The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/6.1/sys/kern/kern_event.c 157870 2006-04-19 16:00:31Z jhb $");
   30 
   31 #include <sys/param.h>
   32 #include <sys/systm.h>
   33 #include <sys/kernel.h>
   34 #include <sys/lock.h>
   35 #include <sys/mutex.h>
   36 #include <sys/proc.h>
   37 #include <sys/malloc.h>
   38 #include <sys/unistd.h>
   39 #include <sys/file.h>
   40 #include <sys/filedesc.h>
   41 #include <sys/filio.h>
   42 #include <sys/fcntl.h>
   43 #include <sys/kthread.h>
   44 #include <sys/selinfo.h>
   45 #include <sys/queue.h>
   46 #include <sys/event.h>
   47 #include <sys/eventvar.h>
   48 #include <sys/poll.h>
   49 #include <sys/protosw.h>
   50 #include <sys/sigio.h>
   51 #include <sys/signalvar.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/stat.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/sysproto.h>
   57 #include <sys/syscallsubr.h>
   58 #include <sys/taskqueue.h>
   59 #include <sys/uio.h>
   60 
   61 #include <vm/uma.h>
   62 
   63 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   64 
   65 /*
   66  * This lock is used if multiple kq locks are required.  This possibly
   67  * should be made into a per proc lock.
   68  */
   69 static struct mtx       kq_global;
   70 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   71 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   72         if (!haslck)                            \
   73                 mtx_lock(lck);                  \
   74         haslck = 1;                             \
   75 } while (0)
   76 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   77         if (haslck)                             \
   78                 mtx_unlock(lck);                        \
   79         haslck = 0;                             \
   80 } while (0)
   81 
   82 TASKQUEUE_DEFINE_THREAD(kqueue);
   83 
   84 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   85 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   86 static int      kqueue_aquire(struct file *fp, struct kqueue **kqp);
   87 static void     kqueue_release(struct kqueue *kq, int locked);
   88 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
   89                     uintptr_t ident, int waitok);
   90 static void     kqueue_task(void *arg, int pending);
   91 static int      kqueue_scan(struct kqueue *kq, int maxevents,
   92                     struct kevent_copyops *k_ops,
   93                     const struct timespec *timeout,
   94                     struct kevent *keva, struct thread *td);
   95 static void     kqueue_wakeup(struct kqueue *kq);
   96 static struct filterops *kqueue_fo_find(int filt);
   97 static void     kqueue_fo_release(int filt);
   98 
   99 static fo_rdwr_t        kqueue_read;
  100 static fo_rdwr_t        kqueue_write;
  101 static fo_ioctl_t       kqueue_ioctl;
  102 static fo_poll_t        kqueue_poll;
  103 static fo_kqfilter_t    kqueue_kqfilter;
  104 static fo_stat_t        kqueue_stat;
  105 static fo_close_t       kqueue_close;
  106 
  107 static struct fileops kqueueops = {
  108         .fo_read = kqueue_read,
  109         .fo_write = kqueue_write,
  110         .fo_ioctl = kqueue_ioctl,
  111         .fo_poll = kqueue_poll,
  112         .fo_kqfilter = kqueue_kqfilter,
  113         .fo_stat = kqueue_stat,
  114         .fo_close = kqueue_close,
  115 };
  116 
  117 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  118 static void     knote_drop(struct knote *kn, struct thread *td);
  119 static void     knote_enqueue(struct knote *kn);
  120 static void     knote_dequeue(struct knote *kn);
  121 static void     knote_init(void);
  122 static struct   knote *knote_alloc(int waitok);
  123 static void     knote_free(struct knote *kn);
  124 
  125 static void     filt_kqdetach(struct knote *kn);
  126 static int      filt_kqueue(struct knote *kn, long hint);
  127 static int      filt_procattach(struct knote *kn);
  128 static void     filt_procdetach(struct knote *kn);
  129 static int      filt_proc(struct knote *kn, long hint);
  130 static int      filt_fileattach(struct knote *kn);
  131 static void     filt_timerexpire(void *knx);
  132 static int      filt_timerattach(struct knote *kn);
  133 static void     filt_timerdetach(struct knote *kn);
  134 static int      filt_timer(struct knote *kn, long hint);
  135 
  136 static struct filterops file_filtops =
  137         { 1, filt_fileattach, NULL, NULL };
  138 static struct filterops kqread_filtops =
  139         { 1, NULL, filt_kqdetach, filt_kqueue };
  140 /* XXX - move to kern_proc.c?  */
  141 static struct filterops proc_filtops =
  142         { 0, filt_procattach, filt_procdetach, filt_proc };
  143 static struct filterops timer_filtops =
  144         { 0, filt_timerattach, filt_timerdetach, filt_timer };
  145 
  146 static uma_zone_t       knote_zone;
  147 static int              kq_ncallouts = 0;
  148 static int              kq_calloutmax = (4 * 1024);
  149 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  150     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  151 
  152 /* XXX - ensure not KN_INFLUX?? */
  153 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  154         if ((islock))                                                   \
