The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * Copyright (c) 2009 Apple, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/11.2/sys/kern/kern_event.c 342899 2019-01-09 18:57:38Z emaste $");
   31 
   32 #include "opt_ktrace.h"
   33 #include "opt_kqueue.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/capsicum.h>
   38 #include <sys/kernel.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/rwlock.h>
   42 #include <sys/proc.h>
   43 #include <sys/malloc.h>
   44 #include <sys/unistd.h>
   45 #include <sys/file.h>
   46 #include <sys/filedesc.h>
   47 #include <sys/filio.h>
   48 #include <sys/fcntl.h>
   49 #include <sys/kthread.h>
   50 #include <sys/selinfo.h>
   51 #include <sys/queue.h>
   52 #include <sys/event.h>
   53 #include <sys/eventvar.h>
   54 #include <sys/poll.h>
   55 #include <sys/protosw.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sigio.h>
   58 #include <sys/signalvar.h>
   59 #include <sys/socket.h>
   60 #include <sys/socketvar.h>
   61 #include <sys/stat.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/sysproto.h>
   64 #include <sys/syscallsubr.h>
   65 #include <sys/taskqueue.h>
   66 #include <sys/uio.h>
   67 #include <sys/user.h>
   68 #ifdef KTRACE
   69 #include <sys/ktrace.h>
   70 #endif
   71 #include <machine/atomic.h>
   72 
   73 #include <vm/uma.h>
   74 
   75 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   76 
   77 /*
   78  * This lock is used if multiple kq locks are required.  This possibly
   79  * should be made into a per proc lock.
   80  */
   81 static struct mtx       kq_global;
   82 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   83 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   84         if (!haslck)                            \
   85                 mtx_lock(lck);                  \
   86         haslck = 1;                             \
   87 } while (0)
   88 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   89         if (haslck)                             \
   90                 mtx_unlock(lck);                        \
   91         haslck = 0;                             \
   92 } while (0)
   93 
   94 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
   95 
   96 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   97 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   98 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   99                     struct thread *td, int waitok);
  100 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
  101 static void     kqueue_release(struct kqueue *kq, int locked);
  102 static void     kqueue_destroy(struct kqueue *kq);
  103 static void     kqueue_drain(struct kqueue *kq, struct thread *td);
  104 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  105                     uintptr_t ident, int waitok);
  106 static void     kqueue_task(void *arg, int pending);
  107 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  108                     struct kevent_copyops *k_ops,
  109                     const struct timespec *timeout,
  110                     struct kevent *keva, struct thread *td);
  111 static void     kqueue_wakeup(struct kqueue *kq);
  112 static struct filterops *kqueue_fo_find(int filt);
  113 static void     kqueue_fo_release(int filt);
  114 
  115 static fo_ioctl_t       kqueue_ioctl;
  116 static fo_poll_t        kqueue_poll;
  117 static fo_kqfilter_t    kqueue_kqfilter;
  118 static fo_stat_t        kqueue_stat;
  119 static fo_close_t       kqueue_close;
  120 static fo_fill_kinfo_t  kqueue_fill_kinfo;
  121 
  122 static struct fileops kqueueops = {
  123         .fo_read = invfo_rdwr,
  124         .fo_write = invfo_rdwr,
  125         .fo_truncate = invfo_truncate,
  126         .fo_ioctl = kqueue_ioctl,
  127         .fo_poll = kqueue_poll,
  128         .fo_kqfilter = kqueue_kqfilter,
  129         .fo_stat = kqueue_stat,
  130         .fo_close = kqueue_close,
  131         .fo_chmod = invfo_chmod,
  132         .fo_chown = invfo_chown,
  133         .fo_sendfile = invfo_sendfile,
  134         .fo_fill_kinfo = kqueue_fill_kinfo,
  135 };
  136 
  137 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  138 static void     knote_drop(struct knote *kn, struct thread *td);
  139 static void     knote_enqueue(struct knote *kn);
  140 static void     knote_dequeue(struct knote *kn);
  141 static void     knote_init(void);
  142 static struct   knote *knote_alloc(int waitok);
  143 static void     knote_free(struct knote *kn);
  144 
  145 static void     filt_kqdetach(struct knote *kn);
  146 static int      filt_kqueue(struct knote *kn, long hint);
  147 static int      filt_procattach(struct knote *kn);
  148 static void     filt_procdetach(struct knote *kn);
  149 static int      filt_proc(struct knote *kn, long hint);
  150 static int      filt_fileattach(struct knote *kn);
  151 static void     filt_timerexpire(void *knx);
  152 static int      filt_timerattach(struct knote *kn);
  153 static void     filt_timerdetach(struct knote *kn);
  154 static int      filt_timer(struct knote *kn, long hint);
  155 static int      filt_userattach(struct knote *kn);
  156 static void     filt_userdetach(struct knote *kn);
  157 static int      filt_user(struct knote *kn, long hint);
  158 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  159                     u_long type);
  160 
  161 static struct filterops file_filtops = {
  162         .f_isfd = 1,
  163         .f_attach = filt_fileattach,
  164 };
  165 static struct filterops kqread_filtops = {
  166         .f_isfd = 1,
  167         .f_detach = filt_kqdetach,
  168         .f_event = filt_kqueue,
  169 };
  170 /* XXX - move to kern_proc.c?  */
  171 static struct filterops proc_filtops = {
  172         .f_isfd = 0,
  173         .f_attach = filt_procattach,
  174         .f_detach = filt_procdetach,
  175         .f_event = filt_proc,
  176 };
  177 static struct filterops timer_filtops = {
  178         .f_isfd = 0,
  179         .f_attach = filt_timerattach,
  180         .f_detach = filt_timerdetach,
  181         .f_event = filt_timer,
  182 };
  183 static struct filterops user_filtops = {
  184         .f_attach = filt_userattach,
  185         .f_detach = filt_userdetach,
  186         .f_event = filt_user,
  187         .f_touch = filt_usertouch,
  188 };
  189 
  190 static uma_zone_t       knote_zone;
  191 static unsigned int     kq_ncallouts = 0;
  192 static unsigned int     kq_calloutmax = 4 * 1024;
  193 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  194     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  195 
  196 /* XXX - ensure not KN_INFLUX?? */
  197 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  198         if ((islock))                                                   \
  199                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  200         else                                                            \
  201                 KQ_LOCK((kn)->kn_kq);                                   \
  202         (kn)->kn_status |= KN_ACTIVE;                                   \
  203         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  204                 knote_enqueue((kn));                                    \
  205         if (!(islock))                                                  \
  206                 KQ_UNLOCK((kn)->kn_kq);                                 \
  207 } while(0)
  208 #define KQ_LOCK(kq) do {                                                \
  209         mtx_lock(&(kq)->kq_lock);                                       \
  210 } while (0)
  211 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  212         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  213                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  214                 wakeup((kq));                                           \
  215         }                                                               \
  216 } while (0)
  217 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  218         KQ_FLUX_WAKEUP(kq);                                             \
  219         mtx_unlock(&(kq)->kq_lock);                                     \
  220 } while (0)
  221 #define KQ_UNLOCK(kq) do {                                              \
  222         mtx_unlock(&(kq)->kq_lock);                                     \
  223 } while (0)
  224 #define KQ_OWNED(kq) do {                                               \
  225         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  226 } while (0)
  227 #define KQ_NOTOWNED(kq) do {                                            \
  228         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  229 } while (0)
  230 
  231 static struct knlist *
  232 kn_list_lock(struct knote *kn)
  233 {
  234         struct knlist *knl;
  235 
  236         knl = kn->kn_knlist;
  237         if (knl != NULL)
  238                 knl->kl_lock(knl->kl_lockarg);
  239         return (knl);
  240 }
  241 
  242 static void
  243 kn_list_unlock(struct knlist *knl)
  244 {
  245         bool do_free;
  246 
  247         if (knl == NULL)
  248                 return;
  249         do_free = knl->kl_autodestroy && knlist_empty(knl);
  250         knl->kl_unlock(knl->kl_lockarg);
  251         if (do_free) {
  252                 knlist_destroy(knl);
  253                 free(knl, M_KQUEUE);
  254         }
  255 }
  256 
  257 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  258         if (islocked)                                                   \
  259                 KNL_ASSERT_LOCKED(knl);                         \
  260         else                                                            \
  261                 KNL_ASSERT_UNLOCKED(knl);                               \
  262 } while (0)
  263 #ifdef INVARIANTS
  264 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  265         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  266 } while (0)
  267 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  268         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  269 } while (0)
  270 #else /* !INVARIANTS */
  271 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  272 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  273 #endif /* INVARIANTS */
  274 
  275 #ifndef KN_HASHSIZE
  276 #define KN_HASHSIZE             64              /* XXX should be tunable */
  277 #endif
  278 
  279 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  280 
  281 static int
  282 filt_nullattach(struct knote *kn)
  283 {
  284 
  285         return (ENXIO);
  286 };
  287 
  288 struct filterops null_filtops = {
  289         .f_isfd = 0,
  290         .f_attach = filt_nullattach,
  291 };
  292 
  293 /* XXX - make SYSINIT to add these, and move into respective modules. */
  294 extern struct filterops sig_filtops;
  295 extern struct filterops fs_filtops;
  296 
  297 /*
  298  * Table for for all system-defined filters.
  299  */
  300 static struct mtx       filterops_lock;
  301 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  302         MTX_DEF);
  303 static struct {
  304         struct filterops *for_fop;
  305         int for_nolock;
  306         int for_refcnt;
  307 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  308         { &file_filtops, 1 },                   /* EVFILT_READ */
  309         { &file_filtops, 1 },                   /* EVFILT_WRITE */
  310         { &null_filtops },                      /* EVFILT_AIO */
  311         { &file_filtops, 1 },                   /* EVFILT_VNODE */
  312         { &proc_filtops, 1 },                   /* EVFILT_PROC */
  313         { &sig_filtops, 1 },                    /* EVFILT_SIGNAL */
  314         { &timer_filtops, 1 },                  /* EVFILT_TIMER */
  315         { &file_filtops, 1 },                   /* EVFILT_PROCDESC */
  316         { &fs_filtops, 1 },                     /* EVFILT_FS */
  317         { &null_filtops },                      /* EVFILT_LIO */
  318         { &user_filtops, 1 },                   /* EVFILT_USER */
  319         { &null_filtops },                      /* EVFILT_SENDFILE */
  320 };
  321 
  322 /*
  323  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  324  * method.
