The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    5  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    6  * Copyright (c) 2009 Apple, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "opt_ktrace.h"
   35 #include "opt_kqueue.h"
   36 
   37 #ifdef COMPAT_FREEBSD11
   38 #define _WANT_FREEBSD11_KEVENT
   39 #endif
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/capsicum.h>
   44 #include <sys/kernel.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/rwlock.h>
   49 #include <sys/proc.h>
   50 #include <sys/malloc.h>
   51 #include <sys/unistd.h>
   52 #include <sys/file.h>
   53 #include <sys/filedesc.h>
   54 #include <sys/filio.h>
   55 #include <sys/fcntl.h>
   56 #include <sys/kthread.h>
   57 #include <sys/selinfo.h>
   58 #include <sys/queue.h>
   59 #include <sys/event.h>
   60 #include <sys/eventvar.h>
   61 #include <sys/poll.h>
   62 #include <sys/protosw.h>
   63 #include <sys/resourcevar.h>
   64 #include <sys/sigio.h>
   65 #include <sys/signalvar.h>
   66 #include <sys/socket.h>
   67 #include <sys/socketvar.h>
   68 #include <sys/stat.h>
   69 #include <sys/sysctl.h>
   70 #include <sys/sysproto.h>
   71 #include <sys/syscallsubr.h>
   72 #include <sys/taskqueue.h>
   73 #include <sys/uio.h>
   74 #include <sys/user.h>
   75 #ifdef KTRACE
   76 #include <sys/ktrace.h>
   77 #endif
   78 #include <machine/atomic.h>
   79 
   80 #include <vm/uma.h>
   81 
   82 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   83 
   84 /*
   85  * This lock is used if multiple kq locks are required.  This possibly
   86  * should be made into a per proc lock.
   87  */
   88 static struct mtx       kq_global;
   89 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   90 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   91         if (!haslck)                            \
   92                 mtx_lock(lck);                  \
   93         haslck = 1;                             \
   94 } while (0)
   95 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   96         if (haslck)                             \
   97                 mtx_unlock(lck);                        \
   98         haslck = 0;                             \
   99 } while (0)
  100 
  101 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
  102 
  103 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
  104 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
  105 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
  106                     struct thread *td, int mflag);
  107 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
  108 static void     kqueue_release(struct kqueue *kq, int locked);
  109 static void     kqueue_destroy(struct kqueue *kq);
  110 static void     kqueue_drain(struct kqueue *kq, struct thread *td);
  111 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
  112                     uintptr_t ident, int mflag);
  113 static void     kqueue_task(void *arg, int pending);
  114 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  115                     struct kevent_copyops *k_ops,
  116                     const struct timespec *timeout,
  117                     struct kevent *keva, struct thread *td);
  118 static void     kqueue_wakeup(struct kqueue *kq);
  119 static struct filterops *kqueue_fo_find(int filt);
  120 static void     kqueue_fo_release(int filt);
  121 struct g_kevent_args;
  122 static int      kern_kevent_generic(struct thread *td,
  123                     struct g_kevent_args *uap,
  124                     struct kevent_copyops *k_ops, const char *struct_name);
  125 
  126 static fo_ioctl_t       kqueue_ioctl;
  127 static fo_poll_t        kqueue_poll;
  128 static fo_kqfilter_t    kqueue_kqfilter;
  129 static fo_stat_t        kqueue_stat;
  130 static fo_close_t       kqueue_close;
  131 static fo_fill_kinfo_t  kqueue_fill_kinfo;
  132 
  133 static struct fileops kqueueops = {
  134         .fo_read = invfo_rdwr,
  135         .fo_write = invfo_rdwr,
  136         .fo_truncate = invfo_truncate,
  137         .fo_ioctl = kqueue_ioctl,
  138         .fo_poll = kqueue_poll,
  139         .fo_kqfilter = kqueue_kqfilter,
  140         .fo_stat = kqueue_stat,
  141         .fo_close = kqueue_close,
  142         .fo_chmod = invfo_chmod,
  143         .fo_chown = invfo_chown,
  144         .fo_sendfile = invfo_sendfile,
  145         .fo_fill_kinfo = kqueue_fill_kinfo,
  146 };
  147 
  148 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  149 static void     knote_drop(struct knote *kn, struct thread *td);
  150 static void     knote_drop_detached(struct knote *kn, struct thread *td);
  151 static void     knote_enqueue(struct knote *kn);
  152 static void     knote_dequeue(struct knote *kn);
  153 static void     knote_init(void);
  154 static struct   knote *knote_alloc(int mflag);
  155 static void     knote_free(struct knote *kn);
  156 
  157 static void     filt_kqdetach(struct knote *kn);
  158 static int      filt_kqueue(struct knote *kn, long hint);
  159 static int      filt_procattach(struct knote *kn);
  160 static void     filt_procdetach(struct knote *kn);
  161 static int      filt_proc(struct knote *kn, long hint);
  162 static int      filt_fileattach(struct knote *kn);
  163 static void     filt_timerexpire(void *knx);
  164 static int      filt_timerattach(struct knote *kn);
  165 static void     filt_timerdetach(struct knote *kn);
  166 static void     filt_timerstart(struct knote *kn, sbintime_t to);
  167 static void     filt_timertouch(struct knote *kn, struct kevent *kev,
  168                     u_long type);
  169 static int      filt_timervalidate(struct knote *kn, sbintime_t *to);
  170 static int      filt_timer(struct knote *kn, long hint);
  171 static int      filt_userattach(struct knote *kn);
  172 static void     filt_userdetach(struct knote *kn);
  173 static int      filt_user(struct knote *kn, long hint);
  174 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  175                     u_long type);
  176 
  177 static struct filterops file_filtops = {
  178         .f_isfd = 1,
  179         .f_attach = filt_fileattach,
  180 };
  181 static struct filterops kqread_filtops = {
  182         .f_isfd = 1,
  183         .f_detach = filt_kqdetach,
  184         .f_event = filt_kqueue,
  185 };
  186 /* XXX - move to kern_proc.c?  */
  187 static struct filterops proc_filtops = {
  188         .f_isfd = 0,
  189         .f_attach = filt_procattach,
  190         .f_detach = filt_procdetach,
  191         .f_event = filt_proc,
  192 };
  193 static struct filterops timer_filtops = {
  194         .f_isfd = 0,
  195         .f_attach = filt_timerattach,
  196         .f_detach = filt_timerdetach,
  197         .f_event = filt_timer,
  198         .f_touch = filt_timertouch,
  199 };
  200 static struct filterops user_filtops = {
  201         .f_attach = filt_userattach,
  202         .f_detach = filt_userdetach,
  203         .f_event = filt_user,
  204         .f_touch = filt_usertouch,
  205 };
  206 
  207 static uma_zone_t       knote_zone;
  208 static unsigned int     kq_ncallouts = 0;
  209 static unsigned int     kq_calloutmax = 4 * 1024;
  210 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  211     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  212 
  213 /* XXX - ensure not influx ? */
  214 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  215         if ((islock))                                                   \
  216                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  217         else                                                            \
  218                 KQ_LOCK((kn)->kn_kq);                                   \
  219         (kn)->kn_status |= KN_ACTIVE;                                   \
  220         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  221                 knote_enqueue((kn));                                    \
  222         if (!(islock))                                                  \
  223                 KQ_UNLOCK((kn)->kn_kq);                                 \
  224 } while(0)
  225 #define KQ_LOCK(kq) do {                                                \
  226         mtx_lock(&(kq)->kq_lock);                                       \
  227 } while (0)
  228 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  229         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  230                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  231                 wakeup((kq));                                           \
  232         }                                                               \
  233 } while (0)
  234 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  235         KQ_FLUX_WAKEUP(kq);                                             \
  236         mtx_unlock(&(kq)->kq_lock);                                     \
  237 } while (0)
  238 #define KQ_UNLOCK(kq) do {                                              \
  239         mtx_unlock(&(kq)->kq_lock);                                     \
  240 } while (0)
  241 #define KQ_OWNED(kq) do {                                               \
  242         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  243 } while (0)
  244 #define KQ_NOTOWNED(kq) do {                                            \
  245         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  246 } while (0)
  247 
  248 static struct knlist *
  249 kn_list_lock(struct knote *kn)
  250 {
  251         struct knlist *knl;
  252 
  253         knl = kn->kn_knlist;
  254         if (knl != NULL)
  255                 knl->kl_lock(knl->kl_lockarg);
  256         return (knl);
  257 }
  258 
  259 static void
  260 kn_list_unlock(struct knlist *knl)
  261 {
  262         bool do_free;
  263 
  264         if (knl == NULL)
  265                 return;
  266         do_free = knl->kl_autodestroy && knlist_empty(knl);
  267         knl->kl_unlock(knl->kl_lockarg);
  268         if (do_free) {
  269                 knlist_destroy(knl);
  270                 free(knl, M_KQUEUE);
  271         }
  272 }
  273 
  274 static bool
  275 kn_in_flux(struct knote *kn)
  276 {
  277 
  278         return (kn->kn_influx > 0);
  279 }
  280 
  281 static void
  282 kn_enter_flux(struct knote *kn)
  283 {
  284 
  285         KQ_OWNED(kn->kn_kq);
  286         MPASS(kn->kn_influx < INT_MAX);
  287         kn->kn_influx++;
  288 }
  289 
  290 static bool
  291 kn_leave_flux(struct knote *kn)
  292 {
  293 
  294         KQ_OWNED(kn->kn_kq);
  295         MPASS(kn->kn_influx > 0);
  296         kn->kn_influx--;
  297         return (kn->kn_influx == 0);
  298 }
  299 
  300 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  301         if (islocked)                                                   \
  302                 KNL_ASSERT_LOCKED(knl);                         \
  303         else                                                            \
  304                 KNL_ASSERT_UNLOCKED(knl);                               \
  305 } while (0)
  306 #ifdef INVARIANTS
  307 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  308         knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED);              \
  309 } while (0)
  310 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  311         knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED);            \
  312 } while (0)
  313 #else /* !INVARIANTS */
  314 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  315 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  316 #endif /* INVARIANTS */
  317 
  318 #ifndef KN_HASHSIZE
  319 #define KN_HASHSIZE             64              /* XXX should be tunable */
  320 #endif
  321 
  322 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  323 
  324 static int
  325 filt_nullattach(struct knote *kn)
  326 {
  327 
  328         return (ENXIO);
  329 };
  330 
  331 struct filterops null_filtops = {
  332         .f_isfd = 0,
  333         .f_attach = filt_nullattach,
  334 };
  335 
  336 /* XXX - make SYSINIT to add these, and move into respective modules. */
  337 extern struct filterops sig_filtops;
  338 extern struct filterops fs_filtops;
  339 
  340 /*
  341  * Table for for all system-defined filters.
