The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    6  * Copyright (c) 2009 Apple, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_event.c 341159 2018-11-28 18:06:16Z markj $");
   33 
   34 #include "opt_ktrace.h"
   35 #include "opt_kqueue.h"
   36 
   37 #ifdef COMPAT_FREEBSD11
   38 #define _WANT_FREEBSD11_KEVENT
   39 #endif
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/capsicum.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/rwlock.h>
   48 #include <sys/proc.h>
   49 #include <sys/malloc.h>
   50 #include <sys/unistd.h>
   51 #include <sys/file.h>
   52 #include <sys/filedesc.h>
   53 #include <sys/filio.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/kthread.h>
   56 #include <sys/selinfo.h>
   57 #include <sys/queue.h>
   58 #include <sys/event.h>
   59 #include <sys/eventvar.h>
   60 #include <sys/poll.h>
   61 #include <sys/protosw.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/sigio.h>
   64 #include <sys/signalvar.h>
   65 #include <sys/socket.h>
   66 #include <sys/socketvar.h>
   67 #include <sys/stat.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/sysproto.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/uio.h>
   73 #include <sys/user.h>
   74 #ifdef KTRACE
   75 #include <sys/ktrace.h>
   76 #endif
   77 #include <machine/atomic.h>
   78 
   79 #include <vm/uma.h>
   80 
   81 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   82 
   83 /*
   84  * This lock is used if multiple kq locks are required.  This possibly
   85  * should be made into a per proc lock.
   86  */
   87 static struct mtx       kq_global;
   88 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   89 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   90         if (!haslck)                            \
   91                 mtx_lock(lck);                  \
   92         haslck = 1;                             \
   93 } while (0)
   94 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   95         if (haslck)                             \
   96                 mtx_unlock(lck);                        \
   97         haslck = 0;                             \
   98 } while (0)
   99 
  100 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
  101 
  102 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
  103 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
  104 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
  105                     struct thread *td, int waitok);
  106 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
  107 static void     kqueue_release(struct kqueue *kq, int locked);
  108 static void     kqueue_destroy(struct kqueue *kq);
  109 static void     kqueue_drain(struct kqueue *kq, struct thread *td);
  110 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  111                     uintptr_t ident, int waitok);
  112 static void     kqueue_task(void *arg, int pending);
  113 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  114                     struct kevent_copyops *k_ops,
  115                     const struct timespec *timeout,
  116                     struct kevent *keva, struct thread *td);
  117 static void     kqueue_wakeup(struct kqueue *kq);
  118 static struct filterops *kqueue_fo_find(int filt);
  119 static void     kqueue_fo_release(int filt);
  120 struct g_kevent_args;
  121 static int      kern_kevent_generic(struct thread *td,
  122                     struct g_kevent_args *uap,
  123                     struct kevent_copyops *k_ops, const char *struct_name);
  124 
  125 static fo_ioctl_t       kqueue_ioctl;
  126 static fo_poll_t        kqueue_poll;
  127 static fo_kqfilter_t    kqueue_kqfilter;
  128 static fo_stat_t        kqueue_stat;
  129 static fo_close_t       kqueue_close;
  130 static fo_fill_kinfo_t  kqueue_fill_kinfo;
  131 
  132 static struct fileops kqueueops = {
  133         .fo_read = invfo_rdwr,
  134         .fo_write = invfo_rdwr,
  135         .fo_truncate = invfo_truncate,
  136         .fo_ioctl = kqueue_ioctl,
  137         .fo_poll = kqueue_poll,
  138         .fo_kqfilter = kqueue_kqfilter,
  139         .fo_stat = kqueue_stat,
  140         .fo_close = kqueue_close,
  141         .fo_chmod = invfo_chmod,
  142         .fo_chown = invfo_chown,
  143         .fo_sendfile = invfo_sendfile,
  144         .fo_fill_kinfo = kqueue_fill_kinfo,
  145 };
  146 
  147 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  148 static void     knote_drop(struct knote *kn, struct thread *td);
  149 static void     knote_drop_detached(struct knote *kn, struct thread *td);
  150 static void     knote_enqueue(struct knote *kn);
  151 static void     knote_dequeue(struct knote *kn);
  152 static void     knote_init(void);
  153 static struct   knote *knote_alloc(int waitok);
  154 static void     knote_free(struct knote *kn);
  155 
  156 static void     filt_kqdetach(struct knote *kn);
  157 static int      filt_kqueue(struct knote *kn, long hint);
  158 static int      filt_procattach(struct knote *kn);
  159 static void     filt_procdetach(struct knote *kn);
  160 static int      filt_proc(struct knote *kn, long hint);
  161 static int      filt_fileattach(struct knote *kn);
  162 static void     filt_timerexpire(void *knx);
  163 static int      filt_timerattach(struct knote *kn);
  164 static void     filt_timerdetach(struct knote *kn);
  165 static void     filt_timerstart(struct knote *kn, sbintime_t to);
  166 static void     filt_timertouch(struct knote *kn, struct kevent *kev,
  167                     u_long type);
  168 static int      filt_timervalidate(struct knote *kn, sbintime_t *to);
  169 static int      filt_timer(struct knote *kn, long hint);
  170 static int      filt_userattach(struct knote *kn);
  171 static void     filt_userdetach(struct knote *kn);
  172 static int      filt_user(struct knote *kn, long hint);
  173 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  174                     u_long type);
  175 
  176 static struct filterops file_filtops = {
  177         .f_isfd = 1,
  178         .f_attach = filt_fileattach,
  179 };
  180 static struct filterops kqread_filtops = {
  181         .f_isfd = 1,
  182         .f_detach = filt_kqdetach,
  183         .f_event = filt_kqueue,
  184 };
  185 /* XXX - move to kern_proc.c?  */
  186 static struct filterops proc_filtops = {
  187         .f_isfd = 0,
  188         .f_attach = filt_procattach,
  189         .f_detach = filt_procdetach,
  190         .f_event = filt_proc,
  191 };
  192 static struct filterops timer_filtops = {
  193         .f_isfd = 0,
  194         .f_attach = filt_timerattach,
  195         .f_detach = filt_timerdetach,
  196         .f_event = filt_timer,
  197         .f_touch = filt_timertouch,
  198 };
  199 static struct filterops user_filtops = {
  200         .f_attach = filt_userattach,
  201         .f_detach = filt_userdetach,
  202         .f_event = filt_user,
  203         .f_touch = filt_usertouch,
  204 };
  205 
  206 static uma_zone_t       knote_zone;
  207 static unsigned int     kq_ncallouts = 0;
  208 static unsigned int     kq_calloutmax = 4 * 1024;
  209 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  210     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  211 
  212 /* XXX - ensure not influx ? */
  213 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  214         if ((islock))                                                   \
  215                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  216         else                                                            \
  217                 KQ_LOCK((kn)->kn_kq);                                   \
  218         (kn)->kn_status |= KN_ACTIVE;                                   \
  219         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  220                 knote_enqueue((kn));                                    \
  221         if (!(islock))                                                  \
  222                 KQ_UNLOCK((kn)->kn_kq);                                 \
  223 } while(0)
  224 #define KQ_LOCK(kq) do {                                                \
  225         mtx_lock(&(kq)->kq_lock);                                       \
  226 } while (0)
  227 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  228         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  229                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  230                 wakeup((kq));                                           \
  231         }                                                               \
  232 } while (0)
  233 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  234         KQ_FLUX_WAKEUP(kq);                                             \
  235         mtx_unlock(&(kq)->kq_lock);                                     \
  236 } while (0)
  237 #define KQ_UNLOCK(kq) do {                                              \
  238         mtx_unlock(&(kq)->kq_lock);                                     \
  239 } while (0)
  240 #define KQ_OWNED(kq) do {                                               \
  241         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  242 } while (0)
  243 #define KQ_NOTOWNED(kq) do {                                            \
  244         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  245 } while (0)
  246 
  247 static struct knlist *
  248 kn_list_lock(struct knote *kn)
  249 {
  250         struct knlist *knl;
  251 
  252         knl = kn->kn_knlist;
  253         if (knl != NULL)
  254                 knl->kl_lock(knl->kl_lockarg);
  255         return (knl);
  256 }
  257 
  258 static void
  259 kn_list_unlock(struct knlist *knl)
  260 {
  261         bool do_free;
  262 
  263         if (knl == NULL)
  264                 return;
  265         do_free = knl->kl_autodestroy && knlist_empty(knl);
  266         knl->kl_unlock(knl->kl_lockarg);
  267         if (do_free) {
  268                 knlist_destroy(knl);
  269                 free(knl, M_KQUEUE);
  270         }
  271 }
  272 
  273 static bool
  274 kn_in_flux(struct knote *kn)
  275 {
  276 
  277         return (kn->kn_influx > 0);
  278 }
  279 
  280 static void
  281 kn_enter_flux(struct knote *kn)
  282 {
  283 
  284         KQ_OWNED(kn->kn_kq);
  285         MPASS(kn->kn_influx < INT_MAX);
  286         kn->kn_influx++;
  287 }
  288 
  289 static bool
  290 kn_leave_flux(struct knote *kn)
  291 {
  292 
  293         KQ_OWNED(kn->kn_kq);
  294         MPASS(kn->kn_influx > 0);
  295         kn->kn_influx--;
  296         return (kn->kn_influx == 0);
  297 }
  298 
  299 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  300         if (islocked)                                                   \
  301                 KNL_ASSERT_LOCKED(knl);                         \
  302         else                                                            \
  303                 KNL_ASSERT_UNLOCKED(knl);                               \
  304 } while (0)
  305 #ifdef INVARIANTS
  306 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  307         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  308 } while (0)
  309 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  310         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  311 } while (0)
  312 #else /* !INVARIANTS */
  313 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  314 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  315 #endif /* INVARIANTS */
  316 
  317 #ifndef KN_HASHSIZE
  318 #define KN_HASHSIZE             64              /* XXX should be tunable */
  319 #endif
  320 
  321 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  322 
  323 static int
  324 filt_nullattach(struct knote *kn)
  325 {
  326 
  327         return (ENXIO);
  328 };
  329 
  330 struct filterops null_filtops = {
  331         .f_isfd = 0,
  332         .f_attach = filt_nullattach,
  333 };
  334 
  335 /* XXX - make SYSINIT to add these, and move into respective modules. */
  336 extern struct filterops sig_filtops;
  337 extern struct filterops fs_filtops;
  338 
  339 /*
  340  * Table for for all system-defined filters.
  341  */
  342 static struct mtx       filterops_lock;
  343 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  344         MTX_DEF);
  345 static struct {
  346         struct filterops *for_fop;
  347         int for_nolock;
  348         int for_refcnt;
  349 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  350         { &file_filtops, 1 },                   /* EVFILT_READ */
  351         { &file_filtops, 1 },                   /* EVFILT_WRITE */
  352         { &null_filtops },                      /* EVFILT_AIO */
  353         { &file_filtops, 1 },                   /* EVFILT_VNODE */
  354         { &proc_filtops, 1 },                   /* EVFILT_PROC */
  355         { &sig_filtops, 1 },                    /* EVFILT_SIGNAL */
  356         { &timer_filtops, 1 },                  /* EVFILT_TIMER */
  357         { &file_filtops, 1 },                   /* EVFILT_PROCDESC */
  358         { &fs_filtops, 1 },                     /* EVFILT_FS */
  359         { &null_filtops },                      /* EVFILT_LIO */
  360         { &user_filtops, 1 },                   /* EVFILT_USER */
  361         { &null_filtops },                      /* EVFILT_SENDFILE */
  362         { &file_filtops, 1 },                   /* EVFILT_EMPTY */
  363 };
  364 
  365 /*
  366  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  367  * method.