  155                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  156         else                                                            \
  157                 KQ_LOCK((kn)->kn_kq);                                   \
  158         (kn)->kn_status |= KN_ACTIVE;                                   \
  159         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  160                 knote_enqueue((kn));                                    \
  161         if (!(islock))                                                  \
  162                 KQ_UNLOCK((kn)->kn_kq);                                 \
  163 } while(0)
  164 #define KQ_LOCK(kq) do {                                                \
  165         mtx_lock(&(kq)->kq_lock);                                       \
  166 } while (0)
  167 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  168         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  169                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  170                 wakeup((kq));                                           \
  171         }                                                               \
  172 } while (0)
  173 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  174         KQ_FLUX_WAKEUP(kq);                                             \
  175         mtx_unlock(&(kq)->kq_lock);                                     \
  176 } while (0)
  177 #define KQ_UNLOCK(kq) do {                                              \
  178         mtx_unlock(&(kq)->kq_lock);                                     \
  179 } while (0)
  180 #define KQ_OWNED(kq) do {                                               \
  181         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  182 } while (0)
  183 #define KQ_NOTOWNED(kq) do {                                            \
  184         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  185 } while (0)
  186 #define KN_LIST_LOCK(kn) do {                                           \
  187         if (kn->kn_knlist != NULL)                                      \
  188                 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);      \
  189 } while (0)
  190 #define KN_LIST_UNLOCK(kn) do {                                         \
  191         if (kn->kn_knlist != NULL)                                      \
  192                 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);    \
  193 } while (0)
  194 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  195         if (islocked)                                                   \
  196                 KNL_ASSERT_LOCKED(knl);                         \
  197         else                                                            \
  198                 KNL_ASSERT_UNLOCKED(knl);                               \
  199 } while (0)
  200 #ifdef INVARIANTS
  201 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  202         if (!knl->kl_locked((knl)->kl_lockarg))                         \
  203                         panic("knlist not locked, but should be");      \
  204 } while (0)
  205 #define KNL_ASSERT_UNLOCKED(knl) do {                           \
  206         if (knl->kl_locked((knl)->kl_lockarg))                          \
  207                 panic("knlist locked, but should not be");              \
  208 } while (0)
  209 #else /* !INVARIANTS */
  210 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  211 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  212 #endif /* INVARIANTS */
  213 
  214 #define KN_HASHSIZE             64              /* XXX should be tunable */
  215 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  216 
  217 static int
  218 filt_nullattach(struct knote *kn)
  219 {
  220 
  221         return (ENXIO);
  222 };
  223 
  224 struct filterops null_filtops =
  225         { 0, filt_nullattach, NULL, NULL };
  226 
  227 /* XXX - make SYSINIT to add these, and move into respective modules. */
  228 extern struct filterops sig_filtops;
  229 extern struct filterops fs_filtops;
  230 
  231 /*
  232  * Table for for all system-defined filters.
  233  */
  234 static struct mtx       filterops_lock;
  235 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  236         MTX_DEF);
  237 static struct {
  238         struct filterops *for_fop;
  239         int for_refcnt;
  240 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  241         { &file_filtops },                      /* EVFILT_READ */
  242         { &file_filtops },                      /* EVFILT_WRITE */
  243         { &null_filtops },                      /* EVFILT_AIO */
  244         { &file_filtops },                      /* EVFILT_VNODE */
  245         { &proc_filtops },                      /* EVFILT_PROC */
  246         { &sig_filtops },                       /* EVFILT_SIGNAL */
  247         { &timer_filtops },                     /* EVFILT_TIMER */
  248         { &file_filtops },                      /* EVFILT_NETDEV */
  249         { &fs_filtops },                        /* EVFILT_FS */
  250 };
  251 
  252 /*
  253  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  254  * method.
