAL;
  957         }
  958         mtx_lock(&filterops_lock);
  959         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
  960             sysfilt_ops[~filt].for_fop != NULL)
  961                 error = EEXIST;
  962         else {
  963                 sysfilt_ops[~filt].for_fop = filtops;
  964                 sysfilt_ops[~filt].for_refcnt = 0;
  965         }
  966         mtx_unlock(&filterops_lock);
  967 
  968         return (error);
  969 }
  970 
  971 int
  972 kqueue_del_filteropts(int filt)
  973 {
  974         int error;
  975 
  976         error = 0;
  977         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  978                 return EINVAL;
  979 
  980         mtx_lock(&filterops_lock);
  981         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
  982             sysfilt_ops[~filt].for_fop == NULL)
  983                 error = EINVAL;
  984         else if (sysfilt_ops[~filt].for_refcnt != 0)
  985                 error = EBUSY;
  986         else {
  987                 sysfilt_ops[~filt].for_fop = &null_filtops;
  988                 sysfilt_ops[~filt].for_refcnt = 0;
  989         }
  990         mtx_unlock(&filterops_lock);
  991 
  992         return error;
  993 }
  994 
  995 static struct filterops *
  996 kqueue_fo_find(int filt)
  997 {
  998 
  999         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1000                 return NULL;
 1001 
 1002         mtx_lock(&filterops_lock);
 1003         sysfilt_ops[~filt].for_refcnt++;
 1004         if (sysfilt_ops[~filt].for_fop == NULL)
 1005                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1006         mtx_unlock(&filterops_lock);
 1007 
 1008         return sysfilt_ops[~filt].for_fop;
 1009 }
 1010 
 1011 static void
 1012 kqueue_fo_release(int filt)
 1013 {
 1014 
 1015         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1016                 return;
 1017 
 1018         mtx_lock(&filterops_lock);
 1019         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1020             ("filter object refcount not valid on release"));
 1021         sysfilt_ops[~filt].for_refcnt--;
 1022         mtx_unlock(&filterops_lock);
 1023 }
 1024 
 1025 /*
 1026  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
 1027  * influence if memory allocation should wait.  Make sure it is 0 if you
 1028  * hold any mutexes.
 1029  */
 1030 static int
 1031 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
 1032 {
 1033         struct filterops *fops;
 1034         struct file *fp;
 1035         struct knote *kn, *tkn;
 1036         cap_rights_t rights;
 1037         int error, filt, event;
 1038         int haskqglobal, filedesc_unlock;
 1039 
 1040         fp = NULL;
 1041         kn = NULL;
 1042         error = 0;
 1043         haskqglobal = 0;
 1044         filedesc_unlock = 0;
 1045 
 1046         filt = kev->filter;
 1047         fops = kqueue_fo_find(filt);
 1048         if (fops == NULL)
 1049                 return EINVAL;
 1050 
 1051         tkn = knote_alloc(waitok);              /* prevent waiting with locks */
 1052 
 1053 findkn:
 1054         if (fops->f_isfd) {
 1055                 KASSERT(td != NULL, ("td is NULL"));
 1056                 error = fget(td, kev->ident,
 1057                     cap_rights_init(&rights, CAP_EVENT), &fp);
 1058                 if (error)
 1059                         goto done;
 1060 
 1061                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1062                     kev->ident, 0) != 0) {
 1063                         /* try again */
 1064                         fdrop(fp, td);
 1065                         fp = NULL;
 1066                         error = kqueue_expand(kq, fops, kev->ident, waitok);
 1067                         if (error)
 1068                                 goto done;
 1069                         goto findkn;
 1070                 }
 1071 
 1072                 if (fp->f_type == DTYPE_KQUEUE) {
 1073                         /*
 1074                          * if we add some inteligence about what we are doing,
 1075                          * we should be able to support events on ourselves.
 1076                          * We need to know when we are doing this to prevent
 1077                          * getting both the knlist lock and the kq lock since
 1078                          * they are the same thing.
 1079                          */
 1080                         if (fp->f_data == kq) {
 1081                                 error = EINVAL;
 1082                                 goto done;
 1083                         }
 1084 
 1085                         /*
 1086                          * Pre-lock the filedesc before the global
 1087                          * lock mutex, see the comment in
 1088                          * kqueue_close().
 1089                          */
 1090                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1091                         filedesc_unlock = 1;
 1092                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1093                 }
 1094 
 1095                 KQ_LOCK(kq);
 1096                 if (kev->ident < kq->kq_knlistsize) {
 1097                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1098                                 if (kev->filter == kn->kn_filter)
 1099                                         break;
 1100                 }
 1101         } else {
 1102                 if ((kev->flags & EV_ADD) == EV_ADD)
 1103                         kqueue_expand(kq, fops, kev->ident, waitok);
 1104 
 1105                 KQ_LOCK(kq);
 1106                 if (kq->kq_knhashmask != 0) {
 1107                         struct klist *list;
 1108 
 1109                         list = &kq->kq_knhash[
 1110                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1111                         SLIST_FOREACH(kn, list, kn_link)
 1112                                 if (kev->ident == kn->kn_id &&
 1113                                     kev->filter == kn->kn_filter)
 1114                                         break;
 1115                 }
 1116         }
 1117 
 1118         /* knote is in the process of changing, wait for it to stablize. */
 1119         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1120                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1121                 if (filedesc_unlock) {
 1122                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1123                         filedesc_unlock = 0;
 1124                 }
 1125                 kq->kq_state |= KQ_FLUXWAIT;
 1126                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1127                 if (fp != NULL) {
 1128                         fdrop(fp, td);
 1129                         fp = NULL;
 1130                 }
 1131                 goto findkn;
 1132         }
 1133 
 1134         /*
 1135          * kn now contains the matching knote, or NULL if no match
 1136          */
 1137         if (kn == NULL) {
 1138                 if (kev->flags & EV_ADD) {
 1139                         kn = tkn;
 1140                         tkn = NULL;
 1141                         if (kn == NULL) {
 1142                                 KQ_UNLOCK(kq);
 1143                                 error = ENOMEM;
 1144                                 goto done;
 1145                         }
 1146                         kn->kn_fp = fp;
 1147                         kn->kn_kq = kq;
 1148                         kn->kn_fop = fops;
 1149                         /*
 1150                          * apply reference counts to knote structure, and
 1151                          * do not release it at the end of this routine.