  368  */
  369 static int
  370 filt_fileattach(struct knote *kn)
  371 {
  372 
  373         return (fo_kqfilter(kn->kn_fp, kn));
  374 }
  375 
  376 /*ARGSUSED*/
  377 static int
  378 kqueue_kqfilter(struct file *fp, struct knote *kn)
  379 {
  380         struct kqueue *kq = kn->kn_fp->f_data;
  381 
  382         if (kn->kn_filter != EVFILT_READ)
  383                 return (EINVAL);
  384 
  385         kn->kn_status |= KN_KQUEUE;
  386         kn->kn_fop = &kqread_filtops;
  387         knlist_add(&kq->kq_sel.si_note, kn, 0);
  388 
  389         return (0);
  390 }
  391 
  392 static void
  393 filt_kqdetach(struct knote *kn)
  394 {
  395         struct kqueue *kq = kn->kn_fp->f_data;
  396 
  397         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  398 }
  399 
  400 /*ARGSUSED*/
  401 static int
  402 filt_kqueue(struct knote *kn, long hint)
  403 {
  404         struct kqueue *kq = kn->kn_fp->f_data;
  405 
  406         kn->kn_data = kq->kq_count;
  407         return (kn->kn_data > 0);
  408 }
  409 
  410 /* XXX - move to kern_proc.c?  */
  411 static int
  412 filt_procattach(struct knote *kn)
  413 {
  414         struct proc *p;
  415         int error;
  416         bool exiting, immediate;
  417 
  418         exiting = immediate = false;
  419         if (kn->kn_sfflags & NOTE_EXIT)
  420                 p = pfind_any(kn->kn_id);
  421         else
  422                 p = pfind(kn->kn_id);
  423         if (p == NULL)
  424                 return (ESRCH);
  425         if (p->p_flag & P_WEXIT)
  426                 exiting = true;
  427 
  428         if ((error = p_cansee(curthread, p))) {
  429                 PROC_UNLOCK(p);
  430                 return (error);
  431         }
  432 
  433         kn->kn_ptr.p_proc = p;
  434         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  435 
  436         /*
  437          * Internal flag indicating registration done by kernel for the
  438          * purposes of getting a NOTE_CHILD notification.
  439          */
  440         if (kn->kn_flags & EV_FLAG2) {
  441                 kn->kn_flags &= ~EV_FLAG2;
  442                 kn->kn_data = kn->kn_sdata;             /* ppid */
  443                 kn->kn_fflags = NOTE_CHILD;
  444                 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
  445                 immediate = true; /* Force immediate activation of child note. */
  446         }
  447         /*
  448          * Internal flag indicating registration done by kernel (for other than
  449          * NOTE_CHILD).
  450          */
  451         if (kn->kn_flags & EV_FLAG1) {
  452                 kn->kn_flags &= ~EV_FLAG1;
  453         }
  454 
  455         knlist_add(p->p_klist, kn, 1);
  456 
  457         /*
  458          * Immediately activate any child notes or, in the case of a zombie
  459          * target process, exit notes.  The latter is necessary to handle the
  460          * case where the target process, e.g. a child, dies before the kevent
  461          * is registered.
  462          */
  463         if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
  464                 KNOTE_ACTIVATE(kn, 0);
  465 
  466         PROC_UNLOCK(p);
  467 
  468         return (0);
  469 }
  470 
  471 /*
  472  * The knote may be attached to a different process, which may exit,
  473  * leaving nothing for the knote to be attached to.  So when the process
  474  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  475  * it will be deleted when read out.  However, as part of the knote deletion,
  476  * this routine is called, so a check is needed to avoid actually performing
  477  * a detach, because the original process does not exist any more.
  478  */
  479 /* XXX - move to kern_proc.c?  */
  480 static void
  481 filt_procdetach(struct knote *kn)
  482 {
  483 
  484         knlist_remove(kn->kn_knlist, kn, 0);
  485         kn->kn_ptr.p_proc = NULL;
  486 }
  487 
  488 /* XXX - move to kern_proc.c?  */
  489 static int
  490 filt_proc(struct knote *kn, long hint)
  491 {
  492         struct proc *p;
  493         u_int event;
  494 
  495         p = kn->kn_ptr.p_proc;
  496         if (p == NULL) /* already activated, from attach filter */
  497                 return (0);
  498 
  499         /* Mask off extra data. */
  500         event = (u_int)hint & NOTE_PCTRLMASK;
  501 
  502         /* If the user is interested in this event, record it. */
  503         if (kn->kn_sfflags & event)
  504                 kn->kn_fflags |= event;
  505 
  506         /* Process is gone, so flag the event as finished. */
  507         if (event == NOTE_EXIT) {
  508                 kn->kn_flags |= EV_EOF | EV_ONESHOT;
  509                 kn->kn_ptr.p_proc = NULL;
  510                 if (kn->kn_fflags & NOTE_EXIT)
  511                         kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
  512                 if (kn->kn_fflags == 0)
  513                         kn->kn_flags |= EV_DROP;
  514                 return (1);
  515         }
  516 
  517         return (kn->kn_fflags != 0);
  518 }
  519 
  520 /*
  521  * Called when the process forked. It mostly does the same as the
  522  * knote(), activating all knotes registered to be activated when the
  523  * process forked. Additionally, for each knote attached to the
  524  * parent, check whether user wants to track the new process. If so
  525  * attach a new knote to it, and immediately report an event with the
  526  * child's pid.
  527  */
  528 void
  529 knote_fork(struct knlist *list, int pid)
  530 {
  531         struct kqueue *kq;
  532         struct knote *kn;
  533         struct kevent kev;
  534         int error;
  535 
  536         if (list == NULL)
  537                 return;
  538 
  539         memset(&kev, 0, sizeof(kev));
  540         list->kl_lock(list->kl_lockarg);
  541         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  542                 kq = kn->kn_kq;
  543                 KQ_LOCK(kq);
  544                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
  545                         KQ_UNLOCK(kq);
  546                         continue;
  547                 }
  548 
  549                 /*
  550                  * The same as knote(), activate the event.
  551                  */
  552                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  553                         kn->kn_status |= KN_HASKQLOCK;
  554                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  555                                 KNOTE_ACTIVATE(kn, 1);
  556                         kn->kn_status &= ~KN_HASKQLOCK;
  557                         KQ_UNLOCK(kq);
  558                         continue;
  559                 }
  560 
  561                 /*
  562                  * The NOTE_TRACK case. In addition to the activation
  563                  * of the event, we need to register new events to
  564                  * track the child. Drop the locks in preparation for
  565                  * the call to kqueue_register().
  566                  */
  567                 kn_enter_flux(kn);
  568                 KQ_UNLOCK(kq);
  569                 list->kl_unlock(list->kl_lockarg);
  570 
  571                 /*
  572                  * Activate existing knote and register tracking knotes with
  573                  * new process.
  574                  *
  575                  * First register a knote to get just the child notice. This
  576                  * must be a separate note from a potential NOTE_EXIT
  577                  * notification since both NOTE_CHILD and NOTE_EXIT are defined
  578                  * to use the data field (in conflicting ways).
  579                  */
  580                 kev.ident = pid;
  581                 kev.filter = kn->kn_filter;
  582                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
  583                     EV_FLAG2;
  584                 kev.fflags = kn->kn_sfflags;
  585                 kev.data = kn->kn_id;           /* parent */
  586                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  587                 error = kqueue_register(kq, &kev, NULL, 0);
  588                 if (error)
  589                         kn->kn_fflags |= NOTE_TRACKERR;
  590 
  591                 /*
  592                  * Then register another knote to track other potential events
  593                  * from the new process.
  594                  */
  595                 kev.ident = pid;
  596                 kev.filter = kn->kn_filter;
  597                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  598                 kev.fflags = kn->kn_sfflags;
  599                 kev.data = kn->kn_id;           /* parent */
  600                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  601                 error = kqueue_register(kq, &kev, NULL, 0);
  602                 if (error)
  603                         kn->kn_fflags |= NOTE_TRACKERR;
  604                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  605                         KNOTE_ACTIVATE(kn, 0);
  606                 list->kl_lock(list->kl_lockarg);
  607                 KQ_LOCK(kq);
  608                 kn_leave_flux(kn);
  609                 KQ_UNLOCK_FLUX(kq);
  610         }
  611         list->kl_unlock(list->kl_lockarg);
  612 }
  613 
  614 /*
  615  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  616  * interval timer support code.
  617  */
  618 
  619 #define NOTE_TIMER_PRECMASK                                             \
  620     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
  621 
  622 static sbintime_t
  623 timer2sbintime(intptr_t data, int flags)
  624 {
  625         int64_t secs;
  626 
  627         /*
  628          * Macros for converting to the fractional second portion of an
  629          * sbintime_t using 64bit multiplication to improve precision.
  630          */
  631 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
  632 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
  633 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
  634         switch (flags & NOTE_TIMER_PRECMASK) {
  635         case NOTE_SECONDS:
  636 #ifdef __LP64__
  637                 if (data > (SBT_MAX / SBT_1S))
  638                         return (SBT_MAX);
  639 #endif
  640                 return ((sbintime_t)data << 32);
  641         case NOTE_MSECONDS: /* FALLTHROUGH */
  642         case 0:
  643                 if (data >= 1000) {
  644                         secs = data / 1000;
  645 #ifdef __LP64__
  646                         if (secs > (SBT_MAX / SBT_1S))
  647                                 return (SBT_MAX);
  648 #endif
  649                         return (secs << 32 | MS_TO_SBT(data % 1000));
  650                 }
  651                 return (MS_TO_SBT(data));
  652         case NOTE_USECONDS:
  653                 if (data >= 1000000) {
  654                         secs = data / 1000000;
  655 #ifdef __LP64__
  656                         if (secs > (SBT_MAX / SBT_1S))
  657                                 return (SBT_MAX);
  658 #endif
  659                         return (secs << 32 | US_TO_SBT(data % 1000000));
  660                 }
  661                 return (US_TO_SBT(data));
  662         case NOTE_NSECONDS:
  663                 if (data >= 1000000000) {
  664                         secs = data / 1000000000;
  665 #ifdef __LP64__
  666                         if (secs > (SBT_MAX / SBT_1S))
  667                                 return (SBT_MAX);
  668 #endif
  669                         return (secs << 32 | US_TO_SBT(data % 1000000000));
  670                 }
  671                 return (NS_TO_SBT(data));
  672         default:
  673                 break;
  674         }
  675         return (-1);
  676 }
  677 
  678 struct kq_timer_cb_data {
  679         struct callout c;
  680         sbintime_t next;        /* next timer event fires at */
  681         sbintime_t to;          /* precalculated timer period, 0 for abs */
  682 };
  683 
  684 static void
  685 filt_timerexpire(void *knx)
  686 {
  687         struct knote *kn;
  688         struct kq_timer_cb_data *kc;
  689 
  690         kn = knx;
  691         kn->kn_data++;
  692         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  693 
  694         if ((kn->kn_flags & EV_ONESHOT) != 0)
  695                 return;
  696         kc = kn->kn_ptr.p_v;
  697         if (kc->to == 0)
  698                 return;
  699         kc->next += kc->to;
  700         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  701             PCPU_GET(cpuid), C_ABSOLUTE);
  702 }
  703 
  704 /*
  705  * data contains amount of time to sleep
  706  */
  707 static int
  708 filt_timervalidate(struct knote *kn, sbintime_t *to)
  709 {
  710         struct bintime bt;
  711         sbintime_t sbt;
  712 
  713         if (kn->kn_sdata < 0)
  714                 return (EINVAL);
  715         if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  716                 kn->kn_sdata = 1;
  717         /*
  718          * The only fflags values supported are the timer unit
  719          * (precision) and the absolute time indicator.
