The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * Copyright (c) 2009 Apple, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/11.1/sys/kern/kern_event.c 320290 2017-06-23 18:57:56Z kib $");
   31 
   32 #include "opt_ktrace.h"
   33 #include "opt_kqueue.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/capsicum.h>
   38 #include <sys/kernel.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/rwlock.h>
   42 #include <sys/proc.h>
   43 #include <sys/malloc.h>
   44 #include <sys/unistd.h>
   45 #include <sys/file.h>
   46 #include <sys/filedesc.h>
   47 #include <sys/filio.h>
   48 #include <sys/fcntl.h>
   49 #include <sys/kthread.h>
   50 #include <sys/selinfo.h>
   51 #include <sys/queue.h>
   52 #include <sys/event.h>
   53 #include <sys/eventvar.h>
   54 #include <sys/poll.h>
   55 #include <sys/protosw.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sigio.h>
   58 #include <sys/signalvar.h>
   59 #include <sys/socket.h>
   60 #include <sys/socketvar.h>
   61 #include <sys/stat.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/sysproto.h>
   64 #include <sys/syscallsubr.h>
   65 #include <sys/taskqueue.h>
   66 #include <sys/uio.h>
   67 #include <sys/user.h>
   68 #ifdef KTRACE
   69 #include <sys/ktrace.h>
   70 #endif
   71 #include <machine/atomic.h>
   72 
   73 #include <vm/uma.h>
   74 
   75 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   76 
   77 /*
   78  * This lock is used if multiple kq locks are required.  This possibly
   79  * should be made into a per proc lock.
   80  */
   81 static struct mtx       kq_global;
   82 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   83 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   84         if (!haslck)                            \
   85                 mtx_lock(lck);                  \
   86         haslck = 1;                             \
   87 } while (0)
   88 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   89         if (haslck)                             \
   90                 mtx_unlock(lck);                        \
   91         haslck = 0;                             \
   92 } while (0)
   93 
   94 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
   95 
   96 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   97 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   98 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   99                     struct thread *td, int waitok);
  100 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
  101 static void     kqueue_release(struct kqueue *kq, int locked);
  102 static void     kqueue_destroy(struct kqueue *kq);
  103 static void     kqueue_drain(struct kqueue *kq, struct thread *td);
  104 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  105                     uintptr_t ident, int waitok);
  106 static void     kqueue_task(void *arg, int pending);
  107 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  108                     struct kevent_copyops *k_ops,
  109                     const struct timespec *timeout,
  110                     struct kevent *keva, struct thread *td);
  111 static void     kqueue_wakeup(struct kqueue *kq);
  112 static struct filterops *kqueue_fo_find(int filt);
  113 static void     kqueue_fo_release(int filt);
  114 
  115 static fo_ioctl_t       kqueue_ioctl;
  116 static fo_poll_t        kqueue_poll;
  117 static fo_kqfilter_t    kqueue_kqfilter;
  118 static fo_stat_t        kqueue_stat;
  119 static fo_close_t       kqueue_close;
  120 static fo_fill_kinfo_t  kqueue_fill_kinfo;
  121 
  122 static struct fileops kqueueops = {
  123         .fo_read = invfo_rdwr,
  124         .fo_write = invfo_rdwr,
  125         .fo_truncate = invfo_truncate,
  126         .fo_ioctl = kqueue_ioctl,
  127         .fo_poll = kqueue_poll,
  128         .fo_kqfilter = kqueue_kqfilter,
  129         .fo_stat = kqueue_stat,
  130         .fo_close = kqueue_close,
  131         .fo_chmod = invfo_chmod,
  132         .fo_chown = invfo_chown,
  133         .fo_sendfile = invfo_sendfile,
  134         .fo_fill_kinfo = kqueue_fill_kinfo,
  135 };
  136 
  137 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  138 static void     knote_drop(struct knote *kn, struct thread *td);
  139 static void     knote_enqueue(struct knote *kn);
  140 static void     knote_dequeue(struct knote *kn);
  141 static void     knote_init(void);
  142 static struct   knote *knote_alloc(int waitok);
  143 static void     knote_free(struct knote *kn);
  144 
  145 static void     filt_kqdetach(struct knote *kn);
  146 static int      filt_kqueue(struct knote *kn, long hint);
  147 static int      filt_procattach(struct knote *kn);
  148 static void     filt_procdetach(struct knote *kn);
  149 static int      filt_proc(struct knote *kn, long hint);
  150 static int      filt_fileattach(struct knote *kn);
  151 static void     filt_timerexpire(void *knx);
  152 static int      filt_timerattach(struct knote *kn);
  153 static void     filt_timerdetach(struct knote *kn);
  154 static int      filt_timer(struct knote *kn, long hint);
  155 static int      filt_userattach(struct knote *kn);
  156 static void     filt_userdetach(struct knote *kn);
  157 static int      filt_user(struct knote *kn, long hint);
  158 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  159                     u_long type);
  160 
  161 static struct filterops file_filtops = {
  162         .f_isfd = 1,
  163         .f_attach = filt_fileattach,
  164 };
  165 static struct filterops kqread_filtops = {
  166         .f_isfd = 1,
  167         .f_detach = filt_kqdetach,
  168         .f_event = filt_kqueue,
  169 };
  170 /* XXX - move to kern_proc.c?  */
  171 static struct filterops proc_filtops = {
  172         .f_isfd = 0,
  173         .f_attach = filt_procattach,
  174         .f_detach = filt_procdetach,
  175         .f_event = filt_proc,
  176 };
  177 static struct filterops timer_filtops = {
  178         .f_isfd = 0,
  179         .f_attach = filt_timerattach,
  180         .f_detach = filt_timerdetach,
  181         .f_event = filt_timer,
  182 };
  183 static struct filterops user_filtops = {
  184         .f_attach = filt_userattach,
  185         .f_detach = filt_userdetach,
  186         .f_event = filt_user,
  187         .f_touch = filt_usertouch,
  188 };
  189 
  190 static uma_zone_t       knote_zone;
  191 static unsigned int     kq_ncallouts = 0;
  192 static unsigned int     kq_calloutmax = 4 * 1024;
  193 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  194     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  195 
  196 /* XXX - ensure not KN_INFLUX?? */
  197 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  198         if ((islock))                                                   \
  199                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  200         else                                                            \
  201                 KQ_LOCK((kn)->kn_kq);                                   \
  202         (kn)->kn_status |= KN_ACTIVE;                                   \
  203         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  204                 knote_enqueue((kn));                                    \
  205         if (!(islock))                                                  \
  206                 KQ_UNLOCK((kn)->kn_kq);                                 \
  207 } while(0)
  208 #define KQ_LOCK(kq) do {                                                \
  209         mtx_lock(&(kq)->kq_lock);                                       \
  210 } while (0)
  211 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  212         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  213                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  214                 wakeup((kq));                                           \
  215         }                                                               \
  216 } while (0)
  217 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  218         KQ_FLUX_WAKEUP(kq);                                             \
  219         mtx_unlock(&(kq)->kq_lock);                                     \
  220 } while (0)
  221 #define KQ_UNLOCK(kq) do {                                              \
  222         mtx_unlock(&(kq)->kq_lock);                                     \
  223 } while (0)
  224 #define KQ_OWNED(kq) do {                                               \
  225         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  226 } while (0)
  227 #define KQ_NOTOWNED(kq) do {                                            \
  228         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  229 } while (0)
  230 
  231 static struct knlist *
  232 kn_list_lock(struct knote *kn)
  233 {
  234         struct knlist *knl;
  235 
  236         knl = kn->kn_knlist;
  237         if (knl != NULL)
  238                 knl->kl_lock(knl->kl_lockarg);
  239         return (knl);
  240 }
  241 
  242 static void
  243 kn_list_unlock(struct knlist *knl)
  244 {
  245         bool do_free;
  246 
  247         if (knl == NULL)
  248                 return;
  249         do_free = knl->kl_autodestroy && knlist_empty(knl);
  250         knl->kl_unlock(knl->kl_lockarg);
  251         if (do_free) {
  252                 knlist_destroy(knl);
  253                 free(knl, M_KQUEUE);
  254         }
  255 }
  256 
  257 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  258         if (islocked)                                                   \
  259                 KNL_ASSERT_LOCKED(knl);                         \
  260         else                                                            \
  261                 KNL_ASSERT_UNLOCKED(knl);                               \
  262 } while (0)
  263 #ifdef INVARIANTS
  264 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  265         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  266 } while (0)
  267 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  268         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  269 } while (0)
  270 #else /* !INVARIANTS */
  271 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  272 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  273 #endif /* INVARIANTS */
  274 
  275 #ifndef KN_HASHSIZE
  276 #define KN_HASHSIZE             64              /* XXX should be tunable */
  277 #endif
  278 
  279 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  280 
  281 static int
  282 filt_nullattach(struct knote *kn)
  283 {
  284 
  285         return (ENXIO);
  286 };
  287 
  288 struct filterops null_filtops = {
  289         .f_isfd = 0,
  290         .f_attach = filt_nullattach,
  291 };
  292 
  293 /* XXX - make SYSINIT to add these, and move into respective modules. */
  294 extern struct filterops sig_filtops;
  295 extern struct filterops fs_filtops;
  296 
  297 /*
  298  * Table for for all system-defined filters.
  299  */
  300 static struct mtx       filterops_lock;
  301 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  302         MTX_DEF);
  303 static struct {
  304         struct filterops *for_fop;
  305         int for_nolock;
  306         int for_refcnt;
  307 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  308         { &file_filtops, 1 },                   /* EVFILT_READ */
  309         { &file_filtops, 1 },                   /* EVFILT_WRITE */
  310         { &null_filtops },                      /* EVFILT_AIO */
  311         { &file_filtops, 1 },                   /* EVFILT_VNODE */
  312         { &proc_filtops, 1 },                   /* EVFILT_PROC */
  313         { &sig_filtops, 1 },                    /* EVFILT_SIGNAL */
  314         { &timer_filtops, 1 },                  /* EVFILT_TIMER */
  315         { &file_filtops, 1 },                   /* EVFILT_PROCDESC */
  316         { &fs_filtops, 1 },                     /* EVFILT_FS */
  317         { &null_filtops },                      /* EVFILT_LIO */
  318         { &user_filtops, 1 },                   /* EVFILT_USER */
  319         { &null_filtops },                      /* EVFILT_SENDFILE */
  320 };
  321 
  322 /*
  323  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  324  * method.