  325  */
  326 static int
  327 filt_fileattach(struct knote *kn)
  328 {
  329 
  330         return (fo_kqfilter(kn->kn_fp, kn));
  331 }
  332 
  333 /*ARGSUSED*/
  334 static int
  335 kqueue_kqfilter(struct file *fp, struct knote *kn)
  336 {
  337         struct kqueue *kq = kn->kn_fp->f_data;
  338 
  339         if (kn->kn_filter != EVFILT_READ)
  340                 return (EINVAL);
  341 
  342         kn->kn_status |= KN_KQUEUE;
  343         kn->kn_fop = &kqread_filtops;
  344         knlist_add(&kq->kq_sel.si_note, kn, 0);
  345 
  346         return (0);
  347 }
  348 
  349 static void
  350 filt_kqdetach(struct knote *kn)
  351 {
  352         struct kqueue *kq = kn->kn_fp->f_data;
  353 
  354         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  355 }
  356 
  357 /*ARGSUSED*/
  358 static int
  359 filt_kqueue(struct knote *kn, long hint)
  360 {
  361         struct kqueue *kq = kn->kn_fp->f_data;
  362 
  363         kn->kn_data = kq->kq_count;
  364         return (kn->kn_data > 0);
  365 }
  366 
  367 /* XXX - move to kern_proc.c?  */
  368 static int
  369 filt_procattach(struct knote *kn)
  370 {
  371         struct proc *p;
  372         int error;
  373         bool exiting, immediate;
  374 
  375         exiting = immediate = false;
  376         p = pfind(kn->kn_id);
  377         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  378                 p = zpfind(kn->kn_id);
  379                 exiting = true;
  380         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  381                 exiting = true;
  382         }
  383 
  384         if (p == NULL)
  385                 return (ESRCH);
  386         if ((error = p_cansee(curthread, p))) {
  387                 PROC_UNLOCK(p);
  388                 return (error);
  389         }
  390 
  391         kn->kn_ptr.p_proc = p;
  392         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  393 
  394         /*
  395          * Internal flag indicating registration done by kernel for the
  396          * purposes of getting a NOTE_CHILD notification.
  397          */
  398         if (kn->kn_flags & EV_FLAG2) {
  399                 kn->kn_flags &= ~EV_FLAG2;
  400                 kn->kn_data = kn->kn_sdata;             /* ppid */
  401                 kn->kn_fflags = NOTE_CHILD;
  402                 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
  403                 immediate = true; /* Force immediate activation of child note. */
  404         }
  405         /*
  406          * Internal flag indicating registration done by kernel (for other than
  407          * NOTE_CHILD).
  408          */
  409         if (kn->kn_flags & EV_FLAG1) {
  410                 kn->kn_flags &= ~EV_FLAG1;
  411         }
  412 
  413         knlist_add(p->p_klist, kn, 1);
  414 
  415         /*
  416          * Immediately activate any child notes or, in the case of a zombie
  417          * target process, exit notes.  The latter is necessary to handle the
  418          * case where the target process, e.g. a child, dies before the kevent
  419          * is registered.
  420          */
  421         if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
  422                 KNOTE_ACTIVATE(kn, 0);
  423 
  424         PROC_UNLOCK(p);
  425 
  426         return (0);
  427 }
  428 
  429 /*
  430  * The knote may be attached to a different process, which may exit,
  431  * leaving nothing for the knote to be attached to.  So when the process
  432  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  433  * it will be deleted when read out.  However, as part of the knote deletion,
  434  * this routine is called, so a check is needed to avoid actually performing
  435  * a detach, because the original process does not exist any more.
  436  */
  437 /* XXX - move to kern_proc.c?  */
  438 static void
  439 filt_procdetach(struct knote *kn)
  440 {
  441 
  442         knlist_remove(kn->kn_knlist, kn, 0);
  443         kn->kn_ptr.p_proc = NULL;
  444 }
  445 
  446 /* XXX - move to kern_proc.c?  */
  447 static int
  448 filt_proc(struct knote *kn, long hint)
  449 {
  450         struct proc *p;
  451         u_int event;
  452 
  453         p = kn->kn_ptr.p_proc;
  454         if (p == NULL) /* already activated, from attach filter */
  455                 return (0);
  456 
  457         /* Mask off extra data. */
  458         event = (u_int)hint & NOTE_PCTRLMASK;
  459 
  460         /* If the user is interested in this event, record it. */
  461         if (kn->kn_sfflags & event)
  462                 kn->kn_fflags |= event;
  463 
  464         /* Process is gone, so flag the event as finished. */
  465         if (event == NOTE_EXIT) {
  466                 kn->kn_flags |= EV_EOF | EV_ONESHOT;
  467                 kn->kn_ptr.p_proc = NULL;
  468                 if (kn->kn_fflags & NOTE_EXIT)
  469                         kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
  470                 if (kn->kn_fflags == 0)
  471                         kn->kn_flags |= EV_DROP;
  472                 return (1);
  473         }
  474 
  475         return (kn->kn_fflags != 0);
  476 }
  477 
  478 /*
  479  * Called when the process forked. It mostly does the same as the
  480  * knote(), activating all knotes registered to be activated when the
  481  * process forked. Additionally, for each knote attached to the
  482  * parent, check whether user wants to track the new process. If so
  483  * attach a new knote to it, and immediately report an event with the
  484  * child's pid.
  485  */
  486 void
  487 knote_fork(struct knlist *list, int pid)
  488 {
  489         struct kqueue *kq;
  490         struct knote *kn;
  491         struct kevent kev;
  492         int error;
  493 
  494         if (list == NULL)
  495                 return;
  496         list->kl_lock(list->kl_lockarg);
  497 
  498         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  499                 kq = kn->kn_kq;
  500                 KQ_LOCK(kq);
  501                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
  502                         KQ_UNLOCK(kq);
  503                         continue;
  504                 }
  505 
  506                 /*
  507                  * The same as knote(), activate the event.
  508                  */
  509                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  510                         kn->kn_status |= KN_HASKQLOCK;
  511                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  512                                 KNOTE_ACTIVATE(kn, 1);
  513                         kn->kn_status &= ~KN_HASKQLOCK;
  514                         KQ_UNLOCK(kq);
  515                         continue;
  516                 }
  517 
  518                 /*
  519                  * The NOTE_TRACK case. In addition to the activation
  520                  * of the event, we need to register new events to
  521                  * track the child. Drop the locks in preparation for
  522                  * the call to kqueue_register().
  523                  */
  524                 kn->kn_status |= KN_INFLUX;
  525                 KQ_UNLOCK(kq);
  526                 list->kl_unlock(list->kl_lockarg);
  527 
  528                 /*
  529                  * Activate existing knote and register tracking knotes with
  530                  * new process.
  531                  *
  532                  * First register a knote to get just the child notice. This
  533                  * must be a separate note from a potential NOTE_EXIT
  534                  * notification since both NOTE_CHILD and NOTE_EXIT are defined
  535                  * to use the data field (in conflicting ways).
  536                  */
  537                 kev.ident = pid;
  538                 kev.filter = kn->kn_filter;
  539                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
  540                     EV_FLAG2;
  541                 kev.fflags = kn->kn_sfflags;
  542                 kev.data = kn->kn_id;           /* parent */
  543                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  544                 error = kqueue_register(kq, &kev, NULL, 0);
  545                 if (error)
  546                         kn->kn_fflags |= NOTE_TRACKERR;
  547 
  548                 /*
  549                  * Then register another knote to track other potential events
  550                  * from the new process.
  551                  */
  552                 kev.ident = pid;
  553                 kev.filter = kn->kn_filter;
  554                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  555                 kev.fflags = kn->kn_sfflags;
  556                 kev.data = kn->kn_id;           /* parent */
  557                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  558                 error = kqueue_register(kq, &kev, NULL, 0);
  559                 if (error)
  560                         kn->kn_fflags |= NOTE_TRACKERR;
  561                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  562                         KNOTE_ACTIVATE(kn, 0);
  563                 KQ_LOCK(kq);
  564                 kn->kn_status &= ~KN_INFLUX;
  565                 KQ_UNLOCK_FLUX(kq);
  566                 list->kl_lock(list->kl_lockarg);
  567         }
  568         list->kl_unlock(list->kl_lockarg);
  569 }
  570 
  571 /*
  572  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  573  * interval timer support code.
  574  */
  575 
  576 #define NOTE_TIMER_PRECMASK                                             \
  577     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
  578 
  579 static sbintime_t
  580 timer2sbintime(intptr_t data, int flags)
  581 {
  582         int64_t secs;
  583 
  584         /*
  585          * Macros for converting to the fractional second portion of an
  586          * sbintime_t using 64bit multiplication to improve precision.