  255  */
  256 static int
  257 filt_fileattach(struct knote *kn)
  258 {
  259 
  260         return (fo_kqfilter(kn->kn_fp, kn));
  261 }
  262 
  263 /*ARGSUSED*/
  264 static int
  265 kqueue_kqfilter(struct file *fp, struct knote *kn)
  266 {
  267         struct kqueue *kq = kn->kn_fp->f_data;
  268 
  269         if (kn->kn_filter != EVFILT_READ)
  270                 return (EINVAL);
  271 
  272         kn->kn_status |= KN_KQUEUE;
  273         kn->kn_fop = &kqread_filtops;
  274         knlist_add(&kq->kq_sel.si_note, kn, 0);
  275 
  276         return (0);
  277 }
  278 
  279 static void
  280 filt_kqdetach(struct knote *kn)
  281 {
  282         struct kqueue *kq = kn->kn_fp->f_data;
  283 
  284         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  285 }
  286 
  287 /*ARGSUSED*/
  288 static int
  289 filt_kqueue(struct knote *kn, long hint)
  290 {
  291         struct kqueue *kq = kn->kn_fp->f_data;
  292 
  293         kn->kn_data = kq->kq_count;
  294         return (kn->kn_data > 0);
  295 }
  296 
  297 /* XXX - move to kern_proc.c?  */
  298 static int
  299 filt_procattach(struct knote *kn)
  300 {
  301         struct proc *p;
  302         int immediate;
  303         int error;
  304 
  305         immediate = 0;
  306         p = pfind(kn->kn_id);
  307         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  308                 p = zpfind(kn->kn_id);
  309                 immediate = 1;
  310         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  311                 immediate = 1;
  312         }
  313 
  314         if (p == NULL)
  315                 return (ESRCH);
  316         if ((error = p_cansee(curthread, p)))
  317                 return (error);
  318 
  319         kn->kn_ptr.p_proc = p;
  320         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  321 
  322         /*
  323          * internal flag indicating registration done by kernel
  324          */
  325         if (kn->kn_flags & EV_FLAG1) {
  326                 kn->kn_data = kn->kn_sdata;             /* ppid */
  327                 kn->kn_fflags = NOTE_CHILD;
  328                 kn->kn_flags &= ~EV_FLAG1;
  329         }
  330 
  331         if (immediate == 0)
  332                 knlist_add(&p->p_klist, kn, 1);
  333 
  334         /*
  335          * Immediately activate any exit notes if the target process is a
  336          * zombie.  This is necessary to handle the case where the target
  337          * process, e.g. a child, dies before the kevent is registered.
  338          */
  339         if (immediate && filt_proc(kn, NOTE_EXIT))
  340                 KNOTE_ACTIVATE(kn, 0);
  341 
  342         PROC_UNLOCK(p);
  343 
  344         return (0);
  345 }
  346 
  347 /*
  348  * The knote may be attached to a different process, which may exit,
  349  * leaving nothing for the knote to be attached to.  So when the process
  350  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  351  * it will be deleted when read out.  However, as part of the knote deletion,
  352  * this routine is called, so a check is needed to avoid actually performing
  353  * a detach, because the original process does not exist any more.
  354  */
  355 /* XXX - move to kern_proc.c?  */
  356 static void
  357 filt_procdetach(struct knote *kn)
  358 {
  359         struct proc *p;
  360 
  361         p = kn->kn_ptr.p_proc;
  362         knlist_remove(&p->p_klist, kn, 0);
  363         kn->kn_ptr.p_proc = NULL;
  364 }
  365 
  366 /* XXX - move to kern_proc.c?  */
  367 static int
  368 filt_proc(struct knote *kn, long hint)
  369 {
  370         struct proc *p = kn->kn_ptr.p_proc;
  371         u_int event;
  372 
  373         /*
  374          * mask off extra data
  375          */
  376         event = (u_int)hint & NOTE_PCTRLMASK;
  377 
  378         /*
  379          * if the user is interested in this event, record it.
  380          */
  381         if (kn->kn_sfflags & event)
  382                 kn->kn_fflags |= event;
  383 
  384         /*
  385          * process is gone, so flag the event as finished.
  386          */
  387         if (event == NOTE_EXIT) {
  388                 if (!(kn->kn_status & KN_DETACHED))
  389                         knlist_remove_inevent(&p->p_klist, kn);
  390                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  391                 kn->kn_ptr.p_proc = NULL;
  392                 return (1);
  393         }
  394 
  395         /*
  396          * process forked, and user wants to track the new process,
  397          * so attach a new knote to it, and immediately report an
  398          * event with the parent's pid.