  325  */
  326 static int
  327 filt_fileattach(struct knote *kn)
  328 {
  329 
  330         return (fo_kqfilter(kn->kn_fp, kn));
  331 }
  332 
  333 /*ARGSUSED*/
  334 static int
  335 kqueue_kqfilter(struct file *fp, struct knote *kn)
  336 {
  337         struct kqueue *kq = kn->kn_fp->f_data;
  338 
  339         if (kn->kn_filter != EVFILT_READ)
  340                 return (EINVAL);
  341 
  342         kn->kn_status |= KN_KQUEUE;
  343         kn->kn_fop = &kqread_filtops;
  344         knlist_add(&kq->kq_sel.si_note, kn, 0);
  345 
  346         return (0);
  347 }
  348 
  349 static void
  350 filt_kqdetach(struct knote *kn)
  351 {
  352         struct kqueue *kq = kn->kn_fp->f_data;
  353 
  354         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  355 }
  356 
  357 /*ARGSUSED*/
  358 static int
  359 filt_kqueue(struct knote *kn, long hint)
  360 {
  361         struct kqueue *kq = kn->kn_fp->f_data;
  362 
  363         kn->kn_data = kq->kq_count;
  364         return (kn->kn_data > 0);
  365 }
  366 
  367 /* XXX - move to kern_proc.c?  */
  368 static int
  369 filt_procattach(struct knote *kn)
  370 {
  371         struct proc *p;
  372         int error;
  373         bool exiting, immediate;
  374 
  375         exiting = immediate = false;
  376         p = pfind(kn->kn_id);
  377         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  378                 p = zpfind(kn->kn_id);
  379                 exiting = true;
  380         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  381                 exiting = true;
  382         }
  383 
  384         if (p == NULL)
  385                 return (ESRCH);
  386         if ((error = p_cansee(curthread, p))) {
  387                 PROC_UNLOCK(p);
  388                 return (error);
  389         }
  390 
  391         kn->kn_ptr.p_proc = p;
  392         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  393 
  394         /*
  395          * Internal flag indicating registration done by kernel for the
  396          * purposes of getting a NOTE_CHILD notification.
  397          */
  398         if (kn->kn_flags & EV_FLAG2) {
  399                 kn->kn_flags &= ~EV_FLAG2;
  400                 kn->kn_data = kn->kn_sdata;             /* ppid */
  401                 kn->kn_fflags = NOTE_CHILD;
  402                 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
  403                 immediate = true; /* Force immediate activation of child note. */
  404         }
  405         /*
  406          * Internal flag indicating registration done by kernel (for other than
  407          * NOTE_CHILD).
  408          */
  409         if (kn->kn_flags & EV_FLAG1) {
  410                 kn->kn_flags &= ~EV_FLAG1;
  411         }
  412 
  413         knlist_add(p->p_klist, kn, 1);
  414 
  415         /*
  416          * Immediately activate any child notes or, in the case of a zombie
  417          * target process, exit notes.  The latter is necessary to handle the
  418          * case where the target process, e.g. a child, dies before the kevent
  419          * is registered.
  420          */
  421         if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
  422                 KNOTE_ACTIVATE(kn, 0);
  423 
  424         PROC_UNLOCK(p);
  425 
  426         return (0);
  427 }
  428 
  429 /*
  430  * The knote may be attached to a different process, which may exit,
  431  * leaving nothing for the knote to be attached to.  So when the process
  432  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  433  * it will be deleted when read out.  However, as part of the knote deletion,
  434  * this routine is called, so a check is needed to avoid actually performing
  435  * a detach, because the original process does not exist any more.
  436  */
  437 /* XXX - move to kern_proc.c?  */
  438 static void
  439 filt_procdetach(struct knote *kn)
  440 {
  441 
  442         knlist_remove(kn->kn_knlist, kn, 0);
  443         kn->kn_ptr.p_proc = NULL;
  444 }
  445 
  446 /* XXX - move to kern_proc.c?  */
  447 static int
  448 filt_proc(struct knote *kn, long hint)
  449 {
  450         struct proc *p;
  451         u_int event;
  452 
  453         p = kn->kn_ptr.p_proc;
  454         if (p == NULL) /* already activated, from attach filter */
  455                 return (0);
  456 
  457         /* Mask off extra data. */
  458         event = (u_int)hint & NOTE_PCTRLMASK;
  459 
  460         /* If the user is interested in this event, record it. */
  461         if (kn->kn_sfflags & event)
  462                 kn->kn_fflags |= event;
  463 
  464         /* Process is gone, so flag the event as finished. */
  465         if (event == NOTE_EXIT) {
  466                 kn->kn_flags |= EV_EOF | EV_ONESHOT;
  467                 kn->kn_ptr.p_proc = NULL;
  468                 if (kn->kn_fflags & NOTE_EXIT)
  469                         kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
  470                 if (kn->kn_fflags == 0)
  471                         kn->kn_flags |= EV_DROP;
  472                 return (1);
  473         }
  474 
  475         return (kn->kn_fflags != 0);
  476 }
  477 
  478 /*
  479  * Called when the process forked. It mostly does the same as the
  480  * knote(), activating all knotes registered to be activated when the
  481  * process forked. Additionally, for each knote attached to the
  482  * parent, check whether user wants to track the new process. If so
  483  * attach a new knote to it, and immediately report an event with the
  484  * child's pid.
  485  */
  486 void
  487 knote_fork(struct knlist *list, int pid)
  488 {
  489         struct kqueue *kq;
  490         struct knote *kn;
  491         struct kevent kev;
  492         int error;
  493 
  494         if (list == NULL)
  495                 return;
  496         list->kl_lock(list->kl_lockarg);
  497 
  498         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  499                 kq = kn->kn_kq;
  500                 KQ_LOCK(kq);
  501                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
  502                         KQ_UNLOCK(kq);
  503                         continue;
  504                 }
  505 
  506                 /*
  507                  * The same as knote(), activate the event.
  508                  */
  509                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  510                         kn->kn_status |= KN_HASKQLOCK;
  511                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  512                                 KNOTE_ACTIVATE(kn, 1);
  513                         kn->kn_status &= ~KN_HASKQLOCK;
  514                         KQ_UNLOCK(kq);
  515                         continue;
  516                 }
  517 
  518                 /*
  519                  * The NOTE_TRACK case. In addition to the activation
  520                  * of the event, we need to register new events to
  521                  * track the child. Drop the locks in preparation for
  522                  * the call to kqueue_register().
  523                  */
  524                 kn->kn_status |= KN_INFLUX;
  525                 KQ_UNLOCK(kq);
  526                 list->kl_unlock(list->kl_lockarg);
  527 
  528                 /*
  529                  * Activate existing knote and register tracking knotes with
  530                  * new process.
  531                  *
  532                  * First register a knote to get just the child notice. This
  533                  * must be a separate note from a potential NOTE_EXIT
  534                  * notification since both NOTE_CHILD and NOTE_EXIT are defined
  535                  * to use the data field (in conflicting ways).
  536                  */
  537                 kev.ident = pid;
  538                 kev.filter = kn->kn_filter;
  539                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
  540                     EV_FLAG2;
  541                 kev.fflags = kn->kn_sfflags;
  542                 kev.data = kn->kn_id;           /* parent */
  543                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  544                 error = kqueue_register(kq, &kev, NULL, 0);
  545                 if (error)
  546                         kn->kn_fflags |= NOTE_TRACKERR;
  547 
  548                 /*
  549                  * Then register another knote to track other potential events
  550                  * from the new process.
  551                  */
  552                 kev.ident = pid;
  553                 kev.filter = kn->kn_filter;
  554                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  555                 kev.fflags = kn->kn_sfflags;
  556                 kev.data = kn->kn_id;           /* parent */
  557                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  558                 error = kqueue_register(kq, &kev, NULL, 0);
  559                 if (error)
  560                         kn->kn_fflags |= NOTE_TRACKERR;
  561                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  562                         KNOTE_ACTIVATE(kn, 0);
  563                 KQ_LOCK(kq);
  564                 kn->kn_status &= ~KN_INFLUX;
  565                 KQ_UNLOCK_FLUX(kq);
  566                 list->kl_lock(list->kl_lockarg);
  567         }
  568         list->kl_unlock(list->kl_lockarg);
  569 }
  570 
  571 /*
  572  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  573  * interval timer support code.
  574  */
  575 
  576 #define NOTE_TIMER_PRECMASK                                             \
  577     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
  578 
  579 static sbintime_t
  580 timer2sbintime(intptr_t data, int flags)
  581 {
  582         int64_t secs;
  583 
  584         /*
  585          * Macros for converting to the fractional second portion of an
  586          * sbintime_t using 64bit multiplication to improve precision.