 1152                          */
 1153                         fops = NULL;
 1154                         fp = NULL;
 1155 
 1156                         kn->kn_sfflags = kev->fflags;
 1157                         kn->kn_sdata = kev->data;
 1158                         kev->fflags = 0;
 1159                         kev->data = 0;
 1160                         kn->kn_kevent = *kev;
 1161                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1162                             EV_ENABLE | EV_DISABLE);
 1163                         kn->kn_status = KN_INFLUX|KN_DETACHED;
 1164 
 1165                         error = knote_attach(kn, kq);
 1166                         KQ_UNLOCK(kq);
 1167                         if (error != 0) {
 1168                                 tkn = kn;
 1169                                 goto done;
 1170                         }
 1171 
 1172                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1173                                 knote_drop(kn, td);
 1174                                 goto done;
 1175                         }
 1176                         KN_LIST_LOCK(kn);
 1177                         goto done_ev_add;
 1178                 } else {
 1179                         /* No matching knote and the EV_ADD flag is not set. */
 1180                         KQ_UNLOCK(kq);
 1181                         error = ENOENT;
 1182                         goto done;
 1183                 }
 1184         }
 1185         
 1186         if (kev->flags & EV_DELETE) {
 1187                 kn->kn_status |= KN_INFLUX;
 1188                 KQ_UNLOCK(kq);
 1189                 if (!(kn->kn_status & KN_DETACHED))
 1190                         kn->kn_fop->f_detach(kn);
 1191                 knote_drop(kn, td);
 1192                 goto done;
 1193         }
 1194 
 1195         /*
 1196          * The user may change some filter values after the initial EV_ADD,
 1197          * but doing so will not reset any filter which has already been
 1198          * triggered.
 1199          */
 1200         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1201         KQ_UNLOCK(kq);
 1202         KN_LIST_LOCK(kn);
 1203         kn->kn_kevent.udata = kev->udata;
 1204         if (!fops->f_isfd && fops->f_touch != NULL) {
 1205                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1206         } else {
 1207                 kn->kn_sfflags = kev->fflags;
 1208                 kn->kn_sdata = kev->data;
 1209         }
 1210 
 1211         /*
 1212          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1213          * the initial attach event decides that the event is "completed" 
 1214          * already.  i.e. filt_procattach is called on a zombie process.  It
 1215          * will call filt_proc which will remove it from the list, and NULL
 1216          * kn_knlist.
 1217          */
 1218 done_ev_add:
 1219         event = kn->kn_fop->f_event(kn, 0);
 1220         KQ_LOCK(kq);
 1221         if (event)
 1222                 KNOTE_ACTIVATE(kn, 1);
 1223         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1224         KN_LIST_UNLOCK(kn);
 1225 
 1226         if ((kev->flags & EV_DISABLE) &&
 1227             ((kn->kn_status & KN_DISABLED) == 0)) {
 1228                 kn->kn_status |= KN_DISABLED;
 1229         }
 1230 
 1231         if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
 1232                 kn->kn_status &= ~KN_DISABLED;
 1233                 if ((kn->kn_status & KN_ACTIVE) &&
 1234                     ((kn->kn_status & KN_QUEUED) == 0))
 1235                         knote_enqueue(kn);
 1236         }
 1237         KQ_UNLOCK_FLUX(kq);
 1238 
 1239 done:
 1240         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1241         if (filedesc_unlock)
 1242                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1243         if (fp != NULL)
 1244                 fdrop(fp, td);
 1245         if (tkn != NULL)
 1246                 knote_free(tkn);
 1247         if (fops != NULL)
 1248                 kqueue_fo_release(filt);
 1249         return (error);
 1250 }
 1251 
 1252 static int
 1253 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1254 {
 1255         int error;
 1256         struct kqueue *kq;
 1257 
 1258         error = 0;
 1259 
 1260         kq = fp->f_data;
 1261         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1262                 return (EBADF);
 1263         *kqp = kq;
 1264         KQ_LOCK(kq);
 1265         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1266                 KQ_UNLOCK(kq);
 1267                 return (EBADF);
 1268         }
 1269         kq->kq_refcnt++;
 1270         KQ_UNLOCK(kq);
 1271 
 1272         return error;
 1273 }
 1274 
 1275 static void
 1276 kqueue_release(struct kqueue *kq, int locked)
 1277 {
 1278         if (locked)
 1279                 KQ_OWNED(kq);
 1280         else
 1281                 KQ_LOCK(kq);
 1282         kq->kq_refcnt--;
 1283         if (kq->kq_refcnt == 1)
 1284                 wakeup(&kq->kq_refcnt);
 1285         if (!locked)
 1286                 KQ_UNLOCK(kq);
 1287 }
 1288 
 1289 static void
 1290 kqueue_schedtask(struct kqueue *kq)
 1291 {
 1292 
 1293         KQ_OWNED(kq);
 1294         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1295             ("scheduling kqueue task while draining"));
 1296 
 1297         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1298                 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
 1299                 kq->kq_state |= KQ_TASKSCHED;
 1300         }
 1301 }
 1302 
 1303 /*
 1304  * Expand the kq to make sure we have storage for fops/ident pair.
 1305  *
 1306  * Return 0 on success (or no work necessary), return errno on failure.