  587          */
  588 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
  589 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
  590 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
  591         switch (flags & NOTE_TIMER_PRECMASK) {
  592         case NOTE_SECONDS:
  593 #ifdef __LP64__
  594                 if (data > (SBT_MAX / SBT_1S))
  595                         return (SBT_MAX);
  596 #endif
  597                 return ((sbintime_t)data << 32);
  598         case NOTE_MSECONDS: /* FALLTHROUGH */
  599         case 0:
  600                 if (data >= 1000) {
  601                         secs = data / 1000;
  602 #ifdef __LP64__
  603                         if (secs > (SBT_MAX / SBT_1S))
  604                                 return (SBT_MAX);
  605 #endif
  606                         return (secs << 32 | MS_TO_SBT(data % 1000));
  607                 }
  608                 return (MS_TO_SBT(data));
  609         case NOTE_USECONDS:
  610                 if (data >= 1000000) {
  611                         secs = data / 1000000;
  612 #ifdef __LP64__
  613                         if (secs > (SBT_MAX / SBT_1S))
  614                                 return (SBT_MAX);
  615 #endif
  616                         return (secs << 32 | US_TO_SBT(data % 1000000));
  617                 }
  618                 return (US_TO_SBT(data));
  619         case NOTE_NSECONDS:
  620                 if (data >= 1000000000) {
  621                         secs = data / 1000000000;
  622 #ifdef __LP64__
  623                         if (secs > (SBT_MAX / SBT_1S))
  624                                 return (SBT_MAX);
  625 #endif
  626                         return (secs << 32 | US_TO_SBT(data % 1000000000));
  627                 }
  628                 return (NS_TO_SBT(data));
  629         default:
  630                 break;
  631         }
  632         return (-1);
  633 }
  634 
  635 struct kq_timer_cb_data {
  636         struct callout c;
  637         sbintime_t next;        /* next timer event fires at */
  638         sbintime_t to;          /* precalculated timer period */
  639 };
  640 
  641 static void
  642 filt_timerexpire(void *knx)
  643 {
  644         struct knote *kn;
  645         struct kq_timer_cb_data *kc;
  646 
  647         kn = knx;
  648         kn->kn_data++;
  649         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  650 
  651         if ((kn->kn_flags & EV_ONESHOT) != 0)
  652                 return;
  653 
  654         kc = kn->kn_ptr.p_v;
  655         kc->next += kc->to;
  656         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  657             PCPU_GET(cpuid), C_ABSOLUTE);
  658 }
  659 
  660 /*
  661  * data contains amount of time to sleep
  662  */
  663 static int
  664 filt_timerattach(struct knote *kn)
  665 {
  666         struct kq_timer_cb_data *kc;
  667         sbintime_t to;
  668         unsigned int ncallouts;
  669 
  670         if (kn->kn_sdata < 0)
  671                 return (EINVAL);
  672         if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  673                 kn->kn_sdata = 1;
  674         /* Only precision unit are supported in flags so far */
  675         if ((kn->kn_sfflags & ~NOTE_TIMER_PRECMASK) != 0)
  676                 return (EINVAL);
  677 
  678         to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  679         if (to < 0)
  680                 return (EINVAL);
  681 
  682         do {
  683                 ncallouts = kq_ncallouts;
  684                 if (ncallouts >= kq_calloutmax)
  685                         return (ENOMEM);
  686         } while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
  687 
  688         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  689         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  690         kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
  691         callout_init(&kc->c, 1);
  692         kc->next = to + sbinuptime();
  693         kc->to = to;
  694         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  695             PCPU_GET(cpuid), C_ABSOLUTE);
  696 
  697         return (0);
  698 }
  699 
  700 static void
  701 filt_timerdetach(struct knote *kn)
  702 {
  703         struct kq_timer_cb_data *kc;
  704         unsigned int old;
  705 
  706         kc = kn->kn_ptr.p_v;
  707         callout_drain(&kc->c);
  708         free(kc, M_KQUEUE);
  709         old = atomic_fetchadd_int(&kq_ncallouts, -1);
  710         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  711         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  712 }
  713 
  714 static int
  715 filt_timer(struct knote *kn, long hint)
  716 {
  717 
  718         return (kn->kn_data != 0);
  719 }
  720 
  721 static int
  722 filt_userattach(struct knote *kn)
  723 {
  724 
  725         /* 
  726          * EVFILT_USER knotes are not attached to anything in the kernel.
  727          */ 
  728         kn->kn_hook = NULL;
  729         if (kn->kn_fflags & NOTE_TRIGGER)
  730                 kn->kn_hookid = 1;
  731         else
  732                 kn->kn_hookid = 0;
  733         return (0);
  734 }
  735 
  736 static void
  737 filt_userdetach(__unused struct knote *kn)
  738 {
  739 
  740         /*
  741          * EVFILT_USER knotes are not attached to anything in the kernel.
  742          */
  743 }
  744 
  745 static int
  746 filt_user(struct knote *kn, __unused long hint)
  747 {
  748 
  749         return (kn->kn_hookid);
  750 }
  751 
  752 static void
  753 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  754 {
  755         u_int ffctrl;
  756 
  757         switch (type) {
  758         case EVENT_REGISTER:
  759                 if (kev->fflags & NOTE_TRIGGER)
  760                         kn->kn_hookid = 1;
  761 
  762                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  763                 kev->fflags &= NOTE_FFLAGSMASK;
  764                 switch (ffctrl) {
  765                 case NOTE_FFNOP:
  766                         break;
  767 
  768                 case NOTE_FFAND:
  769                         kn->kn_sfflags &= kev->fflags;
  770                         break;
  771 
  772                 case NOTE_FFOR:
  773                         kn->kn_sfflags |= kev->fflags;
  774                         break;
  775 
  776                 case NOTE_FFCOPY:
  777                         kn->kn_sfflags = kev->fflags;
  778                         break;
  779 
  780                 default:
  781                         /* XXX Return error? */
  782                         break;
  783                 }
  784                 kn->kn_sdata = kev->data;
  785                 if (kev->flags & EV_CLEAR) {
  786                         kn->kn_hookid = 0;
  787                         kn->kn_data = 0;
  788                         kn->kn_fflags = 0;
  789                 }
  790                 break;
  791 
  792         case EVENT_PROCESS:
  793                 *kev = kn->kn_kevent;
  794                 kev->fflags = kn->kn_sfflags;
  795                 kev->data = kn->kn_sdata;
  796                 if (kn->kn_flags & EV_CLEAR) {
  797                         kn->kn_hookid = 0;
  798                         kn->kn_data = 0;
  799                         kn->kn_fflags = 0;
  800                 }
  801                 break;
  802 
  803         default:
  804                 panic("filt_usertouch() - invalid type (%ld)", type);
  805                 break;
  806         }
  807 }
  808 
  809 int
  810 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  811 {
  812 
  813         return (kern_kqueue(td, 0, NULL));
  814 }
  815 
  816 static void
  817 kqueue_init(struct kqueue *kq)
  818 {
  819 
  820         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
  821         TAILQ_INIT(&kq->kq_head);
  822         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  823         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  824 }
  825 
  826 int
  827 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
  828 {
  829         struct filedesc *fdp;
  830         struct kqueue *kq;
  831         struct file *fp;
  832         struct ucred *cred;
  833         int fd, error;
  834 
  835         fdp = td->td_proc->p_fd;
  836         cred = td->td_ucred;
  837         if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
  838                 return (ENOMEM);
  839 
  840         error = falloc_caps(td, &fp, &fd, flags, fcaps);
  841         if (error != 0) {
  842                 chgkqcnt(cred->cr_ruidinfo, -1, 0);
  843                 return (error);
  844         }
  845 
  846         /* An extra reference on `fp' has been held for us by falloc(). */
  847         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  848         kqueue_init(kq);
  849         kq->kq_fdp = fdp;
  850         kq->kq_cred = crhold(cred);
  851 
  852         FILEDESC_XLOCK(fdp);
  853         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  854         FILEDESC_XUNLOCK(fdp);
  855 
  856         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
  857         fdrop(fp, td);
  858 
  859         td->td_retval[0] = fd;
  860         return (0);
  861 }
  862 
  863 #ifndef _SYS_SYSPROTO_H_
  864 struct kevent_args {
  865         int     fd;
  866         const struct kevent *changelist;
  867         int     nchanges;
  868         struct  kevent *eventlist;
  869         int     nevents;
  870         const struct timespec *timeout;
  871 };
  872 #endif
  873 int
  874 sys_kevent(struct thread *td, struct kevent_args *uap)
  875 {
  876         struct timespec ts, *tsp;
  877         struct kevent_copyops k_ops = {
  878                 .arg = uap,
  879                 .k_copyout = kevent_copyout,
  880                 .k_copyin = kevent_copyin,
  881         };
  882 #ifdef KTRACE
  883         struct kevent *eventlist = uap->eventlist;
  884 #endif
  885         int error;
  886 
  887         if (uap->timeout != NULL) {
  888                 error = copyin(uap->timeout, &ts, sizeof(ts));
  889                 if (error)
  890                         return (error);
  891                 tsp = &ts;
  892         } else
  893                 tsp = NULL;
  894 
  895 #ifdef KTRACE
  896         if (KTRPOINT(td, KTR_STRUCT_ARRAY))
  897                 ktrstructarray("kevent", UIO_USERSPACE, uap->changelist,
  898                     uap->nchanges, sizeof(struct kevent));
  899 #endif
  900 
  901         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  902             &k_ops, tsp);
  903 
  904 #ifdef KTRACE
  905         if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
  906                 ktrstructarray("kevent", UIO_USERSPACE, eventlist,
  907                     td->td_retval[0], sizeof(struct kevent));
  908 #endif
  909 
  910         return (error);
  911 }
  912 
  913 /*
  914  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  915  */
  916 static int
  917 kevent_copyout(void *arg, struct kevent *kevp, int count)
  918 {
  919         struct kevent_args *uap;
  920         int error;
  921 
  922         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  923         uap = (struct kevent_args *)arg;
  924 
  925         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  926         if (error == 0)
  927                 uap->eventlist += count;
  928         return (error);
  929 }
  930 
  931 /*
  932  * Copy 'count' items from the list pointed to by uap->changelist.