  342  */
  343 static struct mtx       filterops_lock;
  344 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  345         MTX_DEF);
  346 static struct {
  347         struct filterops *for_fop;
  348         int for_nolock;
  349         int for_refcnt;
  350 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  351         { &file_filtops, 1 },                   /* EVFILT_READ */
  352         { &file_filtops, 1 },                   /* EVFILT_WRITE */
  353         { &null_filtops },                      /* EVFILT_AIO */
  354         { &file_filtops, 1 },                   /* EVFILT_VNODE */
  355         { &proc_filtops, 1 },                   /* EVFILT_PROC */
  356         { &sig_filtops, 1 },                    /* EVFILT_SIGNAL */
  357         { &timer_filtops, 1 },                  /* EVFILT_TIMER */
  358         { &file_filtops, 1 },                   /* EVFILT_PROCDESC */
  359         { &fs_filtops, 1 },                     /* EVFILT_FS */
  360         { &null_filtops },                      /* EVFILT_LIO */
  361         { &user_filtops, 1 },                   /* EVFILT_USER */
  362         { &null_filtops },                      /* EVFILT_SENDFILE */
  363         { &file_filtops, 1 },                   /* EVFILT_EMPTY */
  364 };
  365 
  366 /*
  367  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  368  * method.
  369  */
  370 static int
  371 filt_fileattach(struct knote *kn)
  372 {
  373 
  374         return (fo_kqfilter(kn->kn_fp, kn));
  375 }
  376 
  377 /*ARGSUSED*/
  378 static int
  379 kqueue_kqfilter(struct file *fp, struct knote *kn)
  380 {
  381         struct kqueue *kq = kn->kn_fp->f_data;
  382 
  383         if (kn->kn_filter != EVFILT_READ)
  384                 return (EINVAL);
  385 
  386         kn->kn_status |= KN_KQUEUE;
  387         kn->kn_fop = &kqread_filtops;
  388         knlist_add(&kq->kq_sel.si_note, kn, 0);
  389 
  390         return (0);
  391 }
  392 
  393 static void
  394 filt_kqdetach(struct knote *kn)
  395 {
  396         struct kqueue *kq = kn->kn_fp->f_data;
  397 
  398         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  399 }
  400 
  401 /*ARGSUSED*/
  402 static int
  403 filt_kqueue(struct knote *kn, long hint)
  404 {
  405         struct kqueue *kq = kn->kn_fp->f_data;
  406 
  407         kn->kn_data = kq->kq_count;
  408         return (kn->kn_data > 0);
  409 }
  410 
  411 /* XXX - move to kern_proc.c?  */
  412 static int
  413 filt_procattach(struct knote *kn)
  414 {
  415         struct proc *p;
  416         int error;
  417         bool exiting, immediate;
  418 
  419         exiting = immediate = false;
  420         if (kn->kn_sfflags & NOTE_EXIT)
  421                 p = pfind_any(kn->kn_id);
  422         else
  423                 p = pfind(kn->kn_id);
  424         if (p == NULL)
  425                 return (ESRCH);
  426         if (p->p_flag & P_WEXIT)
  427                 exiting = true;
  428 
  429         if ((error = p_cansee(curthread, p))) {
  430                 PROC_UNLOCK(p);
  431                 return (error);
  432         }
  433 
  434         kn->kn_ptr.p_proc = p;
  435         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  436 
  437         /*
  438          * Internal flag indicating registration done by kernel for the
  439          * purposes of getting a NOTE_CHILD notification.
  440          */
  441         if (kn->kn_flags & EV_FLAG2) {
  442                 kn->kn_flags &= ~EV_FLAG2;
  443                 kn->kn_data = kn->kn_sdata;             /* ppid */
  444                 kn->kn_fflags = NOTE_CHILD;
  445                 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
  446                 immediate = true; /* Force immediate activation of child note. */
  447         }
  448         /*
  449          * Internal flag indicating registration done by kernel (for other than
  450          * NOTE_CHILD).
  451          */
  452         if (kn->kn_flags & EV_FLAG1) {
  453                 kn->kn_flags &= ~EV_FLAG1;
  454         }
  455 
  456         knlist_add(p->p_klist, kn, 1);
  457 
  458         /*
  459          * Immediately activate any child notes or, in the case of a zombie
  460          * target process, exit notes.  The latter is necessary to handle the
  461          * case where the target process, e.g. a child, dies before the kevent
  462          * is registered.
  463          */
  464         if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
  465                 KNOTE_ACTIVATE(kn, 0);
  466 
  467         PROC_UNLOCK(p);
  468 
  469         return (0);
  470 }
  471 
  472 /*
  473  * The knote may be attached to a different process, which may exit,
  474  * leaving nothing for the knote to be attached to.  So when the process
  475  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  476  * it will be deleted when read out.  However, as part of the knote deletion,
  477  * this routine is called, so a check is needed to avoid actually performing
  478  * a detach, because the original process does not exist any more.
  479  */
  480 /* XXX - move to kern_proc.c?  */
  481 static void
  482 filt_procdetach(struct knote *kn)
  483 {
  484 
  485         knlist_remove(kn->kn_knlist, kn, 0);
  486         kn->kn_ptr.p_proc = NULL;
  487 }
  488 
  489 /* XXX - move to kern_proc.c?  */
  490 static int
  491 filt_proc(struct knote *kn, long hint)
  492 {
  493         struct proc *p;
  494         u_int event;
  495 
  496         p = kn->kn_ptr.p_proc;
  497         if (p == NULL) /* already activated, from attach filter */
  498                 return (0);
  499 
  500         /* Mask off extra data. */
  501         event = (u_int)hint & NOTE_PCTRLMASK;
  502 
  503         /* If the user is interested in this event, record it. */
  504         if (kn->kn_sfflags & event)
  505                 kn->kn_fflags |= event;
  506 
  507         /* Process is gone, so flag the event as finished. */
  508         if (event == NOTE_EXIT) {
  509                 kn->kn_flags |= EV_EOF | EV_ONESHOT;
  510                 kn->kn_ptr.p_proc = NULL;
  511                 if (kn->kn_fflags & NOTE_EXIT)
  512                         kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
  513                 if (kn->kn_fflags == 0)
  514                         kn->kn_flags |= EV_DROP;
  515                 return (1);
  516         }
  517 
  518         return (kn->kn_fflags != 0);
  519 }
  520 
  521 /*
  522  * Called when the process forked. It mostly does the same as the
  523  * knote(), activating all knotes registered to be activated when the
  524  * process forked. Additionally, for each knote attached to the
  525  * parent, check whether user wants to track the new process. If so
  526  * attach a new knote to it, and immediately report an event with the
  527  * child's pid.
  528  */
  529 void
  530 knote_fork(struct knlist *list, int pid)
  531 {
  532         struct kqueue *kq;
  533         struct knote *kn;
  534         struct kevent kev;
  535         int error;
  536 
  537         MPASS(list != NULL);
  538         KNL_ASSERT_LOCKED(list);
  539         if (SLIST_EMPTY(&list->kl_list))
  540                 return;
  541 
  542         memset(&kev, 0, sizeof(kev));
  543         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  544                 kq = kn->kn_kq;
  545                 KQ_LOCK(kq);
  546                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
  547                         KQ_UNLOCK(kq);
  548                         continue;
  549                 }
  550 
  551                 /*
  552                  * The same as knote(), activate the event.
  553                  */
  554                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  555                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  556                                 KNOTE_ACTIVATE(kn, 1);
  557                         KQ_UNLOCK(kq);
  558                         continue;
  559                 }
  560 
  561                 /*
  562                  * The NOTE_TRACK case. In addition to the activation
  563                  * of the event, we need to register new events to
  564                  * track the child. Drop the locks in preparation for
  565                  * the call to kqueue_register().
  566                  */
  567                 kn_enter_flux(kn);
  568                 KQ_UNLOCK(kq);
  569                 list->kl_unlock(list->kl_lockarg);
  570 
  571                 /*
  572                  * Activate existing knote and register tracking knotes with
  573                  * new process.
  574                  *
  575                  * First register a knote to get just the child notice. This
  576                  * must be a separate note from a potential NOTE_EXIT
  577                  * notification since both NOTE_CHILD and NOTE_EXIT are defined
  578                  * to use the data field (in conflicting ways).
  579                  */
  580                 kev.ident = pid;
  581                 kev.filter = kn->kn_filter;
  582                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
  583                     EV_FLAG2;
  584                 kev.fflags = kn->kn_sfflags;
  585                 kev.data = kn->kn_id;           /* parent */
  586                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  587                 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
  588                 if (error)
  589                         kn->kn_fflags |= NOTE_TRACKERR;
  590 
  591                 /*
  592                  * Then register another knote to track other potential events
  593                  * from the new process.
  594                  */
  595                 kev.ident = pid;
  596                 kev.filter = kn->kn_filter;
  597                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  598                 kev.fflags = kn->kn_sfflags;
  599                 kev.data = kn->kn_id;           /* parent */
  600                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  601                 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
  602                 if (error)
  603                         kn->kn_fflags |= NOTE_TRACKERR;
  604                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  605                         KNOTE_ACTIVATE(kn, 0);
  606                 list->kl_lock(list->kl_lockarg);
  607                 KQ_LOCK(kq);
  608                 kn_leave_flux(kn);
  609                 KQ_UNLOCK_FLUX(kq);
  610         }
  611 }
  612 
  613 /*
  614  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  615  * interval timer support code.
  616  */
  617 
  618 #define NOTE_TIMER_PRECMASK                                             \
  619     (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
  620 
  621 static sbintime_t
  622 timer2sbintime(int64_t data, int flags)
  623 {
  624         int64_t secs;
  625 
  626         /*
  627          * Macros for converting to the fractional second portion of an
  628          * sbintime_t using 64bit multiplication to improve precision.
  629          */
  630 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
  631 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
  632 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
  633         switch (flags & NOTE_TIMER_PRECMASK) {
  634         case NOTE_SECONDS:
  635 #ifdef __LP64__
  636                 if (data > (SBT_MAX / SBT_1S))
  637                         return (SBT_MAX);
  638 #endif
  639                 return ((sbintime_t)data << 32);
  640         case NOTE_MSECONDS: /* FALLTHROUGH */
  641         case 0:
  642                 if (data >= 1000) {
  643                         secs = data / 1000;
  644 #ifdef __LP64__
  645                         if (secs > (SBT_MAX / SBT_1S))
  646                                 return (SBT_MAX);
  647 #endif
  648                         return (secs << 32 | MS_TO_SBT(data % 1000));
  649                 }
  650                 return (MS_TO_SBT(data));
  651         case NOTE_USECONDS:
  652                 if (data >= 1000000) {
  653                         secs = data / 1000000;
  654 #ifdef __LP64__
  655                         if (secs > (SBT_MAX / SBT_1S))
  656                                 return (SBT_MAX);
  657 #endif
  658                         return (secs << 32 | US_TO_SBT(data % 1000000));
  659                 }
  660                 return (US_TO_SBT(data));
  661         case NOTE_NSECONDS:
  662                 if (data >= 1000000000) {
  663                         secs = data / 1000000000;
  664 #ifdef __LP64__
  665                         if (secs > (SBT_MAX / SBT_1S))
  666                                 return (SBT_MAX);
  667 #endif
  668                         return (secs << 32 | NS_TO_SBT(data % 1000000000));
  669                 }
  670                 return (NS_TO_SBT(data));
  671         default:
  672                 break;
  673         }
  674         return (-1);
  675 }
  676 
  677 struct kq_timer_cb_data {
  678         struct callout c;
  679         sbintime_t next;        /* next timer event fires at */
  680         sbintime_t to;          /* precalculated timer period, 0 for abs */
  681 };
  682 
  683 static void
  684 filt_timerexpire(void *knx)
  685 {
  686         struct knote *kn;
  687         struct kq_timer_cb_data *kc;
  688 
  689         kn = knx;
  690         kn->kn_data++;
  691         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  692 
  693         if ((kn->kn_flags & EV_ONESHOT) != 0)
  694                 return;
  695         kc = kn->kn_ptr.p_v;
  696         if (kc->to == 0)
  697                 return;
  698         kc->next += kc->to;
  699         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  700             PCPU_GET(cpuid), C_ABSOLUTE);
  701 }
  702 
  703 /*
  704  * data contains amount of time to sleep
  705  */
  706 static int
  707 filt_timervalidate(struct knote *kn, sbintime_t *to)
  708 {
  709         struct bintime bt;
  710         sbintime_t sbt;
  711 
  712         if (kn->kn_sdata < 0)
  713                 return (EINVAL);
  714         if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
  715                 kn->kn_sdata = 1;
  716         /*
  717          * The only fflags values supported are the timer unit
  718          * (precision) and the absolute time indicator.