  587          */
  588 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
  589 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
  590 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
  591         switch (flags & NOTE_TIMER_PRECMASK) {
  592         case NOTE_SECONDS:
  593 #ifdef __LP64__
  594                 if (data > (SBT_MAX / SBT_1S))
  595                         return (SBT_MAX);
  596 #endif
  597                 return ((sbintime_t)data << 32);
  598         case NOTE_MSECONDS: /* FALLTHROUGH */
  599         case 0:
  600                 if (data >= 1000) {
  601                         secs = data / 1000;
  602 #ifdef __LP64__
  603                         if (secs > (SBT_MAX / SBT_1S))
  604                                 return (SBT_MAX);
  605 #endif
  606                         return (secs << 32 | MS_TO_SBT(data % 1000));
  607                 }
  608                 return (MS_TO_SBT(data));
  609         case NOTE_USECONDS:
  610                 if (data >= 1000000) {
  611                         secs = data / 1000000;
  612 #ifdef __LP64__
  613                         if (secs > (SBT_MAX / SBT_1S))
  614                                 return (SBT_MAX);
  615 #endif
  616                         return (secs << 32 | US_TO_SBT(data % 1000000));
  617                 }
  618                 return (US_TO_SBT(data));
  619         case NOTE_NSECONDS:
  620                 if (data >= 1000000000) {
  621                         secs = data / 1000000000;
  622 #ifdef __LP64__
  623                         if (secs > (SBT_MAX / SBT_1S))
  624                                 return (SBT_MAX);
  625 #endif
  626                         return (secs << 32 | US_TO_SBT(data % 1000000000));
  627                 }
  628                 return (NS_TO_SBT(data));
  629         default:
  630                 break;
  631         }
  632         return (-1);
  633 }
  634 
  635 struct kq_timer_cb_data {
  636         struct callout c;
  637         sbintime_t next;        /* next timer event fires at */
  638         sbintime_t to;          /* precalculated timer period */
  639 };
  640 
  641 static void
  642 filt_timerexpire(void *knx)
  643 {
  644         struct knote *kn;
  645         struct kq_timer_cb_data *kc;
  646 
  647         kn = knx;
  648         kn->kn_data++;
  649         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  650 
  651         if ((kn->kn_flags & EV_ONESHOT) != 0)
  652                 return;
  653 
  654         kc = kn->kn_ptr.p_v;
  655         kc->next += kc->to;
  656         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  657             PCPU_GET(cpuid), C_ABSOLUTE);
  658 }
  659 
  660 /*
  661  * data contains amount of time to sleep
  662  */
  663 static int
  664 filt_timerattach(struct knote *kn)
  665 {
  666         struct kq_timer_cb_data *kc;
  667         sbintime_t to;
  668         unsigned int ncallouts;
  669 
  670         if (kn->kn_sdata < 0)
  671                 return (EINVAL);
  672         if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  673                 kn->kn_sdata = 1;
  674         /* Only precision unit are supported in flags so far */
  675         if ((kn->kn_sfflags & ~NOTE_TIMER_PRECMASK) != 0)
  676                 return (EINVAL);
  677 
  678         to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  679         if (to < 0)
  680                 return (EINVAL);
  681 
  682         do {
  683                 ncallouts = kq_ncallouts;
  684                 if (ncallouts >= kq_calloutmax)
  685                         return (ENOMEM);
  686         } while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
  687 
  688         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  689         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  690         kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
  691         callout_init(&kc->c, 1);
  692         kc->next = to + sbinuptime();
  693         kc->to = to;
  694         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  695             PCPU_GET(cpuid), C_ABSOLUTE);
  696 
  697         return (0);
  698 }
  699 
  700 static void
  701 filt_timerdetach(struct knote *kn)
  702 {
  703         struct kq_timer_cb_data *kc;
  704         unsigned int old;
  705 
  706         kc = kn->kn_ptr.p_v;
  707         callout_drain(&kc->c);
  708         free(kc, M_KQUEUE);
  709         old = atomic_fetchadd_int(&kq_ncallouts, -1);
  710         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  711         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  712 }
  713 
  714 static int
  715 filt_timer(struct knote *kn, long hint)
  716 {
  717 
  718         return (kn->kn_data != 0);
  719 }
  720 
  721 static int
  722 filt_userattach(struct knote *kn)
  723 {
  724 
  725         /* 
  726          * EVFILT_USER knotes are not attached to anything in the kernel.
  727          */ 
  728         kn->kn_hook = NULL;
  729         if (kn->kn_fflags & NOTE_TRIGGER)
  730                 kn->kn_hookid = 1;
  731         else
  732                 kn->kn_hookid = 0;
  733         return (0);
  734 }
  735 
  736 static void
  737 filt_userdetach(__unused struct knote *kn)
  738 {
  739 
  740         /*
  741          * EVFILT_USER knotes are not attached to anything in the kernel.
  742          */
  743 }
  744 
  745 static int
  746 filt_user(struct knote *kn, __unused long hint)
  747 {
  748 
  749         return (kn->kn_hookid);
  750 }
  751 
  752 static void
  753 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  754 {
  755         u_int ffctrl;
  756 
  757         switch (type) {
  758         case EVENT_REGISTER:
  759                 if (kev->fflags & NOTE_TRIGGER)
  760                         kn->kn_hookid = 1;
  761 
  762                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  763                 kev->fflags &= NOTE_FFLAGSMASK;
  764                 switch (ffctrl) {
  765                 case NOTE_FFNOP:
  766                         break;
  767 
  768                 case NOTE_FFAND:
  769                         kn->kn_sfflags &= kev->fflags;
  770                         break;
  771 
  772                 case NOTE_FFOR:
  773                         kn->kn_sfflags |= kev->fflags;
  774                         break;
  775 
  776                 case NOTE_FFCOPY:
  777                         kn->kn_sfflags = kev->fflags;
  778                         break;
  779 
  780                 default:
  781                         /* XXX Return error? */
  782                         break;
  783                 }
  784                 kn->kn_sdata = kev->data;
  785                 if (kev->flags & EV_CLEAR) {
  786                         kn->kn_hookid = 0;
  787                         kn->kn_data = 0;
  788                         kn->kn_fflags = 0;
  789                 }
  790                 break;
  791 
  792         case EVENT_PROCESS:
  793                 *kev = kn->kn_kevent;
  794                 kev->fflags = kn->kn_sfflags;
  795                 kev->data = kn->kn_sdata;
  796                 if (kn->kn_flags & EV_CLEAR) {
  797                         kn->kn_hookid = 0;
  798                         kn->kn_data = 0;
  799                         kn->kn_fflags = 0;
  800                 }
  801                 break;
  802 
  803         default:
  804                 panic("filt_usertouch() - invalid type (%ld)", type);
  805                 break;
  806         }
  807 }
  808 
  809 int
  810 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  811 {
  812 
  813         return (kern_kqueue(td, 0, NULL));
  814 }
  815 
  816 static void
  817 kqueue_init(struct kqueue *kq)
  818 {
  819 
  820         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
  821         TAILQ_INIT(&kq->kq_head);
  822         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  823         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  824 }
  825 
  826 int
  827 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
  828 {
  829         struct filedesc *fdp;
  830         struct kqueue *kq;
  831         struct file *fp;
  832         struct ucred *cred;
  833         int fd, error;
  834 
  835         fdp = td->td_proc->p_fd;
  836         cred = td->td_ucred;
  837         if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
  838                 return (ENOMEM);
  839 
  840         error = falloc_caps(td, &fp, &fd, flags, fcaps);
  841         if (error != 0) {
  842                 chgkqcnt(cred->cr_ruidinfo, -1, 0);
  843                 return (error);
  844         }
  845 
  846         /* An extra reference on `fp' has been held for us by falloc(). */
  847         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  848         kqueue_init(kq);
  849         kq->kq_fdp = fdp;
  850         kq->kq_cred = crhold(cred);
  851 
  852         FILEDESC_XLOCK(fdp);
  853         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  854         FILEDESC_XUNLOCK(fdp);
  855 
  856         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
  857         fdrop(fp, td);
  858 
  859         td->td_retval[0] = fd;
  860         return (0);
  861 }
  862 
  863 #ifdef KTRACE
  864 static size_t
  865 kev_iovlen(int n, u_int kgio)
  866 {
  867 
  868         if (n < 0 || n >= kgio / sizeof(struct kevent))
  869                 return (kgio);
  870         return (n * sizeof(struct kevent));
  871 }
  872 #endif
  873 
  874 #ifndef _SYS_SYSPROTO_H_
  875 struct kevent_args {
  876         int     fd;
  877         const struct kevent *changelist;
  878         int     nchanges;
  879         struct  kevent *eventlist;
  880         int     nevents;
  881         const struct timespec *timeout;
  882 };
  883 #endif
  884 int
  885 sys_kevent(struct thread *td, struct kevent_args *uap)
  886 {
  887         struct timespec ts, *tsp;
  888         struct kevent_copyops k_ops = {
  889                 .arg = uap,
  890                 .k_copyout = kevent_copyout,
  891                 .k_copyin = kevent_copyin,
  892         };
  893         int error;
  894 #ifdef KTRACE
  895         struct uio ktruio;
  896         struct iovec ktriov;
  897         struct uio *ktruioin = NULL;
  898         struct uio *ktruioout = NULL;
  899         u_int kgio;
  900 #endif
  901 
  902         if (uap->timeout != NULL) {
  903                 error = copyin(uap->timeout, &ts, sizeof(ts));
  904                 if (error)
  905                         return (error);
  906                 tsp = &ts;
  907         } else
  908                 tsp = NULL;
  909 
  910 #ifdef KTRACE
  911         if (KTRPOINT(td, KTR_GENIO)) {
  912                 kgio = ktr_geniosize;
  913                 ktriov.iov_base = uap->changelist;
  914                 ktriov.iov_len = kev_iovlen(uap->nchanges, kgio);
  915                 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
  916                     .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
  917                     .uio_td = td };
  918                 ktruioin = cloneuio(&ktruio);
  919                 ktriov.iov_base = uap->eventlist;
  920                 ktriov.iov_len = kev_iovlen(uap->nevents, kgio);
  921                 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
  922                 ktruioout = cloneuio(&ktruio);
  923         }
  924 #endif
  925 
  926         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  927             &k_ops, tsp);
  928 
  929 #ifdef KTRACE
  930         if (ktruioin != NULL) {
  931                 ktruioin->uio_resid = kev_iovlen(uap->nchanges, kgio);
  932                 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
  933                 ktruioout->uio_resid = kev_iovlen(td->td_retval[0], kgio);
  934                 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
  935         }
  936 #endif
  937 
  938         return (error);
  939 }
  940 
  941 /*
  942  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  943  */
  944 static int
  945 kevent_copyout(void *arg, struct kevent *kevp, int count)
  946 {
  947         struct kevent_args *uap;
  948         int error;
  949 
  950         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  951         uap = (struct kevent_args *)arg;
  952 
  953         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  954         if (error == 0)
  955                 uap->eventlist += count;
  956         return (error);
  957 }
  958 
  959 /*
  960  * Copy 'count' items from the list pointed to by uap->changelist.