  933  */
  934 static int
  935 kevent_copyin(void *arg, struct kevent *kevp, int count)
  936 {
  937         struct kevent_args *uap;
  938         int error;
  939 
  940         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  941         uap = (struct kevent_args *)arg;
  942 
  943         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  944         if (error == 0)
  945                 uap->changelist += count;
  946         return (error);
  947 }
  948 
  949 int
  950 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  951     struct kevent_copyops *k_ops, const struct timespec *timeout)
  952 {
  953         cap_rights_t rights;
  954         struct file *fp;
  955         int error;
  956 
  957         cap_rights_init(&rights);
  958         if (nchanges > 0)
  959                 cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
  960         if (nevents > 0)
  961                 cap_rights_set(&rights, CAP_KQUEUE_EVENT);
  962         error = fget(td, fd, &rights, &fp);
  963         if (error != 0)
  964                 return (error);
  965 
  966         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
  967         fdrop(fp, td);
  968 
  969         return (error);
  970 }
  971 
  972 static int
  973 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
  974     struct kevent_copyops *k_ops, const struct timespec *timeout)
  975 {
  976         struct kevent keva[KQ_NEVENTS];
  977         struct kevent *kevp, *changes;
  978         int i, n, nerrors, error;
  979 
  980         nerrors = 0;
  981         while (nchanges > 0) {
  982                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  983                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  984                 if (error)
  985                         return (error);
  986                 changes = keva;
  987                 for (i = 0; i < n; i++) {
  988                         kevp = &changes[i];
  989                         if (!kevp->filter)
  990                                 continue;
  991                         kevp->flags &= ~EV_SYSFLAGS;
  992                         error = kqueue_register(kq, kevp, td, 1);
  993                         if (error || (kevp->flags & EV_RECEIPT)) {
  994                                 if (nevents == 0)
  995                                         return (error);
  996                                 kevp->flags = EV_ERROR;
  997                                 kevp->data = error;
  998                                 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
  999                                 nevents--;
 1000                                 nerrors++;
 1001                         }
 1002                 }
 1003                 nchanges -= n;
 1004         }
 1005         if (nerrors) {
 1006                 td->td_retval[0] = nerrors;
 1007                 return (0);
 1008         }
 1009 
 1010         return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
 1011 }
 1012 
 1013 int
 1014 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
 1015     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1016 {
 1017         struct kqueue *kq;
 1018         int error;
 1019 
 1020         error = kqueue_acquire(fp, &kq);
 1021         if (error != 0)
 1022                 return (error);
 1023         error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
 1024         kqueue_release(kq, 0);
 1025         return (error);
 1026 }
 1027 
 1028 /*
 1029  * Performs a kevent() call on a temporarily created kqueue. This can be
 1030  * used to perform one-shot polling, similar to poll() and select().
 1031  */
 1032 int
 1033 kern_kevent_anonymous(struct thread *td, int nevents,
 1034     struct kevent_copyops *k_ops)
 1035 {
 1036         struct kqueue kq = {};
 1037         int error;
 1038 
 1039         kqueue_init(&kq);
 1040         kq.kq_refcnt = 1;
 1041         error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
 1042         kqueue_drain(&kq, td);
 1043         kqueue_destroy(&kq);
 1044         return (error);
 1045 }
 1046 
 1047 int
 1048 kqueue_add_filteropts(int filt, struct filterops *filtops)
 1049 {
 1050         int error;
 1051 
 1052         error = 0;
 1053         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
 1054                 printf(
 1055 "trying to add a filterop that is out of range: %d is beyond %d\n",
 1056                     ~filt, EVFILT_SYSCOUNT);
 1057                 return EINVAL;
 1058         }
 1059         mtx_lock(&filterops_lock);
 1060         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
 1061             sysfilt_ops[~filt].for_fop != NULL)
 1062                 error = EEXIST;
 1063         else {
 1064                 sysfilt_ops[~filt].for_fop = filtops;
 1065                 sysfilt_ops[~filt].for_refcnt = 0;
 1066         }
 1067         mtx_unlock(&filterops_lock);
 1068 
 1069         return (error);
 1070 }
 1071 
 1072 int
 1073 kqueue_del_filteropts(int filt)
 1074 {
 1075         int error;
 1076 
 1077         error = 0;
 1078         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1079                 return EINVAL;
 1080 
 1081         mtx_lock(&filterops_lock);
 1082         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
 1083             sysfilt_ops[~filt].for_fop == NULL)
 1084                 error = EINVAL;
 1085         else if (sysfilt_ops[~filt].for_refcnt != 0)
 1086                 error = EBUSY;
 1087         else {
 1088                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1089                 sysfilt_ops[~filt].for_refcnt = 0;
 1090         }
 1091         mtx_unlock(&filterops_lock);
 1092 
 1093         return error;
 1094 }
 1095 
 1096 static struct filterops *
 1097 kqueue_fo_find(int filt)
 1098 {
 1099 
 1100         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1101                 return NULL;
 1102 
 1103         if (sysfilt_ops[~filt].for_nolock)
 1104                 return sysfilt_ops[~filt].for_fop;
 1105 
 1106         mtx_lock(&filterops_lock);
 1107         sysfilt_ops[~filt].for_refcnt++;
 1108         if (sysfilt_ops[~filt].for_fop == NULL)
 1109                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1110         mtx_unlock(&filterops_lock);
 1111 
 1112         return sysfilt_ops[~filt].for_fop;
 1113 }
 1114 
 1115 static void
 1116 kqueue_fo_release(int filt)
 1117 {
 1118 
 1119         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1120                 return;
 1121 
 1122         if (sysfilt_ops[~filt].for_nolock)
 1123                 return;
 1124 
 1125         mtx_lock(&filterops_lock);
 1126         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1127             ("filter object refcount not valid on release"));
 1128         sysfilt_ops[~filt].for_refcnt--;
 1129         mtx_unlock(&filterops_lock);
 1130 }
 1131 
 1132 /*
 1133  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
 1134  * influence if memory allocation should wait.  Make sure it is 0 if you
 1135  * hold any mutexes.
 1136  */
 1137 static int
 1138 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
 1139 {
 1140         struct filterops *fops;
 1141         struct file *fp;
 1142         struct knote *kn, *tkn;
 1143         struct knlist *knl;
 1144         cap_rights_t rights;
 1145         int error, filt, event;
 1146         int haskqglobal, filedesc_unlock;
 1147 
 1148         if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
 1149                 return (EINVAL);
 1150 
 1151         fp = NULL;
 1152         kn = NULL;
 1153         knl = NULL;
 1154         error = 0;
 1155         haskqglobal = 0;
 1156         filedesc_unlock = 0;
 1157 
 1158         filt = kev->filter;
 1159         fops = kqueue_fo_find(filt);
 1160         if (fops == NULL)
 1161                 return EINVAL;
 1162 
 1163         if (kev->flags & EV_ADD) {
 1164                 /*
 1165                  * Prevent waiting with locks.  Non-sleepable
 1166                  * allocation failures are handled in the loop, only
 1167                  * if the spare knote appears to be actually required.
 1168                  */
 1169                 tkn = knote_alloc(waitok);
 1170         } else {
 1171                 tkn = NULL;
 1172         }
 1173 
 1174 findkn:
 1175         if (fops->f_isfd) {
 1176                 KASSERT(td != NULL, ("td is NULL"));
 1177                 if (kev->ident > INT_MAX)
 1178                         error = EBADF;
 1179                 else
 1180                         error = fget(td, kev->ident,
 1181                             cap_rights_init(&rights, CAP_EVENT), &fp);
 1182                 if (error)
 1183                         goto done;
 1184 
 1185                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1186                     kev->ident, 0) != 0) {
 1187                         /* try again */
 1188                         fdrop(fp, td);
 1189                         fp = NULL;
 1190                         error = kqueue_expand(kq, fops, kev->ident, waitok);
 1191                         if (error)
 1192                                 goto done;
 1193                         goto findkn;
 1194                 }
 1195 
 1196                 if (fp->f_type == DTYPE_KQUEUE) {
 1197                         /*
 1198                          * If we add some intelligence about what we are doing,
 1199                          * we should be able to support events on ourselves.
 1200                          * We need to know when we are doing this to prevent
 1201                          * getting both the knlist lock and the kq lock since
 1202                          * they are the same thing.
 1203                          */
 1204                         if (fp->f_data == kq) {
 1205                                 error = EINVAL;
 1206                                 goto done;
 1207                         }
 1208 
 1209                         /*
 1210                          * Pre-lock the filedesc before the global
 1211                          * lock mutex, see the comment in
 1212                          * kqueue_close().
 1213                          */
 1214                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1215                         filedesc_unlock = 1;
 1216                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1217                 }
 1218 
 1219                 KQ_LOCK(kq);
 1220                 if (kev->ident < kq->kq_knlistsize) {
 1221                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1222                                 if (kev->filter == kn->kn_filter)
 1223                                         break;
 1224                 }
 1225         } else {
 1226                 if ((kev->flags & EV_ADD) == EV_ADD)
 1227                         kqueue_expand(kq, fops, kev->ident, waitok);
 1228 
 1229                 KQ_LOCK(kq);
 1230 
 1231                 /*
 1232                  * If possible, find an existing knote to use for this kevent.
 1233                  */
 1234                 if (kev->filter == EVFILT_PROC &&
 1235                     (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
 1236                         /* This is an internal creation of a process tracking
 1237                          * note. Don't attempt to coalesce this with an
 1238                          * existing note.
 1239                          */
 1240                         ;                       
 1241                 } else if (kq->kq_knhashmask != 0) {
 1242                         struct klist *list;
 1243 
 1244                         list = &kq->kq_knhash[
 1245                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1246                         SLIST_FOREACH(kn, list, kn_link)
 1247                                 if (kev->ident == kn->kn_id &&
 1248                                     kev->filter == kn->kn_filter)
 1249                                         break;
 1250                 }
 1251         }
 1252 
 1253         /* knote is in the process of changing, wait for it to stabilize. */
 1254         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1255                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1256                 if (filedesc_unlock) {
 1257                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1258                         filedesc_unlock = 0;
 1259                 }
 1260                 kq->kq_state |= KQ_FLUXWAIT;
 1261                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1262                 if (fp != NULL) {
 1263                         fdrop(fp, td);
 1264                         fp = NULL;
 1265                 }
 1266                 goto findkn;
 1267         }
 1268 
 1269         /*
 1270          * kn now contains the matching knote, or NULL if no match
 1271          */
 1272         if (kn == NULL) {
 1273                 if (kev->flags & EV_ADD) {
 1274                         kn = tkn;
 1275                         tkn = NULL;
 1276                         if (kn == NULL) {
 1277                                 KQ_UNLOCK(kq);
 1278                                 error = ENOMEM;
 1279                                 goto done;
 1280                         }
 1281                         kn->kn_fp = fp;
 1282                         kn->kn_kq = kq;
 1283                         kn->kn_fop = fops;
 1284                         /*
 1285                          * apply reference counts to knote structure, and
 1286                          * do not release it at the end of this routine.