  719          */
  720         if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
  721                 return (EINVAL);
  722 
  723         *to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
  724         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  725                 getboottimebin(&bt);
  726                 sbt = bttosbt(bt);
  727                 *to -= sbt;
  728         }
  729         if (*to < 0)
  730                 return (EINVAL);
  731         return (0);
  732 }
  733 
  734 static int
  735 filt_timerattach(struct knote *kn)
  736 {
  737         struct kq_timer_cb_data *kc;
  738         sbintime_t to;
  739         unsigned int ncallouts;
  740         int error;
  741 
  742         error = filt_timervalidate(kn, &to);
  743         if (error != 0)
  744                 return (error);
  745 
  746         do {
  747                 ncallouts = kq_ncallouts;
  748                 if (ncallouts >= kq_calloutmax)
  749                         return (ENOMEM);
  750         } while (!atomic_cmpset_int(&kq_ncallouts, ncallouts, ncallouts + 1));
  751 
  752         if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
  753                 kn->kn_flags |= EV_CLEAR;       /* automatically set */
  754         kn->kn_status &= ~KN_DETACHED;          /* knlist_add clears it */
  755         kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
  756         callout_init(&kc->c, 1);
  757         filt_timerstart(kn, to);
  758 
  759         return (0);
  760 }
  761 
  762 static void
  763 filt_timerstart(struct knote *kn, sbintime_t to)
  764 {
  765         struct kq_timer_cb_data *kc;
  766 
  767         kc = kn->kn_ptr.p_v;
  768         if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
  769                 kc->next = to;
  770                 kc->to = 0;
  771         } else {
  772                 kc->next = to + sbinuptime();
  773                 kc->to = to;
  774         }
  775         callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kn,
  776             PCPU_GET(cpuid), C_ABSOLUTE);
  777 }
  778 
  779 static void
  780 filt_timerdetach(struct knote *kn)
  781 {
  782         struct kq_timer_cb_data *kc;
  783         unsigned int old __unused;
  784 
  785         kc = kn->kn_ptr.p_v;
  786         callout_drain(&kc->c);
  787         free(kc, M_KQUEUE);
  788         old = atomic_fetchadd_int(&kq_ncallouts, -1);
  789         KASSERT(old > 0, ("Number of callouts cannot become negative"));
  790         kn->kn_status |= KN_DETACHED;   /* knlist_remove sets it */
  791 }
  792 
  793 static void
  794 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
  795 {
  796         struct kq_timer_cb_data *kc;    
  797         struct kqueue *kq;
  798         sbintime_t to;
  799         int error;
  800 
  801         switch (type) {
  802         case EVENT_REGISTER:
  803                 /* Handle re-added timers that update data/fflags */
  804                 if (kev->flags & EV_ADD) {
  805                         kc = kn->kn_ptr.p_v;
  806 
  807                         /* Drain any existing callout. */
  808                         callout_drain(&kc->c);
  809 
  810                         /* Throw away any existing undelivered record
  811                          * of the timer expiration. This is done under
  812                          * the presumption that if a process is
  813                          * re-adding this timer with new parameters,
  814                          * it is no longer interested in what may have
  815                          * happened under the old parameters. If it is
  816                          * interested, it can wait for the expiration,
  817                          * delete the old timer definition, and then
  818                          * add the new one.
  819                          *
  820                          * This has to be done while the kq is locked:
  821                          *   - if enqueued, dequeue
  822                          *   - make it no longer active
  823                          *   - clear the count of expiration events
  824                          */
  825                         kq = kn->kn_kq;
  826                         KQ_LOCK(kq);
  827                         if (kn->kn_status & KN_QUEUED)
  828                                 knote_dequeue(kn);
  829 
  830                         kn->kn_status &= ~KN_ACTIVE;
  831                         kn->kn_data = 0;
  832                         KQ_UNLOCK(kq);
  833                         
  834                         /* Reschedule timer based on new data/fflags */
  835                         kn->kn_sfflags = kev->fflags;
  836                         kn->kn_sdata = kev->data;
  837                         error = filt_timervalidate(kn, &to);
  838                         if (error != 0) {
  839                                 kn->kn_flags |= EV_ERROR;
  840                                 kn->kn_data = error;
  841                         } else
  842                                 filt_timerstart(kn, to);
  843                 }
  844                 break;
  845 
  846         case EVENT_PROCESS:
  847                 *kev = kn->kn_kevent;
  848                 if (kn->kn_flags & EV_CLEAR) {
  849                         kn->kn_data = 0;
  850                         kn->kn_fflags = 0;
  851                 }
  852                 break;
  853 
  854         default:
  855                 panic("filt_timertouch() - invalid type (%ld)", type);
  856                 break;
  857         }
  858 }
  859 
  860 static int
  861 filt_timer(struct knote *kn, long hint)
  862 {
  863 
  864         return (kn->kn_data != 0);
  865 }
  866 
  867 static int
  868 filt_userattach(struct knote *kn)
  869 {
  870 
  871         /* 
  872          * EVFILT_USER knotes are not attached to anything in the kernel.
  873          */ 
  874         kn->kn_hook = NULL;
  875         if (kn->kn_fflags & NOTE_TRIGGER)
  876                 kn->kn_hookid = 1;
  877         else
  878                 kn->kn_hookid = 0;
  879         return (0);
  880 }
  881 
  882 static void
  883 filt_userdetach(__unused struct knote *kn)
  884 {
  885 
  886         /*
  887          * EVFILT_USER knotes are not attached to anything in the kernel.
  888          */
  889 }
  890 
  891 static int
  892 filt_user(struct knote *kn, __unused long hint)
  893 {
  894 
  895         return (kn->kn_hookid);
  896 }
  897 
  898 static void
  899 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  900 {
  901         u_int ffctrl;
  902 
  903         switch (type) {
  904         case EVENT_REGISTER:
  905                 if (kev->fflags & NOTE_TRIGGER)
  906                         kn->kn_hookid = 1;
  907 
  908                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  909                 kev->fflags &= NOTE_FFLAGSMASK;
  910                 switch (ffctrl) {
  911                 case NOTE_FFNOP:
  912                         break;
  913 
  914                 case NOTE_FFAND:
  915                         kn->kn_sfflags &= kev->fflags;
  916                         break;
  917 
  918                 case NOTE_FFOR:
  919                         kn->kn_sfflags |= kev->fflags;
  920                         break;
  921 
  922                 case NOTE_FFCOPY:
  923                         kn->kn_sfflags = kev->fflags;
  924                         break;
  925 
  926                 default:
  927                         /* XXX Return error? */
  928                         break;
  929                 }
  930                 kn->kn_sdata = kev->data;
  931                 if (kev->flags & EV_CLEAR) {
  932                         kn->kn_hookid = 0;
  933                         kn->kn_data = 0;
  934                         kn->kn_fflags = 0;
  935                 }
  936                 break;
  937 
  938         case EVENT_PROCESS:
  939                 *kev = kn->kn_kevent;
  940                 kev->fflags = kn->kn_sfflags;
  941                 kev->data = kn->kn_sdata;
  942                 if (kn->kn_flags & EV_CLEAR) {
  943                         kn->kn_hookid = 0;
  944                         kn->kn_data = 0;
  945                         kn->kn_fflags = 0;
  946                 }
  947                 break;
  948 
  949         default:
  950                 panic("filt_usertouch() - invalid type (%ld)", type);
  951                 break;
  952         }
  953 }
  954 
  955 int
  956 sys_kqueue(struct thread *td, struct kqueue_args *uap)
  957 {
  958 
  959         return (kern_kqueue(td, 0, NULL));
  960 }
  961 
  962 static void
  963 kqueue_init(struct kqueue *kq)
  964 {
  965 
  966         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
  967         TAILQ_INIT(&kq->kq_head);
  968         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  969         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  970 }
  971 
  972 int
  973 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
  974 {
  975         struct filedesc *fdp;
  976         struct kqueue *kq;
  977         struct file *fp;
  978         struct ucred *cred;
  979         int fd, error;
  980 
  981         fdp = td->td_proc->p_fd;
  982         cred = td->td_ucred;
  983         if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
  984                 return (ENOMEM);
  985 
  986         error = falloc_caps(td, &fp, &fd, flags, fcaps);
  987         if (error != 0) {
  988                 chgkqcnt(cred->cr_ruidinfo, -1, 0);
  989                 return (error);
  990         }
  991 
  992         /* An extra reference on `fp' has been held for us by falloc(). */
  993         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  994         kqueue_init(kq);
  995         kq->kq_fdp = fdp;
  996         kq->kq_cred = crhold(cred);
  997 
  998         FILEDESC_XLOCK(fdp);
  999         TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
 1000         FILEDESC_XUNLOCK(fdp);
 1001 
 1002         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
 1003         fdrop(fp, td);
 1004 
 1005         td->td_retval[0] = fd;
 1006         return (0);
 1007 }
 1008 
 1009 struct g_kevent_args {
 1010         int     fd;
 1011         void    *changelist;
 1012         int     nchanges;
 1013         void    *eventlist;
 1014         int     nevents;
 1015         const struct timespec *timeout;
 1016 };
 1017 
 1018 int
 1019 sys_kevent(struct thread *td, struct kevent_args *uap)
 1020 {
 1021         struct kevent_copyops k_ops = {
 1022                 .arg = uap,
 1023                 .k_copyout = kevent_copyout,
 1024                 .k_copyin = kevent_copyin,
 1025                 .kevent_size = sizeof(struct kevent),
 1026         };
 1027         struct g_kevent_args gk_args = {
 1028                 .fd = uap->fd,
 1029                 .changelist = uap->changelist,
 1030                 .nchanges = uap->nchanges,
 1031                 .eventlist = uap->eventlist,
 1032                 .nevents = uap->nevents,
 1033                 .timeout = uap->timeout,
 1034         };
 1035 
 1036         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
 1037 }
 1038 
 1039 static int
 1040 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
 1041     struct kevent_copyops *k_ops, const char *struct_name)
 1042 {
 1043         struct timespec ts, *tsp;
 1044 #ifdef KTRACE
 1045         struct kevent *eventlist = uap->eventlist;
 1046 #endif
 1047         int error;
 1048 
 1049         if (uap->timeout != NULL) {
 1050                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1051                 if (error)
 1052                         return (error);
 1053                 tsp = &ts;
 1054         } else
 1055                 tsp = NULL;
 1056 
 1057 #ifdef KTRACE
 1058         if (KTRPOINT(td, KTR_STRUCT_ARRAY))
 1059                 ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
 1060                     uap->nchanges, k_ops->kevent_size);
 1061 #endif
 1062 
 1063         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
 1064             k_ops, tsp);
 1065 
 1066 #ifdef KTRACE
 1067         if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
 1068                 ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
 1069                     td->td_retval[0], k_ops->kevent_size);
 1070 #endif
 1071 
 1072         return (error);
 1073 }
 1074 
 1075 /*
 1076  * Copy 'count' items into the destination list pointed to by uap->eventlist.
