The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    6  * Copyright (c) 2009 Apple, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "opt_ktrace.h"
   35 #include "opt_kqueue.h"
   36 
   37 #ifdef COMPAT_FREEBSD11
   38 #define _WANT_FREEBSD11_KEVENT
   39 #endif
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/capsicum.h>
   44 #include <sys/kernel.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/rwlock.h>
   49 #include <sys/proc.h>
   50 #include <sys/malloc.h>
   51 #include <sys/unistd.h>
   52 #include <sys/file.h>
   53 #include <sys/filedesc.h>
   54 #include <sys/filio.h>
   55 #include <sys/fcntl.h>
   56 #include <sys/kthread.h>
   57 #include <sys/selinfo.h>
   58 #include <sys/queue.h>
   59 #include <sys/event.h>
   60 #include <sys/eventvar.h>
   61 #include <sys/poll.h>
   62 #include <sys/protosw.h>
   63 #include <sys/resourcevar.h>
   64 #include <sys/sigio.h>
   65 #include <sys/signalvar.h>
   66 #include <sys/socket.h>
   67 #include <sys/socketvar.h>
   68 #include <sys/stat.h>
   69 #include <sys/sysctl.h>
   70 #include <sys/sysproto.h>
   71 #include <sys/syscallsubr.h>
   72 #include <sys/taskqueue.h>
   73 #include <sys/uio.h>
   74 #include <sys/user.h>
   75 #ifdef KTRACE
   76 #include <sys/ktrace.h>
   77 #endif
   78 #include <machine/atomic.h>
   79 
   80 #include <vm/uma.h>
   81 
   82 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   83 
   84 /*
   85  * This lock is used if multiple kq locks are required.  This possibly
   86  * should be made into a per proc lock.
   87  */
   88 static struct mtx       kq_global;
   89 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   90 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   91         if (!haslck)                            \
   92                 mtx_lock(lck);                  \
   93         haslck = 1;                             \
   94 } while (0)
   95 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   96         if (haslck)                             \
   97                 mtx_unlock(lck);                        \
   98         haslck = 0;                             \
   99 } while (0)
  100 
  101 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
  102 
  103 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
  104 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
  105 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
  106                     struct thread *td, int mflag);
  107 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
  108 static void     kqueue_release(struct kqueue *kq, int locked);
  109 static void     kqueue_destroy(struct kqueue *kq);
  110 static void     kqueue_drain(struct kqueue *kq, struct thread *td);
  111 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  112                     uintptr_t ident, int mflag);
  113 static void     kqueue_task(void *arg, int pending);
  114 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  115                     struct kevent_copyops *k_ops,
  116                     const struct timespec *timeout,
  117                     struct kevent *keva, struct thread *td);
  118 static void     kqueue_wakeup(struct kqueue *kq);
  119 static struct filterops *kqueue_fo_find(int filt);
  120 static void     kqueue_fo_release(int filt);
  121 struct g_kevent_args;
  122 static int      kern_kevent_generic(struct thread *td,
  123                     struct g_kevent_args *uap,
  124                     struct kevent_copyops *k_ops, const char *struct_name);
  125 
  126 static fo_ioctl_t       kqueue_ioctl;
  127 static fo_poll_t        kqueue_poll;
  128 static fo_kqfilter_t    kqueue_kqfilter;
  129 static fo_stat_t        kqueue_stat;
  130 static fo_close_t       kqueue_close;
  131 static fo_fill_kinfo_t  kqueue_fill_kinfo;
  132 
  133 static struct fileops kqueueops = {
  134         .fo_read = invfo_rdwr,
  135         .fo_write = invfo_rdwr,
  136         .fo_truncate = invfo_truncate,
  137         .fo_ioctl = kqueue_ioctl,
  138         .fo_poll = kqueue_poll,
  139         .fo_kqfilter = kqueue_kqfilter,
  140         .fo_stat = kqueue_stat,
  141         .fo_close = kqueue_close,
  142         .fo_chmod = invfo_chmod,
  143         .fo_chown = invfo_chown,
  144         .fo_sendfile = invfo_sendfile,
  145         .fo_fill_kinfo = kqueue_fill_kinfo,
  146 };
  147 
  148 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  149 static void     knote_drop(struct knote *kn, struct thread *td);
  150 static void     knote_drop_detached(struct knote *kn, struct thread *td);
  151 static void     knote_enqueue(struct knote *kn);
  152 static void     knote_dequeue(struct knote *kn);
  153 static void     knote_init(void);
  154 static struct   knote *knote_alloc(int mflag);
  155 static void     knote_free(struct knote *kn);
  156 
  157 static void     filt_kqdetach(struct knote *kn);
  158 static int      filt_kqueue(struct knote *kn, long hint);
  159 static int      filt_procattach(struct knote *kn);
  160 static void     filt_procdetach(struct knote *kn);
  161 static int      filt_proc(struct knote *kn, long hint);
  162 static int      filt_fileattach(struct knote *kn);
  163 static void     filt_timerexpire(void *knx);
  164 static int      filt_timerattach(struct knote *kn);
  165 static void     filt_timerdetach(struct knote *kn);
  166 static void     filt_timerstart(struct knote *kn, sbintime_t to);
  167 static void     filt_timertouch(struct knote *kn, struct kevent *kev,
  168                     u_long type);
  169 static int      filt_timervalidate(struct knote *kn, sbintime_t *to);
  170 static int      filt_timer(struct knote *kn, long hint);
  171 static int      filt_userattach(struct knote *kn);
  172 static void     filt_userdetach(struct knote *kn);
  173 static int      filt_user(struct knote *kn, long hint);
  174 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  175                     u_long type);
  176 
  177 static struct filterops file_filtops = {
  178         .f_isfd = 1,
  179         .f_attach = filt_fileattach,
  180 };
  181 static struct filterops kqread_filtops = {
  182         .f_isfd = 1,
  183         .f_detach = filt_kqdetach,
  184         .f_event = filt_kqueue,
  185 };
  186 /* XXX - move to kern_proc.c?  */
  187 static struct filterops proc_filtops = {
  188         .f_isfd = 0,
  189         .f_attach = filt_procattach,
  190         .f_detach = filt_procdetach,
  191         .f_event = filt_proc,
  192 };
  193 static struct filterops timer_filtops = {
  194         .f_isfd = 0,
  195         .f_attach = filt_timerattach,
  196         .f_detach = filt_timerdetach,
  197         .f_event = filt_timer,
  198         .f_touch = filt_timertouch,
  199 };
  200 static struct filterops user_filtops = {
  201         .f_attach = filt_userattach,
  202         .f_detach = filt_userdetach,
  203         .f_event = filt_user,
  204         .f_touch = filt_usertouch,
  205 };
  206 
  207 static uma_zone_t       knote_zone;
  208 static unsigned int     kq_ncallouts = 0;
  209 static unsigned int     kq_calloutmax = 4 * 1024;
  210 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  211     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  212 
  213 /* XXX - ensure not influx ? */
  214 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  215         if ((islock))                                                   \
  216                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  217         else                                                            \
  218                 KQ_LOCK((kn)->kn_kq);                                   \
  219         (kn)->kn_status |= KN_ACTIVE;                                   \
  220         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  221                 knote_enqueue((kn));                                    \
  222         if (!(islock))                                                  \
  223                 KQ_UNLOCK((kn)->kn_kq);                                 \
  224 } while(0)
  225 #define KQ_LOCK(kq) do {                                                \
  226         mtx_lock(&(kq)->kq_lock);                                       \
  227 } while (0)
  228 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  229         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  230                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  231                 wakeup((kq));                                           \
  232         }                                                               \
  233 } while (0)
  234 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  235         KQ_FLUX_WAKEUP(kq);                                             \
  236         mtx_unlock(&(kq)->kq_lock);                                     \
  237 } while (0)
  238 #define KQ_UNLOCK(kq) do {                                              \
  239         mtx_unlock(&(kq)->kq_lock);                                     \
  240 } while (0)
  241 #define KQ_OWNED(kq) do {                                               \
  242         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  243 } while (0)
  244 #define KQ_NOTOWNED(kq) do {                                            \
  245         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  246 } while (0)
  247 
  248 static struct knlist *
  249 kn_list_lock(struct knote *kn)
  250 {
  251         struct knlist *knl;
  252 
  253         knl = kn->kn_knlist;
  254         if (knl != NULL)
  255                 knl->kl_lock(knl->kl_lockarg);
  256         return (knl);
  257 }
  258 
  259 static void
  260 kn_list_unlock(struct knlist *knl)
  261 {
  262         bool do_free;
  263 
  264         if (knl == NULL)
  265                 return;
  266         do_free = knl->kl_autodestroy && knlist_empty(knl);
  267         knl->kl_unlock(knl->kl_lockarg);
  268         if (do_free) {
  269                 knlist_destroy(knl);
  270                 free(knl, M_KQUEUE);
  271         }
  272 }
  273 
  274 static bool
  275 kn_in_flux(struct knote *kn)
  276 {
  277 
  278         return (kn->kn_influx > 0);
  279 }
  280 
  281 static void
  282 kn_enter_flux(struct knote *kn)
  283 {
  284 
  285         KQ_OWNED(kn->kn_kq);
  286         MPASS(kn->kn_influx < INT_MAX);
  287         kn->kn_influx++;
  288 }
  289 
  290 static bool
  291 kn_leave_flux(struct knote *kn)
  292 {
  293 
  294         KQ_OWNED(kn->kn_kq);
  295         MPASS(kn->kn_influx > 0);
  296         kn->kn_influx--;
  297         return (kn->kn_influx == 0);
  298 }
  299 
  300 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  301         if (islocked)                                                   \
  302                 KNL_ASSERT_LOCKED(knl);                         \
  303         else                                                            \
  304                 KNL_ASSERT_UNLOCKED(knl);                               \
  305 } while (0)
  306 #ifdef INVARIANTS
  307 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  308         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  309 } while (0)
  310 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  311         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  312 } while (0)
  313 #else /* !INVARIANTS */
  314 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  315 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  316 #endif /* INVARIANTS */
  317 
  318 #ifndef KN_HASHSIZE
  319 #define KN_HASHSIZE             64              /* XXX should be tunable */
  320 #endif
  321 
  322 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  323 
  324 static int
  325 filt_nullattach(struct knote *kn)
  326 {
  327 
  328         return (ENXIO);
  329 };
  330 
  331 struct filterops null_filtops = {
  332         .f_isfd = 0,
  333         .f_attach = filt_nullattach,
  334 };
  335 
  336 /* XXX - make SYSINIT to add these, and move into respective modules. */
  337 extern struct filterops sig_filtops;
  338 extern struct filterops fs_filtops;
  339 
  340 /*
  341  * Table for all system-defined filters.