 1307  *
 1308  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1309  * If kqueue_register is called from a non-fd context, there usually/should
 1310  * be no locks held.
 1311  */
 1312 static int
 1313 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1314         int waitok)
 1315 {
 1316         struct klist *list, *tmp_knhash, *to_free;
 1317         u_long tmp_knhashmask;
 1318         int size;
 1319         int fd;
 1320         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1321 
 1322         KQ_NOTOWNED(kq);
 1323 
 1324         to_free = NULL;
 1325         if (fops->f_isfd) {
 1326                 fd = ident;
 1327                 if (kq->kq_knlistsize <= fd) {
 1328                         size = kq->kq_knlistsize;
 1329                         while (size <= fd)
 1330                                 size += KQEXTENT;
 1331                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1332                         if (list == NULL)
 1333                                 return ENOMEM;
 1334                         KQ_LOCK(kq);
 1335                         if (kq->kq_knlistsize > fd) {
 1336                                 to_free = list;
 1337                                 list = NULL;
 1338                         } else {
 1339                                 if (kq->kq_knlist != NULL) {
 1340                                         bcopy(kq->kq_knlist, list,
 1341                                             kq->kq_knlistsize * sizeof(*list));
 1342                                         to_free = kq->kq_knlist;
 1343                                         kq->kq_knlist = NULL;
 1344                                 }
 1345                                 bzero((caddr_t)list +
 1346                                     kq->kq_knlistsize * sizeof(*list),
 1347                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1348                                 kq->kq_knlistsize = size;
 1349                                 kq->kq_knlist = list;
 1350                         }
 1351                         KQ_UNLOCK(kq);
 1352                 }
 1353         } else {
 1354                 if (kq->kq_knhashmask == 0) {
 1355                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1356                             &tmp_knhashmask);
 1357                         if (tmp_knhash == NULL)
 1358                                 return ENOMEM;
 1359                         KQ_LOCK(kq);
 1360                         if (kq->kq_knhashmask == 0) {
 1361                                 kq->kq_knhash = tmp_knhash;
 1362                                 kq->kq_knhashmask = tmp_knhashmask;
 1363                         } else {
 1364                                 to_free = tmp_knhash;
 1365                         }
 1366                         KQ_UNLOCK(kq);
 1367                 }
 1368         }
 1369         free(to_free, M_KQUEUE);
 1370 
 1371         KQ_NOTOWNED(kq);
 1372         return 0;
 1373 }
 1374 
 1375 static void
 1376 kqueue_task(void *arg, int pending)
 1377 {
 1378         struct kqueue *kq;
 1379         int haskqglobal;
 1380 
 1381         haskqglobal = 0;
 1382         kq = arg;
 1383 
 1384         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1385         KQ_LOCK(kq);
 1386 
 1387         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1388 
 1389         kq->kq_state &= ~KQ_TASKSCHED;
 1390         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1391                 wakeup(&kq->kq_state);
 1392         }
 1393         KQ_UNLOCK(kq);
 1394         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1395 }
 1396 
 1397 /*
 1398  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1399  * We treat KN_MARKER knotes as if they are INFLUX.
 1400  */
 1401 static int
 1402 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1403     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1404 {
 1405         struct kevent *kevp;
 1406         struct knote *kn, *marker;
 1407         sbintime_t asbt, rsbt;
 1408         int count, error, haskqglobal, influx, nkev, touch;
 1409 
 1410         count = maxevents;
 1411         nkev = 0;
 1412         error = 0;
 1413         haskqglobal = 0;
 1414 
 1415         if (maxevents == 0)
 1416                 goto done_nl;
 1417 
 1418         rsbt = 0;
 1419         if (tsp != NULL) {
 1420                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1421                     tsp->tv_nsec >= 1000000000) {
 1422                         error = EINVAL;
 1423                         goto done_nl;
 1424                 }
 1425                 if (timespecisset(tsp)) {
 1426                         if (tsp->tv_sec <= INT32_MAX) {
 1427                                 rsbt = tstosbt(*tsp);
 1428                                 if (TIMESEL(&asbt, rsbt))
 1429                                         asbt += tc_tick_sbt;
 1430                                 if (asbt <= INT64_MAX - rsbt)
 1431                                         asbt += rsbt;
 1432                                 else
 1433                                         asbt = 0;
 1434                                 rsbt >>= tc_precexp;
 1435                         } else
 1436                                 asbt = 0;
 1437                 } else
 1438                         asbt = -1;
 1439         } else
 1440                 asbt = 0;
 1441         marker = knote_alloc(1);
 1442         if (marker == NULL) {
 1443                 error = ENOMEM;
 1444                 goto done_nl;
 1445         }
 1446         marker->kn_status = KN_MARKER;
 1447         KQ_LOCK(kq);
 1448 
 1449 retry:
 1450         kevp = keva;
 1451         if (kq->kq_count == 0) {
 1452                 if (asbt == -1) {
 1453                         error = EWOULDBLOCK;
 1454                 } else {
 1455                         kq->kq_state |= KQ_SLEEP;
 1456                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1457                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1458                 }
 1459                 if (error == 0)
 1460                         goto retry;
 1461                 /* don't restart after signals... */
 1462                 if (error == ERESTART)
 1463                         error = EINTR;
 1464                 else if (error == EWOULDBLOCK)
 1465                         error = 0;
 1466                 goto done;
 1467         }
 1468 
 1469         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1470         influx = 0;
 1471         while (count) {
 1472                 KQ_OWNED(kq);
 1473                 kn = TAILQ_FIRST(&kq->kq_head);
 1474 
 1475                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1476                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1477                         if (influx) {
 1478                                 influx = 0;
 1479                                 KQ_FLUX_WAKEUP(kq);
 1480                         }
 1481                         kq->kq_state |= KQ_FLUXWAIT;
 1482                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1483                             "kqflxwt", 0);
 1484                         continue;
 1485                 }
 1486 
 1487                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1488                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1489                         kn->kn_status &= ~KN_QUEUED;
 1490                         kq->kq_count--;
 1491                         continue;
 1492                 }
 1493                 if (kn == marker) {
 1494                         KQ_FLUX_WAKEUP(kq);
 1495                         if (count == maxevents)
 1496                                 goto retry;
 1497                         goto done;
 1498                 }
 1499                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1500                     ("KN_INFLUX set when not suppose to be"));
 1501 
 1502                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1503                         kn->kn_status &= ~KN_QUEUED;
 1504                         kn->kn_status |= KN_INFLUX;
 1505                         kq->kq_count--;
 1506                         KQ_UNLOCK(kq);
 1507                         /*
 1508                          * We don't need to lock the list since we've marked
 1509                          * it _INFLUX.