 1287                          */
 1288                         fops = NULL;
 1289                         fp = NULL;
 1290 
 1291                         kn->kn_sfflags = kev->fflags;
 1292                         kn->kn_sdata = kev->data;
 1293                         kev->fflags = 0;
 1294                         kev->data = 0;
 1295                         kn->kn_kevent = *kev;
 1296                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1297                             EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
 1298                         kn->kn_status = KN_INFLUX|KN_DETACHED;
 1299                         if ((kev->flags & EV_DISABLE) != 0)
 1300                                 kn->kn_status |= KN_DISABLED;
 1301 
 1302                         error = knote_attach(kn, kq);
 1303                         KQ_UNLOCK(kq);
 1304                         if (error != 0) {
 1305                                 tkn = kn;
 1306                                 goto done;
 1307                         }
 1308 
 1309                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1310                                 knote_drop(kn, td);
 1311                                 goto done;
 1312                         }
 1313                         knl = kn_list_lock(kn);
 1314                         goto done_ev_add;
 1315                 } else {
 1316                         /* No matching knote and the EV_ADD flag is not set. */
 1317                         KQ_UNLOCK(kq);
 1318                         error = ENOENT;
 1319                         goto done;
 1320                 }
 1321         }
 1322         
 1323         if (kev->flags & EV_DELETE) {
 1324                 kn->kn_status |= KN_INFLUX;
 1325                 KQ_UNLOCK(kq);
 1326                 if (!(kn->kn_status & KN_DETACHED))
 1327                         kn->kn_fop->f_detach(kn);
 1328                 knote_drop(kn, td);
 1329                 goto done;
 1330         }
 1331 
 1332         if (kev->flags & EV_FORCEONESHOT) {
 1333                 kn->kn_flags |= EV_ONESHOT;
 1334                 KNOTE_ACTIVATE(kn, 1);
 1335         }
 1336 
 1337         if ((kev->flags & EV_ENABLE) != 0)
 1338                 kn->kn_status &= ~KN_DISABLED;
 1339         else if ((kev->flags & EV_DISABLE) != 0)
 1340                 kn->kn_status |= KN_DISABLED;
 1341 
 1342         /*
 1343          * The user may change some filter values after the initial EV_ADD,
 1344          * but doing so will not reset any filter which has already been
 1345          * triggered.
 1346          */
 1347         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1348         KQ_UNLOCK(kq);
 1349         knl = kn_list_lock(kn);
 1350         kn->kn_kevent.udata = kev->udata;
 1351         if (!fops->f_isfd && fops->f_touch != NULL) {
 1352                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1353         } else {
 1354                 kn->kn_sfflags = kev->fflags;
 1355                 kn->kn_sdata = kev->data;
 1356         }
 1357 
 1358 done_ev_add:
 1359         /*
 1360          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1361          * the initial attach event decides that the event is "completed" 
 1362          * already, e.g., filt_procattach() is called on a zombie process.  It
 1363          * will call filt_proc() which will remove it from the list, and NULL
 1364          * kn_knlist.
 1365          *
 1366          * KN_DISABLED will be stable while the knote is in flux, so the
 1367          * unlocked read will not race with an update.
 1368          */
 1369         if ((kn->kn_status & KN_DISABLED) == 0)
 1370                 event = kn->kn_fop->f_event(kn, 0);
 1371         else
 1372                 event = 0;
 1373 
 1374         KQ_LOCK(kq);
 1375         if (event)
 1376                 kn->kn_status |= KN_ACTIVE;
 1377         if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
 1378             KN_ACTIVE)
 1379                 knote_enqueue(kn);
 1380         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1381         kn_list_unlock(knl);
 1382         KQ_UNLOCK_FLUX(kq);
 1383 
 1384 done:
 1385         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1386         if (filedesc_unlock)
 1387                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1388         if (fp != NULL)
 1389                 fdrop(fp, td);
 1390         knote_free(tkn);
 1391         if (fops != NULL)
 1392                 kqueue_fo_release(filt);
 1393         return (error);
 1394 }
 1395 
 1396 static int
 1397 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1398 {
 1399         int error;
 1400         struct kqueue *kq;
 1401 
 1402         error = 0;
 1403 
 1404         kq = fp->f_data;
 1405         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1406                 return (EBADF);
 1407         *kqp = kq;
 1408         KQ_LOCK(kq);
 1409         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1410                 KQ_UNLOCK(kq);
 1411                 return (EBADF);
 1412         }
 1413         kq->kq_refcnt++;
 1414         KQ_UNLOCK(kq);
 1415 
 1416         return error;
 1417 }
 1418 
 1419 static void
 1420 kqueue_release(struct kqueue *kq, int locked)
 1421 {
 1422         if (locked)
 1423                 KQ_OWNED(kq);
 1424         else
 1425                 KQ_LOCK(kq);
 1426         kq->kq_refcnt--;
 1427         if (kq->kq_refcnt == 1)
 1428                 wakeup(&kq->kq_refcnt);
 1429         if (!locked)
 1430                 KQ_UNLOCK(kq);
 1431 }
 1432 
 1433 static void
 1434 kqueue_schedtask(struct kqueue *kq)
 1435 {
 1436 
 1437         KQ_OWNED(kq);
 1438         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1439             ("scheduling kqueue task while draining"));
 1440 
 1441         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1442                 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
 1443                 kq->kq_state |= KQ_TASKSCHED;
 1444         }
 1445 }
 1446 
 1447 /*
 1448  * Expand the kq to make sure we have storage for fops/ident pair.
 1449  *
 1450  * Return 0 on success (or no work necessary), return errno on failure.
 1451  *
 1452  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1453  * If kqueue_register is called from a non-fd context, there usually/should
 1454  * be no locks held.
 1455  */
 1456 static int
 1457 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1458         int waitok)
 1459 {
 1460         struct klist *list, *tmp_knhash, *to_free;
 1461         u_long tmp_knhashmask;
 1462         int size;
 1463         int fd;
 1464         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1465 
 1466         KQ_NOTOWNED(kq);
 1467 
 1468         to_free = NULL;
 1469         if (fops->f_isfd) {
 1470                 fd = ident;
 1471                 if (kq->kq_knlistsize <= fd) {
 1472                         size = kq->kq_knlistsize;
 1473                         while (size <= fd)
 1474                                 size += KQEXTENT;
 1475                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1476                         if (list == NULL)
 1477                                 return ENOMEM;
 1478                         KQ_LOCK(kq);
 1479                         if (kq->kq_knlistsize > fd) {
 1480                                 to_free = list;
 1481                                 list = NULL;
 1482                         } else {
 1483                                 if (kq->kq_knlist != NULL) {
 1484                                         bcopy(kq->kq_knlist, list,
 1485                                             kq->kq_knlistsize * sizeof(*list));
 1486                                         to_free = kq->kq_knlist;
 1487                                         kq->kq_knlist = NULL;
 1488                                 }
 1489                                 bzero((caddr_t)list +
 1490                                     kq->kq_knlistsize * sizeof(*list),
 1491                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1492                                 kq->kq_knlistsize = size;
 1493                                 kq->kq_knlist = list;
 1494                         }
 1495                         KQ_UNLOCK(kq);
 1496                 }
 1497         } else {
 1498                 if (kq->kq_knhashmask == 0) {
 1499                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1500                             &tmp_knhashmask);
 1501                         if (tmp_knhash == NULL)
 1502                                 return ENOMEM;
 1503                         KQ_LOCK(kq);
 1504                         if (kq->kq_knhashmask == 0) {
 1505                                 kq->kq_knhash = tmp_knhash;
 1506                                 kq->kq_knhashmask = tmp_knhashmask;
 1507                         } else {
 1508                                 to_free = tmp_knhash;
 1509                         }
 1510                         KQ_UNLOCK(kq);
 1511                 }
 1512         }
 1513         free(to_free, M_KQUEUE);
 1514 
 1515         KQ_NOTOWNED(kq);
 1516         return 0;
 1517 }
 1518 
 1519 static void
 1520 kqueue_task(void *arg, int pending)
 1521 {
 1522         struct kqueue *kq;
 1523         int haskqglobal;
 1524 
 1525         haskqglobal = 0;
 1526         kq = arg;
 1527 
 1528         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1529         KQ_LOCK(kq);
 1530 
 1531         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1532 
 1533         kq->kq_state &= ~KQ_TASKSCHED;
 1534         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1535                 wakeup(&kq->kq_state);
 1536         }
 1537         KQ_UNLOCK(kq);
 1538         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1539 }
 1540 
 1541 /*
 1542  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1543  * We treat KN_MARKER knotes as if they are INFLUX.