  342  */
  343 static struct mtx       filterops_lock;
  344 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  345         MTX_DEF);
  346 static struct {
  347         struct filterops *for_fop;
  348         int for_nolock;
  349         int for_refcnt;
  350 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  351         { &file_filtops, 1 },                   /* EVFILT_READ */
  352         { &file_filtops, 1 },                   /* EVFILT_WRITE */
  353         { &null_filtops },                      /* EVFILT_AIO */
  354         { &file_filtops, 1 },                   /* EVFILT_VNODE */
  355         { &proc_filtops, 1 },                   /* EVFILT_PROC */
  356         { &sig_filtops, 1 },                    /* EVFILT_SIGNAL */
  357         { &timer_filtops, 1 },                  /* EVFILT_TIMER */
  358         { &file_filtops, 1 },                   /* EVFILT_PROCDESC */
  359         { &fs_filtops, 1 },                     /* EVFILT_FS */
  360         { &null_filtops },                      /* EVFILT_LIO */
  361         { &user_filtops, 1 },                   /* EVFILT_USER */
  362         { &null_filtops },                      /* EVFILT_SENDFILE */
  363         { &file_filtops, 1 },                   /* EVFILT_EMPTY */
  364 };
  365 
  366 /*
  367  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  368  * method.
  369  */
  370 static int
  371 filt_fileattach(struct knote *kn)
  372 {
  373 
  374         return (fo_kqfilter(kn->kn_fp, kn));
  375 }
  376 
  377 /*ARGSUSED*/
  378 static int
  379 kqueue_kqfilter(struct file *fp, struct knote *kn)
  380 {
  381         struct kqueue *kq = kn->kn_fp->f_data;
  382 
  383         if (kn->kn_filter != EVFILT_READ)
  384                 return (EINVAL);
  385 
  386         kn->kn_status |= KN_KQUEUE;
  387         kn->kn_fop = &kqread_filtops;
  388         knlist_add(&kq->kq_sel.si_note, kn, 0);
  389 
  390         return (0);
  391 }
  392 
  393 static void
  394 filt_kqdetach(struct knote *kn)
  395 {
  396         struct kqueue *kq = kn->kn_fp->f_data;
  397 
  398         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  399 }
  400 
  401 /*ARGSUSED*/
  402 static int
  403 filt_kqueue(struct knote *kn, long hint)
  404 {
  405         struct kqueue *kq = kn->kn_fp->f_data;
  406 
  407         kn->kn_data = kq->kq_count;
  408         return (kn->kn_data > 0);
  409 }
  410 
  411 /* XXX - move to kern_proc.c?  */
  412 static int
  413 filt_procattach(struct knote *kn)
  414 {
  415         struct proc *p;
  416         int error;
  417         bool exiting, immediate;
  418 
  419         exiting = immediate = false;
  420         if (kn->kn_sfflags & NOTE_EXIT)
  421                 p = pfind_any(kn->kn_id);
  422         else
  423                 p = pfind(kn->kn_id);
  424         if (p == NULL)
  425                 return (ESRCH);
  426         if (p->p_flag & P_WEXIT)
  427                 exiting = true;
  428 
  429         if ((error = p_cansee(curthread, p))) {
  430                 PROC_UNLOCK(p);
  431                 return (error);
  432         }
  433 
  434         kn->kn_ptr.p_proc = p;
  435         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  436 
  437         /*
  438          * Internal flag indicating registration done by kernel for the
  439          * purposes of getting a NOTE_CHILD notification.
  440          */
  441         if (kn->kn_flags & EV_FLAG2) {
  442                 kn->kn_flags &= ~EV_FLAG2;
  443                 kn->kn_data = kn->kn_sdata;             /* ppid */
  444                 kn->kn_fflags = NOTE_CHILD;
  445                 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
  446                 immediate = true; /* Force immediate activation of child note. */
  447         }
  448         /*
  449          * Internal flag indicating registration done by kernel (for other than
  450          * NOTE_CHILD).
  451          */
  452         if (kn->kn_flags & EV_FLAG1) {
  453                 kn->kn_flags &= ~EV_FLAG1;
  454         }
  455 
  456         knlist_add(p->p_klist, kn, 1);
  457 
  458         /*
  459          * Immediately activate any child notes or, in the case of a zombie
  460          * target process, exit notes.  The latter is necessary to handle the
  461          * case where the target process, e.g. a child, dies before the kevent
  462          * is registered.
  463          */
  464         if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
  465                 KNOTE_ACTIVATE(kn, 0);
  466 
  467         PROC_UNLOCK(p);
  468 
  469         return (0);
  470 }
  471 
  472 /*
  473  * The knote may be attached to a different process, which may exit,
  474  * leaving nothing for the knote to be attached to.  So when the process
  475  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  476  * it will be deleted when read out.  However, as part of the knote deletion,
  477  * this routine is called, so a check is needed to avoid actually performing
  478  * a detach, because the original process does not exist any more.
  479  */
  480 /* XXX - move to kern_proc.c?  */
  481 static void
  482 filt_procdetach(struct knote *kn)
  483 {
  484 
  485         knlist_remove(kn->kn_knlist, kn, 0);
  486         kn->kn_ptr.p_proc = NULL;
  487 }
  488 
  489 /* XXX - move to kern_proc.c?  */
  490 static int
  491 filt_proc(struct knote *kn, long hint)
  492 {
  493         struct proc *p;
  494         u_int event;
  495 
  496         p = kn->kn_ptr.p_proc;
  497         if (p == NULL) /* already activated, from attach filter */
  498                 return (0);
  499 
  500         /* Mask off extra data. */
  501         event = (u_int)hint & NOTE_PCTRLMASK;
  502 
  503         /* If the user is interested in this event, record it. */
  504         if (kn->kn_sfflags & event)
  505                 kn->kn_fflags |= event;
  506 
  507         /* Process is gone, so flag the event as finished. */
  508         if (event == NOTE_EXIT) {
  509                 kn->kn_flags |= EV_EOF | EV_ONESHOT;
  510                 kn->kn_ptr.p_proc = NULL;
  511                 if (kn->kn_fflags & NOTE_EXIT)
  512                         kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
  513                 if (kn->kn_fflags == 0)
  514                         kn->kn_flags |= EV_DROP;
  515                 return (1);
  516         }
  517 
  518         return (kn->kn_fflags != 0);
  519 }
  520 
  521 /*
  522  * Called when the process forked. It mostly does the same as the
  523  * knote(), activating all knotes registered to be activated when the
  524  * process forked. Additionally, for each knote attached to the
  525  * parent, check whether user wants to track the new process. If so
  526  * attach a new knote to it, and immediately report an event with the
  527  * child's pid.
  528  */
  529 void
  530 knote_fork(struct knlist *list, int pid)
  531 {
  532         struct kqueue *kq;
  533         struct knote *kn;
  534         struct kevent kev;
  535         int error;
  536 
  537         if (list == NULL)
  538                 return;
  539 
  540         memset(&kev, 0, sizeof(kev));
  541         list->kl_lock(list->kl_lockarg);
  542         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  543                 kq = kn->kn_kq;
  544                 KQ_LOCK(kq);
  545                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
  546                         KQ_UNLOCK(kq);
  547                         continue;
  548                 }
  549 
  550                 /*
  551                  * The same as knote(), activate the event.
  552                  */
  553                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  554                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  555                                 KNOTE_ACTIVATE(kn, 1);
  556                         KQ_UNLOCK(kq);
  557                         continue;
  558                 }
  559 
  560                 /*
  561                  * The NOTE_TRACK case. In addition to the activation
  562                  * of the event, we need to register new events to
  563                  * track the child. Drop the locks in preparation for
  564                  * the call to kqueue_register().
  565                  */
  566                 kn_enter_flux(kn);
  567                 KQ_UNLOCK(kq);
  568                 list->kl_unlock(list->kl_lockarg);
  569 
  570                 /*
  571                  * Activate existing knote and register tracking knotes with
  572                  * new process.
  573                  *
  574                  * First register a knote to get just the child notice. This
  575                  * must be a separate note from a potential NOTE_EXIT
  576                  * notification since both NOTE_CHILD and NOTE_EXIT are defined
  577                  * to use the data field (in conflicting ways).
  578                  */
  579                 kev.ident = pid;
  580                 kev.filter = kn->kn_filter;
  581                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
  582                     EV_FLAG2;
  583                 kev.fflags = kn->kn_sfflags;
  584                 kev.data = kn->kn_id;           /* parent */
  585                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  586                 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
  587                 if (error)
  588                         kn->kn_fflags |= NOTE_TRACKERR;
  589 
  590                 /*
  591                  * Then register another knote to track other potential events
  592                  * from the new process.
  593                  */
  594                 kev.ident = pid;
  595                 kev.filter = kn->kn_filter;
  596                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  597                 kev.fflags = kn->kn_sfflags;
  598                 kev.data = kn->kn_id;           /* parent */
  599                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  600                 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
  601                 if (error)
  602                         kn->kn_fflags |= NOTE_TRACKERR;
  603                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  604                         KNOTE_ACTIVATE(kn, 0);
  605                 list->kl_lock(list->kl_lockarg);
  606                 KQ_LOCK(kq);
  607                 kn_leave_flux(kn);
  608                 KQ_UNLOCK_FLUX(kq);
  609         }
  610         list->kl_unlock(list->kl_lockarg);
  611 }
  612 
  613 /*
  614  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  615  * interval timer support code.
  616  */
  617 
  618 #define NOTE_TIMER_PRECMASK                                             \
  619     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
  620 
  621 static sbintime_t
  622 timer2sbintime(int64_t data, int flags)
  623 {
  624         int64_t secs;
  625 
  626         /*
  627          * Macros for converting to the fractional second portion of an
  628          * sbintime_t using 64bit multiplication to improve precision.
  629          */
  630 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
  631 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
  632 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
  633         switch (flags & NOTE_TIMER_PRECMASK) {
  634         case NOTE_SECONDS:
  635 #ifdef __LP64__
  636                 if (data > (SBT_MAX / SBT_1S))
  637                         return (SBT_MAX);
  638 #endif
  639                 return ((sbintime_t)data << 32);
  640         case NOTE_MSECONDS: /* FALLTHROUGH */
  641         case 0:
  642                 if (data >= 1000) {
  643                         secs = data / 1000;
  644 #ifdef __LP64__
  645                         if (secs > (SBT_MAX / SBT_1S))
  646                                 return (SBT_MAX);
  647 #endif
  648                         return (secs << 32 | MS_TO_SBT(data % 1000));
  649                 }
  650                 return (MS_TO_SBT(data));
  651         case NOTE_USECONDS:
  652                 if (data >= 1000000) {
  653                         secs = data / 1000000;
  654 #ifdef __LP64__
  655                         if (secs > (SBT_MAX / SBT_1S))
  656                                 return (SBT_MAX);
  657 #endif
  658                         return (secs << 32 | US_TO_SBT(data % 1000000));
  659                 }
  660                 return (US_TO_SBT(data));
  661         case NOTE_NSECONDS:
  662                 if (data >= 1000000000) {
  663                         secs = data / 1000000000;
  664 #ifdef __LP64__
  665                         if (secs > (SBT_MAX / SBT_1S))
  666                                 return (SBT_MAX);
  667 #endif
  668                         return (secs << 32 | NS_TO_SBT(data % 1000000000));
  669                 }
  670                 return (NS_TO_SBT(data));
  671         default:
  672                 break;
  673         }
  674         return (-1);
  675 }
  676 
  677 struct kq_timer_cb_data {
  678         struct callout c;
  679         sbintime_t next;        /* next timer event fires at */
  680         sbintime_t to;          /* precalculated timer period, 0 for abs */
  681 };
  682 
  683 static void
  684 filt_timerexpire(void *knx)
  685 {
  686         struct knote *kn;
  687         struct kq_timer_cb_data *kc;
  688 
  689         kn = knx;
  690         kn->kn_data++;
  691         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  692 
  693         if ((kn->kn_flags & EV_ONESHOT) != 0)
  694                 return;
  695         kc = kn->kn_ptr.p_v;
  696         if (kc->to == 0)
  697                 return;
  698         kc->next += kc->to;
  699         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  700             PCPU_GET(cpuid), C_ABSOLUTE);
  701 }
  702 
  703 /*
  704  * data contains amount of time to sleep
  705  */
  706 static int
  707 filt_timervalidate(struct knote *kn, sbintime_t *to)
  708 {
  709         struct bintime bt;
  710         sbintime_t sbt;
  711 
  712         if (kn->kn_sdata < 0)
  713                 return (EINVAL);
  714         if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  715                 kn->kn_sdata = 1;
  716         /*
  717          * The only fflags values supported are the timer unit
  718          * (precision) and the absolute time indicator.