 1077  */
 1078 static int
 1079 kevent_copyout(void *arg, struct kevent *kevp, int count)
 1080 {
 1081         struct kevent_args *uap;
 1082         int error;
 1083 
 1084         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1085         uap = (struct kevent_args *)arg;
 1086 
 1087         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
 1088         if (error == 0)
 1089                 uap->eventlist += count;
 1090         return (error);
 1091 }
 1092 
 1093 /*
 1094  * Copy 'count' items from the list pointed to by uap->changelist.
 1095  */
 1096 static int
 1097 kevent_copyin(void *arg, struct kevent *kevp, int count)
 1098 {
 1099         struct kevent_args *uap;
 1100         int error;
 1101 
 1102         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1103         uap = (struct kevent_args *)arg;
 1104 
 1105         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
 1106         if (error == 0)
 1107                 uap->changelist += count;
 1108         return (error);
 1109 }
 1110 
 1111 #ifdef COMPAT_FREEBSD11
 1112 static int
 1113 kevent11_copyout(void *arg, struct kevent *kevp, int count)
 1114 {
 1115         struct freebsd11_kevent_args *uap;
 1116         struct kevent_freebsd11 kev11;
 1117         int error, i;
 1118 
 1119         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1120         uap = (struct freebsd11_kevent_args *)arg;
 1121 
 1122         for (i = 0; i < count; i++) {
 1123                 kev11.ident = kevp->ident;
 1124                 kev11.filter = kevp->filter;
 1125                 kev11.flags = kevp->flags;
 1126                 kev11.fflags = kevp->fflags;
 1127                 kev11.data = kevp->data;
 1128                 kev11.udata = kevp->udata;
 1129                 error = copyout(&kev11, uap->eventlist, sizeof(kev11));
 1130                 if (error != 0)
 1131                         break;
 1132                 uap->eventlist++;
 1133                 kevp++;
 1134         }
 1135         return (error);
 1136 }
 1137 
 1138 /*
 1139  * Copy 'count' items from the list pointed to by uap->changelist.
 1140  */
 1141 static int
 1142 kevent11_copyin(void *arg, struct kevent *kevp, int count)
 1143 {
 1144         struct freebsd11_kevent_args *uap;
 1145         struct kevent_freebsd11 kev11;
 1146         int error, i;
 1147 
 1148         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
 1149         uap = (struct freebsd11_kevent_args *)arg;
 1150 
 1151         for (i = 0; i < count; i++) {
 1152                 error = copyin(uap->changelist, &kev11, sizeof(kev11));
 1153                 if (error != 0)
 1154                         break;
 1155                 kevp->ident = kev11.ident;
 1156                 kevp->filter = kev11.filter;
 1157                 kevp->flags = kev11.flags;
 1158                 kevp->fflags = kev11.fflags;
 1159                 kevp->data = (uintptr_t)kev11.data;
 1160                 kevp->udata = kev11.udata;
 1161                 bzero(&kevp->ext, sizeof(kevp->ext));
 1162                 uap->changelist++;
 1163                 kevp++;
 1164         }
 1165         return (error);
 1166 }
 1167 
 1168 int
 1169 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
 1170 {
 1171         struct kevent_copyops k_ops = {
 1172                 .arg = uap,
 1173                 .k_copyout = kevent11_copyout,
 1174                 .k_copyin = kevent11_copyin,
 1175                 .kevent_size = sizeof(struct kevent_freebsd11),
 1176         };
 1177         struct g_kevent_args gk_args = {
 1178                 .fd = uap->fd,
 1179                 .changelist = uap->changelist,
 1180                 .nchanges = uap->nchanges,
 1181                 .eventlist = uap->eventlist,
 1182                 .nevents = uap->nevents,
 1183                 .timeout = uap->timeout,
 1184         };
 1185 
 1186         return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent_freebsd11"));
 1187 }
 1188 #endif
 1189 
 1190 int
 1191 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
 1192     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1193 {
 1194         cap_rights_t rights;
 1195         struct file *fp;
 1196         int error;
 1197 
 1198         cap_rights_init_zero(&rights);
 1199         if (nchanges > 0)
 1200                 cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
 1201         if (nevents > 0)
 1202                 cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
 1203         error = fget(td, fd, &rights, &fp);
 1204         if (error != 0)
 1205                 return (error);
 1206 
 1207         error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
 1208         fdrop(fp, td);
 1209 
 1210         return (error);
 1211 }
 1212 
 1213 static int
 1214 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
 1215     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1216 {
 1217         struct kevent keva[KQ_NEVENTS];
 1218         struct kevent *kevp, *changes;
 1219         int i, n, nerrors, error;
 1220 
 1221         nerrors = 0;
 1222         while (nchanges > 0) {
 1223                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
 1224                 error = k_ops->k_copyin(k_ops->arg, keva, n);
 1225                 if (error)
 1226                         return (error);
 1227                 changes = keva;
 1228                 for (i = 0; i < n; i++) {
 1229                         kevp = &changes[i];
 1230                         if (!kevp->filter)
 1231                                 continue;
 1232                         kevp->flags &= ~EV_SYSFLAGS;
 1233                         error = kqueue_register(kq, kevp, td, M_WAITOK);
 1234                         if (error || (kevp->flags & EV_RECEIPT)) {
 1235                                 if (nevents == 0)
 1236                                         return (error);
 1237                                 kevp->flags = EV_ERROR;
 1238                                 kevp->data = error;
 1239                                 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
 1240                                 nevents--;
 1241                                 nerrors++;
 1242                         }
 1243                 }
 1244                 nchanges -= n;
 1245         }
 1246         if (nerrors) {
 1247                 td->td_retval[0] = nerrors;
 1248                 return (0);
 1249         }
 1250 
 1251         return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
 1252 }
 1253 
 1254 int
 1255 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
 1256     struct kevent_copyops *k_ops, const struct timespec *timeout)
 1257 {
 1258         struct kqueue *kq;
 1259         int error;
 1260 
 1261         error = kqueue_acquire(fp, &kq);
 1262         if (error != 0)
 1263                 return (error);
 1264         error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
 1265         kqueue_release(kq, 0);
 1266         return (error);
 1267 }
 1268 
 1269 /*
 1270  * Performs a kevent() call on a temporarily created kqueue. This can be
 1271  * used to perform one-shot polling, similar to poll() and select().
 1272  */
 1273 int
 1274 kern_kevent_anonymous(struct thread *td, int nevents,
 1275     struct kevent_copyops *k_ops)
 1276 {
 1277         struct kqueue kq = {};
 1278         int error;
 1279 
 1280         kqueue_init(&kq);
 1281         kq.kq_refcnt = 1;
 1282         error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
 1283         kqueue_drain(&kq, td);
 1284         kqueue_destroy(&kq);
 1285         return (error);
 1286 }
 1287 
 1288 int
 1289 kqueue_add_filteropts(int filt, struct filterops *filtops)
 1290 {
 1291         int error;
 1292 
 1293         error = 0;
 1294         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
 1295                 printf(
 1296 "trying to add a filterop that is out of range: %d is beyond %d\n",
 1297                     ~filt, EVFILT_SYSCOUNT);
 1298                 return EINVAL;
 1299         }
 1300         mtx_lock(&filterops_lock);
 1301         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
 1302             sysfilt_ops[~filt].for_fop != NULL)
 1303                 error = EEXIST;
 1304         else {
 1305                 sysfilt_ops[~filt].for_fop = filtops;
 1306                 sysfilt_ops[~filt].for_refcnt = 0;
 1307         }
 1308         mtx_unlock(&filterops_lock);
 1309 
 1310         return (error);
 1311 }
 1312 
 1313 int
 1314 kqueue_del_filteropts(int filt)
 1315 {
 1316         int error;
 1317 
 1318         error = 0;
 1319         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1320                 return EINVAL;
 1321 
 1322         mtx_lock(&filterops_lock);
 1323         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
 1324             sysfilt_ops[~filt].for_fop == NULL)
 1325                 error = EINVAL;
 1326         else if (sysfilt_ops[~filt].for_refcnt != 0)
 1327                 error = EBUSY;
 1328         else {
 1329                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1330                 sysfilt_ops[~filt].for_refcnt = 0;
 1331         }
 1332         mtx_unlock(&filterops_lock);
 1333 
 1334         return error;
 1335 }
 1336 
 1337 static struct filterops *
 1338 kqueue_fo_find(int filt)
 1339 {
 1340 
 1341         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1342                 return NULL;
 1343 
 1344         if (sysfilt_ops[~filt].for_nolock)
 1345                 return sysfilt_ops[~filt].for_fop;
 1346 
 1347         mtx_lock(&filterops_lock);
 1348         sysfilt_ops[~filt].for_refcnt++;
 1349         if (sysfilt_ops[~filt].for_fop == NULL)
 1350                 sysfilt_ops[~filt].for_fop = &null_filtops;
 1351         mtx_unlock(&filterops_lock);
 1352 
 1353         return sysfilt_ops[~filt].for_fop;
 1354 }
 1355 
 1356 static void
 1357 kqueue_fo_release(int filt)
 1358 {
 1359 
 1360         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
 1361                 return;
 1362 
 1363         if (sysfilt_ops[~filt].for_nolock)
 1364                 return;
 1365 
 1366         mtx_lock(&filterops_lock);
 1367         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
 1368             ("filter object refcount not valid on release"));
 1369         sysfilt_ops[~filt].for_refcnt--;
 1370         mtx_unlock(&filterops_lock);
 1371 }
 1372 
 1373 /*
 1374  * A ref to kq (obtained via kqueue_acquire) must be held.
 1375  */
 1376 static int
 1377 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
 1378     int mflag)
 1379 {
 1380         struct filterops *fops;
 1381         struct file *fp;
 1382         struct knote *kn, *tkn;
 1383         struct knlist *knl;
 1384         int error, filt, event;
 1385         int haskqglobal, filedesc_unlock;
 1386 
 1387         if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
 1388                 return (EINVAL);
 1389 
 1390         fp = NULL;
 1391         kn = NULL;
 1392         knl = NULL;
 1393         error = 0;
 1394         haskqglobal = 0;
 1395         filedesc_unlock = 0;
 1396 
 1397         filt = kev->filter;
 1398         fops = kqueue_fo_find(filt);
 1399         if (fops == NULL)
 1400                 return EINVAL;
 1401 
 1402         if (kev->flags & EV_ADD) {
 1403                 /*
 1404                  * Prevent waiting with locks.  Non-sleepable
 1405                  * allocation failures are handled in the loop, only
 1406                  * if the spare knote appears to be actually required.