 1544  */
 1545 static int
 1546 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1547     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1548 {
 1549         struct kevent *kevp;
 1550         struct knote *kn, *marker;
 1551         struct knlist *knl;
 1552         sbintime_t asbt, rsbt;
 1553         int count, error, haskqglobal, influx, nkev, touch;
 1554 
 1555         count = maxevents;
 1556         nkev = 0;
 1557         error = 0;
 1558         haskqglobal = 0;
 1559 
 1560         if (maxevents == 0)
 1561                 goto done_nl;
 1562 
 1563         rsbt = 0;
 1564         if (tsp != NULL) {
 1565                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1566                     tsp->tv_nsec >= 1000000000) {
 1567                         error = EINVAL;
 1568                         goto done_nl;
 1569                 }
 1570                 if (timespecisset(tsp)) {
 1571                         if (tsp->tv_sec <= INT32_MAX) {
 1572                                 rsbt = tstosbt(*tsp);
 1573                                 if (TIMESEL(&asbt, rsbt))
 1574                                         asbt += tc_tick_sbt;
 1575                                 if (asbt <= SBT_MAX - rsbt)
 1576                                         asbt += rsbt;
 1577                                 else
 1578                                         asbt = 0;
 1579                                 rsbt >>= tc_precexp;
 1580                         } else
 1581                                 asbt = 0;
 1582                 } else
 1583                         asbt = -1;
 1584         } else
 1585                 asbt = 0;
 1586         marker = knote_alloc(1);
 1587         marker->kn_status = KN_MARKER;
 1588         KQ_LOCK(kq);
 1589 
 1590 retry:
 1591         kevp = keva;
 1592         if (kq->kq_count == 0) {
 1593                 if (asbt == -1) {
 1594                         error = EWOULDBLOCK;
 1595                 } else {
 1596                         kq->kq_state |= KQ_SLEEP;
 1597                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1598                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1599                 }
 1600                 if (error == 0)
 1601                         goto retry;
 1602                 /* don't restart after signals... */
 1603                 if (error == ERESTART)
 1604                         error = EINTR;
 1605                 else if (error == EWOULDBLOCK)
 1606                         error = 0;
 1607                 goto done;
 1608         }
 1609 
 1610         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1611         influx = 0;
 1612         while (count) {
 1613                 KQ_OWNED(kq);
 1614                 kn = TAILQ_FIRST(&kq->kq_head);
 1615 
 1616                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1617                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1618                         if (influx) {
 1619                                 influx = 0;
 1620                                 KQ_FLUX_WAKEUP(kq);
 1621                         }
 1622                         kq->kq_state |= KQ_FLUXWAIT;
 1623                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1624                             "kqflxwt", 0);
 1625                         continue;
 1626                 }
 1627 
 1628                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1629                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1630                         kn->kn_status &= ~KN_QUEUED;
 1631                         kq->kq_count--;
 1632                         continue;
 1633                 }
 1634                 if (kn == marker) {
 1635                         KQ_FLUX_WAKEUP(kq);
 1636                         if (count == maxevents)
 1637                                 goto retry;
 1638                         goto done;
 1639                 }
 1640                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1641                     ("KN_INFLUX set when not suppose to be"));
 1642 
 1643                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1644                         kn->kn_status &= ~KN_QUEUED;
 1645                         kn->kn_status |= KN_INFLUX;
 1646                         kq->kq_count--;
 1647                         KQ_UNLOCK(kq);
 1648                         /*
 1649                          * We don't need to lock the list since we've marked
 1650                          * it _INFLUX.
 1651                          */
 1652                         if (!(kn->kn_status & KN_DETACHED))
 1653                                 kn->kn_fop->f_detach(kn);
 1654                         knote_drop(kn, td);
 1655                         KQ_LOCK(kq);
 1656                         continue;
 1657                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1658                         kn->kn_status &= ~KN_QUEUED;
 1659                         kn->kn_status |= KN_INFLUX;
 1660                         kq->kq_count--;
 1661                         KQ_UNLOCK(kq);
 1662                         /*
 1663                          * We don't need to lock the list since we've marked
 1664                          * it _INFLUX.
 1665                          */
 1666                         *kevp = kn->kn_kevent;
 1667                         if (!(kn->kn_status & KN_DETACHED))
 1668                                 kn->kn_fop->f_detach(kn);
 1669                         knote_drop(kn, td);
 1670                         KQ_LOCK(kq);
 1671                         kn = NULL;
 1672                 } else {
 1673                         kn->kn_status |= KN_INFLUX | KN_SCAN;
 1674                         KQ_UNLOCK(kq);
 1675                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1676                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1677                         knl = kn_list_lock(kn);
 1678                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1679                                 KQ_LOCK(kq);
 1680                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1681                                 kn->kn_status &=
 1682                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
 1683                                     KN_SCAN);
 1684                                 kq->kq_count--;
 1685                                 kn_list_unlock(knl);
 1686                                 influx = 1;
 1687                                 continue;
 1688                         }
 1689                         touch = (!kn->kn_fop->f_isfd &&
 1690                             kn->kn_fop->f_touch != NULL);
 1691                         if (touch)
 1692                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1693                         else
 1694                                 *kevp = kn->kn_kevent;
 1695                         KQ_LOCK(kq);
 1696                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1697                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1698                                 /* 
 1699                                  * Manually clear knotes who weren't 
 1700                                  * 'touch'ed.
 1701                                  */
 1702                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1703                                         kn->kn_data = 0;
 1704                                         kn->kn_fflags = 0;
 1705                                 }
 1706                                 if (kn->kn_flags & EV_DISPATCH)
 1707                                         kn->kn_status |= KN_DISABLED;
 1708                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1709                                 kq->kq_count--;
 1710                         } else
 1711                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1712                         
 1713                         kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
 1714                         kn_list_unlock(knl);
 1715                         influx = 1;
 1716                 }
 1717 
 1718                 /* we are returning a copy to the user */
 1719                 kevp++;
 1720                 nkev++;
 1721                 count--;
 1722 
 1723                 if (nkev == KQ_NEVENTS) {
 1724                         influx = 0;
 1725                         KQ_UNLOCK_FLUX(kq);
 1726                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1727                         nkev = 0;
 1728                         kevp = keva;
 1729                         KQ_LOCK(kq);
 1730                         if (error)
 1731                                 break;
 1732                 }
 1733         }
 1734         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1735 done:
 1736         KQ_OWNED(kq);
 1737         KQ_UNLOCK_FLUX(kq);
 1738         knote_free(marker);
 1739 done_nl:
 1740         KQ_NOTOWNED(kq);
 1741         if (nkev != 0)
 1742                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1743         td->td_retval[0] = maxevents - count;
 1744         return (error);
 1745 }
 1746 
 1747 /*ARGSUSED*/
 1748 static int
 1749 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1750         struct ucred *active_cred, struct thread *td)
 1751 {
 1752         /*
 1753          * Enabling sigio causes two major problems:
 1754          * 1) infinite recursion:
 1755          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1756          * set.  On receipt of a signal this will cause a kqueue to recurse
 1757          * into itself over and over.  Sending the sigio causes the kqueue
 1758          * to become ready, which in turn posts sigio again, forever.
 1759          * Solution: this can be solved by setting a flag in the kqueue that
 1760          * we have a SIGIO in progress.
 1761          * 2) locking problems:
 1762          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1763          * us above the proc and pgrp locks.
 1764          * Solution: Post a signal using an async mechanism, being sure to
 1765          * record a generation count in the delivery so that we do not deliver
 1766          * a signal to the wrong process.
 1767          *
 1768          * Note, these two mechanisms are somewhat mutually exclusive!
 1769          */
 1770 #if 0
 1771         struct kqueue *kq;
 1772 
 1773         kq = fp->f_data;
 1774         switch (cmd) {
 1775         case FIOASYNC:
 1776                 if (*(int *)data) {
 1777                         kq->kq_state |= KQ_ASYNC;
 1778                 } else {
 1779                         kq->kq_state &= ~KQ_ASYNC;
 1780                 }
 1781                 return (0);
 1782 
 1783         case FIOSETOWN:
 1784                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1785 
 1786         case FIOGETOWN:
 1787                 *(int *)data = fgetown(&kq->kq_sigio);
 1788                 return (0);
 1789         }
 1790 #endif
 1791 
 1792         return (ENOTTY);
 1793 }
 1794 
 1795 /*ARGSUSED*/
 1796 static int
 1797 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1798         struct thread *td)
 1799 {
 1800         struct kqueue *kq;
 1801         int revents = 0;
 1802         int error;
 1803 
 1804         if ((error = kqueue_acquire(fp, &kq)))
 1805                 return POLLERR;
 1806 
 1807         KQ_LOCK(kq);
 1808         if (events & (POLLIN | POLLRDNORM)) {
 1809                 if (kq->kq_count) {
 1810                         revents |= events & (POLLIN | POLLRDNORM);
 1811                 } else {
 1812                         selrecord(td, &kq->kq_sel);
 1813                         if (SEL_WAITING(&kq->kq_sel))
 1814                                 kq->kq_state |= KQ_SEL;
 1815                 }
 1816         }
 1817         kqueue_release(kq, 1);
 1818         KQ_UNLOCK(kq);
 1819         return (revents);
 1820 }
 1821 
 1822 /*ARGSUSED*/
 1823 static int
 1824 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1825         struct thread *td)
 1826 {
 1827 
 1828         bzero((void *)st, sizeof *st);
 1829         /*
 1830          * We no longer return kq_count because the unlocked value is useless.
 1831          * If you spent all this time getting the count, why not spend your
 1832          * syscall better by calling kevent?
 1833          *
 1834          * XXX - This is needed for libc_r.