  720          */
  721         if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
  722                 return (EINVAL);
  723 
  724         *to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  725         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  726                 getboottimebin(&bt);
  727                 sbt = bttosbt(bt);
  728                 *to -= sbt;
  729         }
  730         if (*to < 0)
  731                 return (EINVAL);
  732         return (0);
  733 }
  734 
  735 static int
  736 filt_timerattach(struct knote *kn)
  737 {
  738         struct kq_timer_cb_data *kc;
  739         sbintime_t to;
  740         unsigned int ncallouts;
  741         int error;
  742 
  743         error = filt_timervalidate(kn, &to);
  744         if (error != 0)
  745                 return (error);
  746 
  747         do {
  748                 ncallouts = kq_ncallouts;
  749                 if (ncallouts >= kq_calloutmax)
  750                         return (ENOMEM);
  751         } while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
  752 
  753         if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
  754                 kn->kn_flags |= EV_CLEAR;       /* automatically set */
  755         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  756         kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
  757         callout_init(&kc->c, 1);
  758         filt_timerstart(kn, to);
  759 
  760         return (0);
  761 }
  762 
  763 static void
  764 filt_timerstart(struct knote *kn, sbintime_t to)
  765 {
  766         struct kq_timer_cb_data *kc;
  767 
  768         kc = kn->kn_ptr.p_v;
  769         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  770                 kc->next = to;
  771                 kc->to = 0;
  772         } else {
  773                 kc->next = to + sbinuptime();
  774                 kc->to = to;
  775         }
  776         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  777             PCPU_GET(cpuid), C_ABSOLUTE);
  778 }
  779 
  780 static void
  781 filt_timerdetach(struct knote *kn)
  782 {
  783         struct kq_timer_cb_data *kc;
  784         unsigned int old __unused;
  785 
  786         kc = kn->kn_ptr.p_v;
  787         callout_drain(&kc->c);
  788         free(kc, M_KQUEUE);
  789         old = atomic_fetchadd_int(&kq_ncallouts, -1);
  790         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  791         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  792 }
  793 
  794 static void
  795 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
  796 {
  797         struct kq_timer_cb_data *kc;    
  798         struct kqueue *kq;
  799         sbintime_t to;
  800         int error;
  801 
  802         switch (type) {
  803         case EVENT_REGISTER:
  804                 /* Handle re-added timers that update data/fflags */
  805                 if (kev->flags & EV_ADD) {
  806                         kc = kn->kn_ptr.p_v;
  807 
  808                         /* Drain any existing callout. */
  809                         callout_drain(&kc->c);
  810 
  811                         /* Throw away any existing undelivered record
  812                          * of the timer expiration. This is done under
  813                          * the presumption that if a process is
  814                          * re-adding this timer with new parameters,
  815                          * it is no longer interested in what may have
  816                          * happened under the old parameters. If it is
  817                          * interested, it can wait for the expiration,
  818                          * delete the old timer definition, and then
  819                          * add the new one.
  820                          *
  821                          * This has to be done while the kq is locked:
  822                          *   - if enqueued, dequeue
  823                          *   - make it no longer active
  824                          *   - clear the count of expiration events
  825                          */
  826                         kq = kn->kn_kq;
  827                         KQ_LOCK(kq);
  828                         if (kn->kn_status & KN_QUEUED)
  829                                 knote_dequeue(kn);
  830 
  831                         kn->kn_status &= ~KN_ACTIVE;
  832                         kn->kn_data = 0;
  833                         KQ_UNLOCK(kq);
  834                         
  835                         /* Reschedule timer based on new data/fflags */
  836                         kn->kn_sfflags = kev->fflags;
  837                         kn->kn_sdata = kev->data;
  838                         error = filt_timervalidate(kn, &to);
  839                         if (error != 0) {
  840                                 kn->kn_flags |= EV_ERROR;
  841                                 kn->kn_data = error;
  842                         } else
  843                                 filt_timerstart(kn, to);
  844                 }
  845                 break;
  846 
  847         case EVENT_PROCESS:
  848                 *kev = kn->kn_kevent;
  849                 if (kn->kn_flags & EV_CLEAR) {
  850                         kn->kn_data = 0;
  851                         kn->kn_fflags = 0;
  852                 }
  853                 break;
  854 
  855         default:
  856                 panic("filt_timertouch() - invalid type (%ld)", type);
  857                 break;
  858         }
  859 }
  860 
  861 static int
  862 filt_timer(struct knote *kn, long hint)
  863 {
  864 
  865         return (kn->kn_data != 0);
  866 }
  867 
  868 static int
  869 filt_userattach(struct knote *kn)
  870 {
  871 
  872         /* 
  873          * EVFILT_USER knotes are not attached to anything in the kernel.
  874          */ 
  875         kn->kn_hook = NULL;
  876         if (kn->kn_fflags & NOTE_TRIGGER)
  877                 kn->kn_hookid = 1;
  878         else
  879                 kn->kn_hookid = 0;
  880         return (0);
  881 }
  882 
  883 static void
  884 filt_userdetach(__unused struct knote *kn)
  885 {
  886 
  887         /*
  888          * EVFILT_USER knotes are not attached to anything in the kernel.
  889          */
  890 }
  891 
  892 static int
  893 filt_user(struct knote *kn, __unused long hint)
  894 {
  895 
  896         return (kn->kn_hookid);
  897 }
  898 
  899 static void
  900 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  901 {
  902         u_int ffctrl;
  903 
  904         switch (type) {
  905         case EVENT_REGISTER:
  906                 if (kev->fflags & NOTE_TRIGGER)
  907                         kn->kn_hookid = 1;
  908 
  909                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  910                 kev->fflags &= NOTE_FFLAGSMASK;
  911                 switch (ffctrl) {
  912                 case NOTE_FFNOP:
  913                         break;
  914 
  915                 case NOTE_FFAND:
  916                         kn->kn_sfflags &= kev->fflags;
  917                         break;
  918 
  919                 case NOTE_FFOR:
  920                         kn->kn_sfflags |= kev->fflags;
  921                         break;
  922 
  923                 case NOTE_FFCOPY:
  924                         kn->kn_sfflags = kev->fflags;
  925                         break;
  926 
  927                 default:
  928                         /* XXX Return error? */
  929                         break;
  930                 }
  931                 kn->kn_sdata = kev->data;
  932                 if (kev->flags & EV_CLEAR) {
  933                         kn->kn_hookid = 0;
  934                         kn->kn_data = 0;
  935                         kn->kn_fflags = 0;
  936                 }
  937                 break;
  938 
  939         case EVENT_PROCESS:
  940                 *kev = kn->kn_kevent;
  941                 kev->fflags = kn->kn_sfflags;
  942                 kev->data = kn->kn_sdata;
  943                 if (kn->kn_flags & EV_CLEAR) {
  944                         kn->kn_hookid = 0;
  945                         kn->kn_data = 0;
  946                         kn->kn_fflags = 0;
  947                 }
  948                 break;
  949 
  950         default:
  951                 panic("filt_usertouch() - invalid type (%ld)", type);
  952                 break;
  953         }
  954 }
  955 
  956 int
  957 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  958 {
  959 
  960         return (kern_kqueue(td, 0, NULL));
  961 }
  962 
  963 static void
  964 kqueue_init(struct kqueue *kq)
  965 {
  966 
  967         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
  968         TAILQ_INIT(&kq->kq_head);
  969         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  970         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  971 }
  972 
  973 int
  974 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
  975 {
  976         struct filedesc *fdp;
  977         struct kqueue *kq;
  978         struct file *fp;
  979         struct ucred *cred;
  980         int fd, error;
  981 
  982         fdp = td->td_proc->p_fd;
  983         cred = td->td_ucred;
  984         if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
  985                 return (ENOMEM);
  986 
  987         error = falloc_caps(td, &fp, &fd, flags, fcaps);
  988         if (error != 0) {
  989                 chgkqcnt(cred->cr_ruidinfo, -1, 0);
  990                 return (error);
  991         }
  992 
  993         /* An extra reference on `fp' has been held for us by falloc(). */
  994         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  995         kqueue_init(kq);
  996         kq->kq_fdp = fdp;
  997         kq->kq_cred = crhold(cred);
  998 
  999         FILEDESC_XLOCK(fdp);
 1000         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
 1001         FILEDESC_XUNLOCK(fdp);
 1002 
 1003         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
 1004         fdrop(fp, td);
 1005 
 1006         td->td_retval[0] = fd;
 1007         return (0);
 1008 }
 1009 
 1010 struct g_kevent_args {
 1011         int     fd;
 1012         void    *changelist;
 1013         int     nchanges;
 1014         void    *eventlist;
 1015         int     nevents;
 1016         const struct timespec *timeout;
 1017 };
 1018 
 1019 int
 1020 sys_kevent(struct thread *td, struct kevent_args *uap)
 1021 {
 1022         struct kevent_copyops k_ops = {
 1023                 .arg = uap,
 1024                 .k_copyout = kevent_copyout,
 1025                 .k_copyin = kevent_copyin,
 1026                 .kevent_size = sizeof(struct kevent),
 1027         };
 1028         struct g_kevent_args gk_args = {
 1029                 .fd = uap->fd,
 1030                 .changelist = uap->changelist,
 1031                 .nchanges = uap->nchanges,
 1032                 .eventlist = uap->eventlist,
 1033                 .nevents = uap->nevents,
 1034                 .timeout = uap->timeout,
 1035         };
 1036 
 1037         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
 1038 }
 1039 
 1040 static int
 1041 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
 1042     struct kevent_copyops *k_ops, const char *struct_name)
 1043 {
 1044         struct timespec ts, *tsp;
 1045 #ifdef KTRACE
 1046         struct kevent *eventlist = uap->eventlist;
 1047 #endif
 1048         int error;
 1049 
 1050         if (uap->timeout != NULL) {
 1051                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1052                 if (error)
 1053                         return (error);
 1054                 tsp = &ts;
 1055         } else
 1056                 tsp = NULL;
 1057 
 1058 #ifdef KTRACE
 1059         if (KTRPOINT(td, KTR_STRUCT_ARRAY))
 1060                 ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
 1061                     uap->nchanges, k_ops->kevent_size);
 1062 #endif
 1063 
 1064         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
 1065             k_ops, tsp);
 1066 
 1067 #ifdef KTRACE
 1068         if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
 1069                 ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
 1070                     td->td_retval[0], k_ops->kevent_size);
 1071 #endif
 1072 
 1073         return (error);
 1074 }
 1075 
 1076 /*
 1077  * Copy 'count' items into the destination list pointed to by uap->eventlist.