 1407                  */
 1408                 tkn = knote_alloc(mflag);
 1409         } else {
 1410                 tkn = NULL;
 1411         }
 1412 
 1413 findkn:
 1414         if (fops->f_isfd) {
 1415                 KASSERT(td != NULL, ("td is NULL"));
 1416                 if (kev->ident > INT_MAX)
 1417                         error = EBADF;
 1418                 else
 1419                         error = fget(td, kev->ident, &cap_event_rights, &fp);
 1420                 if (error)
 1421                         goto done;
 1422 
 1423                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
 1424                     kev->ident, M_NOWAIT) != 0) {
 1425                         /* try again */
 1426                         fdrop(fp, td);
 1427                         fp = NULL;
 1428                         error = kqueue_expand(kq, fops, kev->ident, mflag);
 1429                         if (error)
 1430                                 goto done;
 1431                         goto findkn;
 1432                 }
 1433 
 1434                 if (fp->f_type == DTYPE_KQUEUE) {
 1435                         /*
 1436                          * If we add some intelligence about what we are doing,
 1437                          * we should be able to support events on ourselves.
 1438                          * We need to know when we are doing this to prevent
 1439                          * getting both the knlist lock and the kq lock since
 1440                          * they are the same thing.
 1441                          */
 1442                         if (fp->f_data == kq) {
 1443                                 error = EINVAL;
 1444                                 goto done;
 1445                         }
 1446 
 1447                         /*
 1448                          * Pre-lock the filedesc before the global
 1449                          * lock mutex, see the comment in
 1450                          * kqueue_close().
 1451                          */
 1452                         FILEDESC_XLOCK(td->td_proc->p_fd);
 1453                         filedesc_unlock = 1;
 1454                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1455                 }
 1456 
 1457                 KQ_LOCK(kq);
 1458                 if (kev->ident < kq->kq_knlistsize) {
 1459                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1460                                 if (kev->filter == kn->kn_filter)
 1461                                         break;
 1462                 }
 1463         } else {
 1464                 if ((kev->flags & EV_ADD) == EV_ADD) {
 1465                         error = kqueue_expand(kq, fops, kev->ident, mflag);
 1466                         if (error != 0)
 1467                                 goto done;
 1468                 }
 1469 
 1470                 KQ_LOCK(kq);
 1471 
 1472                 /*
 1473                  * If possible, find an existing knote to use for this kevent.
 1474                  */
 1475                 if (kev->filter == EVFILT_PROC &&
 1476                     (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
 1477                         /* This is an internal creation of a process tracking
 1478                          * note. Don't attempt to coalesce this with an
 1479                          * existing note.
 1480                          */
 1481                         ;                       
 1482                 } else if (kq->kq_knhashmask != 0) {
 1483                         struct klist *list;
 1484 
 1485                         list = &kq->kq_knhash[
 1486                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1487                         SLIST_FOREACH(kn, list, kn_link)
 1488                                 if (kev->ident == kn->kn_id &&
 1489                                     kev->filter == kn->kn_filter)
 1490                                         break;
 1491                 }
 1492         }
 1493 
 1494         /* knote is in the process of changing, wait for it to stabilize. */
 1495         if (kn != NULL && kn_in_flux(kn)) {
 1496                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1497                 if (filedesc_unlock) {
 1498                         FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1499                         filedesc_unlock = 0;
 1500                 }
 1501                 kq->kq_state |= KQ_FLUXWAIT;
 1502                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1503                 if (fp != NULL) {
 1504                         fdrop(fp, td);
 1505                         fp = NULL;
 1506                 }
 1507                 goto findkn;
 1508         }
 1509 
 1510         /*
 1511          * kn now contains the matching knote, or NULL if no match
 1512          */
 1513         if (kn == NULL) {
 1514                 if (kev->flags & EV_ADD) {
 1515                         kn = tkn;
 1516                         tkn = NULL;
 1517                         if (kn == NULL) {
 1518                                 KQ_UNLOCK(kq);
 1519                                 error = ENOMEM;
 1520                                 goto done;
 1521                         }
 1522                         kn->kn_fp = fp;
 1523                         kn->kn_kq = kq;
 1524                         kn->kn_fop = fops;
 1525                         /*
 1526                          * apply reference counts to knote structure, and
 1527                          * do not release it at the end of this routine.
 1528                          */
 1529                         fops = NULL;
 1530                         fp = NULL;
 1531 
 1532                         kn->kn_sfflags = kev->fflags;
 1533                         kn->kn_sdata = kev->data;
 1534                         kev->fflags = 0;
 1535                         kev->data = 0;
 1536                         kn->kn_kevent = *kev;
 1537                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1538                             EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
 1539                         kn->kn_status = KN_DETACHED;
 1540                         if ((kev->flags & EV_DISABLE) != 0)
 1541                                 kn->kn_status |= KN_DISABLED;
 1542                         kn_enter_flux(kn);
 1543 
 1544                         error = knote_attach(kn, kq);
 1545                         KQ_UNLOCK(kq);
 1546                         if (error != 0) {
 1547                                 tkn = kn;
 1548                                 goto done;
 1549                         }
 1550 
 1551                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1552                                 knote_drop_detached(kn, td);
 1553                                 goto done;
 1554                         }
 1555                         knl = kn_list_lock(kn);
 1556                         goto done_ev_add;
 1557                 } else {
 1558                         /* No matching knote and the EV_ADD flag is not set. */
 1559                         KQ_UNLOCK(kq);
 1560                         error = ENOENT;
 1561                         goto done;
 1562                 }
 1563         }
 1564 
 1565         if (kev->flags & EV_DELETE) {
 1566                 kn_enter_flux(kn);
 1567                 KQ_UNLOCK(kq);
 1568                 knote_drop(kn, td);
 1569                 goto done;
 1570         }
 1571 
 1572         if (kev->flags & EV_FORCEONESHOT) {
 1573                 kn->kn_flags |= EV_ONESHOT;
 1574                 KNOTE_ACTIVATE(kn, 1);
 1575         }
 1576 
 1577         if ((kev->flags & EV_ENABLE) != 0)
 1578                 kn->kn_status &= ~KN_DISABLED;
 1579         else if ((kev->flags & EV_DISABLE) != 0)
 1580                 kn->kn_status |= KN_DISABLED;
 1581 
 1582         /*
 1583          * The user may change some filter values after the initial EV_ADD,
 1584          * but doing so will not reset any filter which has already been
 1585          * triggered.
 1586          */
 1587         kn->kn_status |= KN_SCAN;
 1588         kn_enter_flux(kn);
 1589         KQ_UNLOCK(kq);
 1590         knl = kn_list_lock(kn);
 1591         kn->kn_kevent.udata = kev->udata;
 1592         if (!fops->f_isfd && fops->f_touch != NULL) {
 1593                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1594         } else {
 1595                 kn->kn_sfflags = kev->fflags;
 1596                 kn->kn_sdata = kev->data;
 1597         }
 1598 
 1599 done_ev_add:
 1600         /*
 1601          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1602          * the initial attach event decides that the event is "completed" 
 1603          * already, e.g., filt_procattach() is called on a zombie process.  It
 1604          * will call filt_proc() which will remove it from the list, and NULL
 1605          * kn_knlist.
 1606          *
 1607          * KN_DISABLED will be stable while the knote is in flux, so the
 1608          * unlocked read will not race with an update.
 1609          */
 1610         if ((kn->kn_status & KN_DISABLED) == 0)
 1611                 event = kn->kn_fop->f_event(kn, 0);
 1612         else
 1613                 event = 0;
 1614 
 1615         KQ_LOCK(kq);
 1616         if (event)
 1617                 kn->kn_status |= KN_ACTIVE;
 1618         if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
 1619             KN_ACTIVE)
 1620                 knote_enqueue(kn);
 1621         kn->kn_status &= ~KN_SCAN;
 1622         kn_leave_flux(kn);
 1623         kn_list_unlock(knl);
 1624         KQ_UNLOCK_FLUX(kq);
 1625 
 1626 done:
 1627         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1628         if (filedesc_unlock)
 1629                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
 1630         if (fp != NULL)
 1631                 fdrop(fp, td);
 1632         knote_free(tkn);
 1633         if (fops != NULL)
 1634                 kqueue_fo_release(filt);
 1635         return (error);
 1636 }
 1637 
 1638 static int
 1639 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1640 {
 1641         int error;
 1642         struct kqueue *kq;
 1643 
 1644         error = 0;
 1645 
 1646         kq = fp->f_data;
 1647         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1648                 return (EBADF);
 1649         *kqp = kq;
 1650         KQ_LOCK(kq);
 1651         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1652                 KQ_UNLOCK(kq);
 1653                 return (EBADF);
 1654         }
 1655         kq->kq_refcnt++;
 1656         KQ_UNLOCK(kq);
 1657 
 1658         return error;
 1659 }
 1660 
 1661 static void
 1662 kqueue_release(struct kqueue *kq, int locked)
 1663 {
 1664         if (locked)
 1665                 KQ_OWNED(kq);
 1666         else
 1667                 KQ_LOCK(kq);
 1668         kq->kq_refcnt--;
 1669         if (kq->kq_refcnt == 1)
 1670                 wakeup(&kq->kq_refcnt);
 1671         if (!locked)
 1672                 KQ_UNLOCK(kq);
 1673 }
 1674 
 1675 static void
 1676 kqueue_schedtask(struct kqueue *kq)
 1677 {
 1678 
 1679         KQ_OWNED(kq);
 1680         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1681             ("scheduling kqueue task while draining"));
 1682 
 1683         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1684                 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
 1685                 kq->kq_state |= KQ_TASKSCHED;
 1686         }
 1687 }
 1688 
 1689 /*
 1690  * Expand the kq to make sure we have storage for fops/ident pair.
 1691  *
 1692  * Return 0 on success (or no work necessary), return errno on failure.