  719          */
  720         if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
  721                 return (EINVAL);
  722 
  723         *to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  724         if (*to < 0)
  725                 return (EINVAL);
  726         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  727                 getboottimebin(&bt);
  728                 sbt = bttosbt(bt);
  729                 *to = MAX(0, *to - sbt);
  730         }
  731         return (0);
  732 }
  733 
  734 static int
  735 filt_timerattach(struct knote *kn)
  736 {
  737         struct kq_timer_cb_data *kc;
  738         sbintime_t to;
  739         unsigned int ncallouts;
  740         int error;
  741 
  742         to = -1;
  743         error = filt_timervalidate(kn, &to);
  744         if (error != 0)
  745                 return (error);
  746         KASSERT(to > 0 || (kn->kn_flags & EV_ONESHOT) != 0 ||
  747             (kn->kn_sfflags & NOTE_ABSTIME) != 0,
  748             ("%s: periodic timer has a calculated zero timeout", __func__));
  749         KASSERT(to >= 0,
  750             ("%s: timer has a calculated negative timeout", __func__));
  751 
  752         do {
  753                 ncallouts = kq_ncallouts;
  754                 if (ncallouts >= kq_calloutmax)
  755                         return (ENOMEM);
  756         } while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
  757 
  758         if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
  759                 kn->kn_flags |= EV_CLEAR;       /* automatically set */
  760         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  761         kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
  762         callout_init(&kc->c, 1);
  763         filt_timerstart(kn, to);
  764 
  765         return (0);
  766 }
  767 
  768 static void
  769 filt_timerstart(struct knote *kn, sbintime_t to)
  770 {
  771         struct kq_timer_cb_data *kc;
  772 
  773         kc = kn->kn_ptr.p_v;
  774         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  775                 kc->next = to;
  776                 kc->to = 0;
  777         } else {
  778                 kc->next = to + sbinuptime();
  779                 kc->to = to;
  780         }
  781         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  782             PCPU_GET(cpuid), C_ABSOLUTE);
  783 }
  784 
  785 static void
  786 filt_timerdetach(struct knote *kn)
  787 {
  788         struct kq_timer_cb_data *kc;
  789         unsigned int old __unused;
  790 
  791         kc = kn->kn_ptr.p_v;
  792         callout_drain(&kc->c);
  793         free(kc, M_KQUEUE);
  794         old = atomic_fetchadd_int(&kq_ncallouts, -1);
  795         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  796         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  797 }
  798 
  799 static void
  800 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
  801 {
  802         struct kq_timer_cb_data *kc;    
  803         struct kqueue *kq;
  804         sbintime_t to;
  805         int error;
  806 
  807         switch (type) {
  808         case EVENT_REGISTER:
  809                 /* Handle re-added timers that update data/fflags */
  810                 if (kev->flags & EV_ADD) {
  811                         kc = kn->kn_ptr.p_v;
  812 
  813                         /* Drain any existing callout. */
  814                         callout_drain(&kc->c);
  815 
  816                         /* Throw away any existing undelivered record
  817                          * of the timer expiration. This is done under
  818                          * the presumption that if a process is
  819                          * re-adding this timer with new parameters,
  820                          * it is no longer interested in what may have
  821                          * happened under the old parameters. If it is
  822                          * interested, it can wait for the expiration,
  823                          * delete the old timer definition, and then
  824                          * add the new one.
  825                          *
  826                          * This has to be done while the kq is locked:
  827                          *   - if enqueued, dequeue
  828                          *   - make it no longer active
  829                          *   - clear the count of expiration events
  830                          */
  831                         kq = kn->kn_kq;
  832                         KQ_LOCK(kq);
  833                         if (kn->kn_status & KN_QUEUED)
  834                                 knote_dequeue(kn);
  835 
  836                         kn->kn_status &= ~KN_ACTIVE;
  837                         kn->kn_data = 0;
  838                         KQ_UNLOCK(kq);
  839                         
  840                         /* Reschedule timer based on new data/fflags */
  841                         kn->kn_sfflags = kev->fflags;
  842                         kn->kn_sdata = kev->data;
  843                         error = filt_timervalidate(kn, &to);
  844                         if (error != 0) {
  845                                 kn->kn_flags |= EV_ERROR;
  846                                 kn->kn_data = error;
  847                         } else
  848                                 filt_timerstart(kn, to);
  849                 }
  850                 break;
  851 
  852         case EVENT_PROCESS:
  853                 *kev = kn->kn_kevent;
  854                 if (kn->kn_flags & EV_CLEAR) {
  855                         kn->kn_data = 0;
  856                         kn->kn_fflags = 0;
  857                 }
  858                 break;
  859 
  860         default:
  861                 panic("filt_timertouch() - invalid type (%ld)", type);
  862                 break;
  863         }
  864 }
  865 
  866 static int
  867 filt_timer(struct knote *kn, long hint)
  868 {
  869 
  870         return (kn->kn_data != 0);
  871 }
  872 
  873 static int
  874 filt_userattach(struct knote *kn)
  875 {
  876 
  877         /* 
  878          * EVFILT_USER knotes are not attached to anything in the kernel.
  879          */ 
  880         kn->kn_hook = NULL;
  881         if (kn->kn_fflags & NOTE_TRIGGER)
  882                 kn->kn_hookid = 1;
  883         else
  884                 kn->kn_hookid = 0;
  885         return (0);
  886 }
  887 
  888 static void
  889 filt_userdetach(__unused struct knote *kn)
  890 {
  891 
  892         /*
  893          * EVFILT_USER knotes are not attached to anything in the kernel.
  894          */
  895 }
  896 
  897 static int
  898 filt_user(struct knote *kn, __unused long hint)
  899 {
  900 
  901         return (kn->kn_hookid);
  902 }
  903 
  904 static void
  905 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  906 {
  907         u_int ffctrl;
  908 
  909         switch (type) {
  910         case EVENT_REGISTER:
  911                 if (kev->fflags & NOTE_TRIGGER)
  912                         kn->kn_hookid = 1;
  913 
  914                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  915                 kev->fflags &= NOTE_FFLAGSMASK;
  916                 switch (ffctrl) {
  917                 case NOTE_FFNOP:
  918                         break;
  919 
  920                 case NOTE_FFAND:
  921                         kn->kn_sfflags &= kev->fflags;
  922                         break;
  923 
  924                 case NOTE_FFOR:
  925                         kn->kn_sfflags |= kev->fflags;
  926                         break;
  927 
  928                 case NOTE_FFCOPY:
  929                         kn->kn_sfflags = kev->fflags;
  930                         break;
  931 
  932                 default:
  933                         /* XXX Return error? */
  934                         break;
  935                 }
  936                 kn->kn_sdata = kev->data;
  937                 if (kev->flags & EV_CLEAR) {
  938                         kn->kn_hookid = 0;
  939                         kn->kn_data = 0;
  940                         kn->kn_fflags = 0;
  941                 }
  942                 break;
  943 
  944         case EVENT_PROCESS:
  945                 *kev = kn->kn_kevent;
  946                 kev->fflags = kn->kn_sfflags;
  947                 kev->data = kn->kn_sdata;
  948                 if (kn->kn_flags & EV_CLEAR) {
  949                         kn->kn_hookid = 0;
  950                         kn->kn_data = 0;
  951                         kn->kn_fflags = 0;
  952                 }
  953                 break;
  954 
  955         default:
  956                 panic("filt_usertouch() - invalid type (%ld)", type);
  957                 break;
  958         }
  959 }
  960 
  961 int
  962 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  963 {
  964 
  965         return (kern_kqueue(td, 0, NULL));
  966 }
  967 
  968 static void
  969 kqueue_init(struct kqueue *kq)
  970 {
  971 
  972         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
  973         TAILQ_INIT(&kq->kq_head);
  974         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  975         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  976 }
  977 
  978 int
  979 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
  980 {
  981         struct filedesc *fdp;
  982         struct kqueue *kq;
  983         struct file *fp;
  984         struct ucred *cred;
  985         int fd, error;
  986 
  987         fdp = td->td_proc->p_fd;
  988         cred = td->td_ucred;
  989         if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
  990                 return (ENOMEM);
  991 
  992         error = falloc_caps(td, &fp, &fd, flags, fcaps);
  993         if (error != 0) {
  994                 chgkqcnt(cred->cr_ruidinfo, -1, 0);
  995                 return (error);
  996         }
  997 
  998         /* An extra reference on `fp' has been held for us by falloc(). */
  999         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
 1000         kqueue_init(kq);
 1001         kq->kq_fdp = fdp;
 1002         kq->kq_cred = crhold(cred);
 1003 
 1004         FILEDESC_XLOCK(fdp);
 1005         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
 1006         FILEDESC_XUNLOCK(fdp);
 1007 
 1008         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
 1009         fdrop(fp, td);
 1010 
 1011         td->td_retval[0] = fd;
 1012         return (0);
 1013 }
 1014 
 1015 struct g_kevent_args {
 1016         int     fd;
 1017         void    *changelist;
 1018         int     nchanges;
 1019         void    *eventlist;
 1020         int     nevents;
 1021         const struct timespec *timeout;
 1022 };
 1023 
 1024 int
 1025 sys_kevent(struct thread *td, struct kevent_args *uap)
 1026 {
 1027         struct kevent_copyops k_ops = {
 1028                 .arg = uap,
 1029                 .k_copyout = kevent_copyout,
 1030                 .k_copyin = kevent_copyin,
 1031                 .kevent_size = sizeof(struct kevent),
 1032         };
 1033         struct g_kevent_args gk_args = {
 1034                 .fd = uap->fd,
 1035                 .changelist = uap->changelist,
 1036                 .nchanges = uap->nchanges,
 1037                 .eventlist = uap->eventlist,
 1038                 .nevents = uap->nevents,
 1039                 .timeout = uap->timeout,
 1040         };
 1041 
 1042         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
 1043 }
 1044 
 1045 static int
 1046 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
 1047     struct kevent_copyops *k_ops, const char *struct_name)
 1048 {
 1049         struct timespec ts, *tsp;
 1050 #ifdef KTRACE
 1051         struct kevent *eventlist = uap->eventlist;
 1052 #endif
 1053         int error;
 1054 
 1055         if (uap->timeout != NULL) {
 1056                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1057                 if (error)
 1058                         return (error);
 1059                 tsp = &ts;
 1060         } else
 1061                 tsp = NULL;
 1062 
 1063 #ifdef KTRACE
 1064         if (KTRPOINT(td, KTR_STRUCT_ARRAY))
 1065                 ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
 1066                     uap->nchanges, k_ops->kevent_size);
 1067 #endif
 1068 
 1069         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
 1070             k_ops, tsp);
 1071 
 1072 #ifdef KTRACE
 1073         if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
 1074                 ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
 1075                     td->td_retval[0], k_ops->kevent_size);
 1076 #endif
 1077 
 1078         return (error);
 1079 }
 1080 
 1081 /*
 1082  * Copy 'count' items into the destination list pointed to by uap->eventlist.