 1510                          */
 1511                         if (!(kn->kn_status & KN_DETACHED))
 1512                                 kn->kn_fop->f_detach(kn);
 1513                         knote_drop(kn, td);
 1514                         KQ_LOCK(kq);
 1515                         continue;
 1516                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1517                         kn->kn_status &= ~KN_QUEUED;
 1518                         kn->kn_status |= KN_INFLUX;
 1519                         kq->kq_count--;
 1520                         KQ_UNLOCK(kq);
 1521                         /*
 1522                          * We don't need to lock the list since we've marked
 1523                          * it _INFLUX.
 1524                          */
 1525                         *kevp = kn->kn_kevent;
 1526                         if (!(kn->kn_status & KN_DETACHED))
 1527                                 kn->kn_fop->f_detach(kn);
 1528                         knote_drop(kn, td);
 1529                         KQ_LOCK(kq);
 1530                         kn = NULL;
 1531                 } else {
 1532                         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1533                         KQ_UNLOCK(kq);
 1534                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1535                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1536                         KN_LIST_LOCK(kn);
 1537                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1538                                 KQ_LOCK(kq);
 1539                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1540                                 kn->kn_status &=
 1541                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
 1542                                     KN_SCAN);
 1543                                 kq->kq_count--;
 1544                                 KN_LIST_UNLOCK(kn);
 1545                                 influx = 1;
 1546                                 continue;
 1547                         }
 1548                         touch = (!kn->kn_fop->f_isfd &&
 1549                             kn->kn_fop->f_touch != NULL);
 1550                         if (touch)
 1551                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1552                         else
 1553                                 *kevp = kn->kn_kevent;
 1554                         KQ_LOCK(kq);
 1555                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1556                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1557                                 /* 
 1558                                  * Manually clear knotes who weren't 
 1559                                  * 'touch'ed.
 1560                                  */
 1561                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1562                                         kn->kn_data = 0;
 1563                                         kn->kn_fflags = 0;
 1564                                 }
 1565                                 if (kn->kn_flags & EV_DISPATCH)
 1566                                         kn->kn_status |= KN_DISABLED;
 1567                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1568                                 kq->kq_count--;
 1569                         } else
 1570                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1571                         
 1572                         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1573                         KN_LIST_UNLOCK(kn);
 1574                         influx = 1;
 1575                 }
 1576 
 1577                 /* we are returning a copy to the user */
 1578                 kevp++;
 1579                 nkev++;
 1580                 count--;
 1581 
 1582                 if (nkev == KQ_NEVENTS) {
 1583                         influx = 0;
 1584                         KQ_UNLOCK_FLUX(kq);
 1585                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1586                         nkev = 0;
 1587                         kevp = keva;
 1588                         KQ_LOCK(kq);
 1589                         if (error)
 1590                                 break;
 1591                 }
 1592         }
 1593         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1594 done:
 1595         KQ_OWNED(kq);
 1596         KQ_UNLOCK_FLUX(kq);
 1597         knote_free(marker);
 1598 done_nl:
 1599         KQ_NOTOWNED(kq);
 1600         if (nkev != 0)
 1601                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1602         td->td_retval[0] = maxevents - count;
 1603         return (error);
 1604 }
 1605 
 1606 /*
 1607  * XXX
 1608  * This could be expanded to call kqueue_scan, if desired.
 1609  */
 1610 /*ARGSUSED*/
 1611 static int
 1612 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1613         int flags, struct thread *td)
 1614 {
 1615         return (ENXIO);
 1616 }
 1617 
 1618 /*ARGSUSED*/
 1619 static int
 1620 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1621          int flags, struct thread *td)
 1622 {
 1623         return (ENXIO);
 1624 }
 1625 
 1626 /*ARGSUSED*/
 1627 static int
 1628 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1629         struct thread *td)
 1630 {
 1631 
 1632         return (EINVAL);
 1633 }
 1634 
 1635 /*ARGSUSED*/
 1636 static int
 1637 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1638         struct ucred *active_cred, struct thread *td)
 1639 {
 1640         /*
 1641          * Enabling sigio causes two major problems:
 1642          * 1) infinite recursion:
 1643          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1644          * set.  On receipt of a signal this will cause a kqueue to recurse
 1645          * into itself over and over.  Sending the sigio causes the kqueue
 1646          * to become ready, which in turn posts sigio again, forever.
 1647          * Solution: this can be solved by setting a flag in the kqueue that
 1648          * we have a SIGIO in progress.
 1649          * 2) locking problems:
 1650          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1651          * us above the proc and pgrp locks.
 1652          * Solution: Post a signal using an async mechanism, being sure to
 1653          * record a generation count in the delivery so that we do not deliver
 1654          * a signal to the wrong process.
 1655          *
 1656          * Note, these two mechanisms are somewhat mutually exclusive!