 1693  */
 1694 static int
 1695 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1696     int mflag)
 1697 {
 1698         struct klist *list, *tmp_knhash, *to_free;
 1699         u_long tmp_knhashmask;
 1700         int error, fd, size;
 1701 
 1702         KQ_NOTOWNED(kq);
 1703 
 1704         error = 0;
 1705         to_free = NULL;
 1706         if (fops->f_isfd) {
 1707                 fd = ident;
 1708                 if (kq->kq_knlistsize <= fd) {
 1709                         size = kq->kq_knlistsize;
 1710                         while (size <= fd)
 1711                                 size += KQEXTENT;
 1712                         list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
 1713                         if (list == NULL)
 1714                                 return ENOMEM;
 1715                         KQ_LOCK(kq);
 1716                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1717                                 to_free = list;
 1718                                 error = EBADF;
 1719                         } else if (kq->kq_knlistsize > fd) {
 1720                                 to_free = list;
 1721                         } else {
 1722                                 if (kq->kq_knlist != NULL) {
 1723                                         bcopy(kq->kq_knlist, list,
 1724                                             kq->kq_knlistsize * sizeof(*list));
 1725                                         to_free = kq->kq_knlist;
 1726                                         kq->kq_knlist = NULL;
 1727                                 }
 1728                                 bzero((caddr_t)list +
 1729                                     kq->kq_knlistsize * sizeof(*list),
 1730                                     (size - kq->kq_knlistsize) * sizeof(*list));
 1731                                 kq->kq_knlistsize = size;
 1732                                 kq->kq_knlist = list;
 1733                         }
 1734                         KQ_UNLOCK(kq);
 1735                 }
 1736         } else {
 1737                 if (kq->kq_knhashmask == 0) {
 1738                         tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
 1739                             &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
 1740                             HASH_WAITOK : HASH_NOWAIT);
 1741                         if (tmp_knhash == NULL)
 1742                                 return (ENOMEM);
 1743                         KQ_LOCK(kq);
 1744                         if ((kq->kq_state & KQ_CLOSING) != 0) {
 1745                                 to_free = tmp_knhash;
 1746                                 error = EBADF;
 1747                         } else if (kq->kq_knhashmask == 0) {
 1748                                 kq->kq_knhash = tmp_knhash;
 1749                                 kq->kq_knhashmask = tmp_knhashmask;
 1750                         } else {
 1751                                 to_free = tmp_knhash;
 1752                         }
 1753                         KQ_UNLOCK(kq);
 1754                 }
 1755         }
 1756         free(to_free, M_KQUEUE);
 1757 
 1758         KQ_NOTOWNED(kq);
 1759         return (error);
 1760 }
 1761 
 1762 static void
 1763 kqueue_task(void *arg, int pending)
 1764 {
 1765         struct kqueue *kq;
 1766         int haskqglobal;
 1767 
 1768         haskqglobal = 0;
 1769         kq = arg;
 1770 
 1771         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1772         KQ_LOCK(kq);
 1773 
 1774         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1775 
 1776         kq->kq_state &= ~KQ_TASKSCHED;
 1777         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1778                 wakeup(&kq->kq_state);
 1779         }
 1780         KQ_UNLOCK(kq);
 1781         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1782 }
 1783 
 1784 /*
 1785  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1786  * We treat KN_MARKER knotes as if they are in flux.
 1787  */
 1788 static int
 1789 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1790     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1791 {
 1792         struct kevent *kevp;
 1793         struct knote *kn, *marker;
 1794         struct knlist *knl;
 1795         sbintime_t asbt, rsbt;
 1796         int count, error, haskqglobal, influx, nkev, touch;
 1797 
 1798         count = maxevents;
 1799         nkev = 0;
 1800         error = 0;
 1801         haskqglobal = 0;
 1802 
 1803         if (maxevents == 0)
 1804                 goto done_nl;
 1805 
 1806         rsbt = 0;
 1807         if (tsp != NULL) {
 1808                 if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
 1809                     tsp->tv_nsec >= 1000000000) {
 1810                         error = EINVAL;
 1811                         goto done_nl;
 1812                 }
 1813                 if (timespecisset(tsp)) {
 1814                         if (tsp->tv_sec <= INT32_MAX) {
 1815                                 rsbt = tstosbt(*tsp);
 1816                                 if (TIMESEL(&asbt, rsbt))
 1817                                         asbt += tc_tick_sbt;
 1818                                 if (asbt <= SBT_MAX - rsbt)
 1819                                         asbt += rsbt;
 1820                                 else
 1821                                         asbt = 0;
 1822                                 rsbt >>= tc_precexp;
 1823                         } else
 1824                                 asbt = 0;
 1825                 } else
 1826                         asbt = -1;
 1827         } else
 1828                 asbt = 0;
 1829         marker = knote_alloc(M_WAITOK);
 1830         marker->kn_status = KN_MARKER;
 1831         KQ_LOCK(kq);
 1832 
 1833 retry:
 1834         kevp = keva;
 1835         if (kq->kq_count == 0) {
 1836                 if (asbt == -1) {
 1837                         error = EWOULDBLOCK;
 1838                 } else {
 1839                         kq->kq_state |= KQ_SLEEP;
 1840                         error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
 1841                             "kqread", asbt, rsbt, C_ABSOLUTE);
 1842                 }
 1843                 if (error == 0)
 1844                         goto retry;
 1845                 /* don't restart after signals... */
 1846                 if (error == ERESTART)
 1847                         error = EINTR;
 1848                 else if (error == EWOULDBLOCK)
 1849                         error = 0;
 1850                 goto done;
 1851         }
 1852 
 1853         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1854         influx = 0;
 1855         while (count) {
 1856                 KQ_OWNED(kq);
 1857                 kn = TAILQ_FIRST(&kq->kq_head);
 1858 
 1859                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1860                     kn_in_flux(kn)) {
 1861                         if (influx) {
 1862                                 influx = 0;
 1863                                 KQ_FLUX_WAKEUP(kq);
 1864                         }
 1865                         kq->kq_state |= KQ_FLUXWAIT;
 1866                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1867                             "kqflxwt", 0);
 1868                         continue;
 1869                 }
 1870 
 1871                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1872                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1873                         kn->kn_status &= ~KN_QUEUED;
 1874                         kq->kq_count--;
 1875                         continue;
 1876                 }
 1877                 if (kn == marker) {
 1878                         KQ_FLUX_WAKEUP(kq);
 1879                         if (count == maxevents)
 1880                                 goto retry;
 1881                         goto done;
 1882                 }
 1883                 KASSERT(!kn_in_flux(kn),
 1884                     ("knote %p is unexpectedly in flux", kn));
 1885 
 1886                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1887                         kn->kn_status &= ~KN_QUEUED;
 1888                         kn_enter_flux(kn);
 1889                         kq->kq_count--;
 1890                         KQ_UNLOCK(kq);
 1891                         /*
 1892                          * We don't need to lock the list since we've
 1893                          * marked it as in flux.
 1894                          */
 1895                         knote_drop(kn, td);
 1896                         KQ_LOCK(kq);
 1897                         continue;
 1898                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1899                         kn->kn_status &= ~KN_QUEUED;
 1900                         kn_enter_flux(kn);
 1901                         kq->kq_count--;
 1902                         KQ_UNLOCK(kq);
 1903                         /*
 1904                          * We don't need to lock the list since we've
 1905                          * marked the knote as being in flux.
 1906                          */
 1907                         *kevp = kn->kn_kevent;
 1908                         knote_drop(kn, td);
 1909                         KQ_LOCK(kq);
 1910                         kn = NULL;
 1911                 } else {
 1912                         kn->kn_status |= KN_SCAN;
 1913                         kn_enter_flux(kn);
 1914                         KQ_UNLOCK(kq);
 1915                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1916                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1917                         knl = kn_list_lock(kn);
 1918                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1919                                 KQ_LOCK(kq);
 1920                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1921                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
 1922                                     KN_SCAN);
 1923                                 kn_leave_flux(kn);
 1924                                 kq->kq_count--;
 1925                                 kn_list_unlock(knl);
 1926                                 influx = 1;
 1927                                 continue;
 1928                         }
 1929                         touch = (!kn->kn_fop->f_isfd &&
 1930                             kn->kn_fop->f_touch != NULL);
 1931                         if (touch)
 1932                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1933                         else
 1934                                 *kevp = kn->kn_kevent;
 1935                         KQ_LOCK(kq);
 1936                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1937                         if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
 1938                                 /* 
 1939                                  * Manually clear knotes who weren't 
 1940                                  * 'touch'ed.
 1941                                  */
 1942                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1943                                         kn->kn_data = 0;
 1944                                         kn->kn_fflags = 0;
 1945                                 }
 1946                                 if (kn->kn_flags & EV_DISPATCH)
 1947                                         kn->kn_status |= KN_DISABLED;
 1948                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1949                                 kq->kq_count--;
 1950                         } else
 1951                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1952                         
 1953                         kn->kn_status &= ~KN_SCAN;
 1954                         kn_leave_flux(kn);
 1955                         kn_list_unlock(knl);
 1956                         influx = 1;
 1957                 }
 1958 
 1959                 /* we are returning a copy to the user */
 1960                 kevp++;
 1961                 nkev++;
 1962                 count--;
 1963 
 1964                 if (nkev == KQ_NEVENTS) {
 1965                         influx = 0;
 1966                         KQ_UNLOCK_FLUX(kq);
 1967                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1968                         nkev = 0;
 1969                         kevp = keva;
 1970                         KQ_LOCK(kq);
 1971                         if (error)
 1972                                 break;
 1973                 }
 1974         }
 1975         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1976 done:
 1977         KQ_OWNED(kq);
 1978         KQ_UNLOCK_FLUX(kq);
 1979         knote_free(marker);
 1980 done_nl:
 1981         KQ_NOTOWNED(kq);
 1982         if (nkev != 0)
 1983                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1984         td->td_retval[0] = maxevents - count;
 1985         return (error);
 1986 }
 1987 
 1988 /*ARGSUSED*/
 1989 static int
 1990 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1991         struct ucred *active_cred, struct thread *td)
 1992 {
 1993         /*
 1994          * Enabling sigio causes two major problems:
 1995          * 1) infinite recursion:
 1996          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1997          * set.  On receipt of a signal this will cause a kqueue to recurse
 1998          * into itself over and over.  Sending the sigio causes the kqueue
 1999          * to become ready, which in turn posts sigio again, forever.
 2000          * Solution: this can be solved by setting a flag in the kqueue that
 2001          * we have a SIGIO in progress.
 2002          * 2) locking problems:
 2003          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 2004          * us above the proc and pgrp locks.
 2005          * Solution: Post a signal using an async mechanism, being sure to
 2006          * record a generation count in the delivery so that we do not deliver
 2007          * a signal to the wrong process.
 2008          *
 2009          * Note, these two mechanisms are somewhat mutually exclusive!
 2010          */
 2011 #if 0
 2012         struct kqueue *kq;
 2013 
 2014         kq = fp->f_data;
 2015         switch (cmd) {
 2016         case FIOASYNC:
 2017                 if (*(int *)data) {
 2018                         kq->kq_state |= KQ_ASYNC;
 2019                 } else {
 2020                         kq->kq_state &= ~KQ_ASYNC;
 2021                 }
 2022                 return (0);
 2023 
 2024         case FIOSETOWN:
 2025                 return (fsetown(*(int *)data, &kq->kq_sigio));
 2026 
 2027         case FIOGETOWN:
 2028                 *(int *)data = fgetown(&kq->kq_sigio);
 2029                 return (0);
 2030         }
 2031 #endif
 2032 
 2033         return (ENOTTY);
 2034 }
 2035 
 2036 /*ARGSUSED*/
 2037 static int
 2038 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 2039         struct thread *td)
 2040 {
 2041         struct kqueue *kq;
 2042         int revents = 0;
 2043         int error;
 2044 
 2045         if ((error = kqueue_acquire(fp, &kq)))
 2046                 return POLLERR;
 2047 
 2048         KQ_LOCK(kq);
 2049         if (events & (POLLIN | POLLRDNORM)) {
 2050                 if (kq->kq_count) {
 2051                         revents |= events & (POLLIN | POLLRDNORM);
 2052                 } else {
 2053                         selrecord(td, &kq->kq_sel);
 2054                         if (SEL_WAITING(&kq->kq_sel))
 2055                                 kq->kq_state |= KQ_SEL;
 2056                 }
 2057         }
 2058         kqueue_release(kq, 1);
 2059         KQ_UNLOCK(kq);
 2060         return (revents);
 2061 }
 2062 
 2063 /*ARGSUSED*/
 2064 static int
 2065 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 2066         struct thread *td)
 2067 {
 2068 
 2069         bzero((void *)st, sizeof *st);
 2070         /*
 2071          * We no longer return kq_count because the unlocked value is useless.