  961  */
  962 static int
  963 kevent_copyin(void *arg, struct kevent *kevp, int count)
  964 {
  965         struct kevent_args *uap;
  966         int error;
  967 
  968         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  969         uap = (struct kevent_args *)arg;
  970 
  971         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  972         if (error == 0)
  973                 uap->changelist += count;
  974         return (error);
  975 }
  976 
  977 int
  978 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  979     struct kevent_copyops *k_ops, const struct timespec *timeout)
  980 {
  981         cap_rights_t rights;
  982         struct file *fp;
  983         int error;
  984 
  985         cap_rights_init(&rights);
  986         if (nchanges > 0)
  987                 cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
  988         if (nevents > 0)
  989                 cap_rights_set(&rights, CAP_KQUEUE_EVENT);
  990         error = fget(td, fd, &rights, &fp);
  991         if (error != 0)
  992                 return (error);
  993 
  994         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
  995         fdrop(fp, td);
  996 
  997         return (error);
  998 }
  999 
 1000 static int
 1001 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
 1002     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1003 {
 1004         struct kevent keva[KQ_NEVENTS];
 1005         struct kevent *kevp, *changes;
 1006         int i, n, nerrors, error;
 1007 
 1008         nerrors = 0;
 1009         while (nchanges > 0) {
 1010                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
 1011                 error = k_ops->k_copyin(k_ops->arg, keva, n);
 1012                 if (error)
 1013                         return (error);
 1014                 changes = keva;
 1015                 for (i = 0; i < n; i++) {
 1016                         kevp = &changes[i];
 1017                         if (!kevp->filter)
 1018                                 continue;
 1019                         kevp->flags &= ~EV_SYSFLAGS;
 1020                         error = kqueue_register(kq, kevp, td, 1);
 1021                         if (error || (kevp->flags & EV_RECEIPT)) {
 1022                                 if (nevents == 0)
 1023                                         return (error);
 1024                                 kevp->flags = EV_ERROR;
 1025                                 kevp->data = error;
 1026                                 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
 1027                                 nevents--;
 1028                                 nerrors++;
 1029                         }
 1030                 }
 1031                 nchanges -= n;
 1032         }
 1033         if (nerrors) {
 1034                 td->td_retval[0] = nerrors;
 1035                 return (0);
 1036         }
 1037 
 1038         return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
 1039 }
 1040 
 1041 int
 1042 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
 1043     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1044 {
 1045         struct kqueue *kq;
 1046         int error;
 1047 
 1048         error = kqueue_acquire(fp, &kq);
 1049         if (error != 0)
 1050                 return (error);
 1051         error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
 1052         kqueue_release(kq, 0);
 1053         return (error);
 1054 }
 1055 
 1056 /*
 1057  * Performs a kevent() call on a temporarily created kqueue. This can be
 1058  * used to perform one-shot polling, similar to poll() and select().
 1059  */
 1060 int
 1061 kern_kevent_anonymous(struct thread *td, int nevents,
 1062     struct kevent_copyops *k_ops)
 1063 {
 1064         struct kqueue kq = {};
 1065         int error;
 1066 
 1067         kqueue_init(&kq);
 1068         kq.kq_refcnt = 1;
 1069         error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
 1070         kqueue_drain(&kq, td);
 1071         kqueue_destroy(&kq);
 1072         return (error);
 1073 }
 1074 
 1075 int
 1076 kqueue_add_filteropts(int filt, struct filterops *filtops)
 1077 {
 1078         int error;
 1079 
 1080         error = 0;
 1081         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
 1082                 printf(
 1083 "trying to add a filterop that is out of range: %d is beyond %d\n",
 1084                     ~filt, EVFILT_SYSCOUNT);
 1085                 return EINVAL;
 1086         }
 1087         mtx_lock(&filterops_lock);
 1088         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
 1089             sysfilt_ops[~filt].for_fop != NULL)
 1090                 error = EEXIST;
 1091         else {
 1092                 sysfilt_ops[~filt].for_fop = filtops;
 1093                 sysfilt_ops[~filt].for_refcnt = 0;
 1094         }
 1095         mtx_unlock(&filterops_lock);
 1096 
 1097         return (error);
 1098 }
 1099 
 1100 int
 1101 kqueue_del_filteropts(int filt)
 1102 {
 1103         int error;
 1104 
 1105         error = 0;
 1106         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1107                 return EINVAL;
 1108 
 1109         mtx_lock(&filterops_lock);
 1110         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
 1111             sysfilt_ops[~filt].for_fop == NULL)
 1112                 error = EINVAL;
 1113         else if (sysfilt_ops[~filt].for_refcnt != 0)
 1114                 error = EBUSY;
 1115         else {
 1116                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1117                 sysfilt_ops[~filt].for_refcnt = 0;
 1118         }
 1119         mtx_unlock(&filterops_lock);
 1120 
 1121         return error;
 1122 }
 1123 
 1124 static struct filterops *
 1125 kqueue_fo_find(int filt)
 1126 {
 1127 
 1128         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1129                 return NULL;
 1130 
 1131         if (sysfilt_ops[~filt].for_nolock)
 1132                 return sysfilt_ops[~filt].for_fop;
 1133 
 1134         mtx_lock(&filterops_lock);
 1135         sysfilt_ops[~filt].for_refcnt++;
 1136         if (sysfilt_ops[~filt].for_fop == NULL)
 1137                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1138         mtx_unlock(&filterops_lock);
 1139 
 1140         return sysfilt_ops[~filt].for_fop;
 1141 }
 1142 
 1143 static void
 1144 kqueue_fo_release(int filt)
 1145 {
 1146 
 1147         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1148                 return;
 1149 
 1150         if (sysfilt_ops[~filt].for_nolock)
 1151                 return;
 1152 
 1153         mtx_lock(&filterops_lock);
 1154         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1155             ("filter object refcount not valid on release"));
 1156         sysfilt_ops[~filt].for_refcnt--;
 1157         mtx_unlock(&filterops_lock);
 1158 }
 1159 
 1160 /*
 1161  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
 1162  * influence if memory allocation should wait.  Make sure it is 0 if you
 1163  * hold any mutexes.
 1164  */
 1165 static int
 1166 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
 1167 {
 1168         struct filterops *fops;
 1169         struct file *fp;
 1170         struct knote *kn, *tkn;
 1171         struct knlist *knl;
 1172         cap_rights_t rights;
 1173         int error, filt, event;
 1174         int haskqglobal, filedesc_unlock;
 1175 
 1176         if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
 1177                 return (EINVAL);
 1178 
 1179         fp = NULL;
 1180         kn = NULL;
 1181         knl = NULL;
 1182         error = 0;
 1183         haskqglobal = 0;
 1184         filedesc_unlock = 0;
 1185 
 1186         filt = kev->filter;
 1187         fops = kqueue_fo_find(filt);
 1188         if (fops == NULL)
 1189                 return EINVAL;
 1190 
 1191         if (kev->flags & EV_ADD) {
 1192                 /*
 1193                  * Prevent waiting with locks.  Non-sleepable
 1194                  * allocation failures are handled in the loop, only
 1195                  * if the spare knote appears to be actually required.
 1196                  */
 1197                 tkn = knote_alloc(waitok);
 1198         } else {
 1199                 tkn = NULL;
 1200         }
 1201 
 1202 findkn:
 1203         if (fops->f_isfd) {
 1204                 KASSERT(td != NULL, ("td is NULL"));
 1205                 if (kev->ident > INT_MAX)
 1206                         error = EBADF;
 1207                 else
 1208                         error = fget(td, kev->ident,
 1209                             cap_rights_init(&rights, CAP_EVENT), &fp);
 1210                 if (error)
 1211                         goto done;
 1212 
 1213                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1214                     kev->ident, 0) != 0) {
 1215                         /* try again */
 1216                         fdrop(fp, td);
 1217                         fp = NULL;
 1218                         error = kqueue_expand(kq, fops, kev->ident, waitok);
 1219                         if (error)
 1220                                 goto done;
 1221                         goto findkn;
 1222                 }
 1223 
 1224                 if (fp->f_type == DTYPE_KQUEUE) {
 1225                         /*
 1226                          * If we add some intelligence about what we are doing,
 1227                          * we should be able to support events on ourselves.
 1228                          * We need to know when we are doing this to prevent
 1229                          * getting both the knlist lock and the kq lock since
 1230                          * they are the same thing.
 1231                          */
 1232                         if (fp->f_data == kq) {
 1233                                 error = EINVAL;
 1234                                 goto done;
 1235                         }
 1236 
 1237                         /*
 1238                          * Pre-lock the filedesc before the global
 1239                          * lock mutex, see the comment in
 1240                          * kqueue_close().
 1241                          */
 1242                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1243                         filedesc_unlock = 1;
 1244                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1245                 }
 1246 
 1247                 KQ_LOCK(kq);
 1248                 if (kev->ident < kq->kq_knlistsize) {
 1249                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1250                                 if (kev->filter == kn->kn_filter)
 1251                                         break;
 1252                 }
 1253         } else {
 1254                 if ((kev->flags & EV_ADD) == EV_ADD)
 1255                         kqueue_expand(kq, fops, kev->ident, waitok);
 1256 
 1257                 KQ_LOCK(kq);
 1258 
 1259                 /*
 1260                  * If possible, find an existing knote to use for this kevent.
 1261                  */
 1262                 if (kev->filter == EVFILT_PROC &&
 1263                     (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
 1264                         /* This is an internal creation of a process tracking
 1265                          * note. Don't attempt to coalesce this with an
 1266                          * existing note.