 1657          */
 1658 #if 0
 1659         struct kqueue *kq;
 1660 
 1661         kq = fp->f_data;
 1662         switch (cmd) {
 1663         case FIOASYNC:
 1664                 if (*(int *)data) {
 1665                         kq->kq_state |= KQ_ASYNC;
 1666                 } else {
 1667                         kq->kq_state &= ~KQ_ASYNC;
 1668                 }
 1669                 return (0);
 1670 
 1671         case FIOSETOWN:
 1672                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1673 
 1674         case FIOGETOWN:
 1675                 *(int *)data = fgetown(&kq->kq_sigio);
 1676                 return (0);
 1677         }
 1678 #endif
 1679 
 1680         return (ENOTTY);
 1681 }
 1682 
 1683 /*ARGSUSED*/
 1684 static int
 1685 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1686         struct thread *td)
 1687 {
 1688         struct kqueue *kq;
 1689         int revents = 0;
 1690         int error;
 1691 
 1692         if ((error = kqueue_acquire(fp, &kq)))
 1693                 return POLLERR;
 1694 
 1695         KQ_LOCK(kq);
 1696         if (events & (POLLIN | POLLRDNORM)) {
 1697                 if (kq->kq_count) {
 1698                         revents |= events & (POLLIN | POLLRDNORM);
 1699                 } else {
 1700                         selrecord(td, &kq->kq_sel);
 1701                         if (SEL_WAITING(&kq->kq_sel))
 1702                                 kq->kq_state |= KQ_SEL;
 1703                 }
 1704         }
 1705         kqueue_release(kq, 1);
 1706         KQ_UNLOCK(kq);
 1707         return (revents);
 1708 }
 1709 
 1710 /*ARGSUSED*/
 1711 static int
 1712 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1713         struct thread *td)
 1714 {
 1715 
 1716         bzero((void *)st, sizeof *st);
 1717         /*
 1718          * We no longer return kq_count because the unlocked value is useless.
 1719          * If you spent all this time getting the count, why not spend your
 1720          * syscall better by calling kevent?
 1721          *
 1722          * XXX - This is needed for libc_r.
 1723          */
 1724         st->st_mode = S_IFIFO;
 1725         return (0);
 1726 }
 1727 
 1728 /*ARGSUSED*/
 1729 static int
 1730 kqueue_close(struct file *fp, struct thread *td)
 1731 {
 1732         struct kqueue *kq = fp->f_data;
 1733         struct filedesc *fdp;
 1734         struct knote *kn;
 1735         int i;
 1736         int error;
 1737         int filedesc_unlock;
 1738 
 1739         if ((error = kqueue_acquire(fp, &kq)))
 1740                 return error;
 1741 
 1742         filedesc_unlock = 0;
 1743         KQ_LOCK(kq);
 1744 
 1745         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1746             ("kqueue already closing"));
 1747         kq->kq_state |= KQ_CLOSING;
 1748         if (kq->kq_refcnt > 1)
 1749                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1750 
 1751         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1752         fdp = kq->kq_fdp;
 1753 
 1754         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1755             ("kqueue's knlist not empty"));
 1756 
 1757         for (i = 0; i < kq->kq_knlistsize; i++) {
 1758                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1759                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1760                                 kq->kq_state |= KQ_FLUXWAIT;
 1761                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1762                                 continue;
 1763                         }
 1764                         kn->kn_status |= KN_INFLUX;
 1765                         KQ_UNLOCK(kq);
 1766                         if (!(kn->kn_status & KN_DETACHED))
 1767                                 kn->kn_fop->f_detach(kn);
 1768                         knote_drop(kn, td);
 1769                         KQ_LOCK(kq);
 1770                 }
 1771         }
 1772         if (kq->kq_knhashmask != 0) {
 1773                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1774                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1775                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1776                                         kq->kq_state |= KQ_FLUXWAIT;
 1777                                         msleep(kq, &kq->kq_lock, PSOCK,
 1778                                                "kqclo2", 0);
 1779                                         continue;
 1780                                 }
 1781                                 kn->kn_status |= KN_INFLUX;
 1782                                 KQ_UNLOCK(kq);
 1783                                 if (!(kn->kn_status & KN_DETACHED))
 1784                                         kn->kn_fop->f_detach(kn);
 1785                                 knote_drop(kn, td);
 1786                                 KQ_LOCK(kq);
 1787                         }
 1788                 }
 1789         }
 1790 
 1791         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1792                 kq->kq_state |= KQ_TASKDRAIN;
 1793                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1794         }
 1795 
 1796         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1797                 selwakeuppri(&kq->kq_sel, PSOCK);
 1798                 if (!SEL_WAITING(&kq->kq_sel))
 1799                         kq->kq_state &= ~KQ_SEL;
 1800         }
 1801 
 1802         KQ_UNLOCK(kq);
 1803 
 1804         /*
 1805          * We could be called due to the knote_drop() doing fdrop(),
 1806          * called from kqueue_register().  In this case the global
 1807          * lock is owned, and filedesc sx is locked before, to not
 1808          * take the sleepable lock after non-sleepable.