 2072          * If you spent all this time getting the count, why not spend your
 2073          * syscall better by calling kevent?
 2074          *
 2075          * XXX - This is needed for libc_r.
 2076          */
 2077         st->st_mode = S_IFIFO;
 2078         return (0);
 2079 }
 2080 
 2081 static void
 2082 kqueue_drain(struct kqueue *kq, struct thread *td)
 2083 {
 2084         struct knote *kn;
 2085         int i;
 2086 
 2087         KQ_LOCK(kq);
 2088 
 2089         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 2090             ("kqueue already closing"));
 2091         kq->kq_state |= KQ_CLOSING;
 2092         if (kq->kq_refcnt > 1)
 2093                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 2094 
 2095         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 2096 
 2097         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 2098             ("kqueue's knlist not empty"));
 2099 
 2100         for (i = 0; i < kq->kq_knlistsize; i++) {
 2101                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 2102                         if (kn_in_flux(kn)) {
 2103                                 kq->kq_state |= KQ_FLUXWAIT;
 2104                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 2105                                 continue;
 2106                         }
 2107                         kn_enter_flux(kn);
 2108                         KQ_UNLOCK(kq);
 2109                         knote_drop(kn, td);
 2110                         KQ_LOCK(kq);
 2111                 }
 2112         }
 2113         if (kq->kq_knhashmask != 0) {
 2114                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 2115                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 2116                                 if (kn_in_flux(kn)) {
 2117                                         kq->kq_state |= KQ_FLUXWAIT;
 2118                                         msleep(kq, &kq->kq_lock, PSOCK,
 2119                                                "kqclo2", 0);
 2120                                         continue;
 2121                                 }
 2122                                 kn_enter_flux(kn);
 2123                                 KQ_UNLOCK(kq);
 2124                                 knote_drop(kn, td);
 2125                                 KQ_LOCK(kq);
 2126                         }
 2127                 }
 2128         }
 2129 
 2130         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 2131                 kq->kq_state |= KQ_TASKDRAIN;
 2132                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 2133         }
 2134 
 2135         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2136                 selwakeuppri(&kq->kq_sel, PSOCK);
 2137                 if (!SEL_WAITING(&kq->kq_sel))
 2138                         kq->kq_state &= ~KQ_SEL;
 2139         }
 2140 
 2141         KQ_UNLOCK(kq);
 2142 }
 2143 
 2144 static void
 2145 kqueue_destroy(struct kqueue *kq)
 2146 {
 2147 
 2148         KASSERT(kq->kq_fdp == NULL,
 2149             ("kqueue still attached to a file descriptor"));
 2150         seldrain(&kq->kq_sel);
 2151         knlist_destroy(&kq->kq_sel.si_note);
 2152         mtx_destroy(&kq->kq_lock);
 2153 
 2154         if (kq->kq_knhash != NULL)
 2155                 free(kq->kq_knhash, M_KQUEUE);
 2156         if (kq->kq_knlist != NULL)
 2157                 free(kq->kq_knlist, M_KQUEUE);
 2158 
 2159         funsetown(&kq->kq_sigio);
 2160 }
 2161 
 2162 /*ARGSUSED*/
 2163 static int
 2164 kqueue_close(struct file *fp, struct thread *td)
 2165 {
 2166         struct kqueue *kq = fp->f_data;
 2167         struct filedesc *fdp;
 2168         int error;
 2169         int filedesc_unlock;
 2170 
 2171         if ((error = kqueue_acquire(fp, &kq)))
 2172                 return error;
 2173         kqueue_drain(kq, td);
 2174 
 2175         /*
 2176          * We could be called due to the knote_drop() doing fdrop(),
 2177          * called from kqueue_register().  In this case the global
 2178          * lock is owned, and filedesc sx is locked before, to not
 2179          * take the sleepable lock after non-sleepable.
 2180          */
 2181         fdp = kq->kq_fdp;
 2182         kq->kq_fdp = NULL;
 2183         if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
 2184                 FILEDESC_XLOCK(fdp);
 2185                 filedesc_unlock = 1;
 2186         } else
 2187                 filedesc_unlock = 0;
 2188         TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
 2189         if (filedesc_unlock)
 2190                 FILEDESC_XUNLOCK(fdp);
 2191 
 2192         kqueue_destroy(kq);
 2193         chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
 2194         crfree(kq->kq_cred);
 2195         free(kq, M_KQUEUE);
 2196         fp->f_data = NULL;
 2197 
 2198         return (0);
 2199 }
 2200 
 2201 static int
 2202 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2203 {
 2204 
 2205         kif->kf_type = KF_TYPE_KQUEUE;
 2206         return (0);
 2207 }
 2208 
 2209 static void
 2210 kqueue_wakeup(struct kqueue *kq)
 2211 {
 2212         KQ_OWNED(kq);
 2213 
 2214         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 2215                 kq->kq_state &= ~KQ_SLEEP;
 2216                 wakeup(kq);
 2217         }
 2218         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 2219                 selwakeuppri(&kq->kq_sel, PSOCK);
 2220                 if (!SEL_WAITING(&kq->kq_sel))
 2221                         kq->kq_state &= ~KQ_SEL;
 2222         }
 2223         if (!knlist_empty(&kq->kq_sel.si_note))
 2224                 kqueue_schedtask(kq);
 2225         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 2226                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 2227         }
 2228 }
 2229 
 2230 /*
 2231  * Walk down a list of knotes, activating them if their event has triggered.
 2232  *
 2233  * There is a possibility to optimize in the case of one kq watching another.
 2234  * Instead of scheduling a task to wake it up, you could pass enough state
 2235  * down the chain to make up the parent kqueue.  Make this code functional
 2236  * first.
 2237  */
 2238 void
 2239 knote(struct knlist *list, long hint, int lockflags)
 2240 {
 2241         struct kqueue *kq;
 2242         struct knote *kn, *tkn;
 2243         int error;
 2244 
 2245         if (list == NULL)
 2246                 return;
 2247 
 2248         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 2249 
 2250         if ((lockflags & KNF_LISTLOCKED) == 0)
 2251                 list->kl_lock(list->kl_lockarg); 
 2252 
 2253         /*
 2254          * If we unlock the list lock (and enter influx), we can
 2255          * eliminate the kqueue scheduling, but this will introduce
 2256          * four lock/unlock's for each knote to test.  Also, marker
 2257          * would be needed to keep iteration position, since filters
 2258          * or other threads could remove events.
 2259          */
 2260         SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
 2261                 kq = kn->kn_kq;
 2262                 KQ_LOCK(kq);
 2263                 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
 2264                         /*
 2265                          * Do not process the influx notes, except for
 2266                          * the influx coming from the kq unlock in the
 2267                          * kqueue_scan().  In the later case, we do
 2268                          * not interfere with the scan, since the code
 2269                          * fragment in kqueue_scan() locks the knlist,
 2270                          * and cannot proceed until we finished.
 2271                          */
 2272                         KQ_UNLOCK(kq);
 2273                 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 2274                         kn_enter_flux(kn);
 2275                         KQ_UNLOCK(kq);
 2276                         error = kn->kn_fop->f_event(kn, hint);
 2277                         KQ_LOCK(kq);
 2278                         kn_leave_flux(kn);
 2279                         if (error)
 2280                                 KNOTE_ACTIVATE(kn, 1);
 2281                         KQ_UNLOCK_FLUX(kq);
 2282                 } else {
 2283                         if (kn->kn_fop->f_event(kn, hint))
 2284                                 KNOTE_ACTIVATE(kn, 1);
 2285                         KQ_UNLOCK(kq);
 2286                 }
 2287         }
 2288         if ((lockflags & KNF_LISTLOCKED) == 0)
 2289                 list->kl_unlock(list->kl_lockarg); 
 2290 }
 2291 
 2292 /*
 2293  * add a knote to a knlist
 2294  */
 2295 void
 2296 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 2297 {
 2298 
 2299         KNL_ASSERT_LOCK(knl, islocked);
 2300         KQ_NOTOWNED(kn->kn_kq);
 2301         KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
 2302         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2303             ("knote %p was not detached", kn));
 2304         if (!islocked)
 2305                 knl->kl_lock(knl->kl_lockarg);
 2306         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 2307         if (!islocked)
 2308                 knl->kl_unlock(knl->kl_lockarg);
 2309         KQ_LOCK(kn->kn_kq);
 2310         kn->kn_knlist = knl;
 2311         kn->kn_status &= ~KN_DETACHED;
 2312         KQ_UNLOCK(kn->kn_kq);
 2313 }
 2314 
 2315 static void
 2316 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
 2317     int kqislocked)
 2318 {
 2319 
 2320         KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
 2321         KNL_ASSERT_LOCK(knl, knlislocked);
 2322         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 2323         KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
 2324         KASSERT((kn->kn_status & KN_DETACHED) == 0,
 2325             ("knote %p was already detached", kn));
 2326         if (!knlislocked)
 2327                 knl->kl_lock(knl->kl_lockarg);
 2328         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 2329         kn->kn_knlist = NULL;
 2330         if (!knlislocked)
 2331                 kn_list_unlock(knl);
 2332         if (!kqislocked)
 2333                 KQ_LOCK(kn->kn_kq);
 2334         kn->kn_status |= KN_DETACHED;
 2335         if (!kqislocked)
 2336                 KQ_UNLOCK(kn->kn_kq);
 2337 }
 2338 
 2339 /*
 2340  * remove knote from the specified knlist
 2341  */
 2342 void
 2343 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 2344 {
 2345 
 2346         knlist_remove_kq(knl, kn, islocked, 0);
 2347 }
 2348 
 2349 int
 2350 knlist_empty(struct knlist *knl)
 2351 {
 2352 
 2353         KNL_ASSERT_LOCKED(knl);
 2354         return (SLIST_EMPTY(&knl->kl_list));
 2355 }
 2356 
 2357 static struct mtx knlist_lock;
 2358 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 2359     MTX_DEF);
 2360 static void knlist_mtx_lock(void *arg);
 2361 static void knlist_mtx_unlock(void *arg);
 2362 
 2363 static void
 2364 knlist_mtx_lock(void *arg)
 2365 {
 2366 
 2367         mtx_lock((struct mtx *)arg);
 2368 }
 2369 
 2370 static void
 2371 knlist_mtx_unlock(void *arg)
 2372 {
 2373 
 2374         mtx_unlock((struct mtx *)arg);
 2375 }
 2376 
 2377 static void
 2378 knlist_mtx_assert_lock(void *arg, int what)
 2379 {
 2380 
 2381         if (what == LA_LOCKED)
 2382                 mtx_assert((struct mtx *)arg, MA_OWNED);
 2383         else
 2384                 mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 2385 }
 2386 
 2387 static void
 2388 knlist_rw_rlock(void *arg)
 2389 {
 2390 
 2391         rw_rlock((struct rwlock *)arg);
 2392 }
 2393 
 2394 static void
 2395 knlist_rw_runlock(void *arg)
 2396 {
 2397 
 2398         rw_runlock((struct rwlock *)arg);
 2399 }
 2400 
 2401 static void
 2402 knlist_rw_assert_lock(void *arg, int what)
 2403 {
 2404 
 2405         if (what == LA_LOCKED)
 2406                 rw_assert((struct rwlock *)arg, RA_LOCKED);
 2407         else
 2408                 rw_assert((struct rwlock *)arg, RA_UNLOCKED);
 2409 }
 2410 
 2411 void
 2412 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 2413     void (*kl_unlock)(void *),
 2414     void (*kl_assert_lock)(void *, int))
 2415 {
 2416 
 2417         if (lock == NULL)
 2418                 knl->kl_lockarg = &knlist_lock;
 2419         else
 2420                 knl->kl_lockarg = lock;
 2421 
 2422         if (kl_lock == NULL)
 2423                 knl->kl_lock = knlist_mtx_lock;
 2424         else
 2425                 knl->kl_lock = kl_lock;
 2426         if (kl_unlock == NULL)
 2427                 knl->kl_unlock = knlist_mtx_unlock;
 2428         else
 2429                 knl->kl_unlock = kl_unlock;
 2430         if (kl_assert_lock == NULL)
 2431                 knl->kl_assert_lock = knlist_mtx_assert_lock;
 2432         else
 2433                 knl->kl_assert_lock = kl_assert_lock;
 2434 
 2435         knl->kl_autodestroy = 0;
 2436         SLIST_INIT(&knl->kl_list);
 2437 }
 2438 
 2439 void
 2440 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 2441 {
 2442 
 2443         knlist_init(knl, lock, NULL, NULL, NULL);
 2444 }
 2445 
 2446 struct knlist *
 2447 knlist_alloc(struct mtx *lock)
 2448 {
 2449         struct knlist *knl;
 2450 
 2451         knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
 2452         knlist_init_mtx(knl, lock);
 2453         return (knl);
 2454 }
 2455 
 2456 void
 2457 knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
 2458 {
 2459 
 2460         knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
 2461             knlist_rw_assert_lock);
 2462 }
 2463 
 2464 void
 2465 knlist_destroy(struct knlist *knl)
 2466 {
 2467 
 2468         KASSERT(KNLIST_EMPTY(knl),
 2469             ("destroying knlist %p with knotes on it", knl));
 2470 }
 2471 
 2472 void
 2473 knlist_detach(struct knlist *knl)
 2474 {
 2475 
 2476         KNL_ASSERT_LOCKED(knl);
 2477         knl->kl_autodestroy = 1;
 2478         if (knlist_empty(knl)) {
 2479                 knlist_destroy(knl);
 2480                 free(knl, M_KQUEUE);
 2481         }
 2482 }
 2483 
 2484 /*
 2485  * Even if we are locked, we may need to drop the lock to allow any influx
 2486  * knotes time to "settle".