 1835          */
 1836         st->st_mode = S_IFIFO;
 1837         return (0);
 1838 }
 1839 
 1840 static void
 1841 kqueue_drain(struct kqueue *kq, struct thread *td)
 1842 {
 1843         struct knote *kn;
 1844         int i;
 1845 
 1846         KQ_LOCK(kq);
 1847 
 1848         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1849             ("kqueue already closing"));
 1850         kq->kq_state |= KQ_CLOSING;
 1851         if (kq->kq_refcnt > 1)
 1852                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1853 
 1854         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1855 
 1856         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1857             ("kqueue's knlist not empty"));
 1858 
 1859         for (i = 0; i < kq->kq_knlistsize; i++) {
 1860                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1861                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1862                                 kq->kq_state |= KQ_FLUXWAIT;
 1863                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1864                                 continue;
 1865                         }
 1866                         kn->kn_status |= KN_INFLUX;
 1867                         KQ_UNLOCK(kq);
 1868                         if (!(kn->kn_status & KN_DETACHED))
 1869                                 kn->kn_fop->f_detach(kn);
 1870                         knote_drop(kn, td);
 1871                         KQ_LOCK(kq);
 1872                 }
 1873         }
 1874         if (kq->kq_knhashmask != 0) {
 1875                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1876                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1877                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1878                                         kq->kq_state |= KQ_FLUXWAIT;
 1879                                         msleep(kq, &kq->kq_lock, PSOCK,
 1880                                                "kqclo2", 0);
 1881                                         continue;
 1882                                 }
 1883                                 kn->kn_status |= KN_INFLUX;
 1884                                 KQ_UNLOCK(kq);
 1885                                 if (!(kn->kn_status & KN_DETACHED))
 1886                                         kn->kn_fop->f_detach(kn);
 1887                                 knote_drop(kn, td);
 1888                                 KQ_LOCK(kq);
 1889                         }
 1890                 }
 1891         }
 1892 
 1893         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1894                 kq->kq_state |= KQ_TASKDRAIN;
 1895                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1896         }
 1897 
 1898         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1899                 selwakeuppri(&kq->kq_sel, PSOCK);
 1900                 if (!SEL_WAITING(&kq->kq_sel))
 1901                         kq->kq_state &= ~KQ_SEL;
 1902         }
 1903 
 1904         KQ_UNLOCK(kq);
 1905 }
 1906 
 1907 static void
 1908 kqueue_destroy(struct kqueue *kq)
 1909 {
 1910 
 1911         KASSERT(kq->kq_fdp == NULL,
 1912             ("kqueue still attached to a file descriptor"));
 1913         seldrain(&kq->kq_sel);
 1914         knlist_destroy(&kq->kq_sel.si_note);
 1915         mtx_destroy(&kq->kq_lock);
 1916 
 1917         if (kq->kq_knhash != NULL)
 1918                 free(kq->kq_knhash, M_KQUEUE);
 1919         if (kq->kq_knlist != NULL)
 1920                 free(kq->kq_knlist, M_KQUEUE);
 1921 
 1922         funsetown(&kq->kq_sigio);
 1923 }
 1924 
 1925 /*ARGSUSED*/
 1926 static int
 1927 kqueue_close(struct file *fp, struct thread *td)
 1928 {
 1929         struct kqueue *kq = fp->f_data;
 1930         struct filedesc *fdp;
 1931         int error;
 1932         int filedesc_unlock;
 1933 
 1934         if ((error = kqueue_acquire(fp, &kq)))
 1935                 return error;
 1936         kqueue_drain(kq, td);
 1937 
 1938         /*
 1939          * We could be called due to the knote_drop() doing fdrop(),
 1940          * called from kqueue_register().  In this case the global
 1941          * lock is owned, and filedesc sx is locked before, to not
 1942          * take the sleepable lock after non-sleepable.
 1943          */
 1944         fdp = kq->kq_fdp;
 1945         kq->kq_fdp = NULL;
 1946         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 1947                 FILEDESC_XLOCK(fdp);
 1948                 filedesc_unlock = 1;
 1949         } else
 1950                 filedesc_unlock = 0;
 1951         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 1952         if (filedesc_unlock)
 1953                 FILEDESC_XUNLOCK(fdp);
 1954 
 1955         kqueue_destroy(kq);
 1956         chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
 1957         crfree(kq->kq_cred);
 1958         free(kq, M_KQUEUE);
 1959         fp->f_data = NULL;
 1960 
 1961         return (0);
 1962 }
 1963 
 1964 static int
 1965 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 1966 {
 1967 
 1968         kif->kf_type = KF_TYPE_KQUEUE;
 1969         return (0);
 1970 }
 1971 
 1972 static void
 1973 kqueue_wakeup(struct kqueue *kq)
 1974 {
 1975         KQ_OWNED(kq);
 1976 
 1977         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1978                 kq->kq_state &= ~KQ_SLEEP;
 1979                 wakeup(kq);
 1980         }
 1981         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1982                 selwakeuppri(&kq->kq_sel, PSOCK);
 1983                 if (!SEL_WAITING(&kq->kq_sel))
 1984                         kq->kq_state &= ~KQ_SEL;
 1985         }
 1986         if (!knlist_empty(&kq->kq_sel.si_note))
 1987                 kqueue_schedtask(kq);
 1988         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1989                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1990         }
 1991 }
 1992 
 1993 /*
 1994  * Walk down a list of knotes, activating them if their event has triggered.
 1995  *
 1996  * There is a possibility to optimize in the case of one kq watching another.
 1997  * Instead of scheduling a task to wake it up, you could pass enough state
 1998  * down the chain to make up the parent kqueue.  Make this code functional
 1999  * first.
 2000  */
 2001 void
 2002 knote(struct knlist *list, long hint, int lockflags)
 2003 {
 2004         struct kqueue *kq;
 2005         struct knote *kn, *tkn;
 2006         int error;
 2007         bool own_influx;
 2008 
 2009         if (list == NULL)
 2010                 return;
 2011 
 2012         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 2013 
 2014         if ((lockflags & KNF_LISTLOCKED) == 0)
 2015                 list->kl_lock(list->kl_lockarg); 
 2016 
 2017         /*
 2018          * If we unlock the list lock (and set KN_INFLUX), we can
 2019          * eliminate the kqueue scheduling, but this will introduce
 2020          * four lock/unlock's for each knote to test.  Also, marker
 2021          * would be needed to keep iteration position, since filters
 2022          * or other threads could remove events.
 2023          */
 2024         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 2025                 kq = kn->kn_kq;
 2026                 KQ_LOCK(kq);
 2027                 if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
 2028                         /*
 2029                          * Do not process the influx notes, except for
 2030                          * the influx coming from the kq unlock in the
 2031                          * kqueue_scan().  In the later case, we do
 2032                          * not interfere with the scan, since the code
 2033                          * fragment in kqueue_scan() locks the knlist,
 2034                          * and cannot proceed until we finished.
 2035                          */
 2036                         KQ_UNLOCK(kq);
 2037                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 2038                         own_influx = (kn->kn_status & KN_INFLUX) == 0;
 2039                         if (own_influx)
 2040                                 kn->kn_status |= KN_INFLUX;
 2041                         KQ_UNLOCK(kq);
 2042                         error = kn->kn_fop->f_event(kn, hint);
 2043                         KQ_LOCK(kq);
 2044                         if (own_influx)
 2045                                 kn->kn_status &= ~KN_INFLUX;
 2046                         if (error)
 2047                                 KNOTE_ACTIVATE(kn, 1);
 2048                         KQ_UNLOCK_FLUX(kq);
 2049                 } else {
 2050                         kn->kn_status |= KN_HASKQLOCK;
 2051                         if (kn->kn_fop->f_event(kn, hint))
 2052                                 KNOTE_ACTIVATE(kn, 1);
 2053                         kn->kn_status &= ~KN_HASKQLOCK;
 2054                         KQ_UNLOCK(kq);
 2055                 }
 2056         }
 2057         if ((lockflags & KNF_LISTLOCKED) == 0)
 2058                 list->kl_unlock(list->kl_lockarg); 
 2059 }
 2060 
 2061 /*
 2062  * add a knote to a knlist
 2063  */
 2064 void
 2065 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 2066 {
 2067         KNL_ASSERT_LOCK(knl, islocked);
 2068         KQ_NOTOWNED(kn->kn_kq);
 2069         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 2070             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 2071         if (!islocked)
 2072                 knl->kl_lock(knl->kl_lockarg);
 2073         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 2074         if (!islocked)
 2075                 knl->kl_unlock(knl->kl_lockarg);
 2076         KQ_LOCK(kn->kn_kq);
 2077         kn->kn_knlist = knl;
 2078         kn->kn_status &= ~KN_DETACHED;
 2079         KQ_UNLOCK(kn->kn_kq);
 2080 }
 2081 
 2082 static void
 2083 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
 2084     int kqislocked)
 2085 {
 2086         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 2087         KNL_ASSERT_LOCK(knl, knlislocked);
 2088         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 2089         if (!kqislocked)
 2090                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 2091     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 2092         if (!knlislocked)
 2093                 knl->kl_lock(knl->kl_lockarg);
 2094         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 2095         kn->kn_knlist = NULL;
 2096         if (!knlislocked)
 2097                 kn_list_unlock(knl);
 2098         if (!kqislocked)
 2099                 KQ_LOCK(kn->kn_kq);
 2100         kn->kn_status |= KN_DETACHED;
 2101         if (!kqislocked)
 2102                 KQ_UNLOCK(kn->kn_kq);
 2103 }
 2104 
 2105 /*
 2106  * remove knote from the specified knlist
 2107  */
 2108 void
 2109 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 2110 {
 2111 
 2112         knlist_remove_kq(knl, kn, islocked, 0);
 2113 }
 2114 
 2115 int
 2116 knlist_empty(struct knlist *knl)
 2117 {
 2118 
 2119         KNL_ASSERT_LOCKED(knl);
 2120         return (SLIST_EMPTY(&knl->kl_list));
 2121 }
 2122 
 2123 static struct mtx knlist_lock;
 2124 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 2125     MTX_DEF);
 2126 static void knlist_mtx_lock(void *arg);
 2127 static void knlist_mtx_unlock(void *arg);
 2128 
 2129 static void
 2130 knlist_mtx_lock(void *arg)
 2131 {
 2132 
 2133         mtx_lock((struct mtx *)arg);
 2134 }
 2135 
 2136 static void
 2137 knlist_mtx_unlock(void *arg)
 2138 {
 2139 
 2140         mtx_unlock((struct mtx *)arg);
 2141 }
 2142 
 2143 static void
 2144 knlist_mtx_assert_locked(void *arg)
 2145 {
 2146 
 2147         mtx_assert((struct mtx *)arg, MA_OWNED);
 2148 }
 2149 
 2150 static void
 2151 knlist_mtx_assert_unlocked(void *arg)
 2152 {
 2153 
 2154         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2155 }
 2156 
 2157 static void
 2158 knlist_rw_rlock(void *arg)
 2159 {
 2160 
 2161         rw_rlock((struct rwlock *)arg);
 2162 }
 2163 
 2164 static void
 2165 knlist_rw_runlock(void *arg)
 2166 {
 2167 
 2168         rw_runlock((struct rwlock *)arg);
 2169 }
 2170 
 2171 static void
 2172 knlist_rw_assert_locked(void *arg)
 2173 {
 2174 
 2175         rw_assert((struct rwlock *)arg, RA_LOCKED);
 2176 }
 2177 
 2178 static void
 2179 knlist_rw_assert_unlocked(void *arg)
 2180 {
 2181 
 2182         rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2183 }
 2184 
 2185 void
 2186 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2187     void (*kl_unlock)(void *),
 2188     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 2189 {
 2190 
 2191         if (lock == NULL)
 2192                 knl->kl_lockarg = &knlist_lock;
 2193         else
 2194                 knl->kl_lockarg = lock;
 2195 
 2196         if (kl_lock == NULL)
 2197                 knl->kl_lock = knlist_mtx_lock;
 2198         else
 2199                 knl->kl_lock = kl_lock;
 2200         if (kl_unlock == NULL)
 2201                 knl->kl_unlock = knlist_mtx_unlock;
 2202         else
 2203                 knl->kl_unlock = kl_unlock;
 2204         if (kl_assert_locked == NULL)
 2205                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 2206         else
 2207                 knl->kl_assert_locked = kl_assert_locked;
 2208         if (kl_assert_unlocked == NULL)
 2209                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 2210         else
 2211                 knl->kl_assert_unlocked = kl_assert_unlocked;
 2212 
 2213         knl->kl_autodestroy = 0;
 2214         SLIST_INIT(&knl->kl_list);
 2215 }
 2216 
 2217 void
 2218 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2219 {
 2220 
 2221         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 2222 }
 2223 
 2224 struct knlist *
 2225 knlist_alloc(struct mtx *lock)
 2226 {
 2227         struct knlist *knl;
 2228 
 2229         knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
 2230         knlist_init_mtx(knl, lock);
 2231         return (knl);
 2232 }
 2233 
 2234 void
 2235 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2236 {
 2237 
 2238         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2239             knlist_rw_assert_locked, knlist_rw_assert_unlocked);
 2240 }
 2241 
 2242 void
 2243 knlist_destroy(struct knlist *knl)
 2244 {
 2245 
 2246         KASSERT(KNLIST_EMPTY(knl),
 2247             ("destroying knlist %p with knotes on it", knl));
 2248 }
 2249 
 2250 void
 2251 knlist_detach(struct knlist *knl)
 2252 {
 2253 
 2254         KNL_ASSERT_LOCKED(knl);
 2255         knl->kl_autodestroy = 1;
 2256         if (knlist_empty(knl)) {
 2257                 knlist_destroy(knl);
 2258                 free(knl, M_KQUEUE);
 2259         }
 2260 }
 2261 
 2262 /*
 2263  * Even if we are locked, we may need to drop the lock to allow any influx
 2264  * knotes time to "settle".