 1083  */
 1084 static int
 1085 kevent_copyout(void *arg, struct kevent *kevp, int count)
 1086 {
 1087         struct kevent_args *uap;
 1088         int error;
 1089 
 1090         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1091         uap = (struct kevent_args *)arg;
 1092 
 1093         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
 1094         if (error == 0)
 1095                 uap->eventlist += count;
 1096         return (error);
 1097 }
 1098 
 1099 /*
 1100  * Copy 'count' items from the list pointed to by uap->changelist.
 1101  */
 1102 static int
 1103 kevent_copyin(void *arg, struct kevent *kevp, int count)
 1104 {
 1105         struct kevent_args *uap;
 1106         int error;
 1107 
 1108         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1109         uap = (struct kevent_args *)arg;
 1110 
 1111         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
 1112         if (error == 0)
 1113                 uap->changelist += count;
 1114         return (error);
 1115 }
 1116 
 1117 #ifdef COMPAT_FREEBSD11
 1118 static int
 1119 kevent11_copyout(void *arg, struct kevent *kevp, int count)
 1120 {
 1121         struct freebsd11_kevent_args *uap;
 1122         struct kevent_freebsd11 kev11;
 1123         int error, i;
 1124 
 1125         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1126         uap = (struct freebsd11_kevent_args *)arg;
 1127 
 1128         for (i = 0; i < count; i++) {
 1129                 kev11.ident = kevp->ident;
 1130                 kev11.filter = kevp->filter;
 1131                 kev11.flags = kevp->flags;
 1132                 kev11.fflags = kevp->fflags;
 1133                 kev11.data = kevp->data;
 1134                 kev11.udata = kevp->udata;
 1135                 error = copyout(&kev11, uap->eventlist, sizeof(kev11));
 1136                 if (error != 0)
 1137                         break;
 1138                 uap->eventlist++;
 1139                 kevp++;
 1140         }
 1141         return (error);
 1142 }
 1143 
 1144 /*
 1145  * Copy 'count' items from the list pointed to by uap->changelist.
 1146  */
 1147 static int
 1148 kevent11_copyin(void *arg, struct kevent *kevp, int count)
 1149 {
 1150         struct freebsd11_kevent_args *uap;
 1151         struct kevent_freebsd11 kev11;
 1152         int error, i;
 1153 
 1154         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1155         uap = (struct freebsd11_kevent_args *)arg;
 1156 
 1157         for (i = 0; i < count; i++) {
 1158                 error = copyin(uap->changelist, &kev11, sizeof(kev11));
 1159                 if (error != 0)
 1160                         break;
 1161                 kevp->ident = kev11.ident;
 1162                 kevp->filter = kev11.filter;
 1163                 kevp->flags = kev11.flags;
 1164                 kevp->fflags = kev11.fflags;
 1165                 kevp->data = (uintptr_t)kev11.data;
 1166                 kevp->udata = kev11.udata;
 1167                 bzero(&kevp->ext, sizeof(kevp->ext));
 1168                 uap->changelist++;
 1169                 kevp++;
 1170         }
 1171         return (error);
 1172 }
 1173 
 1174 int
 1175 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
 1176 {
 1177         struct kevent_copyops k_ops = {
 1178                 .arg = uap,
 1179                 .k_copyout = kevent11_copyout,
 1180                 .k_copyin = kevent11_copyin,
 1181                 .kevent_size = sizeof(struct kevent_freebsd11),
 1182         };
 1183         struct g_kevent_args gk_args = {
 1184                 .fd = uap->fd,
 1185                 .changelist = uap->changelist,
 1186                 .nchanges = uap->nchanges,
 1187                 .eventlist = uap->eventlist,
 1188                 .nevents = uap->nevents,
 1189                 .timeout = uap->timeout,
 1190         };
 1191 
 1192         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
 1193 }
 1194 #endif
 1195 
 1196 int
 1197 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
 1198     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1199 {
 1200         cap_rights_t rights;
 1201         struct file *fp;
 1202         int error;
 1203 
 1204         cap_rights_init(&rights);
 1205         if (nchanges > 0)
 1206                 cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
 1207         if (nevents > 0)
 1208                 cap_rights_set(&rights, CAP_KQUEUE_EVENT);
 1209         error = fget(td, fd, &rights, &fp);
 1210         if (error != 0)
 1211                 return (error);
 1212 
 1213         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
 1214         fdrop(fp, td);
 1215 
 1216         return (error);
 1217 }
 1218 
 1219 static int
 1220 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
 1221     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1222 {
 1223         struct kevent keva[KQ_NEVENTS];
 1224         struct kevent *kevp, *changes;
 1225         int i, n, nerrors, error;
 1226 
 1227         nerrors = 0;
 1228         while (nchanges > 0) {
 1229                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
 1230                 error = k_ops->k_copyin(k_ops->arg, keva, n);
 1231                 if (error)
 1232                         return (error);
 1233                 changes = keva;
 1234                 for (i = 0; i < n; i++) {
 1235                         kevp = &changes[i];
 1236                         if (!kevp->filter)
 1237                                 continue;
 1238                         kevp->flags &= ~EV_SYSFLAGS;
 1239                         error = kqueue_register(kq, kevp, td, M_WAITOK);
 1240                         if (error || (kevp->flags & EV_RECEIPT)) {
 1241                                 if (nevents == 0)
 1242                                         return (error);
 1243                                 kevp->flags = EV_ERROR;
 1244                                 kevp->data = error;
 1245                                 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
 1246                                 nevents--;
 1247                                 nerrors++;
 1248                         }
 1249                 }
 1250                 nchanges -= n;
 1251         }
 1252         if (nerrors) {
 1253                 td->td_retval[0] = nerrors;
 1254                 return (0);
 1255         }
 1256 
 1257         return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
 1258 }
 1259 
 1260 int
 1261 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
 1262     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1263 {
 1264         struct kqueue *kq;
 1265         int error;
 1266 
 1267         error = kqueue_acquire(fp, &kq);
 1268         if (error != 0)
 1269                 return (error);
 1270         error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
 1271         kqueue_release(kq, 0);
 1272         return (error);
 1273 }
 1274 
 1275 /*
 1276  * Performs a kevent() call on a temporarily created kqueue. This can be
 1277  * used to perform one-shot polling, similar to poll() and select().
 1278  */
 1279 int
 1280 kern_kevent_anonymous(struct thread *td, int nevents,
 1281     struct kevent_copyops *k_ops)
 1282 {
 1283         struct kqueue kq = {};
 1284         int error;
 1285 
 1286         kqueue_init(&kq);
 1287         kq.kq_refcnt = 1;
 1288         error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
 1289         kqueue_drain(&kq, td);
 1290         kqueue_destroy(&kq);
 1291         return (error);
 1292 }
 1293 
 1294 int
 1295 kqueue_add_filteropts(int filt, struct filterops *filtops)
 1296 {
 1297         int error;
 1298 
 1299         error = 0;
 1300         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
 1301                 printf(
 1302 "trying to add a filterop that is out of range: %d is beyond %d\n",
 1303                     ~filt, EVFILT_SYSCOUNT);
 1304                 return EINVAL;
 1305         }
 1306         mtx_lock(&filterops_lock);
 1307         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
 1308             sysfilt_ops[~filt].for_fop != NULL)
 1309                 error = EEXIST;
 1310         else {
 1311                 sysfilt_ops[~filt].for_fop = filtops;
 1312                 sysfilt_ops[~filt].for_refcnt = 0;
 1313         }
 1314         mtx_unlock(&filterops_lock);
 1315 
 1316         return (error);
 1317 }
 1318 
 1319 int
 1320 kqueue_del_filteropts(int filt)
 1321 {
 1322         int error;
 1323 
 1324         error = 0;
 1325         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1326                 return EINVAL;
 1327 
 1328         mtx_lock(&filterops_lock);
 1329         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
 1330             sysfilt_ops[~filt].for_fop == NULL)
 1331                 error = EINVAL;
 1332         else if (sysfilt_ops[~filt].for_refcnt != 0)
 1333                 error = EBUSY;
 1334         else {
 1335                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1336                 sysfilt_ops[~filt].for_refcnt = 0;
 1337         }
 1338         mtx_unlock(&filterops_lock);
 1339 
 1340         return error;
 1341 }
 1342 
 1343 static struct filterops *
 1344 kqueue_fo_find(int filt)
 1345 {
 1346 
 1347         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1348                 return NULL;
 1349 
 1350         if (sysfilt_ops[~filt].for_nolock)
 1351                 return sysfilt_ops[~filt].for_fop;
 1352 
 1353         mtx_lock(&filterops_lock);
 1354         sysfilt_ops[~filt].for_refcnt++;
 1355         if (sysfilt_ops[~filt].for_fop == NULL)
 1356                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1357         mtx_unlock(&filterops_lock);
 1358 
 1359         return sysfilt_ops[~filt].for_fop;
 1360 }
 1361 
 1362 static void
 1363 kqueue_fo_release(int filt)
 1364 {
 1365 
 1366         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1367                 return;
 1368 
 1369         if (sysfilt_ops[~filt].for_nolock)
 1370                 return;
 1371 
 1372         mtx_lock(&filterops_lock);
 1373         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1374             ("filter object refcount not valid on release"));
 1375         sysfilt_ops[~filt].for_refcnt--;
 1376         mtx_unlock(&filterops_lock);
 1377 }
 1378 
 1379 /*
 1380  * A ref to kq (obtained via kqueue_acquire) must be held.
 1381  */
 1382 static int
 1383 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
 1384     int mflag)
 1385 {
 1386         struct filterops *fops;
 1387         struct file *fp;
 1388         struct knote *kn, *tkn;
 1389         struct knlist *knl;
 1390         int error, filt, event;
 1391         int haskqglobal, filedesc_unlock;
 1392 
 1393         if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
 1394                 return (EINVAL);
 1395 
 1396         fp = NULL;
 1397         kn = NULL;
 1398         knl = NULL;
 1399         error = 0;
 1400         haskqglobal = 0;
 1401         filedesc_unlock = 0;
 1402 
 1403         filt = kev->filter;
 1404         fops = kqueue_fo_find(filt);
 1405         if (fops == NULL)
 1406                 return EINVAL;
 1407 
 1408         if (kev->flags & EV_ADD) {
 1409                 /*
 1410                  * Prevent waiting with locks.  Non-sleepable
 1411                  * allocation failures are handled in the loop, only
 1412                  * if the spare knote appears to be actually required.