 2487  */
 2488 void
 2489 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 2490 {
 2491         struct knote *kn, *kn2;
 2492         struct kqueue *kq;
 2493 
 2494         KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
 2495         if (islocked)
 2496                 KNL_ASSERT_LOCKED(knl);
 2497         else {
 2498                 KNL_ASSERT_UNLOCKED(knl);
 2499 again:          /* need to reacquire lock since we have dropped it */
 2500                 knl->kl_lock(knl->kl_lockarg);
 2501         }
 2502 
 2503         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 2504                 kq = kn->kn_kq;
 2505                 KQ_LOCK(kq);
 2506                 if (kn_in_flux(kn)) {
 2507                         KQ_UNLOCK(kq);
 2508                         continue;
 2509                 }
 2510                 knlist_remove_kq(knl, kn, 1, 1);
 2511                 if (killkn) {
 2512                         kn_enter_flux(kn);
 2513                         KQ_UNLOCK(kq);
 2514                         knote_drop_detached(kn, td);
 2515                 } else {
 2516                         /* Make sure cleared knotes disappear soon */
 2517                         kn->kn_flags |= EV_EOF | EV_ONESHOT;
 2518                         KQ_UNLOCK(kq);
 2519                 }
 2520                 kq = NULL;
 2521         }
 2522 
 2523         if (!SLIST_EMPTY(&knl->kl_list)) {
 2524                 /* there are still in flux knotes remaining */
 2525                 kn = SLIST_FIRST(&knl->kl_list);
 2526                 kq = kn->kn_kq;
 2527                 KQ_LOCK(kq);
 2528                 KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
 2529                 knl->kl_unlock(knl->kl_lockarg);
 2530                 kq->kq_state |= KQ_FLUXWAIT;
 2531                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2532                 kq = NULL;
 2533                 goto again;
 2534         }
 2535 
 2536         if (islocked)
 2537                 KNL_ASSERT_LOCKED(knl);
 2538         else {
 2539                 knl->kl_unlock(knl->kl_lockarg);
 2540                 KNL_ASSERT_UNLOCKED(knl);
 2541         }
 2542 }
 2543 
 2544 /*
 2545  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2546  * lock.  This prevents a race where a new fd comes along and occupies the
 2547  * entry and we attach a knote to the fd.
 2548  */
 2549 void
 2550 knote_fdclose(struct thread *td, int fd)
 2551 {
 2552         struct filedesc *fdp = td->td_proc->p_fd;
 2553         struct kqueue *kq;
 2554         struct knote *kn;
 2555         int influx;
 2556 
 2557         FILEDESC_XLOCK_ASSERT(fdp);
 2558 
 2559         /*
 2560          * We shouldn't have to worry about new kevents appearing on fd
 2561          * since filedesc is locked.
 2562          */
 2563         TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2564                 KQ_LOCK(kq);
 2565 
 2566 again:
 2567                 influx = 0;
 2568                 while (kq->kq_knlistsize > fd &&
 2569                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2570                         if (kn_in_flux(kn)) {
 2571                                 /* someone else might be waiting on our knote */
 2572                                 if (influx)
 2573                                         wakeup(kq);
 2574                                 kq->kq_state |= KQ_FLUXWAIT;
 2575                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2576                                 goto again;
 2577                         }
 2578                         kn_enter_flux(kn);
 2579                         KQ_UNLOCK(kq);
 2580                         influx = 1;
 2581                         knote_drop(kn, td);
 2582                         KQ_LOCK(kq);
 2583                 }
 2584                 KQ_UNLOCK_FLUX(kq);
 2585         }
 2586 }
 2587 
 2588 static int
 2589 knote_attach(struct knote *kn, struct kqueue *kq)
 2590 {
 2591         struct klist *list;
 2592 
 2593         KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
 2594         KQ_OWNED(kq);
 2595 
 2596         if ((kq->kq_state & KQ_CLOSING) != 0)
 2597                 return (EBADF);
 2598         if (kn->kn_fop->f_isfd) {
 2599                 if (kn->kn_id >= kq->kq_knlistsize)
 2600                         return (ENOMEM);
 2601                 list = &kq->kq_knlist[kn->kn_id];
 2602         } else {
 2603                 if (kq->kq_knhash == NULL)
 2604                         return (ENOMEM);
 2605                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2606         }
 2607         SLIST_INSERT_HEAD(list, kn, kn_link);
 2608         return (0);
 2609 }
 2610 
 2611 static void
 2612 knote_drop(struct knote *kn, struct thread *td)
 2613 {
 2614 
 2615         if ((kn->kn_status & KN_DETACHED) == 0)
 2616                 kn->kn_fop->f_detach(kn);
 2617         knote_drop_detached(kn, td);
 2618 }
 2619 
 2620 static void
 2621 knote_drop_detached(struct knote *kn, struct thread *td)
 2622 {
 2623         struct kqueue *kq;
 2624         struct klist *list;
 2625 
 2626         kq = kn->kn_kq;
 2627 
 2628         KASSERT((kn->kn_status & KN_DETACHED) != 0,
 2629             ("knote %p still attached", kn));
 2630         KQ_NOTOWNED(kq);
 2631 
 2632         KQ_LOCK(kq);
 2633         KASSERT(kn->kn_influx == 1,
 2634             ("knote_drop called on %p with influx %d", kn, kn->kn_influx));
 2635 
 2636         if (kn->kn_fop->f_isfd)
 2637                 list = &kq->kq_knlist[kn->kn_id];
 2638         else
 2639                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2640 
 2641         if (!SLIST_EMPTY(list))
 2642                 SLIST_REMOVE(list, kn, knote, kn_link);
 2643         if (kn->kn_status & KN_QUEUED)
 2644                 knote_dequeue(kn);
 2645         KQ_UNLOCK_FLUX(kq);
 2646 
 2647         if (kn->kn_fop->f_isfd) {
 2648                 fdrop(kn->kn_fp, td);
 2649                 kn->kn_fp = NULL;
 2650         }
 2651         kqueue_fo_release(kn->kn_kevent.filter);
 2652         kn->kn_fop = NULL;
 2653         knote_free(kn);
 2654 }
 2655 
 2656 static void
 2657 knote_enqueue(struct knote *kn)
 2658 {
 2659         struct kqueue *kq = kn->kn_kq;
 2660 
 2661         KQ_OWNED(kn->kn_kq);
 2662         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2663 
 2664         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2665         kn->kn_status |= KN_QUEUED;
 2666         kq->kq_count++;
 2667         kqueue_wakeup(kq);
 2668 }
 2669 
 2670 static void
 2671 knote_dequeue(struct knote *kn)
 2672 {
 2673         struct kqueue *kq = kn->kn_kq;
 2674 
 2675         KQ_OWNED(kn->kn_kq);
 2676         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2677 
 2678         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2679         kn->kn_status &= ~KN_QUEUED;
 2680         kq->kq_count--;
 2681 }
 2682 
 2683 static void
 2684 knote_init(void)
 2685 {
 2686 
 2687         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2688             NULL, NULL, UMA_ALIGN_PTR, 0);
 2689 }
 2690 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2691 
 2692 static struct knote *
 2693 knote_alloc(int mflag)
 2694 {
 2695 
 2696         return (uma_zalloc(knote_zone, mflag | M_ZERO));
 2697 }
 2698 
 2699 static void
 2700 knote_free(struct knote *kn)
 2701 {
 2702 
 2703         uma_zfree(knote_zone, kn);
 2704 }
 2705 
 2706 /*
 2707  * Register the kev w/ the kq specified by fd.
 2708  */
 2709 int 
 2710 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
 2711 {
 2712         struct kqueue *kq;
 2713         struct file *fp;
 2714         cap_rights_t rights;
 2715         int error;
 2716 
 2717         error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
 2718             &fp);
 2719         if (error != 0)
 2720                 return (error);
 2721         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2722                 goto noacquire;
 2723 
 2724         error = kqueue_register(kq, kev, td, mflag);
 2725         kqueue_release(kq, 0);
 2726 
 2727 noacquire:
 2728         fdrop(fp, td);
 2729         return (error);
 2730 }

Cache object: 2360872c2551ed42bc5f0a4233a4096a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.