 2265  */
 2266 void
 2267 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2268 {
 2269         struct knote *kn, *kn2;
 2270         struct kqueue *kq;
 2271 
 2272         KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
 2273         if (islocked)
 2274                 KNL_ASSERT_LOCKED(knl);
 2275         else {
 2276                 KNL_ASSERT_UNLOCKED(knl);
 2277 again:          /* need to reacquire lock since we have dropped it */
 2278                 knl->kl_lock(knl->kl_lockarg);
 2279         }
 2280 
 2281         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2282                 kq = kn->kn_kq;
 2283                 KQ_LOCK(kq);
 2284                 if ((kn->kn_status & KN_INFLUX)) {
 2285                         KQ_UNLOCK(kq);
 2286                         continue;
 2287                 }
 2288                 knlist_remove_kq(knl, kn, 1, 1);
 2289                 if (killkn) {
 2290                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 2291                         KQ_UNLOCK(kq);
 2292                         knote_drop(kn, td);
 2293                 } else {
 2294                         /* Make sure cleared knotes disappear soon */
 2295                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 2296                         KQ_UNLOCK(kq);
 2297                 }
 2298                 kq = NULL;
 2299         }
 2300 
 2301         if (!SLIST_EMPTY(&knl->kl_list)) {
 2302                 /* there are still KN_INFLUX remaining */
 2303                 kn = SLIST_FIRST(&knl->kl_list);
 2304                 kq = kn->kn_kq;
 2305                 KQ_LOCK(kq);
 2306                 KASSERT(kn->kn_status & KN_INFLUX,
 2307                     ("knote removed w/o list lock"));
 2308                 knl->kl_unlock(knl->kl_lockarg);
 2309                 kq->kq_state |= KQ_FLUXWAIT;
 2310                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2311                 kq = NULL;
 2312                 goto again;
 2313         }
 2314 
 2315         if (islocked)
 2316                 KNL_ASSERT_LOCKED(knl);
 2317         else {
 2318                 knl->kl_unlock(knl->kl_lockarg);
 2319                 KNL_ASSERT_UNLOCKED(knl);
 2320         }
 2321 }
 2322 
 2323 /*
 2324  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2325  * lock.  This prevents a race where a new fd comes along and occupies the
 2326  * entry and we attach a knote to the fd.
 2327  */
 2328 void
 2329 knote_fdclose(struct thread *td, int fd)
 2330 {
 2331         struct filedesc *fdp = td->td_proc->p_fd;
 2332         struct kqueue *kq;
 2333         struct knote *kn;
 2334         int influx;
 2335 
 2336         FILEDESC_XLOCK_ASSERT(fdp);
 2337 
 2338         /*
 2339          * We shouldn't have to worry about new kevents appearing on fd
 2340          * since filedesc is locked.
 2341          */
 2342         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2343                 KQ_LOCK(kq);
 2344 
 2345 again:
 2346                 influx = 0;
 2347                 while (kq->kq_knlistsize > fd &&
 2348                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2349                         if (kn->kn_status & KN_INFLUX) {
 2350                                 /* someone else might be waiting on our knote */
 2351                                 if (influx)
 2352                                         wakeup(kq);
 2353                                 kq->kq_state |= KQ_FLUXWAIT;
 2354                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2355                                 goto again;
 2356                         }
 2357                         kn->kn_status |= KN_INFLUX;
 2358                         KQ_UNLOCK(kq);
 2359                         if (!(kn->kn_status & KN_DETACHED))
 2360                                 kn->kn_fop->f_detach(kn);
 2361                         knote_drop(kn, td);
 2362                         influx = 1;
 2363                         KQ_LOCK(kq);
 2364                 }
 2365                 KQ_UNLOCK_FLUX(kq);
 2366         }
 2367 }
 2368 
 2369 static int
 2370 knote_attach(struct knote *kn, struct kqueue *kq)
 2371 {
 2372         struct klist *list;
 2373 
 2374         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 2375         KQ_OWNED(kq);
 2376 
 2377         if (kn->kn_fop->f_isfd) {
 2378                 if (kn->kn_id >= kq->kq_knlistsize)
 2379                         return (ENOMEM);
 2380                 list = &kq->kq_knlist[kn->kn_id];
 2381         } else {
 2382                 if (kq->kq_knhash == NULL)
 2383                         return (ENOMEM);
 2384                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2385         }
 2386         SLIST_INSERT_HEAD(list, kn, kn_link);
 2387         return (0);
 2388 }
 2389 
 2390 /*
 2391  * knote must already have been detached using the f_detach method.
 2392  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 2393  * to prevent other removal.
 2394  */
 2395 static void
 2396 knote_drop(struct knote *kn, struct thread *td)
 2397 {
 2398         struct kqueue *kq;
 2399         struct klist *list;
 2400 
 2401         kq = kn->kn_kq;
 2402 
 2403         KQ_NOTOWNED(kq);
 2404         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 2405             ("knote_drop called without KN_INFLUX set in kn_status"));
 2406 
 2407         KQ_LOCK(kq);
 2408         if (kn->kn_fop->f_isfd)
 2409                 list = &kq->kq_knlist[kn->kn_id];
 2410         else
 2411                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2412 
 2413         if (!SLIST_EMPTY(list))
 2414                 SLIST_REMOVE(list, kn, knote, kn_link);
 2415         if (kn->kn_status & KN_QUEUED)
 2416                 knote_dequeue(kn);
 2417         KQ_UNLOCK_FLUX(kq);
 2418 
 2419         if (kn->kn_fop->f_isfd) {
 2420                 fdrop(kn->kn_fp, td);
 2421                 kn->kn_fp = NULL;
 2422         }
 2423         kqueue_fo_release(kn->kn_kevent.filter);
 2424         kn->kn_fop = NULL;
 2425         knote_free(kn);
 2426 }
 2427 
 2428 static void
 2429 knote_enqueue(struct knote *kn)
 2430 {
 2431         struct kqueue *kq = kn->kn_kq;
 2432 
 2433         KQ_OWNED(kn->kn_kq);
 2434         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2435 
 2436         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2437         kn->kn_status |= KN_QUEUED;
 2438         kq->kq_count++;
 2439         kqueue_wakeup(kq);
 2440 }
 2441 
 2442 static void
 2443 knote_dequeue(struct knote *kn)
 2444 {
 2445         struct kqueue *kq = kn->kn_kq;
 2446 
 2447         KQ_OWNED(kn->kn_kq);
 2448         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2449 
 2450         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2451         kn->kn_status &= ~KN_QUEUED;
 2452         kq->kq_count--;
 2453 }
 2454 
 2455 static void
 2456 knote_init(void)
 2457 {
 2458 
 2459         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2460             NULL, NULL, UMA_ALIGN_PTR, 0);
 2461 }
 2462 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2463 
 2464 static struct knote *
 2465 knote_alloc(int waitok)
 2466 {
 2467 
 2468         return (uma_zalloc(knote_zone, (waitok ? M_WAITOK : M_NOWAIT) |
 2469             M_ZERO));
 2470 }
 2471 
 2472 static void
 2473 knote_free(struct knote *kn)
 2474 {
 2475 
 2476         uma_zfree(knote_zone, kn);
 2477 }
 2478 
 2479 /*
 2480  * Register the kev w/ the kq specified by fd.
 2481  */
 2482 int 
 2483 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2484 {
 2485         struct kqueue *kq;
 2486         struct file *fp;
 2487         cap_rights_t rights;
 2488         int error;
 2489 
 2490         error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
 2491         if (error != 0)
 2492                 return (error);
 2493         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2494                 goto noacquire;
 2495 
 2496         error = kqueue_register(kq, kev, td, waitok);
 2497         kqueue_release(kq, 0);
 2498 
 2499 noacquire:
 2500         fdrop(fp, td);
 2501         return (error);
 2502 }

Cache object: 668a4826b16eea94f05e7c3c95a744a9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.