 1267                          */
 1268                         ;                       
 1269                 } else if (kq->kq_knhashmask != 0) {
 1270                         struct klist *list;
 1271 
 1272                         list = &kq->kq_knhash[
 1273                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1274                         SLIST_FOREACH(kn, list, kn_link)
 1275                                 if (kev->ident == kn->kn_id &&
 1276                                     kev->filter == kn->kn_filter)
 1277                                         break;
 1278                 }
 1279         }
 1280 
 1281         /* knote is in the process of changing, wait for it to stabilize. */
 1282         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1283                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1284                 if (filedesc_unlock) {
 1285                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1286                         filedesc_unlock = 0;
 1287                 }
 1288                 kq->kq_state |= KQ_FLUXWAIT;
 1289                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1290                 if (fp != NULL) {
 1291                         fdrop(fp, td);
 1292                         fp = NULL;
 1293                 }
 1294                 goto findkn;
 1295         }
 1296 
 1297         /*
 1298          * kn now contains the matching knote, or NULL if no match
 1299          */
 1300         if (kn == NULL) {
 1301                 if (kev->flags & EV_ADD) {
 1302                         kn = tkn;
 1303                         tkn = NULL;
 1304                         if (kn == NULL) {
 1305                                 KQ_UNLOCK(kq);
 1306                                 error = ENOMEM;
 1307                                 goto done;
 1308                         }
 1309                         kn->kn_fp = fp;
 1310                         kn->kn_kq = kq;
 1311                         kn->kn_fop = fops;
 1312                         /*
 1313                          * apply reference counts to knote structure, and
 1314                          * do not release it at the end of this routine.
 1315                          */
 1316                         fops = NULL;
 1317                         fp = NULL;
 1318 
 1319                         kn->kn_sfflags = kev->fflags;
 1320                         kn->kn_sdata = kev->data;
 1321                         kev->fflags = 0;
 1322                         kev->data = 0;
 1323                         kn->kn_kevent = *kev;
 1324                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1325                             EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
 1326                         kn->kn_status = KN_INFLUX|KN_DETACHED;
 1327 
 1328                         error = knote_attach(kn, kq);
 1329                         KQ_UNLOCK(kq);
 1330                         if (error != 0) {
 1331                                 tkn = kn;
 1332                                 goto done;
 1333                         }
 1334 
 1335                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1336                                 knote_drop(kn, td);
 1337                                 goto done;
 1338                         }
 1339                         knl = kn_list_lock(kn);
 1340                         goto done_ev_add;
 1341                 } else {
 1342                         /* No matching knote and the EV_ADD flag is not set. */
 1343                         KQ_UNLOCK(kq);
 1344                         error = ENOENT;
 1345                         goto done;
 1346                 }
 1347         }
 1348         
 1349         if (kev->flags & EV_DELETE) {
 1350                 kn->kn_status |= KN_INFLUX;
 1351                 KQ_UNLOCK(kq);
 1352                 if (!(kn->kn_status & KN_DETACHED))
 1353                         kn->kn_fop->f_detach(kn);
 1354                 knote_drop(kn, td);
 1355                 goto done;
 1356         }
 1357 
 1358         if (kev->flags & EV_FORCEONESHOT) {
 1359                 kn->kn_flags |= EV_ONESHOT;
 1360                 KNOTE_ACTIVATE(kn, 1);
 1361         }
 1362 
 1363         /*
 1364          * The user may change some filter values after the initial EV_ADD,
 1365          * but doing so will not reset any filter which has already been
 1366          * triggered.
 1367          */
 1368         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1369         KQ_UNLOCK(kq);
 1370         knl = kn_list_lock(kn);
 1371         kn->kn_kevent.udata = kev->udata;
 1372         if (!fops->f_isfd && fops->f_touch != NULL) {
 1373                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1374         } else {
 1375                 kn->kn_sfflags = kev->fflags;
 1376                 kn->kn_sdata = kev->data;
 1377         }
 1378 
 1379         /*
 1380          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1381          * the initial attach event decides that the event is "completed" 
 1382          * already.  i.e. filt_procattach is called on a zombie process.  It
 1383          * will call filt_proc which will remove it from the list, and NULL
 1384          * kn_knlist.
 1385          */
 1386 done_ev_add:
 1387         if ((kev->flags & EV_ENABLE) != 0)
 1388                 kn->kn_status &= ~KN_DISABLED;
 1389         else if ((kev->flags & EV_DISABLE) != 0)
 1390                 kn->kn_status |= KN_DISABLED;
 1391 
 1392         if ((kn->kn_status & KN_DISABLED) == 0)
 1393                 event = kn->kn_fop->f_event(kn, 0);
 1394         else
 1395                 event = 0;
 1396 
 1397         KQ_LOCK(kq);
 1398         if (event)
 1399                 kn->kn_status |= KN_ACTIVE;
 1400         if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
 1401             KN_ACTIVE)
 1402                 knote_enqueue(kn);
 1403         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1404         kn_list_unlock(knl);
 1405         KQ_UNLOCK_FLUX(kq);
 1406 
 1407 done:
 1408         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1409         if (filedesc_unlock)
 1410                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1411         if (fp != NULL)
 1412                 fdrop(fp, td);
 1413         knote_free(tkn);
 1414         if (fops != NULL)
 1415                 kqueue_fo_release(filt);
 1416         return (error);
 1417 }
 1418 
 1419 static int
 1420 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1421 {
 1422         int error;
 1423         struct kqueue *kq;
 1424 
 1425         error = 0;
 1426 
 1427         kq = fp->f_data;
 1428         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1429                 return (EBADF);
 1430         *kqp = kq;
 1431         KQ_LOCK(kq);
 1432         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1433                 KQ_UNLOCK(kq);
 1434                 return (EBADF);
 1435         }
 1436         kq->kq_refcnt++;
 1437         KQ_UNLOCK(kq);
 1438 
 1439         return error;
 1440 }
 1441 
 1442 static void
 1443 kqueue_release(struct kqueue *kq, int locked)
 1444 {
 1445         if (locked)
 1446                 KQ_OWNED(kq);
 1447         else
 1448                 KQ_LOCK(kq);
 1449         kq->kq_refcnt--;
 1450         if (kq->kq_refcnt == 1)
 1451                 wakeup(&kq->kq_refcnt);
 1452         if (!locked)
 1453                 KQ_UNLOCK(kq);
 1454 }
 1455 
 1456 static void
 1457 kqueue_schedtask(struct kqueue *kq)
 1458 {
 1459 
 1460         KQ_OWNED(kq);
 1461         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1462             ("scheduling kqueue task while draining"));
 1463 
 1464         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1465                 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
 1466                 kq->kq_state |= KQ_TASKSCHED;
 1467         }
 1468 }
 1469 
 1470 /*
 1471  * Expand the kq to make sure we have storage for fops/ident pair.
 1472  *
 1473  * Return 0 on success (or no work necessary), return errno on failure.
 1474  *
 1475  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1476  * If kqueue_register is called from a non-fd context, there usually/should
 1477  * be no locks held.
 1478  */
 1479 static int
 1480 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1481         int waitok)
 1482 {
 1483         struct klist *list, *tmp_knhash, *to_free;
 1484         u_long tmp_knhashmask;
 1485         int size;
 1486         int fd;
 1487         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1488 
 1489         KQ_NOTOWNED(kq);
 1490 
 1491         to_free = NULL;
 1492         if (fops->f_isfd) {
 1493                 fd = ident;
 1494                 if (kq->kq_knlistsize <= fd) {
 1495                         size = kq->kq_knlistsize;
 1496                         while (size <= fd)
 1497                                 size += KQEXTENT;
 1498                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1499                         if (list == NULL)
 1500                                 return ENOMEM;
 1501                         KQ_LOCK(kq);
 1502                         if (kq->kq_knlistsize > fd) {
 1503                                 to_free = list;
 1504                                 list = NULL;
 1505                         } else {
 1506                                 if (kq->kq_knlist != NULL) {
 1507                                         bcopy(kq->kq_knlist, list,
 1508                                             kq->kq_knlistsize * sizeof(*list));
 1509                                         to_free = kq->kq_knlist;
 1510                                         kq->kq_knlist = NULL;
 1511                                 }
 1512                                 bzero((caddr_t)list +
 1513                                     kq->kq_knlistsize * sizeof(*list),
 1514                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1515                                 kq->kq_knlistsize = size;
 1516                                 kq->kq_knlist = list;
 1517                         }
 1518                         KQ_UNLOCK(kq);
 1519                 }
 1520         } else {
 1521                 if (kq->kq_knhashmask == 0) {
 1522                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1523                             &tmp_knhashmask);
 1524                         if (tmp_knhash == NULL)
 1525                                 return ENOMEM;
 1526                         KQ_LOCK(kq);
 1527                         if (kq->kq_knhashmask == 0) {
 1528                                 kq->kq_knhash = tmp_knhash;
 1529                                 kq->kq_knhashmask = tmp_knhashmask;
 1530                         } else {
 1531                                 to_free = tmp_knhash;
 1532                         }
 1533                         KQ_UNLOCK(kq);
 1534                 }
 1535         }
 1536         free(to_free, M_KQUEUE);
 1537 
 1538         KQ_NOTOWNED(kq);
 1539         return 0;
 1540 }
 1541 
 1542 static void
 1543 kqueue_task(void *arg, int pending)
 1544 {
 1545         struct kqueue *kq;
 1546         int haskqglobal;
 1547 
 1548         haskqglobal = 0;
 1549         kq = arg;
 1550 
 1551         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1552         KQ_LOCK(kq);
 1553 
 1554         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1555 
 1556         kq->kq_state &= ~KQ_TASKSCHED;
 1557         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1558                 wakeup(&kq->kq_state);
 1559         }
 1560         KQ_UNLOCK(kq);
 1561         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1562 }
 1563 
 1564 /*
 1565  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1566  * We treat KN_MARKER knotes as if they are INFLUX.