 1078  */
 1079 static int
 1080 kevent_copyout(void *arg, struct kevent *kevp, int count)
 1081 {
 1082         struct kevent_args *uap;
 1083         int error;
 1084 
 1085         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1086         uap = (struct kevent_args *)arg;
 1087 
 1088         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
 1089         if (error == 0)
 1090                 uap->eventlist += count;
 1091         return (error);
 1092 }
 1093 
 1094 /*
 1095  * Copy 'count' items from the list pointed to by uap->changelist.
 1096  */
 1097 static int
 1098 kevent_copyin(void *arg, struct kevent *kevp, int count)
 1099 {
 1100         struct kevent_args *uap;
 1101         int error;
 1102 
 1103         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1104         uap = (struct kevent_args *)arg;
 1105 
 1106         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
 1107         if (error == 0)
 1108                 uap->changelist += count;
 1109         return (error);
 1110 }
 1111 
 1112 #ifdef COMPAT_FREEBSD11
 1113 static int
 1114 kevent11_copyout(void *arg, struct kevent *kevp, int count)
 1115 {
 1116         struct freebsd11_kevent_args *uap;
 1117         struct kevent_freebsd11 kev11;
 1118         int error, i;
 1119 
 1120         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1121         uap = (struct freebsd11_kevent_args *)arg;
 1122 
 1123         for (i = 0; i < count; i++) {
 1124                 kev11.ident = kevp->ident;
 1125                 kev11.filter = kevp->filter;
 1126                 kev11.flags = kevp->flags;
 1127                 kev11.fflags = kevp->fflags;
 1128                 kev11.data = kevp->data;
 1129                 kev11.udata = kevp->udata;
 1130                 error = copyout(&kev11, uap->eventlist, sizeof(kev11));
 1131                 if (error != 0)
 1132                         break;
 1133                 uap->eventlist++;
 1134                 kevp++;
 1135         }
 1136         return (error);
 1137 }
 1138 
 1139 /*
 1140  * Copy 'count' items from the list pointed to by uap->changelist.
 1141  */
 1142 static int
 1143 kevent11_copyin(void *arg, struct kevent *kevp, int count)
 1144 {
 1145         struct freebsd11_kevent_args *uap;
 1146         struct kevent_freebsd11 kev11;
 1147         int error, i;
 1148 
 1149         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1150         uap = (struct freebsd11_kevent_args *)arg;
 1151 
 1152         for (i = 0; i < count; i++) {
 1153                 error = copyin(uap->changelist, &kev11, sizeof(kev11));
 1154                 if (error != 0)
 1155                         break;
 1156                 kevp->ident = kev11.ident;
 1157                 kevp->filter = kev11.filter;
 1158                 kevp->flags = kev11.flags;
 1159                 kevp->fflags = kev11.fflags;
 1160                 kevp->data = (uintptr_t)kev11.data;
 1161                 kevp->udata = kev11.udata;
 1162                 bzero(&kevp->ext, sizeof(kevp->ext));
 1163                 uap->changelist++;
 1164                 kevp++;
 1165         }
 1166         return (error);
 1167 }
 1168 
 1169 int
 1170 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
 1171 {
 1172         struct kevent_copyops k_ops = {
 1173                 .arg = uap,
 1174                 .k_copyout = kevent11_copyout,
 1175                 .k_copyin = kevent11_copyin,
 1176                 .kevent_size = sizeof(struct kevent_freebsd11),
 1177         };
 1178         struct g_kevent_args gk_args = {
 1179                 .fd = uap->fd,
 1180                 .changelist = uap->changelist,
 1181                 .nchanges = uap->nchanges,
 1182                 .eventlist = uap->eventlist,
 1183                 .nevents = uap->nevents,
 1184                 .timeout = uap->timeout,
 1185         };
 1186 
 1187         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
 1188 }
 1189 #endif
 1190 
 1191 int
 1192 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
 1193     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1194 {
 1195         cap_rights_t rights;
 1196         struct file *fp;
 1197         int error;
 1198 
 1199         cap_rights_init(&rights);
 1200         if (nchanges > 0)
 1201                 cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
 1202         if (nevents > 0)
 1203                 cap_rights_set(&rights, CAP_KQUEUE_EVENT);
 1204         error = fget(td, fd, &rights, &fp);
 1205         if (error != 0)
 1206                 return (error);
 1207 
 1208         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
 1209         fdrop(fp, td);
 1210 
 1211         return (error);
 1212 }
 1213 
 1214 static int
 1215 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
 1216     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1217 {
 1218         struct kevent keva[KQ_NEVENTS];
 1219         struct kevent *kevp, *changes;
 1220         int i, n, nerrors, error;
 1221 
 1222         nerrors = 0;
 1223         while (nchanges > 0) {
 1224                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
 1225                 error = k_ops->k_copyin(k_ops->arg, keva, n);
 1226                 if (error)
 1227                         return (error);
 1228                 changes = keva;
 1229                 for (i = 0; i < n; i++) {
 1230                         kevp = &changes[i];
 1231                         if (!kevp->filter)
 1232                                 continue;
 1233                         kevp->flags &= ~EV_SYSFLAGS;
 1234                         error = kqueue_register(kq, kevp, td, 1);
 1235                         if (error || (kevp->flags & EV_RECEIPT)) {
 1236                                 if (nevents == 0)
 1237                                         return (error);
 1238                                 kevp->flags = EV_ERROR;
 1239                                 kevp->data = error;
 1240                                 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
 1241                                 nevents--;
 1242                                 nerrors++;
 1243                         }
 1244                 }
 1245                 nchanges -= n;
 1246         }
 1247         if (nerrors) {
 1248                 td->td_retval[0] = nerrors;
 1249                 return (0);
 1250         }
 1251 
 1252         return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
 1253 }
 1254 
 1255 int
 1256 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
 1257     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1258 {
 1259         struct kqueue *kq;
 1260         int error;
 1261 
 1262         error = kqueue_acquire(fp, &kq);
 1263         if (error != 0)
 1264                 return (error);
 1265         error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
 1266         kqueue_release(kq, 0);
 1267         return (error);
 1268 }
 1269 
 1270 /*
 1271  * Performs a kevent() call on a temporarily created kqueue. This can be
 1272  * used to perform one-shot polling, similar to poll() and select().
 1273  */
 1274 int
 1275 kern_kevent_anonymous(struct thread *td, int nevents,
 1276     struct kevent_copyops *k_ops)
 1277 {
 1278         struct kqueue kq = {};
 1279         int error;
 1280 
 1281         kqueue_init(&kq);
 1282         kq.kq_refcnt = 1;
 1283         error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
 1284         kqueue_drain(&kq, td);
 1285         kqueue_destroy(&kq);
 1286         return (error);
 1287 }
 1288 
 1289 int
 1290 kqueue_add_filteropts(int filt, struct filterops *filtops)
 1291 {
 1292         int error;
 1293 
 1294         error = 0;
 1295         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
 1296                 printf(
 1297 "trying to add a filterop that is out of range: %d is beyond %d\n",
 1298                     ~filt, EVFILT_SYSCOUNT);
 1299                 return EINVAL;
 1300         }
 1301         mtx_lock(&filterops_lock);
 1302         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
 1303             sysfilt_ops[~filt].for_fop != NULL)
 1304                 error = EEXIST;
 1305         else {
 1306                 sysfilt_ops[~filt].for_fop = filtops;
 1307                 sysfilt_ops[~filt].for_refcnt = 0;
 1308         }
 1309         mtx_unlock(&filterops_lock);
 1310 
 1311         return (error);
 1312 }
 1313 
 1314 int
 1315 kqueue_del_filteropts(int filt)
 1316 {
 1317         int error;
 1318 
 1319         error = 0;
 1320         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1321                 return EINVAL;
 1322 
 1323         mtx_lock(&filterops_lock);
 1324         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
 1325             sysfilt_ops[~filt].for_fop == NULL)
 1326                 error = EINVAL;
 1327         else if (sysfilt_ops[~filt].for_refcnt != 0)
 1328                 error = EBUSY;
 1329         else {
 1330                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1331                 sysfilt_ops[~filt].for_refcnt = 0;
 1332         }
 1333         mtx_unlock(&filterops_lock);
 1334 
 1335         return error;
 1336 }
 1337 
 1338 static struct filterops *
 1339 kqueue_fo_find(int filt)
 1340 {
 1341 
 1342         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1343                 return NULL;
 1344 
 1345         if (sysfilt_ops[~filt].for_nolock)
 1346                 return sysfilt_ops[~filt].for_fop;
 1347 
 1348         mtx_lock(&filterops_lock);
 1349         sysfilt_ops[~filt].for_refcnt++;
 1350         if (sysfilt_ops[~filt].for_fop == NULL)
 1351                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1352         mtx_unlock(&filterops_lock);
 1353 
 1354         return sysfilt_ops[~filt].for_fop;
 1355 }
 1356 
 1357 static void
 1358 kqueue_fo_release(int filt)
 1359 {
 1360 
 1361         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1362                 return;
 1363 
 1364         if (sysfilt_ops[~filt].for_nolock)
 1365                 return;
 1366 
 1367         mtx_lock(&filterops_lock);
 1368         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1369             ("filter object refcount not valid on release"));
 1370         sysfilt_ops[~filt].for_refcnt--;
 1371         mtx_unlock(&filterops_lock);
 1372 }
 1373 
 1374 /*
 1375  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
 1376  * influence if memory allocation should wait.  Make sure it is 0 if you
 1377  * hold any mutexes.
 1378  */
 1379 static int
 1380 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
 1381 {
 1382         struct filterops *fops;
 1383         struct file *fp;
 1384         struct knote *kn, *tkn;
 1385         struct knlist *knl;
 1386         int error, filt, event;
 1387         int haskqglobal, filedesc_unlock;
 1388 
 1389         if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
 1390                 return (EINVAL);
 1391 
 1392         fp = NULL;
 1393         kn = NULL;
 1394         knl = NULL;
 1395         error = 0;
 1396         haskqglobal = 0;
 1397         filedesc_unlock = 0;
 1398 
 1399         filt = kev->filter;
 1400         fops = kqueue_fo_find(filt);
 1401         if (fops == NULL)
 1402                 return EINVAL;
 1403 
 1404         if (kev->flags & EV_ADD) {
 1405                 /*
 1406                  * Prevent waiting with locks.  Non-sleepable
 1407                  * allocation failures are handled in the loop, only
 1408                  * if the spare knote appears to be actually required.