 1413                  */
 1414                 tkn = knote_alloc(mflag);
 1415         } else {
 1416                 tkn = NULL;
 1417         }
 1418 
 1419 findkn:
 1420         if (fops->f_isfd) {
 1421                 KASSERT(td != NULL, ("td is NULL"));
 1422                 if (kev->ident > INT_MAX)
 1423                         error = EBADF;
 1424                 else
 1425                         error = fget(td, kev->ident, &cap_event_rights, &fp);
 1426                 if (error)
 1427                         goto done;
 1428 
 1429                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1430                     kev->ident, M_NOWAIT) != 0) {
 1431                         /* try again */
 1432                         fdrop(fp, td);
 1433                         fp = NULL;
 1434                         error = kqueue_expand(kq, fops, kev->ident, mflag);
 1435                         if (error)
 1436                                 goto done;
 1437                         goto findkn;
 1438                 }
 1439 
 1440                 if (fp->f_type == DTYPE_KQUEUE) {
 1441                         /*
 1442                          * If we add some intelligence about what we are doing,
 1443                          * we should be able to support events on ourselves.
 1444                          * We need to know when we are doing this to prevent
 1445                          * getting both the knlist lock and the kq lock since
 1446                          * they are the same thing.
 1447                          */
 1448                         if (fp->f_data == kq) {
 1449                                 error = EINVAL;
 1450                                 goto done;
 1451                         }
 1452 
 1453                         /*
 1454                          * Pre-lock the filedesc before the global
 1455                          * lock mutex, see the comment in
 1456                          * kqueue_close().
 1457                          */
 1458                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1459                         filedesc_unlock = 1;
 1460                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1461                 }
 1462 
 1463                 KQ_LOCK(kq);
 1464                 if (kev->ident < kq->kq_knlistsize) {
 1465                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1466                                 if (kev->filter == kn->kn_filter)
 1467                                         break;
 1468                 }
 1469         } else {
 1470                 if ((kev->flags & EV_ADD) == EV_ADD) {
 1471                         error = kqueue_expand(kq, fops, kev->ident, mflag);
 1472                         if (error != 0)
 1473                                 goto done;
 1474                 }
 1475 
 1476                 KQ_LOCK(kq);
 1477 
 1478                 /*
 1479                  * If possible, find an existing knote to use for this kevent.
 1480                  */
 1481                 if (kev->filter == EVFILT_PROC &&
 1482                     (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
 1483                         /* This is an internal creation of a process tracking
 1484                          * note. Don't attempt to coalesce this with an
 1485                          * existing note.
 1486                          */
 1487                         ;                       
 1488                 } else if (kq->kq_knhashmask != 0) {
 1489                         struct klist *list;
 1490 
 1491                         list = &kq->kq_knhash[
 1492                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1493                         SLIST_FOREACH(kn, list, kn_link)
 1494                                 if (kev->ident == kn->kn_id &&
 1495                                     kev->filter == kn->kn_filter)
 1496                                         break;
 1497                 }
 1498         }
 1499 
 1500         /* knote is in the process of changing, wait for it to stabilize. */
 1501         if (kn != NULL && kn_in_flux(kn)) {
 1502                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1503                 if (filedesc_unlock) {
 1504                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1505                         filedesc_unlock = 0;
 1506                 }
 1507                 kq->kq_state |= KQ_FLUXWAIT;
 1508                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1509                 if (fp != NULL) {
 1510                         fdrop(fp, td);
 1511                         fp = NULL;
 1512                 }
 1513                 goto findkn;
 1514         }
 1515 
 1516         /*
 1517          * kn now contains the matching knote, or NULL if no match
 1518          */
 1519         if (kn == NULL) {
 1520                 if (kev->flags & EV_ADD) {
 1521                         kn = tkn;
 1522                         tkn = NULL;
 1523                         if (kn == NULL) {
 1524                                 KQ_UNLOCK(kq);
 1525                                 error = ENOMEM;
 1526                                 goto done;
 1527                         }
 1528                         kn->kn_fp = fp;
 1529                         kn->kn_kq = kq;
 1530                         kn->kn_fop = fops;
 1531                         /*
 1532                          * apply reference counts to knote structure, and
 1533                          * do not release it at the end of this routine.
 1534                          */
 1535                         fops = NULL;
 1536                         fp = NULL;
 1537 
 1538                         kn->kn_sfflags = kev->fflags;
 1539                         kn->kn_sdata = kev->data;
 1540                         kev->fflags = 0;
 1541                         kev->data = 0;
 1542                         kn->kn_kevent = *kev;
 1543                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1544                             EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
 1545                         kn->kn_status = KN_DETACHED;
 1546                         if ((kev->flags & EV_DISABLE) != 0)
 1547                                 kn->kn_status |= KN_DISABLED;
 1548                         kn_enter_flux(kn);
 1549 
 1550                         error = knote_attach(kn, kq);
 1551                         KQ_UNLOCK(kq);
 1552                         if (error != 0) {
 1553                                 tkn = kn;
 1554                                 goto done;
 1555                         }
 1556 
 1557                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1558                                 knote_drop_detached(kn, td);
 1559                                 goto done;
 1560                         }
 1561                         knl = kn_list_lock(kn);
 1562                         goto done_ev_add;
 1563                 } else {
 1564                         /* No matching knote and the EV_ADD flag is not set. */
 1565                         KQ_UNLOCK(kq);
 1566                         error = ENOENT;
 1567                         goto done;
 1568                 }
 1569         }
 1570         
 1571         if (kev->flags & EV_DELETE) {
 1572                 kn_enter_flux(kn);
 1573                 KQ_UNLOCK(kq);
 1574                 knote_drop(kn, td);
 1575                 goto done;
 1576         }
 1577 
 1578         if (kev->flags & EV_FORCEONESHOT) {
 1579                 kn->kn_flags |= EV_ONESHOT;
 1580                 KNOTE_ACTIVATE(kn, 1);
 1581         }
 1582 
 1583         if ((kev->flags & EV_ENABLE) != 0)
 1584                 kn->kn_status &= ~KN_DISABLED;
 1585         else if ((kev->flags & EV_DISABLE) != 0)
 1586                 kn->kn_status |= KN_DISABLED;
 1587 
 1588         /*
 1589          * The user may change some filter values after the initial EV_ADD,
 1590          * but doing so will not reset any filter which has already been
 1591          * triggered.
 1592          */
 1593         kn->kn_status |= KN_SCAN;
 1594         kn_enter_flux(kn);
 1595         KQ_UNLOCK(kq);
 1596         knl = kn_list_lock(kn);
 1597         kn->kn_kevent.udata = kev->udata;
 1598         if (!fops->f_isfd && fops->f_touch != NULL) {
 1599                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1600         } else {
 1601                 kn->kn_sfflags = kev->fflags;
 1602                 kn->kn_sdata = kev->data;
 1603         }
 1604 
 1605 done_ev_add:
 1606         /*
 1607          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1608          * the initial attach event decides that the event is "completed" 
 1609          * already, e.g., filt_procattach() is called on a zombie process.  It
 1610          * will call filt_proc() which will remove it from the list, and NULL
 1611          * kn_knlist.
 1612          *
 1613          * KN_DISABLED will be stable while the knote is in flux, so the
 1614          * unlocked read will not race with an update.
 1615          */
 1616         if ((kn->kn_status & KN_DISABLED) == 0)
 1617                 event = kn->kn_fop->f_event(kn, 0);
 1618         else
 1619                 event = 0;
 1620 
 1621         KQ_LOCK(kq);
 1622         if (event)
 1623                 kn->kn_status |= KN_ACTIVE;
 1624         if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
 1625             KN_ACTIVE)
 1626                 knote_enqueue(kn);
 1627         kn->kn_status &= ~KN_SCAN;
 1628         kn_leave_flux(kn);
 1629         kn_list_unlock(knl);
 1630         KQ_UNLOCK_FLUX(kq);
 1631 
 1632 done:
 1633         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1634         if (filedesc_unlock)
 1635                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1636         if (fp != NULL)
 1637                 fdrop(fp, td);
 1638         knote_free(tkn);
 1639         if (fops != NULL)
 1640                 kqueue_fo_release(filt);
 1641         return (error);
 1642 }
 1643 
 1644 static int
 1645 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1646 {
 1647         int error;
 1648         struct kqueue *kq;
 1649 
 1650         error = 0;
 1651 
 1652         kq = fp->f_data;
 1653         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1654                 return (EBADF);
 1655         *kqp = kq;
 1656         KQ_LOCK(kq);
 1657         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1658                 KQ_UNLOCK(kq);
 1659                 return (EBADF);
 1660         }
 1661         kq->kq_refcnt++;
 1662         KQ_UNLOCK(kq);
 1663 
 1664         return error;
 1665 }
 1666 
 1667 static void
 1668 kqueue_release(struct kqueue *kq, int locked)
 1669 {
 1670         if (locked)
 1671                 KQ_OWNED(kq);
 1672         else
 1673                 KQ_LOCK(kq);
 1674         kq->kq_refcnt--;
 1675         if (kq->kq_refcnt == 1)
 1676                 wakeup(&kq->kq_refcnt);
 1677         if (!locked)
 1678                 KQ_UNLOCK(kq);
 1679 }
 1680 
 1681 static void
 1682 kqueue_schedtask(struct kqueue *kq)
 1683 {
 1684 
 1685         KQ_OWNED(kq);
 1686         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1687             ("scheduling kqueue task while draining"));
 1688 
 1689         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1690                 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
 1691                 kq->kq_state |= KQ_TASKSCHED;
 1692         }
 1693 }
 1694 
 1695 /*
 1696  * Expand the kq to make sure we have storage for fops/ident pair.
 1697  *
 1698  * Return 0 on success (or no work necessary), return errno on failure.