 1567  */
 1568 static int
 1569 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1570     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1571 {
 1572         struct kevent *kevp;
 1573         struct knote *kn, *marker;
 1574         struct knlist *knl;
 1575         sbintime_t asbt, rsbt;
 1576         int count, error, haskqglobal, influx, nkev, touch;
 1577 
 1578         count = maxevents;
 1579         nkev = 0;
 1580         error = 0;
 1581         haskqglobal = 0;
 1582 
 1583         if (maxevents == 0)
 1584                 goto done_nl;
 1585 
 1586         rsbt = 0;
 1587         if (tsp != NULL) {
 1588                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1589                     tsp->tv_nsec >= 1000000000) {
 1590                         error = EINVAL;
 1591                         goto done_nl;
 1592                 }
 1593                 if (timespecisset(tsp)) {
 1594                         if (tsp->tv_sec <= INT32_MAX) {
 1595                                 rsbt = tstosbt(*tsp);
 1596                                 if (TIMESEL(&asbt, rsbt))
 1597                                         asbt += tc_tick_sbt;
 1598                                 if (asbt <= SBT_MAX - rsbt)
 1599                                         asbt += rsbt;
 1600                                 else
 1601                                         asbt = 0;
 1602                                 rsbt >>= tc_precexp;
 1603                         } else
 1604                                 asbt = 0;
 1605                 } else
 1606                         asbt = -1;
 1607         } else
 1608                 asbt = 0;
 1609         marker = knote_alloc(1);
 1610         marker->kn_status = KN_MARKER;
 1611         KQ_LOCK(kq);
 1612 
 1613 retry:
 1614         kevp = keva;
 1615         if (kq->kq_count == 0) {
 1616                 if (asbt == -1) {
 1617                         error = EWOULDBLOCK;
 1618                 } else {
 1619                         kq->kq_state |= KQ_SLEEP;
 1620                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1621                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1622                 }
 1623                 if (error == 0)
 1624                         goto retry;
 1625                 /* don't restart after signals... */
 1626                 if (error == ERESTART)
 1627                         error = EINTR;
 1628                 else if (error == EWOULDBLOCK)
 1629                         error = 0;
 1630                 goto done;
 1631         }
 1632 
 1633         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1634         influx = 0;
 1635         while (count) {
 1636                 KQ_OWNED(kq);
 1637                 kn = TAILQ_FIRST(&kq->kq_head);
 1638 
 1639                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1640                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1641                         if (influx) {
 1642                                 influx = 0;
 1643                                 KQ_FLUX_WAKEUP(kq);
 1644                         }
 1645                         kq->kq_state |= KQ_FLUXWAIT;
 1646                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1647                             "kqflxwt", 0);
 1648                         continue;
 1649                 }
 1650 
 1651                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1652                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1653                         kn->kn_status &= ~KN_QUEUED;
 1654                         kq->kq_count--;
 1655                         continue;
 1656                 }
 1657                 if (kn == marker) {
 1658                         KQ_FLUX_WAKEUP(kq);
 1659                         if (count == maxevents)
 1660                                 goto retry;
 1661                         goto done;
 1662                 }
 1663                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1664                     ("KN_INFLUX set when not suppose to be"));
 1665 
 1666                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1667                         kn->kn_status &= ~KN_QUEUED;
 1668                         kn->kn_status |= KN_INFLUX;
 1669                         kq->kq_count--;
 1670                         KQ_UNLOCK(kq);
 1671                         /*
 1672                          * We don't need to lock the list since we've marked
 1673                          * it _INFLUX.
 1674                          */
 1675                         if (!(kn->kn_status & KN_DETACHED))
 1676                                 kn->kn_fop->f_detach(kn);
 1677                         knote_drop(kn, td);
 1678                         KQ_LOCK(kq);
 1679                         continue;
 1680                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1681                         kn->kn_status &= ~KN_QUEUED;
 1682                         kn->kn_status |= KN_INFLUX;
 1683                         kq->kq_count--;
 1684                         KQ_UNLOCK(kq);
 1685                         /*
 1686                          * We don't need to lock the list since we've marked
 1687                          * it _INFLUX.
 1688                          */
 1689                         *kevp = kn->kn_kevent;
 1690                         if (!(kn->kn_status & KN_DETACHED))
 1691                                 kn->kn_fop->f_detach(kn);
 1692                         knote_drop(kn, td);
 1693                         KQ_LOCK(kq);
 1694                         kn = NULL;
 1695                 } else {
 1696                         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1697                         KQ_UNLOCK(kq);
 1698                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1699                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1700                         knl = kn_list_lock(kn);
 1701                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1702                                 KQ_LOCK(kq);
 1703                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1704                                 kn->kn_status &=
 1705                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
 1706                                     KN_SCAN);
 1707                                 kq->kq_count--;
 1708                                 kn_list_unlock(knl);
 1709                                 influx = 1;
 1710                                 continue;
 1711                         }
 1712                         touch = (!kn->kn_fop->f_isfd &&
 1713                             kn->kn_fop->f_touch != NULL);
 1714                         if (touch)
 1715                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1716                         else
 1717                                 *kevp = kn->kn_kevent;
 1718                         KQ_LOCK(kq);
 1719                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1720                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1721                                 /* 
 1722                                  * Manually clear knotes who weren't 
 1723                                  * 'touch'ed.
 1724                                  */
 1725                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1726                                         kn->kn_data = 0;
 1727                                         kn->kn_fflags = 0;
 1728                                 }
 1729                                 if (kn->kn_flags & EV_DISPATCH)
 1730                                         kn->kn_status |= KN_DISABLED;
 1731                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1732                                 kq->kq_count--;
 1733                         } else
 1734                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1735                         
 1736                         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1737                         kn_list_unlock(knl);
 1738                         influx = 1;
 1739                 }
 1740 
 1741                 /* we are returning a copy to the user */
 1742                 kevp++;
 1743                 nkev++;
 1744                 count--;
 1745 
 1746                 if (nkev == KQ_NEVENTS) {
 1747                         influx = 0;
 1748                         KQ_UNLOCK_FLUX(kq);
 1749                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1750                         nkev = 0;
 1751                         kevp = keva;
 1752                         KQ_LOCK(kq);
 1753                         if (error)
 1754                                 break;
 1755                 }
 1756         }
 1757         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1758 done:
 1759         KQ_OWNED(kq);
 1760         KQ_UNLOCK_FLUX(kq);
 1761         knote_free(marker);
 1762 done_nl:
 1763         KQ_NOTOWNED(kq);
 1764         if (nkev != 0)
 1765                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1766         td->td_retval[0] = maxevents - count;
 1767         return (error);
 1768 }
 1769 
 1770 /*ARGSUSED*/
 1771 static int
 1772 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1773         struct ucred *active_cred, struct thread *td)
 1774 {
 1775         /*
 1776          * Enabling sigio causes two major problems:
 1777          * 1) infinite recursion:
 1778          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1779          * set.  On receipt of a signal this will cause a kqueue to recurse
 1780          * into itself over and over.  Sending the sigio causes the kqueue
 1781          * to become ready, which in turn posts sigio again, forever.
 1782          * Solution: this can be solved by setting a flag in the kqueue that
 1783          * we have a SIGIO in progress.
 1784          * 2) locking problems:
 1785          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1786          * us above the proc and pgrp locks.
 1787          * Solution: Post a signal using an async mechanism, being sure to
 1788          * record a generation count in the delivery so that we do not deliver
 1789          * a signal to the wrong process.
 1790          *
 1791          * Note, these two mechanisms are somewhat mutually exclusive!
 1792          */
 1793 #if 0
 1794         struct kqueue *kq;
 1795 
 1796         kq = fp->f_data;
 1797         switch (cmd) {
 1798         case FIOASYNC:
 1799                 if (*(int *)data) {
 1800                         kq->kq_state |= KQ_ASYNC;
 1801                 } else {
 1802                         kq->kq_state &= ~KQ_ASYNC;
 1803                 }
 1804                 return (0);
 1805 
 1806         case FIOSETOWN:
 1807                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1808 
 1809         case FIOGETOWN:
 1810                 *(int *)data = fgetown(&kq->kq_sigio);
 1811                 return (0);
 1812         }
 1813 #endif
 1814 
 1815         return (ENOTTY);
 1816 }
 1817 
 1818 /*ARGSUSED*/
 1819 static int
 1820 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1821         struct thread *td)
 1822 {
 1823         struct kqueue *kq;
 1824         int revents = 0;
 1825         int error;
 1826 
 1827         if ((error = kqueue_acquire(fp, &kq)))
 1828                 return POLLERR;
 1829 
 1830         KQ_LOCK(kq);
 1831         if (events & (POLLIN | POLLRDNORM)) {
 1832                 if (kq->kq_count) {
 1833                         revents |= events & (POLLIN | POLLRDNORM);
 1834                 } else {
 1835                         selrecord(td, &kq->kq_sel);
 1836                         if (SEL_WAITING(&kq->kq_sel))
 1837                                 kq->kq_state |= KQ_SEL;
 1838                 }
 1839         }
 1840         kqueue_release(kq, 1);
 1841         KQ_UNLOCK(kq);
 1842         return (revents);
 1843 }
 1844 
 1845 /*ARGSUSED*/
 1846 static int
 1847 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1848         struct thread *td)
 1849 {
 1850 
 1851         bzero((void *)st, sizeof *st);
 1852         /*
 1853          * We no longer return kq_count because the unlocked value is useless.
 1854          * If you spent all this time getting the count, why not spend your
 1855          * syscall better by calling kevent?
 1856          *
 1857          * XXX - This is needed for libc_r.