 1409                  */
 1410                 tkn = knote_alloc(waitok);
 1411         } else {
 1412                 tkn = NULL;
 1413         }
 1414 
 1415 findkn:
 1416         if (fops->f_isfd) {
 1417                 KASSERT(td != NULL, ("td is NULL"));
 1418                 if (kev->ident > INT_MAX)
 1419                         error = EBADF;
 1420                 else
 1421                         error = fget(td, kev->ident, &cap_event_rights, &fp);
 1422                 if (error)
 1423                         goto done;
 1424 
 1425                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1426                     kev->ident, 0) != 0) {
 1427                         /* try again */
 1428                         fdrop(fp, td);
 1429                         fp = NULL;
 1430                         error = kqueue_expand(kq, fops, kev->ident, waitok);
 1431                         if (error)
 1432                                 goto done;
 1433                         goto findkn;
 1434                 }
 1435 
 1436                 if (fp->f_type == DTYPE_KQUEUE) {
 1437                         /*
 1438                          * If we add some intelligence about what we are doing,
 1439                          * we should be able to support events on ourselves.
 1440                          * We need to know when we are doing this to prevent
 1441                          * getting both the knlist lock and the kq lock since
 1442                          * they are the same thing.
 1443                          */
 1444                         if (fp->f_data == kq) {
 1445                                 error = EINVAL;
 1446                                 goto done;
 1447                         }
 1448 
 1449                         /*
 1450                          * Pre-lock the filedesc before the global
 1451                          * lock mutex, see the comment in
 1452                          * kqueue_close().
 1453                          */
 1454                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1455                         filedesc_unlock = 1;
 1456                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1457                 }
 1458 
 1459                 KQ_LOCK(kq);
 1460                 if (kev->ident < kq->kq_knlistsize) {
 1461                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1462                                 if (kev->filter == kn->kn_filter)
 1463                                         break;
 1464                 }
 1465         } else {
 1466                 if ((kev->flags & EV_ADD) == EV_ADD) {
 1467                         error = kqueue_expand(kq, fops, kev->ident, waitok);
 1468                         if (error != 0)
 1469                                 goto done;
 1470                 }
 1471 
 1472                 KQ_LOCK(kq);
 1473 
 1474                 /*
 1475                  * If possible, find an existing knote to use for this kevent.
 1476                  */
 1477                 if (kev->filter == EVFILT_PROC &&
 1478                     (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
 1479                         /* This is an internal creation of a process tracking
 1480                          * note. Don't attempt to coalesce this with an
 1481                          * existing note.
 1482                          */
 1483                         ;                       
 1484                 } else if (kq->kq_knhashmask != 0) {
 1485                         struct klist *list;
 1486 
 1487                         list = &kq->kq_knhash[
 1488                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1489                         SLIST_FOREACH(kn, list, kn_link)
 1490                                 if (kev->ident == kn->kn_id &&
 1491                                     kev->filter == kn->kn_filter)
 1492                                         break;
 1493                 }
 1494         }
 1495 
 1496         /* knote is in the process of changing, wait for it to stabilize. */
 1497         if (kn != NULL && kn_in_flux(kn)) {
 1498                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1499                 if (filedesc_unlock) {
 1500                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1501                         filedesc_unlock = 0;
 1502                 }
 1503                 kq->kq_state |= KQ_FLUXWAIT;
 1504                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1505                 if (fp != NULL) {
 1506                         fdrop(fp, td);
 1507                         fp = NULL;
 1508                 }
 1509                 goto findkn;
 1510         }
 1511 
 1512         /*
 1513          * kn now contains the matching knote, or NULL if no match
 1514          */
 1515         if (kn == NULL) {
 1516                 if (kev->flags & EV_ADD) {
 1517                         kn = tkn;
 1518                         tkn = NULL;
 1519                         if (kn == NULL) {
 1520                                 KQ_UNLOCK(kq);
 1521                                 error = ENOMEM;
 1522                                 goto done;
 1523                         }
 1524                         kn->kn_fp = fp;
 1525                         kn->kn_kq = kq;
 1526                         kn->kn_fop = fops;
 1527                         /*
 1528                          * apply reference counts to knote structure, and
 1529                          * do not release it at the end of this routine.
 1530                          */
 1531                         fops = NULL;
 1532                         fp = NULL;
 1533 
 1534                         kn->kn_sfflags = kev->fflags;
 1535                         kn->kn_sdata = kev->data;
 1536                         kev->fflags = 0;
 1537                         kev->data = 0;
 1538                         kn->kn_kevent = *kev;
 1539                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1540                             EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
 1541                         kn->kn_status = KN_DETACHED;
 1542                         if ((kev->flags & EV_DISABLE) != 0)
 1543                                 kn->kn_status |= KN_DISABLED;
 1544                         kn_enter_flux(kn);
 1545 
 1546                         error = knote_attach(kn, kq);
 1547                         KQ_UNLOCK(kq);
 1548                         if (error != 0) {
 1549                                 tkn = kn;
 1550                                 goto done;
 1551                         }
 1552 
 1553                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1554                                 knote_drop_detached(kn, td);
 1555                                 goto done;
 1556                         }
 1557                         knl = kn_list_lock(kn);
 1558                         goto done_ev_add;
 1559                 } else {
 1560                         /* No matching knote and the EV_ADD flag is not set. */
 1561                         KQ_UNLOCK(kq);
 1562                         error = ENOENT;
 1563                         goto done;
 1564                 }
 1565         }
 1566         
 1567         if (kev->flags & EV_DELETE) {
 1568                 kn_enter_flux(kn);
 1569                 KQ_UNLOCK(kq);
 1570                 knote_drop(kn, td);
 1571                 goto done;
 1572         }
 1573 
 1574         if (kev->flags & EV_FORCEONESHOT) {
 1575                 kn->kn_flags |= EV_ONESHOT;
 1576                 KNOTE_ACTIVATE(kn, 1);
 1577         }
 1578 
 1579         if ((kev->flags & EV_ENABLE) != 0)
 1580                 kn->kn_status &= ~KN_DISABLED;
 1581         else if ((kev->flags & EV_DISABLE) != 0)
 1582                 kn->kn_status |= KN_DISABLED;
 1583 
 1584         /*
 1585          * The user may change some filter values after the initial EV_ADD,
 1586          * but doing so will not reset any filter which has already been
 1587          * triggered.
 1588          */
 1589         kn->kn_status |= KN_SCAN;
 1590         kn_enter_flux(kn);
 1591         KQ_UNLOCK(kq);
 1592         knl = kn_list_lock(kn);
 1593         kn->kn_kevent.udata = kev->udata;
 1594         if (!fops->f_isfd && fops->f_touch != NULL) {
 1595                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1596         } else {
 1597                 kn->kn_sfflags = kev->fflags;
 1598                 kn->kn_sdata = kev->data;
 1599         }
 1600 
 1601 done_ev_add:
 1602         /*
 1603          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1604          * the initial attach event decides that the event is "completed" 
 1605          * already, e.g., filt_procattach() is called on a zombie process.  It
 1606          * will call filt_proc() which will remove it from the list, and NULL
 1607          * kn_knlist.
 1608          *
 1609          * KN_DISABLED will be stable while the knote is in flux, so the
 1610          * unlocked read will not race with an update.
 1611          */
 1612         if ((kn->kn_status & KN_DISABLED) == 0)
 1613                 event = kn->kn_fop->f_event(kn, 0);
 1614         else
 1615                 event = 0;
 1616 
 1617         KQ_LOCK(kq);
 1618         if (event)
 1619                 kn->kn_status |= KN_ACTIVE;
 1620         if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
 1621             KN_ACTIVE)
 1622                 knote_enqueue(kn);
 1623         kn->kn_status &= ~KN_SCAN;
 1624         kn_leave_flux(kn);
 1625         kn_list_unlock(knl);
 1626         KQ_UNLOCK_FLUX(kq);
 1627 
 1628 done:
 1629         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1630         if (filedesc_unlock)
 1631                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1632         if (fp != NULL)
 1633                 fdrop(fp, td);
 1634         knote_free(tkn);
 1635         if (fops != NULL)
 1636                 kqueue_fo_release(filt);
 1637         return (error);
 1638 }
 1639 
 1640 static int
 1641 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1642 {
 1643         int error;
 1644         struct kqueue *kq;
 1645 
 1646         error = 0;
 1647 
 1648         kq = fp->f_data;
 1649         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1650                 return (EBADF);
 1651         *kqp = kq;
 1652         KQ_LOCK(kq);
 1653         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1654                 KQ_UNLOCK(kq);
 1655                 return (EBADF);
 1656         }
 1657         kq->kq_refcnt++;
 1658         KQ_UNLOCK(kq);
 1659 
 1660         return error;
 1661 }
 1662 
 1663 static void
 1664 kqueue_release(struct kqueue *kq, int locked)
 1665 {
 1666         if (locked)
 1667                 KQ_OWNED(kq);
 1668         else
 1669                 KQ_LOCK(kq);
 1670         kq->kq_refcnt--;
 1671         if (kq->kq_refcnt == 1)
 1672                 wakeup(&kq->kq_refcnt);
 1673         if (!locked)
 1674                 KQ_UNLOCK(kq);
 1675 }
 1676 
 1677 static void
 1678 kqueue_schedtask(struct kqueue *kq)
 1679 {
 1680 
 1681         KQ_OWNED(kq);
 1682         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1683             ("scheduling kqueue task while draining"));
 1684 
 1685         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1686                 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
 1687                 kq->kq_state |= KQ_TASKSCHED;
 1688         }
 1689 }
 1690 
 1691 /*
 1692  * Expand the kq to make sure we have storage for fops/ident pair.
 1693  *
 1694  * Return 0 on success (or no work necessary), return errno on failure.
 1695  *
 1696  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1697  * If kqueue_register is called from a non-fd context, there usually/should
 1698  * be no locks held.