 1699  */
 1700 static int
 1701 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1702     int mflag)
 1703 {
 1704         struct klist *list, *tmp_knhash, *to_free;
 1705         u_long tmp_knhashmask;
 1706         int error, fd, size;
 1707 
 1708         KQ_NOTOWNED(kq);
 1709 
 1710         error = 0;
 1711         to_free = NULL;
 1712         if (fops->f_isfd) {
 1713                 fd = ident;
 1714                 if (kq->kq_knlistsize <= fd) {
 1715                         size = kq->kq_knlistsize;
 1716                         while (size <= fd)
 1717                                 size += KQEXTENT;
 1718                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1719                         if (list == NULL)
 1720                                 return ENOMEM;
 1721                         KQ_LOCK(kq);
 1722                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1723                                 to_free = list;
 1724                                 error = EBADF;
 1725                         } else if (kq->kq_knlistsize > fd) {
 1726                                 to_free = list;
 1727                         } else {
 1728                                 if (kq->kq_knlist != NULL) {
 1729                                         bcopy(kq->kq_knlist, list,
 1730                                             kq->kq_knlistsize * sizeof(*list));
 1731                                         to_free = kq->kq_knlist;
 1732                                         kq->kq_knlist = NULL;
 1733                                 }
 1734                                 bzero((caddr_t)list +
 1735                                     kq->kq_knlistsize * sizeof(*list),
 1736                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1737                                 kq->kq_knlistsize = size;
 1738                                 kq->kq_knlist = list;
 1739                         }
 1740                         KQ_UNLOCK(kq);
 1741                 }
 1742         } else {
 1743                 if (kq->kq_knhashmask == 0) {
 1744                         tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
 1745                             &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
 1746                             HASH_WAITOK : HASH_NOWAIT);
 1747                         if (tmp_knhash == NULL)
 1748                                 return (ENOMEM);
 1749                         KQ_LOCK(kq);
 1750                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1751                                 to_free = tmp_knhash;
 1752                                 error = EBADF;
 1753                         } else if (kq->kq_knhashmask == 0) {
 1754                                 kq->kq_knhash = tmp_knhash;
 1755                                 kq->kq_knhashmask = tmp_knhashmask;
 1756                         } else {
 1757                                 to_free = tmp_knhash;
 1758                         }
 1759                         KQ_UNLOCK(kq);
 1760                 }
 1761         }
 1762         free(to_free, M_KQUEUE);
 1763 
 1764         KQ_NOTOWNED(kq);
 1765         return (error);
 1766 }
 1767 
 1768 static void
 1769 kqueue_task(void *arg, int pending)
 1770 {
 1771         struct kqueue *kq;
 1772         int haskqglobal;
 1773 
 1774         haskqglobal = 0;
 1775         kq = arg;
 1776 
 1777         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1778         KQ_LOCK(kq);
 1779 
 1780         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1781 
 1782         kq->kq_state &= ~KQ_TASKSCHED;
 1783         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1784                 wakeup(&kq->kq_state);
 1785         }
 1786         KQ_UNLOCK(kq);
 1787         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1788 }
 1789 
 1790 /*
 1791  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1792  * We treat KN_MARKER knotes as if they are in flux.
 1793  */
 1794 static int
 1795 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1796     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1797 {
 1798         struct kevent *kevp;
 1799         struct knote *kn, *marker;
 1800         struct knlist *knl;
 1801         sbintime_t asbt, rsbt;
 1802         int count, error, haskqglobal, influx, nkev, touch;
 1803 
 1804         count = maxevents;
 1805         nkev = 0;
 1806         error = 0;
 1807         haskqglobal = 0;
 1808 
 1809         if (maxevents == 0)
 1810                 goto done_nl;
 1811 
 1812         rsbt = 0;
 1813         if (tsp != NULL) {
 1814                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1815                     tsp->tv_nsec >= 1000000000) {
 1816                         error = EINVAL;
 1817                         goto done_nl;
 1818                 }
 1819                 if (timespecisset(tsp)) {
 1820                         if (tsp->tv_sec <= INT32_MAX) {
 1821                                 rsbt = tstosbt(*tsp);
 1822                                 if (TIMESEL(&asbt, rsbt))
 1823                                         asbt += tc_tick_sbt;
 1824                                 if (asbt <= SBT_MAX - rsbt)
 1825                                         asbt += rsbt;
 1826                                 else
 1827                                         asbt = 0;
 1828                                 rsbt >>= tc_precexp;
 1829                         } else
 1830                                 asbt = 0;
 1831                 } else
 1832                         asbt = -1;
 1833         } else
 1834                 asbt = 0;
 1835         marker = knote_alloc(M_WAITOK);
 1836         marker->kn_status = KN_MARKER;
 1837         KQ_LOCK(kq);
 1838 
 1839 retry:
 1840         kevp = keva;
 1841         if (kq->kq_count == 0) {
 1842                 if (asbt == -1) {
 1843                         error = EWOULDBLOCK;
 1844                 } else {
 1845                         kq->kq_state |= KQ_SLEEP;
 1846                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1847                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1848                 }
 1849                 if (error == 0)
 1850                         goto retry;
 1851                 /* don't restart after signals... */
 1852                 if (error == ERESTART)
 1853                         error = EINTR;
 1854                 else if (error == EWOULDBLOCK)
 1855                         error = 0;
 1856                 goto done;
 1857         }
 1858 
 1859         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1860         influx = 0;
 1861         while (count) {
 1862                 KQ_OWNED(kq);
 1863                 kn = TAILQ_FIRST(&kq->kq_head);
 1864 
 1865                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1866                     kn_in_flux(kn)) {
 1867                         if (influx) {
 1868                                 influx = 0;
 1869                                 KQ_FLUX_WAKEUP(kq);
 1870                         }
 1871                         kq->kq_state |= KQ_FLUXWAIT;
 1872                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1873                             "kqflxwt", 0);
 1874                         continue;
 1875                 }
 1876 
 1877                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1878                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1879                         kn->kn_status &= ~KN_QUEUED;
 1880                         kq->kq_count--;
 1881                         continue;
 1882                 }
 1883                 if (kn == marker) {
 1884                         KQ_FLUX_WAKEUP(kq);
 1885                         if (count == maxevents)
 1886                                 goto retry;
 1887                         goto done;
 1888                 }
 1889                 KASSERT(!kn_in_flux(kn),
 1890                     ("knote %p is unexpectedly in flux", kn));
 1891 
 1892                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1893                         kn->kn_status &= ~KN_QUEUED;
 1894                         kn_enter_flux(kn);
 1895                         kq->kq_count--;
 1896                         KQ_UNLOCK(kq);
 1897                         /*
 1898                          * We don't need to lock the list since we've
 1899                          * marked it as in flux.
 1900                          */
 1901                         knote_drop(kn, td);
 1902                         KQ_LOCK(kq);
 1903                         continue;
 1904                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1905                         kn->kn_status &= ~KN_QUEUED;
 1906                         kn_enter_flux(kn);
 1907                         kq->kq_count--;
 1908                         KQ_UNLOCK(kq);
 1909                         /*
 1910                          * We don't need to lock the list since we've
 1911                          * marked the knote as being in flux.
 1912                          */
 1913                         *kevp = kn->kn_kevent;
 1914                         knote_drop(kn, td);
 1915                         KQ_LOCK(kq);
 1916                         kn = NULL;
 1917                 } else {
 1918                         kn->kn_status |= KN_SCAN;
 1919                         kn_enter_flux(kn);
 1920                         KQ_UNLOCK(kq);
 1921                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1922                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1923                         knl = kn_list_lock(kn);
 1924                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1925                                 KQ_LOCK(kq);
 1926                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1927                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
 1928                                     KN_SCAN);
 1929                                 kn_leave_flux(kn);
 1930                                 kq->kq_count--;
 1931                                 kn_list_unlock(knl);
 1932                                 influx = 1;
 1933                                 continue;
 1934                         }
 1935                         touch = (!kn->kn_fop->f_isfd &&
 1936                             kn->kn_fop->f_touch != NULL);
 1937                         if (touch)
 1938                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1939                         else
 1940                                 *kevp = kn->kn_kevent;
 1941                         KQ_LOCK(kq);
 1942                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1943                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1944                                 /* 
 1945                                  * Manually clear knotes who weren't 
 1946                                  * 'touch'ed.
 1947                                  */
 1948                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1949                                         kn->kn_data = 0;
 1950                                         kn->kn_fflags = 0;
 1951                                 }
 1952                                 if (kn->kn_flags & EV_DISPATCH)
 1953                                         kn->kn_status |= KN_DISABLED;
 1954                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1955                                 kq->kq_count--;
 1956                         } else
 1957                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1958                         
 1959                         kn->kn_status &= ~KN_SCAN;
 1960                         kn_leave_flux(kn);
 1961                         kn_list_unlock(knl);
 1962                         influx = 1;
 1963                 }
 1964 
 1965                 /* we are returning a copy to the user */
 1966                 kevp++;
 1967                 nkev++;
 1968                 count--;
 1969 
 1970                 if (nkev == KQ_NEVENTS) {
 1971                         influx = 0;
 1972                         KQ_UNLOCK_FLUX(kq);
 1973                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1974                         nkev = 0;
 1975                         kevp = keva;
 1976                         KQ_LOCK(kq);
 1977                         if (error)
 1978                                 break;
 1979                 }
 1980         }
 1981         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1982 done:
 1983         KQ_OWNED(kq);
 1984         KQ_UNLOCK_FLUX(kq);
 1985         knote_free(marker);
 1986 done_nl:
 1987         KQ_NOTOWNED(kq);
 1988         if (nkev != 0)
 1989                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1990         td->td_retval[0] = maxevents - count;
 1991         return (error);
 1992 }
 1993 
 1994 /*ARGSUSED*/
 1995 static int
 1996 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1997         struct ucred *active_cred, struct thread *td)
 1998 {
 1999         /*
 2000          * Enabling sigio causes two major problems:
 2001          * 1) infinite recursion:
 2002          * Synopsys: kevent is being used to track signals and have FIOASYNC
 2003          * set.  On receipt of a signal this will cause a kqueue to recurse
 2004          * into itself over and over.  Sending the sigio causes the kqueue
 2005          * to become ready, which in turn posts sigio again, forever.
 2006          * Solution: this can be solved by setting a flag in the kqueue that
 2007          * we have a SIGIO in progress.
 2008          * 2) locking problems:
 2009          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 2010          * us above the proc and pgrp locks.
 2011          * Solution: Post a signal using an async mechanism, being sure to
 2012          * record a generation count in the delivery so that we do not deliver
 2013          * a signal to the wrong process.
 2014          *
 2015          * Note, these two mechanisms are somewhat mutually exclusive!
 2016          */
 2017 #if 0
 2018         struct kqueue *kq;
 2019 
 2020         kq = fp->f_data;
 2021         switch (cmd) {
 2022         case FIOASYNC:
 2023                 if (*(int *)data) {
 2024                         kq->kq_state |= KQ_ASYNC;
 2025                 } else {
 2026                         kq->kq_state &= ~KQ_ASYNC;
 2027                 }
 2028                 return (0);
 2029 
 2030         case FIOSETOWN:
 2031                 return (fsetown(*(int *)data, &kq->kq_sigio));
 2032 
 2033         case FIOGETOWN:
 2034                 *(int *)data = fgetown(&kq->kq_sigio);
 2035                 return (0);
 2036         }
 2037 #endif
 2038 
 2039         return (ENOTTY);
 2040 }
 2041 
 2042 /*ARGSUSED*/
 2043 static int
 2044 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 2045         struct thread *td)
 2046 {
 2047         struct kqueue *kq;
 2048         int revents = 0;
 2049         int error;
 2050 
 2051         if ((error = kqueue_acquire(fp, &kq)))
 2052                 return POLLERR;
 2053 
 2054         KQ_LOCK(kq);
 2055         if (events & (POLLIN | POLLRDNORM)) {
 2056                 if (kq->kq_count) {
 2057                         revents |= events & (POLLIN | POLLRDNORM);
 2058                 } else {
 2059                         selrecord(td, &kq->kq_sel);
 2060                         if (SEL_WAITING(&kq->kq_sel))
 2061                                 kq->kq_state |= KQ_SEL;
 2062                 }
 2063         }
 2064         kqueue_release(kq, 1);
 2065         KQ_UNLOCK(kq);
 2066         return (revents);
 2067 }
 2068 
 2069 /*ARGSUSED*/
 2070 static int
 2071 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 2072         struct thread *td)
 2073 {
 2074 
 2075         bzero((void *)st, sizeof *st);
 2076         /*
 2077          * We no longer return kq_count because the unlocked value is useless.