 1858          */
 1859         st->st_mode = S_IFIFO;
 1860         return (0);
 1861 }
 1862 
 1863 static void
 1864 kqueue_drain(struct kqueue *kq, struct thread *td)
 1865 {
 1866         struct knote *kn;
 1867         int i;
 1868 
 1869         KQ_LOCK(kq);
 1870 
 1871         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1872             ("kqueue already closing"));
 1873         kq->kq_state |= KQ_CLOSING;
 1874         if (kq->kq_refcnt > 1)
 1875                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1876 
 1877         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1878 
 1879         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1880             ("kqueue's knlist not empty"));
 1881 
 1882         for (i = 0; i < kq->kq_knlistsize; i++) {
 1883                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1884                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1885                                 kq->kq_state |= KQ_FLUXWAIT;
 1886                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1887                                 continue;
 1888                         }
 1889                         kn->kn_status |= KN_INFLUX;
 1890                         KQ_UNLOCK(kq);
 1891                         if (!(kn->kn_status & KN_DETACHED))
 1892                                 kn->kn_fop->f_detach(kn);
 1893                         knote_drop(kn, td);
 1894                         KQ_LOCK(kq);
 1895                 }
 1896         }
 1897         if (kq->kq_knhashmask != 0) {
 1898                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1899                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1900                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1901                                         kq->kq_state |= KQ_FLUXWAIT;
 1902                                         msleep(kq, &kq->kq_lock, PSOCK,
 1903                                                "kqclo2", 0);
 1904                                         continue;
 1905                                 }
 1906                                 kn->kn_status |= KN_INFLUX;
 1907                                 KQ_UNLOCK(kq);
 1908                                 if (!(kn->kn_status & KN_DETACHED))
 1909                                         kn->kn_fop->f_detach(kn);
 1910                                 knote_drop(kn, td);
 1911                                 KQ_LOCK(kq);
 1912                         }
 1913                 }
 1914         }
 1915 
 1916         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1917                 kq->kq_state |= KQ_TASKDRAIN;
 1918                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1919         }
 1920 
 1921         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1922                 selwakeuppri(&kq->kq_sel, PSOCK);
 1923                 if (!SEL_WAITING(&kq->kq_sel))
 1924                         kq->kq_state &= ~KQ_SEL;
 1925         }
 1926 
 1927         KQ_UNLOCK(kq);
 1928 }
 1929 
 1930 static void
 1931 kqueue_destroy(struct kqueue *kq)
 1932 {
 1933 
 1934         KASSERT(kq->kq_fdp == NULL,
 1935             ("kqueue still attached to a file descriptor"));
 1936         seldrain(&kq->kq_sel);
 1937         knlist_destroy(&kq->kq_sel.si_note);
 1938         mtx_destroy(&kq->kq_lock);
 1939 
 1940         if (kq->kq_knhash != NULL)
 1941                 free(kq->kq_knhash, M_KQUEUE);
 1942         if (kq->kq_knlist != NULL)
 1943                 free(kq->kq_knlist, M_KQUEUE);
 1944 
 1945         funsetown(&kq->kq_sigio);
 1946 }
 1947 
 1948 /*ARGSUSED*/
 1949 static int
 1950 kqueue_close(struct file *fp, struct thread *td)
 1951 {
 1952         struct kqueue *kq = fp->f_data;
 1953         struct filedesc *fdp;
 1954         int error;
 1955         int filedesc_unlock;
 1956 
 1957         if ((error = kqueue_acquire(fp, &kq)))
 1958                 return error;
 1959         kqueue_drain(kq, td);
 1960 
 1961         /*
 1962          * We could be called due to the knote_drop() doing fdrop(),
 1963          * called from kqueue_register().  In this case the global
 1964          * lock is owned, and filedesc sx is locked before, to not
 1965          * take the sleepable lock after non-sleepable.
 1966          */
 1967         fdp = kq->kq_fdp;
 1968         kq->kq_fdp = NULL;
 1969         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 1970                 FILEDESC_XLOCK(fdp);
 1971                 filedesc_unlock = 1;
 1972         } else
 1973                 filedesc_unlock = 0;
 1974         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 1975         if (filedesc_unlock)
 1976                 FILEDESC_XUNLOCK(fdp);
 1977 
 1978         kqueue_destroy(kq);
 1979         chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
 1980         crfree(kq->kq_cred);
 1981         free(kq, M_KQUEUE);
 1982         fp->f_data = NULL;
 1983 
 1984         return (0);
 1985 }
 1986 
 1987 static int
 1988 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 1989 {
 1990 
 1991         kif->kf_type = KF_TYPE_KQUEUE;
 1992         return (0);
 1993 }
 1994 
 1995 static void
 1996 kqueue_wakeup(struct kqueue *kq)
 1997 {
 1998         KQ_OWNED(kq);
 1999 
 2000         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 2001                 kq->kq_state &= ~KQ_SLEEP;
 2002                 wakeup(kq);
 2003         }
 2004         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2005                 selwakeuppri(&kq->kq_sel, PSOCK);
 2006                 if (!SEL_WAITING(&kq->kq_sel))
 2007                         kq->kq_state &= ~KQ_SEL;
 2008         }
 2009         if (!knlist_empty(&kq->kq_sel.si_note))
 2010                 kqueue_schedtask(kq);
 2011         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 2012                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 2013         }
 2014 }
 2015 
 2016 /*
 2017  * Walk down a list of knotes, activating them if their event has triggered.
 2018  *
 2019  * There is a possibility to optimize in the case of one kq watching another.
 2020  * Instead of scheduling a task to wake it up, you could pass enough state
 2021  * down the chain to make up the parent kqueue.  Make this code functional
 2022  * first.
 2023  */
 2024 void
 2025 knote(struct knlist *list, long hint, int lockflags)
 2026 {
 2027         struct kqueue *kq;
 2028         struct knote *kn, *tkn;
 2029         int error;
 2030         bool own_influx;
 2031 
 2032         if (list == NULL)
 2033                 return;
 2034 
 2035         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 2036 
 2037         if ((lockflags & KNF_LISTLOCKED) == 0)
 2038                 list->kl_lock(list->kl_lockarg); 
 2039 
 2040         /*
 2041          * If we unlock the list lock (and set KN_INFLUX), we can
 2042          * eliminate the kqueue scheduling, but this will introduce
 2043          * four lock/unlock's for each knote to test.  Also, marker
 2044          * would be needed to keep iteration position, since filters
 2045          * or other threads could remove events.
 2046          */
 2047         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 2048                 kq = kn->kn_kq;
 2049                 KQ_LOCK(kq);
 2050                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
 2051                         /*
 2052                          * Do not process the influx notes, except for
 2053                          * the influx coming from the kq unlock in the
 2054                          * kqueue_scan().  In the later case, we do
 2055                          * not interfere with the scan, since the code
 2056                          * fragment in kqueue_scan() locks the knlist,
 2057                          * and cannot proceed until we finished.
 2058                          */
 2059                         KQ_UNLOCK(kq);
 2060                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 2061                         own_influx = (kn->kn_status & KN_INFLUX) == 0;
 2062                         if (own_influx)
 2063                                 kn->kn_status |= KN_INFLUX;
 2064                         KQ_UNLOCK(kq);
 2065                         error = kn->kn_fop->f_event(kn, hint);
 2066                         KQ_LOCK(kq);
 2067                         if (own_influx)
 2068                                 kn->kn_status &= ~KN_INFLUX;
 2069                         if (error)
 2070                                 KNOTE_ACTIVATE(kn, 1);
 2071                         KQ_UNLOCK_FLUX(kq);
 2072                 } else {
 2073                         kn->kn_status |= KN_HASKQLOCK;
 2074                         if (kn->kn_fop->f_event(kn, hint))
 2075                                 KNOTE_ACTIVATE(kn, 1);
 2076                         kn->kn_status &= ~KN_HASKQLOCK;
 2077                         KQ_UNLOCK(kq);
 2078                 }
 2079         }
 2080         if ((lockflags & KNF_LISTLOCKED) == 0)
 2081                 list->kl_unlock(list->kl_lockarg); 
 2082 }
 2083 
 2084 /*
 2085  * add a knote to a knlist
 2086  */
 2087 void
 2088 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 2089 {
 2090         KNL_ASSERT_LOCK(knl, islocked);
 2091         KQ_NOTOWNED(kn->kn_kq);
 2092         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 2093             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 2094         if (!islocked)
 2095                 knl->kl_lock(knl->kl_lockarg);
 2096         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 2097         if (!islocked)
 2098                 knl->kl_unlock(knl->kl_lockarg);
 2099         KQ_LOCK(kn->kn_kq);
 2100         kn->kn_knlist = knl;
 2101         kn->kn_status &= ~KN_DETACHED;
 2102         KQ_UNLOCK(kn->kn_kq);
 2103 }
 2104 
 2105 static void
 2106 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
 2107     int kqislocked)
 2108 {
 2109         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 2110         KNL_ASSERT_LOCK(knl, knlislocked);
 2111         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 2112         if (!kqislocked)
 2113                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 2114     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 2115         if (!knlislocked)
 2116                 knl->kl_lock(knl->kl_lockarg);
 2117         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 2118         kn->kn_knlist = NULL;
 2119         if (!knlislocked)
 2120                 kn_list_unlock(knl);
 2121         if (!kqislocked)
 2122                 KQ_LOCK(kn->kn_kq);
 2123         kn->kn_status |= KN_DETACHED;
 2124         if (!kqislocked)
 2125                 KQ_UNLOCK(kn->kn_kq);
 2126 }
 2127 
 2128 /*
 2129  * remove knote from the specified knlist
 2130  */
 2131 void
 2132 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 2133 {
 2134 
 2135         knlist_remove_kq(knl, kn, islocked, 0);
 2136 }
 2137 
 2138 int
 2139 knlist_empty(struct knlist *knl)
 2140 {
 2141 
 2142         KNL_ASSERT_LOCKED(knl);
 2143         return (SLIST_EMPTY(&knl->kl_list));
 2144 }
 2145 
 2146 static struct mtx knlist_lock;
 2147 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 2148     MTX_DEF);
 2149 static void knlist_mtx_lock(void *arg);
 2150 static void knlist_mtx_unlock(void *arg);
 2151 
 2152 static void
 2153 knlist_mtx_lock(void *arg)
 2154 {
 2155 
 2156         mtx_lock((struct mtx *)arg);
 2157 }
 2158 
 2159 static void
 2160 knlist_mtx_unlock(void *arg)
 2161 {
 2162 
 2163         mtx_unlock((struct mtx *)arg);
 2164 }
 2165 
 2166 static void
 2167 knlist_mtx_assert_locked(void *arg)
 2168 {
 2169 
 2170         mtx_assert((struct mtx *)arg, MA_OWNED);
 2171 }
 2172 
 2173 static void
 2174 knlist_mtx_assert_unlocked(void *arg)
 2175 {
 2176 
 2177         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2178 }
 2179 
 2180 static void
 2181 knlist_rw_rlock(void *arg)
 2182 {
 2183 
 2184         rw_rlock((struct rwlock *)arg);
 2185 }
 2186 
 2187 static void
 2188 knlist_rw_runlock(void *arg)
 2189 {
 2190 
 2191         rw_runlock((struct rwlock *)arg);
 2192 }
 2193 
 2194 static void
 2195 knlist_rw_assert_locked(void *arg)
 2196 {
 2197 
 2198         rw_assert((struct rwlock *)arg, RA_LOCKED);
 2199 }
 2200 
 2201 static void
 2202 knlist_rw_assert_unlocked(void *arg)
 2203 {
 2204 
 2205         rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2206 }
 2207 
 2208 void
 2209 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2210     void (*kl_unlock)(void *),
 2211     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 2212 {
 2213 
 2214         if (lock == NULL)
 2215                 knl->kl_lockarg = &knlist_lock;
 2216         else
 2217                 knl->kl_lockarg = lock;
 2218 
 2219         if (kl_lock == NULL)
 2220                 knl->kl_lock = knlist_mtx_lock;
 2221         else
 2222                 knl->kl_lock = kl_lock;
 2223         if (kl_unlock == NULL)
 2224                 knl->kl_unlock = knlist_mtx_unlock;
 2225         else
 2226                 knl->kl_unlock = kl_unlock;
 2227         if (kl_assert_locked == NULL)
 2228                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 2229         else
 2230                 knl->kl_assert_locked = kl_assert_locked;
 2231         if (kl_assert_unlocked == NULL)
 2232                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 2233         else
 2234                 knl->kl_assert_unlocked = kl_assert_unlocked;
 2235 
 2236         knl->kl_autodestroy = 0;
 2237         SLIST_INIT(&knl->kl_list);
 2238 }
 2239 
 2240 void
 2241 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2242 {
 2243 
 2244         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 2245 }
 2246 
 2247 struct knlist *
 2248 knlist_alloc(struct mtx *lock)
 2249 {
 2250         struct knlist *knl;
 2251 
 2252         knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
 2253         knlist_init_mtx(knl, lock);
 2254         return (knl);
 2255 }
 2256 
 2257 void
 2258 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2259 {
 2260 
 2261         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2262             knlist_rw_assert_locked, knlist_rw_assert_unlocked);
 2263 }
 2264 
 2265 void
 2266 knlist_destroy(struct knlist *knl)
 2267 {
 2268 
 2269         KASSERT(KNLIST_EMPTY(knl),
 2270             ("destroying knlist %p with knotes on it", knl));
 2271 }
 2272 
 2273 void
 2274 knlist_detach(struct knlist *knl)
 2275 {
 2276 
 2277         KNL_ASSERT_LOCKED(knl);
 2278         knl->kl_autodestroy = 1;
 2279         if (knlist_empty(knl)) {
 2280                 knlist_destroy(knl);
 2281                 free(knl, M_KQUEUE);
 2282         }
 2283 }
 2284 
 2285 /*
 2286  * Even if we are locked, we may need to drop the lock to allow any influx
 2287  * knotes time to "settle".