 1809          */
 1810         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 1811                 FILEDESC_XLOCK(fdp);
 1812                 filedesc_unlock = 1;
 1813         } else
 1814                 filedesc_unlock = 0;
 1815         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 1816         if (filedesc_unlock)
 1817                 FILEDESC_XUNLOCK(fdp);
 1818 
 1819         seldrain(&kq->kq_sel);
 1820         knlist_destroy(&kq->kq_sel.si_note);
 1821         mtx_destroy(&kq->kq_lock);
 1822         kq->kq_fdp = NULL;
 1823 
 1824         if (kq->kq_knhash != NULL)
 1825                 free(kq->kq_knhash, M_KQUEUE);
 1826         if (kq->kq_knlist != NULL)
 1827                 free(kq->kq_knlist, M_KQUEUE);
 1828 
 1829         funsetown(&kq->kq_sigio);
 1830         free(kq, M_KQUEUE);
 1831         fp->f_data = NULL;
 1832 
 1833         return (0);
 1834 }
 1835 
 1836 static void
 1837 kqueue_wakeup(struct kqueue *kq)
 1838 {
 1839         KQ_OWNED(kq);
 1840 
 1841         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1842                 kq->kq_state &= ~KQ_SLEEP;
 1843                 wakeup(kq);
 1844         }
 1845         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1846                 selwakeuppri(&kq->kq_sel, PSOCK);
 1847                 if (!SEL_WAITING(&kq->kq_sel))
 1848                         kq->kq_state &= ~KQ_SEL;
 1849         }
 1850         if (!knlist_empty(&kq->kq_sel.si_note))
 1851                 kqueue_schedtask(kq);
 1852         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1853                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1854         }
 1855 }
 1856 
 1857 /*
 1858  * Walk down a list of knotes, activating them if their event has triggered.
 1859  *
 1860  * There is a possibility to optimize in the case of one kq watching another.
 1861  * Instead of scheduling a task to wake it up, you could pass enough state
 1862  * down the chain to make up the parent kqueue.  Make this code functional
 1863  * first.
 1864  */
 1865 void
 1866 knote(struct knlist *list, long hint, int lockflags)
 1867 {
 1868         struct kqueue *kq;
 1869         struct knote *kn, *tkn;
 1870         int error;
 1871 
 1872         if (list == NULL)
 1873                 return;
 1874 
 1875         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 1876 
 1877         if ((lockflags & KNF_LISTLOCKED) == 0)
 1878                 list->kl_lock(list->kl_lockarg); 
 1879 
 1880         /*
 1881          * If we unlock the list lock (and set KN_INFLUX), we can
 1882          * eliminate the kqueue scheduling, but this will introduce
 1883          * four lock/unlock's for each knote to test.  Also, marker
 1884          * would be needed to keep iteration position, since filters
 1885          * or other threads could remove events.
 1886          */
 1887         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 1888                 kq = kn->kn_kq;
 1889                 KQ_LOCK(kq);
 1890                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
 1891                         /*
 1892                          * Do not process the influx notes, except for
 1893                          * the influx coming from the kq unlock in the
 1894                          * kqueue_scan().  In the later case, we do
 1895                          * not interfere with the scan, since the code
 1896                          * fragment in kqueue_scan() locks the knlist,
 1897                          * and cannot proceed until we finished.
 1898                          */
 1899                         KQ_UNLOCK(kq);
 1900                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 1901                         kn->kn_status |= KN_INFLUX;
 1902                         KQ_UNLOCK(kq);
 1903                         error = kn->kn_fop->f_event(kn, hint);
 1904                         KQ_LOCK(kq);
 1905                         kn->kn_status &= ~KN_INFLUX;
 1906                         if (error)
 1907                                 KNOTE_ACTIVATE(kn, 1);
 1908                         KQ_UNLOCK_FLUX(kq);
 1909                 } else {
 1910                         kn->kn_status |= KN_HASKQLOCK;
 1911                         if (kn->kn_fop->f_event(kn, hint))
 1912                                 KNOTE_ACTIVATE(kn, 1);
 1913                         kn->kn_status &= ~KN_HASKQLOCK;
 1914                         KQ_UNLOCK(kq);
 1915                 }
 1916         }
 1917         if ((lockflags & KNF_LISTLOCKED) == 0)
 1918                 list->kl_unlock(list->kl_lockarg); 
 1919 }
 1920 
 1921 /*
 1922  * add a knote to a knlist
 1923  */
 1924 void
 1925 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 1926 {
 1927         KNL_ASSERT_LOCK(knl, islocked);
 1928         KQ_NOTOWNED(kn->kn_kq);
 1929         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 1930             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 1931         if (!islocked)
 1932                 knl->kl_lock(knl->kl_lockarg);
 1933         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 1934         if (!islocked)
 1935                 knl->kl_unlock(knl->kl_lockarg);
 1936         KQ_LOCK(kn->kn_kq);
 1937         kn->kn_knlist = knl;
 1938         kn->kn_status &= ~KN_DETACHED;
 1939         KQ_UNLOCK(kn->kn_kq);
 1940 }
 1941 
 1942 static void
 1943 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
 1944 {
 1945         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 1946         KNL_ASSERT_LOCK(knl, knlislocked);
 1947         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 1948         if (!kqislocked)
 1949                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 1950     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 1951         if (!knlislocked)
 1952                 knl->kl_lock(knl->kl_lockarg);
 1953         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 1954         kn->kn_knlist = NULL;
 1955         if (!knlislocked)
 1956                 knl->kl_unlock(knl->kl_lockarg);
 1957         if (!kqislocked)
 1958                 KQ_LOCK(kn->kn_kq);
 1959         kn->kn_status |= KN_DETACHED;
 1960         if (!kqislocked)
 1961                 KQ_UNLOCK(kn->kn_kq);
 1962 }
 1963 
 1964 /*
 1965  * remove knote from the specified knlist
 1966  */
 1967 void
 1968 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 1969 {
 1970 
 1971         knlist_remove_kq(knl, kn, islocked, 0);
 1972 }
 1973 
 1974 /*
 1975  * remove knote from the specified knlist while in f_event handler.