 1699  */
 1700 static int
 1701 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1702         int waitok)
 1703 {
 1704         struct klist *list, *tmp_knhash, *to_free;
 1705         u_long tmp_knhashmask;
 1706         int error, fd, size;
 1707         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1708 
 1709         KQ_NOTOWNED(kq);
 1710 
 1711         error = 0;
 1712         to_free = NULL;
 1713         if (fops->f_isfd) {
 1714                 fd = ident;
 1715                 if (kq->kq_knlistsize <= fd) {
 1716                         size = kq->kq_knlistsize;
 1717                         while (size <= fd)
 1718                                 size += KQEXTENT;
 1719                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1720                         if (list == NULL)
 1721                                 return ENOMEM;
 1722                         KQ_LOCK(kq);
 1723                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1724                                 to_free = list;
 1725                                 error = EBADF;
 1726                         } else if (kq->kq_knlistsize > fd) {
 1727                                 to_free = list;
 1728                         } else {
 1729                                 if (kq->kq_knlist != NULL) {
 1730                                         bcopy(kq->kq_knlist, list,
 1731                                             kq->kq_knlistsize * sizeof(*list));
 1732                                         to_free = kq->kq_knlist;
 1733                                         kq->kq_knlist = NULL;
 1734                                 }
 1735                                 bzero((caddr_t)list +
 1736                                     kq->kq_knlistsize * sizeof(*list),
 1737                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1738                                 kq->kq_knlistsize = size;
 1739                                 kq->kq_knlist = list;
 1740                         }
 1741                         KQ_UNLOCK(kq);
 1742                 }
 1743         } else {
 1744                 if (kq->kq_knhashmask == 0) {
 1745                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1746                             &tmp_knhashmask);
 1747                         if (tmp_knhash == NULL)
 1748                                 return (ENOMEM);
 1749                         KQ_LOCK(kq);
 1750                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1751                                 to_free = tmp_knhash;
 1752                                 error = EBADF;
 1753                         } else if (kq->kq_knhashmask == 0) {
 1754                                 kq->kq_knhash = tmp_knhash;
 1755                                 kq->kq_knhashmask = tmp_knhashmask;
 1756                         } else {
 1757                                 to_free = tmp_knhash;
 1758                         }
 1759                         KQ_UNLOCK(kq);
 1760                 }
 1761         }
 1762         free(to_free, M_KQUEUE);
 1763 
 1764         KQ_NOTOWNED(kq);
 1765         return (error);
 1766 }
 1767 
 1768 static void
 1769 kqueue_task(void *arg, int pending)
 1770 {
 1771         struct kqueue *kq;
 1772         int haskqglobal;
 1773 
 1774         haskqglobal = 0;
 1775         kq = arg;
 1776 
 1777         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1778         KQ_LOCK(kq);
 1779 
 1780         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1781 
 1782         kq->kq_state &= ~KQ_TASKSCHED;
 1783         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1784                 wakeup(&kq->kq_state);
 1785         }
 1786         KQ_UNLOCK(kq);
 1787         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1788 }
 1789 
 1790 /*
 1791  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1792  * We treat KN_MARKER knotes as if they are in flux.
 1793  */
 1794 static int
 1795 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1796     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1797 {
 1798         struct kevent *kevp;
 1799         struct knote *kn, *marker;
 1800         struct knlist *knl;
 1801         sbintime_t asbt, rsbt;
 1802         int count, error, haskqglobal, influx, nkev, touch;
 1803 
 1804         count = maxevents;
 1805         nkev = 0;
 1806         error = 0;
 1807         haskqglobal = 0;
 1808 
 1809         if (maxevents == 0)
 1810                 goto done_nl;
 1811 
 1812         rsbt = 0;
 1813         if (tsp != NULL) {
 1814                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1815                     tsp->tv_nsec >= 1000000000) {
 1816                         error = EINVAL;
 1817                         goto done_nl;
 1818                 }
 1819                 if (timespecisset(tsp)) {
 1820                         if (tsp->tv_sec <= INT32_MAX) {
 1821                                 rsbt = tstosbt(*tsp);
 1822                                 if (TIMESEL(&asbt, rsbt))
 1823                                         asbt += tc_tick_sbt;
 1824                                 if (asbt <= SBT_MAX - rsbt)
 1825                                         asbt += rsbt;
 1826                                 else
 1827                                         asbt = 0;
 1828                                 rsbt >>= tc_precexp;
 1829                         } else
 1830                                 asbt = 0;
 1831                 } else
 1832                         asbt = -1;
 1833         } else
 1834                 asbt = 0;
 1835         marker = knote_alloc(1);
 1836         marker->kn_status = KN_MARKER;
 1837         KQ_LOCK(kq);
 1838 
 1839 retry:
 1840         kevp = keva;
 1841         if (kq->kq_count == 0) {
 1842                 if (asbt == -1) {
 1843                         error = EWOULDBLOCK;
 1844                 } else {
 1845                         kq->kq_state |= KQ_SLEEP;
 1846                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1847                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1848                 }
 1849                 if (error == 0)
 1850                         goto retry;
 1851                 /* don't restart after signals... */
 1852                 if (error == ERESTART)
 1853                         error = EINTR;
 1854                 else if (error == EWOULDBLOCK)
 1855                         error = 0;
 1856                 goto done;
 1857         }
 1858 
 1859         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1860         influx = 0;
 1861         while (count) {
 1862                 KQ_OWNED(kq);
 1863                 kn = TAILQ_FIRST(&kq->kq_head);
 1864 
 1865                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1866                     kn_in_flux(kn)) {
 1867                         if (influx) {
 1868                                 influx = 0;
 1869                                 KQ_FLUX_WAKEUP(kq);
 1870                         }
 1871                         kq->kq_state |= KQ_FLUXWAIT;
 1872                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1873                             "kqflxwt", 0);
 1874                         continue;
 1875                 }
 1876 
 1877                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1878                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1879                         kn->kn_status &= ~KN_QUEUED;
 1880                         kq->kq_count--;
 1881                         continue;
 1882                 }
 1883                 if (kn == marker) {
 1884                         KQ_FLUX_WAKEUP(kq);
 1885                         if (count == maxevents)
 1886                                 goto retry;
 1887                         goto done;
 1888                 }
 1889                 KASSERT(!kn_in_flux(kn),
 1890                     ("knote %p is unexpectedly in flux", kn));
 1891 
 1892                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1893                         kn->kn_status &= ~KN_QUEUED;
 1894                         kn_enter_flux(kn);
 1895                         kq->kq_count--;
 1896                         KQ_UNLOCK(kq);
 1897                         /*
 1898                          * We don't need to lock the list since we've
 1899                          * marked it as in flux.
 1900                          */
 1901                         knote_drop(kn, td);
 1902                         KQ_LOCK(kq);
 1903                         continue;
 1904                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1905                         kn->kn_status &= ~KN_QUEUED;
 1906                         kn_enter_flux(kn);
 1907                         kq->kq_count--;
 1908                         KQ_UNLOCK(kq);
 1909                         /*
 1910                          * We don't need to lock the list since we've
 1911                          * marked the knote as being in flux.
 1912                          */
 1913                         *kevp = kn->kn_kevent;
 1914                         knote_drop(kn, td);
 1915                         KQ_LOCK(kq);
 1916                         kn = NULL;
 1917                 } else {
 1918                         kn->kn_status |= KN_SCAN;
 1919                         kn_enter_flux(kn);
 1920                         KQ_UNLOCK(kq);
 1921                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1922                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1923                         knl = kn_list_lock(kn);
 1924                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1925                                 KQ_LOCK(kq);
 1926                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1927                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
 1928                                     KN_SCAN);
 1929                                 kn_leave_flux(kn);
 1930                                 kq->kq_count--;
 1931                                 kn_list_unlock(knl);
 1932                                 influx = 1;
 1933                                 continue;
 1934                         }
 1935                         touch = (!kn->kn_fop->f_isfd &&
 1936                             kn->kn_fop->f_touch != NULL);
 1937                         if (touch)
 1938                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1939                         else
 1940                                 *kevp = kn->kn_kevent;
 1941                         KQ_LOCK(kq);
 1942                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1943                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1944                                 /* 
 1945                                  * Manually clear knotes who weren't 
 1946                                  * 'touch'ed.
 1947                                  */
 1948                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1949                                         kn->kn_data = 0;
 1950                                         kn->kn_fflags = 0;
 1951                                 }
 1952                                 if (kn->kn_flags & EV_DISPATCH)
 1953                                         kn->kn_status |= KN_DISABLED;
 1954                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1955                                 kq->kq_count--;
 1956                         } else
 1957                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1958                         
 1959                         kn->kn_status &= ~KN_SCAN;
 1960                         kn_leave_flux(kn);
 1961                         kn_list_unlock(knl);
 1962                         influx = 1;
 1963                 }
 1964 
 1965                 /* we are returning a copy to the user */
 1966                 kevp++;
 1967                 nkev++;
 1968                 count--;
 1969 
 1970                 if (nkev == KQ_NEVENTS) {
 1971                         influx = 0;
 1972                         KQ_UNLOCK_FLUX(kq);
 1973                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1974                         nkev = 0;
 1975                         kevp = keva;
 1976                         KQ_LOCK(kq);
 1977                         if (error)
 1978                                 break;
 1979                 }
 1980         }
 1981         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1982 done:
 1983         KQ_OWNED(kq);
 1984         KQ_UNLOCK_FLUX(kq);
 1985         knote_free(marker);
 1986 done_nl:
 1987         KQ_NOTOWNED(kq);
 1988         if (nkev != 0)
 1989                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1990         td->td_retval[0] = maxevents - count;
 1991         return (error);
 1992 }
 1993 
 1994 /*ARGSUSED*/
 1995 static int
 1996 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1997         struct ucred *active_cred, struct thread *td)
 1998 {
 1999         /*
 2000          * Enabling sigio causes two major problems:
 2001          * 1) infinite recursion:
 2002          * Synopsys: kevent is being used to track signals and have FIOASYNC
 2003          * set.  On receipt of a signal this will cause a kqueue to recurse
 2004          * into itself over and over.  Sending the sigio causes the kqueue
 2005          * to become ready, which in turn posts sigio again, forever.
 2006          * Solution: this can be solved by setting a flag in the kqueue that
 2007          * we have a SIGIO in progress.
 2008          * 2) locking problems:
 2009          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 2010          * us above the proc and pgrp locks.
 2011          * Solution: Post a signal using an async mechanism, being sure to
 2012          * record a generation count in the delivery so that we do not deliver
 2013          * a signal to the wrong process.
 2014          *
 2015          * Note, these two mechanisms are somewhat mutually exclusive!
 2016          */
 2017 #if 0
 2018         struct kqueue *kq;
 2019 
 2020         kq = fp->f_data;
 2021         switch (cmd) {
 2022         case FIOASYNC:
 2023                 if (*(int *)data) {
 2024                         kq->kq_state |= KQ_ASYNC;
 2025                 } else {
 2026                         kq->kq_state &= ~KQ_ASYNC;
 2027                 }
 2028                 return (0);
 2029 
 2030         case FIOSETOWN:
 2031                 return (fsetown(*(int *)data, &kq->kq_sigio));
 2032 
 2033         case FIOGETOWN:
 2034                 *(int *)data = fgetown(&kq->kq_sigio);
 2035                 return (0);
 2036         }
 2037 #endif
 2038 
 2039         return (ENOTTY);
 2040 }
 2041 
 2042 /*ARGSUSED*/
 2043 static int
 2044 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 2045         struct thread *td)
 2046 {
 2047         struct kqueue *kq;
 2048         int revents = 0;
 2049         int error;
 2050 
 2051         if ((error = kqueue_acquire(fp, &kq)))
 2052                 return POLLERR;
 2053 
 2054         KQ_LOCK(kq);
 2055         if (events & (POLLIN | POLLRDNORM)) {
 2056                 if (kq->kq_count) {
 2057                         revents |= events & (POLLIN | POLLRDNORM);
 2058                 } else {
 2059                         selrecord(td, &kq->kq_sel);
 2060                         if (SEL_WAITING(&kq->kq_sel))
 2061                                 kq->kq_state |= KQ_SEL;
 2062                 }
 2063         }
 2064         kqueue_release(kq, 1);
 2065         KQ_UNLOCK(kq);
 2066         return (revents);
 2067 }
 2068 
 2069 /*ARGSUSED*/
 2070 static int
 2071 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 2072         struct thread *td)
 2073 {
 2074 
 2075         bzero((void *)st, sizeof *st);
 2076         /*
 2077          * We no longer return kq_count because the unlocked value is useless.