 2078          * If you spent all this time getting the count, why not spend your
 2079          * syscall better by calling kevent?
 2080          *
 2081          * XXX - This is needed for libc_r.
 2082          */
 2083         st->st_mode = S_IFIFO;
 2084         return (0);
 2085 }
 2086 
 2087 static void
 2088 kqueue_drain(struct kqueue *kq, struct thread *td)
 2089 {
 2090         struct knote *kn;
 2091         int i;
 2092 
 2093         KQ_LOCK(kq);
 2094 
 2095         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 2096             ("kqueue already closing"));
 2097         kq->kq_state |= KQ_CLOSING;
 2098         if (kq->kq_refcnt > 1)
 2099                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 2100 
 2101         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 2102 
 2103         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 2104             ("kqueue's knlist not empty"));
 2105 
 2106         for (i = 0; i < kq->kq_knlistsize; i++) {
 2107                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 2108                         if (kn_in_flux(kn)) {
 2109                                 kq->kq_state |= KQ_FLUXWAIT;
 2110                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 2111                                 continue;
 2112                         }
 2113                         kn_enter_flux(kn);
 2114                         KQ_UNLOCK(kq);
 2115                         knote_drop(kn, td);
 2116                         KQ_LOCK(kq);
 2117                 }
 2118         }
 2119         if (kq->kq_knhashmask != 0) {
 2120                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 2121                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 2122                                 if (kn_in_flux(kn)) {
 2123                                         kq->kq_state |= KQ_FLUXWAIT;
 2124                                         msleep(kq, &kq->kq_lock, PSOCK,
 2125                                                "kqclo2", 0);
 2126                                         continue;
 2127                                 }
 2128                                 kn_enter_flux(kn);
 2129                                 KQ_UNLOCK(kq);
 2130                                 knote_drop(kn, td);
 2131                                 KQ_LOCK(kq);
 2132                         }
 2133                 }
 2134         }
 2135 
 2136         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 2137                 kq->kq_state |= KQ_TASKDRAIN;
 2138                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 2139         }
 2140 
 2141         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2142                 selwakeuppri(&kq->kq_sel, PSOCK);
 2143                 if (!SEL_WAITING(&kq->kq_sel))
 2144                         kq->kq_state &= ~KQ_SEL;
 2145         }
 2146 
 2147         KQ_UNLOCK(kq);
 2148 }
 2149 
 2150 static void
 2151 kqueue_destroy(struct kqueue *kq)
 2152 {
 2153 
 2154         KASSERT(kq->kq_fdp == NULL,
 2155             ("kqueue still attached to a file descriptor"));
 2156         seldrain(&kq->kq_sel);
 2157         knlist_destroy(&kq->kq_sel.si_note);
 2158         mtx_destroy(&kq->kq_lock);
 2159 
 2160         if (kq->kq_knhash != NULL)
 2161                 free(kq->kq_knhash, M_KQUEUE);
 2162         if (kq->kq_knlist != NULL)
 2163                 free(kq->kq_knlist, M_KQUEUE);
 2164 
 2165         funsetown(&kq->kq_sigio);
 2166 }
 2167 
 2168 /*ARGSUSED*/
 2169 static int
 2170 kqueue_close(struct file *fp, struct thread *td)
 2171 {
 2172         struct kqueue *kq = fp->f_data;
 2173         struct filedesc *fdp;
 2174         int error;
 2175         int filedesc_unlock;
 2176 
 2177         if ((error = kqueue_acquire(fp, &kq)))
 2178                 return error;
 2179         kqueue_drain(kq, td);
 2180 
 2181         /*
 2182          * We could be called due to the knote_drop() doing fdrop(),
 2183          * called from kqueue_register().  In this case the global
 2184          * lock is owned, and filedesc sx is locked before, to not
 2185          * take the sleepable lock after non-sleepable.
 2186          */
 2187         fdp = kq->kq_fdp;
 2188         kq->kq_fdp = NULL;
 2189         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 2190                 FILEDESC_XLOCK(fdp);
 2191                 filedesc_unlock = 1;
 2192         } else
 2193                 filedesc_unlock = 0;
 2194         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 2195         if (filedesc_unlock)
 2196                 FILEDESC_XUNLOCK(fdp);
 2197 
 2198         kqueue_destroy(kq);
 2199         chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
 2200         crfree(kq->kq_cred);
 2201         free(kq, M_KQUEUE);
 2202         fp->f_data = NULL;
 2203 
 2204         return (0);
 2205 }
 2206 
 2207 static int
 2208 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2209 {
 2210 
 2211         kif->kf_type = KF_TYPE_KQUEUE;
 2212         return (0);
 2213 }
 2214 
 2215 static void
 2216 kqueue_wakeup(struct kqueue *kq)
 2217 {
 2218         KQ_OWNED(kq);
 2219 
 2220         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 2221                 kq->kq_state &= ~KQ_SLEEP;
 2222                 wakeup(kq);
 2223         }
 2224         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2225                 selwakeuppri(&kq->kq_sel, PSOCK);
 2226                 if (!SEL_WAITING(&kq->kq_sel))
 2227                         kq->kq_state &= ~KQ_SEL;
 2228         }
 2229         if (!knlist_empty(&kq->kq_sel.si_note))
 2230                 kqueue_schedtask(kq);
 2231         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 2232                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 2233         }
 2234 }
 2235 
 2236 /*
 2237  * Walk down a list of knotes, activating them if their event has triggered.
 2238  *
 2239  * There is a possibility to optimize in the case of one kq watching another.
 2240  * Instead of scheduling a task to wake it up, you could pass enough state
 2241  * down the chain to make up the parent kqueue.  Make this code functional
 2242  * first.
 2243  */
 2244 void
 2245 knote(struct knlist *list, long hint, int lockflags)
 2246 {
 2247         struct kqueue *kq;
 2248         struct knote *kn, *tkn;
 2249         int error;
 2250 
 2251         if (list == NULL)
 2252                 return;
 2253 
 2254         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 2255 
 2256         if ((lockflags & KNF_LISTLOCKED) == 0)
 2257                 list->kl_lock(list->kl_lockarg); 
 2258 
 2259         /*
 2260          * If we unlock the list lock (and enter influx), we can
 2261          * eliminate the kqueue scheduling, but this will introduce
 2262          * four lock/unlock's for each knote to test.  Also, marker
 2263          * would be needed to keep iteration position, since filters
 2264          * or other threads could remove events.
 2265          */
 2266         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 2267                 kq = kn->kn_kq;
 2268                 KQ_LOCK(kq);
 2269                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
 2270                         /*
 2271                          * Do not process the influx notes, except for
 2272                          * the influx coming from the kq unlock in the
 2273                          * kqueue_scan().  In the later case, we do
 2274                          * not interfere with the scan, since the code
 2275                          * fragment in kqueue_scan() locks the knlist,
 2276                          * and cannot proceed until we finished.
 2277                          */
 2278                         KQ_UNLOCK(kq);
 2279                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 2280                         kn_enter_flux(kn);
 2281                         KQ_UNLOCK(kq);
 2282                         error = kn->kn_fop->f_event(kn, hint);
 2283                         KQ_LOCK(kq);
 2284                         kn_leave_flux(kn);
 2285                         if (error)
 2286                                 KNOTE_ACTIVATE(kn, 1);
 2287                         KQ_UNLOCK_FLUX(kq);
 2288                 } else {
 2289                         if (kn->kn_fop->f_event(kn, hint))
 2290                                 KNOTE_ACTIVATE(kn, 1);
 2291                         KQ_UNLOCK(kq);
 2292                 }
 2293         }
 2294         if ((lockflags & KNF_LISTLOCKED) == 0)
 2295                 list->kl_unlock(list->kl_lockarg); 
 2296 }
 2297 
 2298 /*
 2299  * add a knote to a knlist
 2300  */
 2301 void
 2302 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 2303 {
 2304 
 2305         KNL_ASSERT_LOCK(knl, islocked);
 2306         KQ_NOTOWNED(kn->kn_kq);
 2307         KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
 2308         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2309             ("knote %p was not detached", kn));
 2310         if (!islocked)
 2311                 knl->kl_lock(knl->kl_lockarg);
 2312         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 2313         if (!islocked)
 2314                 knl->kl_unlock(knl->kl_lockarg);
 2315         KQ_LOCK(kn->kn_kq);
 2316         kn->kn_knlist = knl;
 2317         kn->kn_status &= ~KN_DETACHED;
 2318         KQ_UNLOCK(kn->kn_kq);
 2319 }
 2320 
 2321 static void
 2322 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
 2323     int kqislocked)
 2324 {
 2325 
 2326         KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
 2327         KNL_ASSERT_LOCK(knl, knlislocked);
 2328         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 2329         KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
 2330         KASSERT((kn->kn_status & KN_DETACHED) == 0,
 2331             ("knote %p was already detached", kn));
 2332         if (!knlislocked)
 2333                 knl->kl_lock(knl->kl_lockarg);
 2334         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 2335         kn->kn_knlist = NULL;
 2336         if (!knlislocked)
 2337                 kn_list_unlock(knl);
 2338         if (!kqislocked)
 2339                 KQ_LOCK(kn->kn_kq);
 2340         kn->kn_status |= KN_DETACHED;
 2341         if (!kqislocked)
 2342                 KQ_UNLOCK(kn->kn_kq);
 2343 }
 2344 
 2345 /*
 2346  * remove knote from the specified knlist
 2347  */
 2348 void
 2349 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 2350 {
 2351 
 2352         knlist_remove_kq(knl, kn, islocked, 0);
 2353 }
 2354 
 2355 int
 2356 knlist_empty(struct knlist *knl)
 2357 {
 2358 
 2359         KNL_ASSERT_LOCKED(knl);
 2360         return (SLIST_EMPTY(&knl->kl_list));
 2361 }
 2362 
 2363 static struct mtx knlist_lock;
 2364 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 2365     MTX_DEF);
 2366 static void knlist_mtx_lock(void *arg);
 2367 static void knlist_mtx_unlock(void *arg);
 2368 
 2369 static void
 2370 knlist_mtx_lock(void *arg)
 2371 {
 2372 
 2373         mtx_lock((struct mtx *)arg);
 2374 }
 2375 
 2376 static void
 2377 knlist_mtx_unlock(void *arg)
 2378 {
 2379 
 2380         mtx_unlock((struct mtx *)arg);
 2381 }
 2382 
 2383 static void
 2384 knlist_mtx_assert_locked(void *arg)
 2385 {
 2386 
 2387         mtx_assert((struct mtx *)arg, MA_OWNED);
 2388 }
 2389 
 2390 static void
 2391 knlist_mtx_assert_unlocked(void *arg)
 2392 {
 2393 
 2394         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2395 }
 2396 
 2397 static void
 2398 knlist_rw_rlock(void *arg)
 2399 {
 2400 
 2401         rw_rlock((struct rwlock *)arg);
 2402 }
 2403 
 2404 static void
 2405 knlist_rw_runlock(void *arg)
 2406 {
 2407 
 2408         rw_runlock((struct rwlock *)arg);
 2409 }
 2410 
 2411 static void
 2412 knlist_rw_assert_locked(void *arg)
 2413 {
 2414 
 2415         rw_assert((struct rwlock *)arg, RA_LOCKED);
 2416 }
 2417 
 2418 static void
 2419 knlist_rw_assert_unlocked(void *arg)
 2420 {
 2421 
 2422         rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2423 }
 2424 
 2425 void
 2426 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2427     void (*kl_unlock)(void *),
 2428     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 2429 {
 2430 
 2431         if (lock == NULL)
 2432                 knl->kl_lockarg = &knlist_lock;
 2433         else
 2434                 knl->kl_lockarg = lock;
 2435 
 2436         if (kl_lock == NULL)
 2437                 knl->kl_lock = knlist_mtx_lock;
 2438         else
 2439                 knl->kl_lock = kl_lock;
 2440         if (kl_unlock == NULL)
 2441                 knl->kl_unlock = knlist_mtx_unlock;
 2442         else
 2443                 knl->kl_unlock = kl_unlock;
 2444         if (kl_assert_locked == NULL)
 2445                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 2446         else
 2447                 knl->kl_assert_locked = kl_assert_locked;
 2448         if (kl_assert_unlocked == NULL)
 2449                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 2450         else
 2451                 knl->kl_assert_unlocked = kl_assert_unlocked;
 2452 
 2453         knl->kl_autodestroy = 0;
 2454         SLIST_INIT(&knl->kl_list);
 2455 }
 2456 
 2457 void
 2458 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2459 {
 2460 
 2461         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 2462 }
 2463 
 2464 struct knlist *
 2465 knlist_alloc(struct mtx *lock)
 2466 {
 2467         struct knlist *knl;
 2468 
 2469         knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
 2470         knlist_init_mtx(knl, lock);
 2471         return (knl);
 2472 }
 2473 
 2474 void
 2475 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2476 {
 2477 
 2478         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2479             knlist_rw_assert_locked, knlist_rw_assert_unlocked);
 2480 }
 2481 
 2482 void
 2483 knlist_destroy(struct knlist *knl)
 2484 {
 2485 
 2486         KASSERT(KNLIST_EMPTY(knl),
 2487             ("destroying knlist %p with knotes on it", knl));
 2488 }
 2489 
 2490 void
 2491 knlist_detach(struct knlist *knl)
 2492 {
 2493 
 2494         KNL_ASSERT_LOCKED(knl);
 2495         knl->kl_autodestroy = 1;
 2496         if (knlist_empty(knl)) {
 2497                 knlist_destroy(knl);
 2498                 free(knl, M_KQUEUE);
 2499         }
 2500 }
 2501 
 2502 /*
 2503  * Even if we are locked, we may need to drop the lock to allow any influx
 2504  * knotes time to "settle".