 1976  */
 1977 void
 1978 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
 1979 {
 1980 
 1981         knlist_remove_kq(knl, kn, 1,
 1982             (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
 1983 }
 1984 
 1985 int
 1986 knlist_empty(struct knlist *knl)
 1987 {
 1988 
 1989         KNL_ASSERT_LOCKED(knl);
 1990         return SLIST_EMPTY(&knl->kl_list);
 1991 }
 1992 
 1993 static struct mtx       knlist_lock;
 1994 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 1995         MTX_DEF);
 1996 static void knlist_mtx_lock(void *arg);
 1997 static void knlist_mtx_unlock(void *arg);
 1998 
 1999 static void
 2000 knlist_mtx_lock(void *arg)
 2001 {
 2002 
 2003         mtx_lock((struct mtx *)arg);
 2004 }
 2005 
 2006 static void
 2007 knlist_mtx_unlock(void *arg)
 2008 {
 2009 
 2010         mtx_unlock((struct mtx *)arg);
 2011 }
 2012 
 2013 static void
 2014 knlist_mtx_assert_locked(void *arg)
 2015 {
 2016 
 2017         mtx_assert((struct mtx *)arg, MA_OWNED);
 2018 }
 2019 
 2020 static void
 2021 knlist_mtx_assert_unlocked(void *arg)
 2022 {
 2023 
 2024         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2025 }
 2026 
 2027 static void
 2028 knlist_rw_rlock(void *arg)
 2029 {
 2030 
 2031         rw_rlock((struct rwlock *)arg);
 2032 }
 2033 
 2034 static void
 2035 knlist_rw_runlock(void *arg)
 2036 {
 2037 
 2038         rw_runlock((struct rwlock *)arg);
 2039 }
 2040 
 2041 static void
 2042 knlist_rw_assert_locked(void *arg)
 2043 {
 2044 
 2045         rw_assert((struct rwlock *)arg, RA_LOCKED);
 2046 }
 2047 
 2048 static void
 2049 knlist_rw_assert_unlocked(void *arg)
 2050 {
 2051 
 2052         rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2053 }
 2054 
 2055 void
 2056 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2057     void (*kl_unlock)(void *),
 2058     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 2059 {
 2060 
 2061         if (lock == NULL)
 2062                 knl->kl_lockarg = &knlist_lock;
 2063         else
 2064                 knl->kl_lockarg = lock;
 2065 
 2066         if (kl_lock == NULL)
 2067                 knl->kl_lock = knlist_mtx_lock;
 2068         else
 2069                 knl->kl_lock = kl_lock;
 2070         if (kl_unlock == NULL)
 2071                 knl->kl_unlock = knlist_mtx_unlock;
 2072         else
 2073                 knl->kl_unlock = kl_unlock;
 2074         if (kl_assert_locked == NULL)
 2075                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 2076         else
 2077                 knl->kl_assert_locked = kl_assert_locked;
 2078         if (kl_assert_unlocked == NULL)
 2079                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 2080         else
 2081                 knl->kl_assert_unlocked = kl_assert_unlocked;
 2082 
 2083         SLIST_INIT(&knl->kl_list);
 2084 }
 2085 
 2086 void
 2087 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2088 {
 2089 
 2090         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 2091 }
 2092 
 2093 void
 2094 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2095 {
 2096 
 2097         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2098             knlist_rw_assert_locked, knlist_rw_assert_unlocked);
 2099 }
 2100 
 2101 void
 2102 knlist_destroy(struct knlist *knl)
 2103 {
 2104 
 2105 #ifdef INVARIANTS
 2106         /*
 2107          * if we run across this error, we need to find the offending
 2108          * driver and have it call knlist_clear or knlist_delete.
 2109          */
 2110         if (!SLIST_EMPTY(&knl->kl_list))
 2111                 printf("WARNING: destroying knlist w/ knotes on it!\n");
 2112 #endif
 2113 
 2114         knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
 2115         SLIST_INIT(&knl->kl_list);
 2116 }
 2117 
 2118 /*
 2119  * Even if we are locked, we may need to drop the lock to allow any influx
 2120  * knotes time to "settle".
 2121  */
 2122 void
 2123 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2124 {
 2125         struct knote *kn, *kn2;
 2126         struct kqueue *kq;
 2127 
 2128         if (islocked)
 2129                 KNL_ASSERT_LOCKED(knl);
 2130         else {
 2131                 KNL_ASSERT_UNLOCKED(knl);
 2132 again:          /* need to reacquire lock since we have dropped it */
 2133                 knl->kl_lock(knl->kl_lockarg);
 2134         }
 2135 
 2136         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2137                 kq = kn->kn_kq;
 2138                 KQ_LOCK(kq);
 2139                 if ((kn->kn_status & KN_INFLUX)) {
 2140                         KQ_UNLOCK(kq);
 2141                         continue;
 2142                 }
 2143                 knlist_remove_kq(knl, kn, 1, 1);
 2144                 if (killkn) {
 2145                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 2146                         KQ_UNLOCK(kq);
 2147                         knote_drop(kn, td);
 2148                 } else {
 2149                         /* Make sure cleared knotes disappear soon */
 2150                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 2151                         KQ_UNLOCK(kq);
 2152                 }
 2153                 kq = NULL;
 2154         }
 2155 
 2156         if (!SLIST_EMPTY(&knl->kl_list)) {
 2157                 /* there are still KN_INFLUX remaining */
 2158                 kn = SLIST_FIRST(&knl->kl_list);
 2159                 kq = kn->kn_kq;
 2160                 KQ_LOCK(kq);
 2161                 KASSERT(kn->kn_status & KN_INFLUX,
 2162                     ("knote removed w/o list lock"));
 2163                 knl->kl_unlock(knl->kl_lockarg);
 2164                 kq->kq_state |= KQ_FLUXWAIT;
 2165                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2166                 kq = NULL;
 2167                 goto again;
 2168         }
 2169 
 2170         if (islocked)
 2171                 KNL_ASSERT_LOCKED(knl);
 2172         else {
 2173                 knl->kl_unlock(knl->kl_lockarg);
 2174                 KNL_ASSERT_UNLOCKED(knl);
 2175         }
 2176 }
 2177 
 2178 /*
 2179  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2180  * lock.  This prevents a race where a new fd comes along and occupies the
 2181  * entry and we attach a knote to the fd.