 2288  */
 2289 void
 2290 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2291 {
 2292         struct knote *kn, *kn2;
 2293         struct kqueue *kq;
 2294 
 2295         KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
 2296         if (islocked)
 2297                 KNL_ASSERT_LOCKED(knl);
 2298         else {
 2299                 KNL_ASSERT_UNLOCKED(knl);
 2300 again:          /* need to reacquire lock since we have dropped it */
 2301                 knl->kl_lock(knl->kl_lockarg);
 2302         }
 2303 
 2304         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2305                 kq = kn->kn_kq;
 2306                 KQ_LOCK(kq);
 2307                 if ((kn->kn_status & KN_INFLUX)) {
 2308                         KQ_UNLOCK(kq);
 2309                         continue;
 2310                 }
 2311                 knlist_remove_kq(knl, kn, 1, 1);
 2312                 if (killkn) {
 2313                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 2314                         KQ_UNLOCK(kq);
 2315                         knote_drop(kn, td);
 2316                 } else {
 2317                         /* Make sure cleared knotes disappear soon */
 2318                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 2319                         KQ_UNLOCK(kq);
 2320                 }
 2321                 kq = NULL;
 2322         }
 2323 
 2324         if (!SLIST_EMPTY(&knl->kl_list)) {
 2325                 /* there are still KN_INFLUX remaining */
 2326                 kn = SLIST_FIRST(&knl->kl_list);
 2327                 kq = kn->kn_kq;
 2328                 KQ_LOCK(kq);
 2329                 KASSERT(kn->kn_status & KN_INFLUX,
 2330                     ("knote removed w/o list lock"));
 2331                 knl->kl_unlock(knl->kl_lockarg);
 2332                 kq->kq_state |= KQ_FLUXWAIT;
 2333                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2334                 kq = NULL;
 2335                 goto again;
 2336         }
 2337 
 2338         if (islocked)
 2339                 KNL_ASSERT_LOCKED(knl);
 2340         else {
 2341                 knl->kl_unlock(knl->kl_lockarg);
 2342                 KNL_ASSERT_UNLOCKED(knl);
 2343         }
 2344 }
 2345 
 2346 /*
 2347  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2348  * lock.  This prevents a race where a new fd comes along and occupies the
 2349  * entry and we attach a knote to the fd.
 2350  */
 2351 void
 2352 knote_fdclose(struct thread *td, int fd)
 2353 {
 2354         struct filedesc *fdp = td->td_proc->p_fd;
 2355         struct kqueue *kq;
 2356         struct knote *kn;
 2357         int influx;
 2358 
 2359         FILEDESC_XLOCK_ASSERT(fdp);
 2360 
 2361         /*
 2362          * We shouldn't have to worry about new kevents appearing on fd
 2363          * since filedesc is locked.
 2364          */
 2365         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2366                 KQ_LOCK(kq);
 2367 
 2368 again:
 2369                 influx = 0;
 2370                 while (kq->kq_knlistsize > fd &&
 2371                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2372                         if (kn->kn_status & KN_INFLUX) {
 2373                                 /* someone else might be waiting on our knote */
 2374                                 if (influx)
 2375                                         wakeup(kq);
 2376                                 kq->kq_state |= KQ_FLUXWAIT;
 2377                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2378                                 goto again;
 2379                         }
 2380                         kn->kn_status |= KN_INFLUX;
 2381                         KQ_UNLOCK(kq);
 2382                         if (!(kn->kn_status & KN_DETACHED))
 2383                                 kn->kn_fop->f_detach(kn);
 2384                         knote_drop(kn, td);
 2385                         influx = 1;
 2386                         KQ_LOCK(kq);
 2387                 }
 2388                 KQ_UNLOCK_FLUX(kq);
 2389         }
 2390 }
 2391 
 2392 static int
 2393 knote_attach(struct knote *kn, struct kqueue *kq)
 2394 {
 2395         struct klist *list;
 2396 
 2397         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 2398         KQ_OWNED(kq);
 2399 
 2400         if (kn->kn_fop->f_isfd) {
 2401                 if (kn->kn_id >= kq->kq_knlistsize)
 2402                         return (ENOMEM);
 2403                 list = &kq->kq_knlist[kn->kn_id];
 2404         } else {
 2405                 if (kq->kq_knhash == NULL)
 2406                         return (ENOMEM);
 2407                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2408         }
 2409         SLIST_INSERT_HEAD(list, kn, kn_link);
 2410         return (0);
 2411 }
 2412 
 2413 /*
 2414  * knote must already have been detached using the f_detach method.
 2415  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 2416  * to prevent other removal.
 2417  */
 2418 static void
 2419 knote_drop(struct knote *kn, struct thread *td)
 2420 {
 2421         struct kqueue *kq;
 2422         struct klist *list;
 2423 
 2424         kq = kn->kn_kq;
 2425 
 2426         KQ_NOTOWNED(kq);
 2427         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 2428             ("knote_drop called without KN_INFLUX set in kn_status"));
 2429 
 2430         KQ_LOCK(kq);
 2431         if (kn->kn_fop->f_isfd)
 2432                 list = &kq->kq_knlist[kn->kn_id];
 2433         else
 2434                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2435 
 2436         if (!SLIST_EMPTY(list))
 2437                 SLIST_REMOVE(list, kn, knote, kn_link);
 2438         if (kn->kn_status & KN_QUEUED)
 2439                 knote_dequeue(kn);
 2440         KQ_UNLOCK_FLUX(kq);
 2441 
 2442         if (kn->kn_fop->f_isfd) {
 2443                 fdrop(kn->kn_fp, td);
 2444                 kn->kn_fp = NULL;
 2445         }
 2446         kqueue_fo_release(kn->kn_kevent.filter);
 2447         kn->kn_fop = NULL;
 2448         knote_free(kn);
 2449 }
 2450 
 2451 static void
 2452 knote_enqueue(struct knote *kn)
 2453 {
 2454         struct kqueue *kq = kn->kn_kq;
 2455 
 2456         KQ_OWNED(kn->kn_kq);
 2457         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2458 
 2459         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2460         kn->kn_status |= KN_QUEUED;
 2461         kq->kq_count++;
 2462         kqueue_wakeup(kq);
 2463 }
 2464 
 2465 static void
 2466 knote_dequeue(struct knote *kn)
 2467 {
 2468         struct kqueue *kq = kn->kn_kq;
 2469 
 2470         KQ_OWNED(kn->kn_kq);
 2471         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2472 
 2473         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2474         kn->kn_status &= ~KN_QUEUED;
 2475         kq->kq_count--;
 2476 }
 2477 
 2478 static void
 2479 knote_init(void)
 2480 {
 2481 
 2482         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2483             NULL, NULL, UMA_ALIGN_PTR, 0);
 2484 }
 2485 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2486 
 2487 static struct knote *
 2488 knote_alloc(int waitok)
 2489 {
 2490 
 2491         return (uma_zalloc(knote_zone, (waitok ? M_WAITOK : M_NOWAIT) |
 2492             M_ZERO));
 2493 }
 2494 
 2495 static void
 2496 knote_free(struct knote *kn)
 2497 {
 2498 
 2499         uma_zfree(knote_zone, kn);
 2500 }
 2501 
 2502 /*
 2503  * Register the kev w/ the kq specified by fd.
 2504  */
 2505 int 
 2506 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2507 {
 2508         struct kqueue *kq;
 2509         struct file *fp;
 2510         cap_rights_t rights;
 2511         int error;
 2512 
 2513         error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
 2514         if (error != 0)
 2515                 return (error);
 2516         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2517                 goto noacquire;
 2518 
 2519         error = kqueue_register(kq, kev, td, waitok);
 2520         kqueue_release(kq, 0);
 2521 
 2522 noacquire:
 2523         fdrop(fp, td);
 2524         return (error);
 2525 }

Cache object: a044f53490a28a794bd8c1c114850870


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.