 2078          * If you spent all this time getting the count, why not spend your
 2079          * syscall better by calling kevent?
 2080          *
 2081          * XXX - This is needed for libc_r.
 2082          */
 2083         st->st_mode = S_IFIFO;
 2084         return (0);
 2085 }
 2086 
 2087 static void
 2088 kqueue_drain(struct kqueue *kq, struct thread *td)
 2089 {
 2090         struct knote *kn;
 2091         int i;
 2092 
 2093         KQ_LOCK(kq);
 2094 
 2095         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 2096             ("kqueue already closing"));
 2097         kq->kq_state |= KQ_CLOSING;
 2098         if (kq->kq_refcnt > 1)
 2099                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 2100 
 2101         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 2102 
 2103         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 2104             ("kqueue's knlist not empty"));
 2105 
 2106         for (i = 0; i < kq->kq_knlistsize; i++) {
 2107                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 2108                         if (kn_in_flux(kn)) {
 2109                                 kq->kq_state |= KQ_FLUXWAIT;
 2110                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 2111                                 continue;
 2112                         }
 2113                         kn_enter_flux(kn);
 2114                         KQ_UNLOCK(kq);
 2115                         knote_drop(kn, td);
 2116                         KQ_LOCK(kq);
 2117                 }
 2118         }
 2119         if (kq->kq_knhashmask != 0) {
 2120                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 2121                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 2122                                 if (kn_in_flux(kn)) {
 2123                                         kq->kq_state |= KQ_FLUXWAIT;
 2124                                         msleep(kq, &kq->kq_lock, PSOCK,
 2125                                                "kqclo2", 0);
 2126                                         continue;
 2127                                 }
 2128                                 kn_enter_flux(kn);
 2129                                 KQ_UNLOCK(kq);
 2130                                 knote_drop(kn, td);
 2131                                 KQ_LOCK(kq);
 2132                         }
 2133                 }
 2134         }
 2135 
 2136         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 2137                 kq->kq_state |= KQ_TASKDRAIN;
 2138                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 2139         }
 2140 
 2141         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2142                 selwakeuppri(&kq->kq_sel, PSOCK);
 2143                 if (!SEL_WAITING(&kq->kq_sel))
 2144                         kq->kq_state &= ~KQ_SEL;
 2145         }
 2146 
 2147         KQ_UNLOCK(kq);
 2148 }
 2149 
 2150 static void
 2151 kqueue_destroy(struct kqueue *kq)
 2152 {
 2153 
 2154         KASSERT(kq->kq_fdp == NULL,
 2155             ("kqueue still attached to a file descriptor"));
 2156         seldrain(&kq->kq_sel);
 2157         knlist_destroy(&kq->kq_sel.si_note);
 2158         mtx_destroy(&kq->kq_lock);
 2159 
 2160         if (kq->kq_knhash != NULL)
 2161                 free(kq->kq_knhash, M_KQUEUE);
 2162         if (kq->kq_knlist != NULL)
 2163                 free(kq->kq_knlist, M_KQUEUE);
 2164 
 2165         funsetown(&kq->kq_sigio);
 2166 }
 2167 
 2168 /*ARGSUSED*/
 2169 static int
 2170 kqueue_close(struct file *fp, struct thread *td)
 2171 {
 2172         struct kqueue *kq = fp->f_data;
 2173         struct filedesc *fdp;
 2174         int error;
 2175         int filedesc_unlock;
 2176 
 2177         if ((error = kqueue_acquire(fp, &kq)))
 2178                 return error;
 2179         kqueue_drain(kq, td);
 2180 
 2181         /*
 2182          * We could be called due to the knote_drop() doing fdrop(),
 2183          * called from kqueue_register().  In this case the global
 2184          * lock is owned, and filedesc sx is locked before, to not
 2185          * take the sleepable lock after non-sleepable.
 2186          */
 2187         fdp = kq->kq_fdp;
 2188         kq->kq_fdp = NULL;
 2189         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 2190                 FILEDESC_XLOCK(fdp);
 2191                 filedesc_unlock = 1;
 2192         } else
 2193                 filedesc_unlock = 0;
 2194         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 2195         if (filedesc_unlock)
 2196                 FILEDESC_XUNLOCK(fdp);
 2197 
 2198         kqueue_destroy(kq);
 2199         chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
 2200         crfree(kq->kq_cred);
 2201         free(kq, M_KQUEUE);
 2202         fp->f_data = NULL;
 2203 
 2204         return (0);
 2205 }
 2206 
 2207 static int
 2208 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2209 {
 2210 
 2211         kif->kf_type = KF_TYPE_KQUEUE;
 2212         return (0);
 2213 }
 2214 
 2215 static void
 2216 kqueue_wakeup(struct kqueue *kq)
 2217 {
 2218         KQ_OWNED(kq);
 2219 
 2220         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 2221                 kq->kq_state &= ~KQ_SLEEP;
 2222                 wakeup(kq);
 2223         }
 2224         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2225                 selwakeuppri(&kq->kq_sel, PSOCK);
 2226                 if (!SEL_WAITING(&kq->kq_sel))
 2227                         kq->kq_state &= ~KQ_SEL;
 2228         }
 2229         if (!knlist_empty(&kq->kq_sel.si_note))
 2230                 kqueue_schedtask(kq);
 2231         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 2232                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 2233         }
 2234 }
 2235 
 2236 /*
 2237  * Walk down a list of knotes, activating them if their event has triggered.
 2238  *
 2239  * There is a possibility to optimize in the case of one kq watching another.
 2240  * Instead of scheduling a task to wake it up, you could pass enough state
 2241  * down the chain to make up the parent kqueue.  Make this code functional
 2242  * first.
 2243  */
 2244 void
 2245 knote(struct knlist *list, long hint, int lockflags)
 2246 {
 2247         struct kqueue *kq;
 2248         struct knote *kn, *tkn;
 2249         int error;
 2250 
 2251         if (list == NULL)
 2252                 return;
 2253 
 2254         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 2255 
 2256         if ((lockflags & KNF_LISTLOCKED) == 0)
 2257                 list->kl_lock(list->kl_lockarg); 
 2258 
 2259         /*
 2260          * If we unlock the list lock (and enter influx), we can
 2261          * eliminate the kqueue scheduling, but this will introduce
 2262          * four lock/unlock's for each knote to test.  Also, marker
 2263          * would be needed to keep iteration position, since filters
 2264          * or other threads could remove events.
 2265          */
 2266         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 2267                 kq = kn->kn_kq;
 2268                 KQ_LOCK(kq);
 2269                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
 2270                         /*
 2271                          * Do not process the influx notes, except for
 2272                          * the influx coming from the kq unlock in the
 2273                          * kqueue_scan().  In the later case, we do
 2274                          * not interfere with the scan, since the code
 2275                          * fragment in kqueue_scan() locks the knlist,
 2276                          * and cannot proceed until we finished.
 2277                          */
 2278                         KQ_UNLOCK(kq);
 2279                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 2280                         kn_enter_flux(kn);
 2281                         KQ_UNLOCK(kq);
 2282                         error = kn->kn_fop->f_event(kn, hint);
 2283                         KQ_LOCK(kq);
 2284                         kn_leave_flux(kn);
 2285                         if (error)
 2286                                 KNOTE_ACTIVATE(kn, 1);
 2287                         KQ_UNLOCK_FLUX(kq);
 2288                 } else {
 2289                         kn->kn_status |= KN_HASKQLOCK;
 2290                         if (kn->kn_fop->f_event(kn, hint))
 2291                                 KNOTE_ACTIVATE(kn, 1);
 2292                         kn->kn_status &= ~KN_HASKQLOCK;
 2293                         KQ_UNLOCK(kq);
 2294                 }
 2295         }
 2296         if ((lockflags & KNF_LISTLOCKED) == 0)
 2297                 list->kl_unlock(list->kl_lockarg); 
 2298 }
 2299 
 2300 /*
 2301  * add a knote to a knlist
 2302  */
 2303 void
 2304 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 2305 {
 2306 
 2307         KNL_ASSERT_LOCK(knl, islocked);
 2308         KQ_NOTOWNED(kn->kn_kq);
 2309         KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
 2310         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2311             ("knote %p was not detached", kn));
 2312         if (!islocked)
 2313                 knl->kl_lock(knl->kl_lockarg);
 2314         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 2315         if (!islocked)
 2316                 knl->kl_unlock(knl->kl_lockarg);
 2317         KQ_LOCK(kn->kn_kq);
 2318         kn->kn_knlist = knl;
 2319         kn->kn_status &= ~KN_DETACHED;
 2320         KQ_UNLOCK(kn->kn_kq);
 2321 }
 2322 
 2323 static void
 2324 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
 2325     int kqislocked)
 2326 {
 2327 
 2328         KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
 2329         KNL_ASSERT_LOCK(knl, knlislocked);
 2330         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 2331         KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
 2332         KASSERT((kn->kn_status & KN_DETACHED) == 0,
 2333             ("knote %p was already detached", kn));
 2334         if (!knlislocked)
 2335                 knl->kl_lock(knl->kl_lockarg);
 2336         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 2337         kn->kn_knlist = NULL;
 2338         if (!knlislocked)
 2339                 kn_list_unlock(knl);
 2340         if (!kqislocked)
 2341                 KQ_LOCK(kn->kn_kq);
 2342         kn->kn_status |= KN_DETACHED;
 2343         if (!kqislocked)
 2344                 KQ_UNLOCK(kn->kn_kq);
 2345 }
 2346 
 2347 /*
 2348  * remove knote from the specified knlist
 2349  */
 2350 void
 2351 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 2352 {
 2353 
 2354         knlist_remove_kq(knl, kn, islocked, 0);
 2355 }
 2356 
 2357 int
 2358 knlist_empty(struct knlist *knl)
 2359 {
 2360 
 2361         KNL_ASSERT_LOCKED(knl);
 2362         return (SLIST_EMPTY(&knl->kl_list));
 2363 }
 2364 
 2365 static struct mtx knlist_lock;
 2366 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 2367     MTX_DEF);
 2368 static void knlist_mtx_lock(void *arg);
 2369 static void knlist_mtx_unlock(void *arg);
 2370 
 2371 static void
 2372 knlist_mtx_lock(void *arg)
 2373 {
 2374 
 2375         mtx_lock((struct mtx *)arg);
 2376 }
 2377 
 2378 static void
 2379 knlist_mtx_unlock(void *arg)
 2380 {
 2381 
 2382         mtx_unlock((struct mtx *)arg);
 2383 }
 2384 
 2385 static void
 2386 knlist_mtx_assert_locked(void *arg)
 2387 {
 2388 
 2389         mtx_assert((struct mtx *)arg, MA_OWNED);
 2390 }
 2391 
 2392 static void
 2393 knlist_mtx_assert_unlocked(void *arg)
 2394 {
 2395 
 2396         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2397 }
 2398 
 2399 static void
 2400 knlist_rw_rlock(void *arg)
 2401 {
 2402 
 2403         rw_rlock((struct rwlock *)arg);
 2404 }
 2405 
 2406 static void
 2407 knlist_rw_runlock(void *arg)
 2408 {
 2409 
 2410         rw_runlock((struct rwlock *)arg);
 2411 }
 2412 
 2413 static void
 2414 knlist_rw_assert_locked(void *arg)
 2415 {
 2416 
 2417         rw_assert((struct rwlock *)arg, RA_LOCKED);
 2418 }
 2419 
 2420 static void
 2421 knlist_rw_assert_unlocked(void *arg)
 2422 {
 2423 
 2424         rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2425 }
 2426 
 2427 void
 2428 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2429     void (*kl_unlock)(void *),
 2430     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 2431 {
 2432 
 2433         if (lock == NULL)
 2434                 knl->kl_lockarg = &knlist_lock;
 2435         else
 2436                 knl->kl_lockarg = lock;
 2437 
 2438         if (kl_lock == NULL)
 2439                 knl->kl_lock = knlist_mtx_lock;
 2440         else
 2441                 knl->kl_lock = kl_lock;
 2442         if (kl_unlock == NULL)
 2443                 knl->kl_unlock = knlist_mtx_unlock;
 2444         else
 2445                 knl->kl_unlock = kl_unlock;
 2446         if (kl_assert_locked == NULL)
 2447                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 2448         else
 2449                 knl->kl_assert_locked = kl_assert_locked;
 2450         if (kl_assert_unlocked == NULL)
 2451                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 2452         else
 2453                 knl->kl_assert_unlocked = kl_assert_unlocked;
 2454 
 2455         knl->kl_autodestroy = 0;
 2456         SLIST_INIT(&knl->kl_list);
 2457 }
 2458 
 2459 void
 2460 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2461 {
 2462 
 2463         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 2464 }
 2465 
 2466 struct knlist *
 2467 knlist_alloc(struct mtx *lock)
 2468 {
 2469         struct knlist *knl;
 2470 
 2471         knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
 2472         knlist_init_mtx(knl, lock);
 2473         return (knl);
 2474 }
 2475 
 2476 void
 2477 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2478 {
 2479 
 2480         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2481             knlist_rw_assert_locked, knlist_rw_assert_unlocked);
 2482 }
 2483 
 2484 void
 2485 knlist_destroy(struct knlist *knl)
 2486 {
 2487 
 2488         KASSERT(KNLIST_EMPTY(knl),
 2489             ("destroying knlist %p with knotes on it", knl));
 2490 }
 2491 
 2492 void
 2493 knlist_detach(struct knlist *knl)
 2494 {
 2495 
 2496         KNL_ASSERT_LOCKED(knl);
 2497         knl->kl_autodestroy = 1;
 2498         if (knlist_empty(knl)) {
 2499                 knlist_destroy(knl);
 2500                 free(knl, M_KQUEUE);
 2501         }
 2502 }
 2503 
 2504 /*
 2505  * Even if we are locked, we may need to drop the lock to allow any influx
 2506  * knotes time to "settle".