 2505  */
 2506 void
 2507 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2508 {
 2509         struct knote *kn, *kn2;
 2510         struct kqueue *kq;
 2511 
 2512         KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
 2513         if (islocked)
 2514                 KNL_ASSERT_LOCKED(knl);
 2515         else {
 2516                 KNL_ASSERT_UNLOCKED(knl);
 2517 again:          /* need to reacquire lock since we have dropped it */
 2518                 knl->kl_lock(knl->kl_lockarg);
 2519         }
 2520 
 2521         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2522                 kq = kn->kn_kq;
 2523                 KQ_LOCK(kq);
 2524                 if (kn_in_flux(kn)) {
 2525                         KQ_UNLOCK(kq);
 2526                         continue;
 2527                 }
 2528                 knlist_remove_kq(knl, kn, 1, 1);
 2529                 if (killkn) {
 2530                         kn_enter_flux(kn);
 2531                         KQ_UNLOCK(kq);
 2532                         knote_drop_detached(kn, td);
 2533                 } else {
 2534                         /* Make sure cleared knotes disappear soon */
 2535                         kn->kn_flags |= EV_EOF | EV_ONESHOT;
 2536                         KQ_UNLOCK(kq);
 2537                 }
 2538                 kq = NULL;
 2539         }
 2540 
 2541         if (!SLIST_EMPTY(&knl->kl_list)) {
 2542                 /* there are still in flux knotes remaining */
 2543                 kn = SLIST_FIRST(&knl->kl_list);
 2544                 kq = kn->kn_kq;
 2545                 KQ_LOCK(kq);
 2546                 KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
 2547                 knl->kl_unlock(knl->kl_lockarg);
 2548                 kq->kq_state |= KQ_FLUXWAIT;
 2549                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2550                 kq = NULL;
 2551                 goto again;
 2552         }
 2553 
 2554         if (islocked)
 2555                 KNL_ASSERT_LOCKED(knl);
 2556         else {
 2557                 knl->kl_unlock(knl->kl_lockarg);
 2558                 KNL_ASSERT_UNLOCKED(knl);
 2559         }
 2560 }
 2561 
 2562 /*
 2563  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2564  * lock.  This prevents a race where a new fd comes along and occupies the
 2565  * entry and we attach a knote to the fd.
 2566  */
 2567 void
 2568 knote_fdclose(struct thread *td, int fd)
 2569 {
 2570         struct filedesc *fdp = td->td_proc->p_fd;
 2571         struct kqueue *kq;
 2572         struct knote *kn;
 2573         int influx;
 2574 
 2575         FILEDESC_XLOCK_ASSERT(fdp);
 2576 
 2577         /*
 2578          * We shouldn't have to worry about new kevents appearing on fd
 2579          * since filedesc is locked.
 2580          */
 2581         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2582                 KQ_LOCK(kq);
 2583 
 2584 again:
 2585                 influx = 0;
 2586                 while (kq->kq_knlistsize > fd &&
 2587                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2588                         if (kn_in_flux(kn)) {
 2589                                 /* someone else might be waiting on our knote */
 2590                                 if (influx)
 2591                                         wakeup(kq);
 2592                                 kq->kq_state |= KQ_FLUXWAIT;
 2593                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2594                                 goto again;
 2595                         }
 2596                         kn_enter_flux(kn);
 2597                         KQ_UNLOCK(kq);
 2598                         influx = 1;
 2599                         knote_drop(kn, td);
 2600                         KQ_LOCK(kq);
 2601                 }
 2602                 KQ_UNLOCK_FLUX(kq);
 2603         }
 2604 }
 2605 
 2606 static int
 2607 knote_attach(struct knote *kn, struct kqueue *kq)
 2608 {
 2609         struct klist *list;
 2610 
 2611         KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
 2612         KQ_OWNED(kq);
 2613 
 2614         if ((kq->kq_state & KQ_CLOSING) != 0)
 2615                 return (EBADF);
 2616         if (kn->kn_fop->f_isfd) {
 2617                 if (kn->kn_id >= kq->kq_knlistsize)
 2618                         return (ENOMEM);
 2619                 list = &kq->kq_knlist[kn->kn_id];
 2620         } else {
 2621                 if (kq->kq_knhash == NULL)
 2622                         return (ENOMEM);
 2623                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2624         }
 2625         SLIST_INSERT_HEAD(list, kn, kn_link);
 2626         return (0);
 2627 }
 2628 
 2629 static void
 2630 knote_drop(struct knote *kn, struct thread *td)
 2631 {
 2632 
 2633         if ((kn->kn_status & KN_DETACHED) == 0)
 2634                 kn->kn_fop->f_detach(kn);
 2635         knote_drop_detached(kn, td);
 2636 }
 2637 
 2638 static void
 2639 knote_drop_detached(struct knote *kn, struct thread *td)
 2640 {
 2641         struct kqueue *kq;
 2642         struct klist *list;
 2643 
 2644         kq = kn->kn_kq;
 2645 
 2646         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2647             ("knote %p still attached", kn));
 2648         KQ_NOTOWNED(kq);
 2649 
 2650         KQ_LOCK(kq);
 2651         KASSERT(kn->kn_influx == 1,
 2652             ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
 2653 
 2654         if (kn->kn_fop->f_isfd)
 2655                 list = &kq->kq_knlist[kn->kn_id];
 2656         else
 2657                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2658 
 2659         if (!SLIST_EMPTY(list))
 2660                 SLIST_REMOVE(list, kn, knote, kn_link);
 2661         if (kn->kn_status & KN_QUEUED)
 2662                 knote_dequeue(kn);
 2663         KQ_UNLOCK_FLUX(kq);
 2664 
 2665         if (kn->kn_fop->f_isfd) {
 2666                 fdrop(kn->kn_fp, td);
 2667                 kn->kn_fp = NULL;
 2668         }
 2669         kqueue_fo_release(kn->kn_kevent.filter);
 2670         kn->kn_fop = NULL;
 2671         knote_free(kn);
 2672 }
 2673 
 2674 static void
 2675 knote_enqueue(struct knote *kn)
 2676 {
 2677         struct kqueue *kq = kn->kn_kq;
 2678 
 2679         KQ_OWNED(kn->kn_kq);
 2680         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2681 
 2682         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2683         kn->kn_status |= KN_QUEUED;
 2684         kq->kq_count++;
 2685         kqueue_wakeup(kq);
 2686 }
 2687 
 2688 static void
 2689 knote_dequeue(struct knote *kn)
 2690 {
 2691         struct kqueue *kq = kn->kn_kq;
 2692 
 2693         KQ_OWNED(kn->kn_kq);
 2694         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2695 
 2696         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2697         kn->kn_status &= ~KN_QUEUED;
 2698         kq->kq_count--;
 2699 }
 2700 
 2701 static void
 2702 knote_init(void)
 2703 {
 2704 
 2705         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2706             NULL, NULL, UMA_ALIGN_PTR, 0);
 2707 }
 2708 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2709 
 2710 static struct knote *
 2711 knote_alloc(int mflag)
 2712 {
 2713 
 2714         return (uma_zalloc(knote_zone, mflag | M_ZERO));
 2715 }
 2716 
 2717 static void
 2718 knote_free(struct knote *kn)
 2719 {
 2720 
 2721         uma_zfree(knote_zone, kn);
 2722 }
 2723 
 2724 /*
 2725  * Register the kev w/ the kq specified by fd.
 2726  */
 2727 int 
 2728 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
 2729 {
 2730         struct kqueue *kq;
 2731         struct file *fp;
 2732         cap_rights_t rights;
 2733         int error;
 2734 
 2735         error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
 2736         if (error != 0)
 2737                 return (error);
 2738         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2739                 goto noacquire;
 2740 
 2741         error = kqueue_register(kq, kev, td, mflag);
 2742         kqueue_release(kq, 0);
 2743 
 2744 noacquire:
 2745         fdrop(fp, td);
 2746         return (error);
 2747 }

Cache object: f05712d7a82e33c01e2ee80be49f2697


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.