 2182  */
 2183 void
 2184 knote_fdclose(struct thread *td, int fd)
 2185 {
 2186         struct filedesc *fdp = td->td_proc->p_fd;
 2187         struct kqueue *kq;
 2188         struct knote *kn;
 2189         int influx;
 2190 
 2191         FILEDESC_XLOCK_ASSERT(fdp);
 2192 
 2193         /*
 2194          * We shouldn't have to worry about new kevents appearing on fd
 2195          * since filedesc is locked.
 2196          */
 2197         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2198                 KQ_LOCK(kq);
 2199 
 2200 again:
 2201                 influx = 0;
 2202                 while (kq->kq_knlistsize > fd &&
 2203                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2204                         if (kn->kn_status & KN_INFLUX) {
 2205                                 /* someone else might be waiting on our knote */
 2206                                 if (influx)
 2207                                         wakeup(kq);
 2208                                 kq->kq_state |= KQ_FLUXWAIT;
 2209                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2210                                 goto again;
 2211                         }
 2212                         kn->kn_status |= KN_INFLUX;
 2213                         KQ_UNLOCK(kq);
 2214                         if (!(kn->kn_status & KN_DETACHED))
 2215                                 kn->kn_fop->f_detach(kn);
 2216                         knote_drop(kn, td);
 2217                         influx = 1;
 2218                         KQ_LOCK(kq);
 2219                 }
 2220                 KQ_UNLOCK_FLUX(kq);
 2221         }
 2222 }
 2223 
 2224 static int
 2225 knote_attach(struct knote *kn, struct kqueue *kq)
 2226 {
 2227         struct klist *list;
 2228 
 2229         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 2230         KQ_OWNED(kq);
 2231 
 2232         if (kn->kn_fop->f_isfd) {
 2233                 if (kn->kn_id >= kq->kq_knlistsize)
 2234                         return ENOMEM;
 2235                 list = &kq->kq_knlist[kn->kn_id];
 2236         } else {
 2237                 if (kq->kq_knhash == NULL)
 2238                         return ENOMEM;
 2239                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2240         }
 2241 
 2242         SLIST_INSERT_HEAD(list, kn, kn_link);
 2243 
 2244         return 0;
 2245 }
 2246 
 2247 /*
 2248  * knote must already have been detached using the f_detach method.
 2249  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 2250  * to prevent other removal.
 2251  */
 2252 static void
 2253 knote_drop(struct knote *kn, struct thread *td)
 2254 {
 2255         struct kqueue *kq;
 2256         struct klist *list;
 2257 
 2258         kq = kn->kn_kq;
 2259 
 2260         KQ_NOTOWNED(kq);
 2261         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 2262             ("knote_drop called without KN_INFLUX set in kn_status"));
 2263 
 2264         KQ_LOCK(kq);
 2265         if (kn->kn_fop->f_isfd)
 2266                 list = &kq->kq_knlist[kn->kn_id];
 2267         else
 2268                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2269 
 2270         if (!SLIST_EMPTY(list))
 2271                 SLIST_REMOVE(list, kn, knote, kn_link);
 2272         if (kn->kn_status & KN_QUEUED)
 2273                 knote_dequeue(kn);
 2274         KQ_UNLOCK_FLUX(kq);
 2275 
 2276         if (kn->kn_fop->f_isfd) {
 2277                 fdrop(kn->kn_fp, td);
 2278                 kn->kn_fp = NULL;
 2279         }
 2280         kqueue_fo_release(kn->kn_kevent.filter);
 2281         kn->kn_fop = NULL;
 2282         knote_free(kn);
 2283 }
 2284 
 2285 static void
 2286 knote_enqueue(struct knote *kn)
 2287 {
 2288         struct kqueue *kq = kn->kn_kq;
 2289 
 2290         KQ_OWNED(kn->kn_kq);
 2291         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2292 
 2293         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2294         kn->kn_status |= KN_QUEUED;
 2295         kq->kq_count++;
 2296         kqueue_wakeup(kq);
 2297 }
 2298 
 2299 static void
 2300 knote_dequeue(struct knote *kn)
 2301 {
 2302         struct kqueue *kq = kn->kn_kq;
 2303 
 2304         KQ_OWNED(kn->kn_kq);
 2305         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2306 
 2307         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2308         kn->kn_status &= ~KN_QUEUED;
 2309         kq->kq_count--;
 2310 }
 2311 
 2312 static void
 2313 knote_init(void)
 2314 {
 2315 
 2316         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2317             NULL, NULL, UMA_ALIGN_PTR, 0);
 2318 }
 2319 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2320 
 2321 static struct knote *
 2322 knote_alloc(int waitok)
 2323 {
 2324         return ((struct knote *)uma_zalloc(knote_zone,
 2325             (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
 2326 }
 2327 
 2328 static void
 2329 knote_free(struct knote *kn)
 2330 {
 2331         if (kn != NULL)
 2332                 uma_zfree(knote_zone, kn);
 2333 }
 2334 
 2335 /*
 2336  * Register the kev w/ the kq specified by fd.
 2337  */
 2338 int 
 2339 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2340 {
 2341         struct kqueue *kq;
 2342         struct file *fp;
 2343         cap_rights_t rights;
 2344         int error;
 2345 
 2346         error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
 2347         if (error != 0)
 2348                 return (error);
 2349         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2350                 goto noacquire;
 2351 
 2352         error = kqueue_register(kq, kev, td, waitok);
 2353 
 2354         kqueue_release(kq, 0);
 2355 
 2356 noacquire:
 2357         fdrop(fp, td);
 2358 
 2359         return error;
 2360 }

Cache object: 1ece525eb1adff80b8246bb6c2d76fc2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.