 2507  */
 2508 void
 2509 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2510 {
 2511         struct knote *kn, *kn2;
 2512         struct kqueue *kq;
 2513 
 2514         KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
 2515         if (islocked)
 2516                 KNL_ASSERT_LOCKED(knl);
 2517         else {
 2518                 KNL_ASSERT_UNLOCKED(knl);
 2519 again:          /* need to reacquire lock since we have dropped it */
 2520                 knl->kl_lock(knl->kl_lockarg);
 2521         }
 2522 
 2523         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2524                 kq = kn->kn_kq;
 2525                 KQ_LOCK(kq);
 2526                 if (kn_in_flux(kn)) {
 2527                         KQ_UNLOCK(kq);
 2528                         continue;
 2529                 }
 2530                 knlist_remove_kq(knl, kn, 1, 1);
 2531                 if (killkn) {
 2532                         kn_enter_flux(kn);
 2533                         KQ_UNLOCK(kq);
 2534                         knote_drop_detached(kn, td);
 2535                 } else {
 2536                         /* Make sure cleared knotes disappear soon */
 2537                         kn->kn_flags |= EV_EOF | EV_ONESHOT;
 2538                         KQ_UNLOCK(kq);
 2539                 }
 2540                 kq = NULL;
 2541         }
 2542 
 2543         if (!SLIST_EMPTY(&knl->kl_list)) {
 2544                 /* there are still in flux knotes remaining */
 2545                 kn = SLIST_FIRST(&knl->kl_list);
 2546                 kq = kn->kn_kq;
 2547                 KQ_LOCK(kq);
 2548                 KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
 2549                 knl->kl_unlock(knl->kl_lockarg);
 2550                 kq->kq_state |= KQ_FLUXWAIT;
 2551                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2552                 kq = NULL;
 2553                 goto again;
 2554         }
 2555 
 2556         if (islocked)
 2557                 KNL_ASSERT_LOCKED(knl);
 2558         else {
 2559                 knl->kl_unlock(knl->kl_lockarg);
 2560                 KNL_ASSERT_UNLOCKED(knl);
 2561         }
 2562 }
 2563 
 2564 /*
 2565  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2566  * lock.  This prevents a race where a new fd comes along and occupies the
 2567  * entry and we attach a knote to the fd.
 2568  */
 2569 void
 2570 knote_fdclose(struct thread *td, int fd)
 2571 {
 2572         struct filedesc *fdp = td->td_proc->p_fd;
 2573         struct kqueue *kq;
 2574         struct knote *kn;
 2575         int influx;
 2576 
 2577         FILEDESC_XLOCK_ASSERT(fdp);
 2578 
 2579         /*
 2580          * We shouldn't have to worry about new kevents appearing on fd
 2581          * since filedesc is locked.
 2582          */
 2583         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2584                 KQ_LOCK(kq);
 2585 
 2586 again:
 2587                 influx = 0;
 2588                 while (kq->kq_knlistsize > fd &&
 2589                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2590                         if (kn_in_flux(kn)) {
 2591                                 /* someone else might be waiting on our knote */
 2592                                 if (influx)
 2593                                         wakeup(kq);
 2594                                 kq->kq_state |= KQ_FLUXWAIT;
 2595                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2596                                 goto again;
 2597                         }
 2598                         kn_enter_flux(kn);
 2599                         KQ_UNLOCK(kq);
 2600                         influx = 1;
 2601                         knote_drop(kn, td);
 2602                         KQ_LOCK(kq);
 2603                 }
 2604                 KQ_UNLOCK_FLUX(kq);
 2605         }
 2606 }
 2607 
 2608 static int
 2609 knote_attach(struct knote *kn, struct kqueue *kq)
 2610 {
 2611         struct klist *list;
 2612 
 2613         KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
 2614         KQ_OWNED(kq);
 2615 
 2616         if ((kq->kq_state & KQ_CLOSING) != 0)
 2617                 return (EBADF);
 2618         if (kn->kn_fop->f_isfd) {
 2619                 if (kn->kn_id >= kq->kq_knlistsize)
 2620                         return (ENOMEM);
 2621                 list = &kq->kq_knlist[kn->kn_id];
 2622         } else {
 2623                 if (kq->kq_knhash == NULL)
 2624                         return (ENOMEM);
 2625                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2626         }
 2627         SLIST_INSERT_HEAD(list, kn, kn_link);
 2628         return (0);
 2629 }
 2630 
 2631 static void
 2632 knote_drop(struct knote *kn, struct thread *td)
 2633 {
 2634 
 2635         if ((kn->kn_status & KN_DETACHED) == 0)
 2636                 kn->kn_fop->f_detach(kn);
 2637         knote_drop_detached(kn, td);
 2638 }
 2639 
 2640 static void
 2641 knote_drop_detached(struct knote *kn, struct thread *td)
 2642 {
 2643         struct kqueue *kq;
 2644         struct klist *list;
 2645 
 2646         kq = kn->kn_kq;
 2647 
 2648         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2649             ("knote %p still attached", kn));
 2650         KQ_NOTOWNED(kq);
 2651 
 2652         KQ_LOCK(kq);
 2653         KASSERT(kn->kn_influx == 1,
 2654             ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
 2655 
 2656         if (kn->kn_fop->f_isfd)
 2657                 list = &kq->kq_knlist[kn->kn_id];
 2658         else
 2659                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2660 
 2661         if (!SLIST_EMPTY(list))
 2662                 SLIST_REMOVE(list, kn, knote, kn_link);
 2663         if (kn->kn_status & KN_QUEUED)
 2664                 knote_dequeue(kn);
 2665         KQ_UNLOCK_FLUX(kq);
 2666 
 2667         if (kn->kn_fop->f_isfd) {
 2668                 fdrop(kn->kn_fp, td);
 2669                 kn->kn_fp = NULL;
 2670         }
 2671         kqueue_fo_release(kn->kn_kevent.filter);
 2672         kn->kn_fop = NULL;
 2673         knote_free(kn);
 2674 }
 2675 
 2676 static void
 2677 knote_enqueue(struct knote *kn)
 2678 {
 2679         struct kqueue *kq = kn->kn_kq;
 2680 
 2681         KQ_OWNED(kn->kn_kq);
 2682         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2683 
 2684         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2685         kn->kn_status |= KN_QUEUED;
 2686         kq->kq_count++;
 2687         kqueue_wakeup(kq);
 2688 }
 2689 
 2690 static void
 2691 knote_dequeue(struct knote *kn)
 2692 {
 2693         struct kqueue *kq = kn->kn_kq;
 2694 
 2695         KQ_OWNED(kn->kn_kq);
 2696         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2697 
 2698         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2699         kn->kn_status &= ~KN_QUEUED;
 2700         kq->kq_count--;
 2701 }
 2702 
 2703 static void
 2704 knote_init(void)
 2705 {
 2706 
 2707         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2708             NULL, NULL, UMA_ALIGN_PTR, 0);
 2709 }
 2710 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2711 
 2712 static struct knote *
 2713 knote_alloc(int waitok)
 2714 {
 2715 
 2716         return (uma_zalloc(knote_zone, (waitok ? M_WAITOK : M_NOWAIT) |
 2717             M_ZERO));
 2718 }
 2719 
 2720 static void
 2721 knote_free(struct knote *kn)
 2722 {
 2723 
 2724         uma_zfree(knote_zone, kn);
 2725 }
 2726 
 2727 /*
 2728  * Register the kev w/ the kq specified by fd.
 2729  */
 2730 int 
 2731 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2732 {
 2733         struct kqueue *kq;
 2734         struct file *fp;
 2735         cap_rights_t rights;
 2736         int error;
 2737 
 2738         error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
 2739         if (error != 0)
 2740                 return (error);
 2741         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2742                 goto noacquire;
 2743 
 2744         error = kqueue_register(kq, kev, td, waitok);
 2745         kqueue_release(kq, 0);
 2746 
 2747 noacquire:
 2748         fdrop(fp, td);
 2749         return (error);
 2750 }

Cache object: d6a94a06cb6bf058d019303c73e48a9c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.