  399          */
  400         if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
  401                 struct kevent kev;
  402                 int error;
  403 
  404                 /*
  405                  * register knote with new process.
  406                  */
  407                 kev.ident = hint & NOTE_PDATAMASK;      /* pid */
  408                 kev.filter = kn->kn_filter;
  409                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  410                 kev.fflags = kn->kn_sfflags;
  411                 kev.data = kn->kn_id;                   /* parent */
  412                 kev.udata = kn->kn_kevent.udata;        /* preserve udata */
  413                 error = kqueue_register(kn->kn_kq, &kev, NULL, 0);
  414                 if (error)
  415                         kn->kn_fflags |= NOTE_TRACKERR;
  416         }
  417 
  418         return (kn->kn_fflags != 0);
  419 }
  420 
  421 static int
  422 timertoticks(intptr_t data)
  423 {
  424         struct timeval tv;
  425         int tticks;
  426 
  427         tv.tv_sec = data / 1000;
  428         tv.tv_usec = (data % 1000) * 1000;
  429         tticks = tvtohz(&tv);
  430 
  431         return tticks;
  432 }
  433 
  434 /* XXX - move to kern_timeout.c? */
  435 static void
  436 filt_timerexpire(void *knx)
  437 {
  438         struct knote *kn = knx;
  439         struct callout *calloutp;
  440 
  441         kn->kn_data++;
  442         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  443 
  444         if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
  445                 calloutp = (struct callout *)kn->kn_hook;
  446                 callout_reset(calloutp, timertoticks(kn->kn_sdata),
  447                     filt_timerexpire, kn);
  448         }
  449 }
  450 
  451 /*
  452  * data contains amount of time to sleep, in milliseconds
  453  */
  454 /* XXX - move to kern_timeout.c? */
  455 static int
  456 filt_timerattach(struct knote *kn)
  457 {
  458         struct callout *calloutp;
  459 
  460         atomic_add_int(&kq_ncallouts, 1);
  461 
  462         if (kq_ncallouts >= kq_calloutmax) {
  463                 atomic_add_int(&kq_ncallouts, -1);
  464                 return (ENOMEM);
  465         }
  466 
  467         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  468         kn->kn_status &= ~KN_DETACHED;          /* knlist_add usually sets it */
  469         MALLOC(calloutp, struct callout *, sizeof(*calloutp),
  470             M_KQUEUE, M_WAITOK);
  471         callout_init(calloutp, CALLOUT_MPSAFE);
  472         kn->kn_hook = calloutp;
  473         callout_reset(calloutp, timertoticks(kn->kn_sdata), filt_timerexpire,
  474             kn);
  475 
  476         return (0);
  477 }
  478 
  479 /* XXX - move to kern_timeout.c? */
  480 static void
  481 filt_timerdetach(struct knote *kn)
  482 {
  483         struct callout *calloutp;
  484 
  485         calloutp = (struct callout *)kn->kn_hook;
  486         callout_drain(calloutp);
  487         FREE(calloutp, M_KQUEUE);
  488         atomic_add_int(&kq_ncallouts, -1);
  489         kn->kn_status |= KN_DETACHED;   /* knlist_remove usually clears it */
  490 }
  491 
  492 /* XXX - move to kern_timeout.c? */
  493 static int
  494 filt_timer(struct knote *kn, long hint)
  495 {
  496 
  497         return (kn->kn_data != 0);
  498 }
  499 
  500 /*
  501  * MPSAFE
  502  */
  503 int
  504 kqueue(struct thread *td, struct kqueue_args *uap)
  505 {
  506         struct filedesc *fdp;
  507         struct kqueue *kq;
  508         struct file *fp;
  509         int fd, error;
  510 
  511         fdp = td->td_proc->p_fd;
  512         error = falloc(td, &fp, &fd);
  513         if (error)
  514                 goto done2;
  515 
  516         /* An extra reference on `nfp' has been held for us by falloc(). */
  517         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  518         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
  519         TAILQ_INIT(&kq->kq_head);
  520         kq->kq_fdp = fdp;
  521         knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL);
  522         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  523 
  524         FILEDESC_LOCK_FAST(fdp);
  525         SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  526         FILEDESC_UNLOCK_FAST(fdp);
  527 
  528         FILE_LOCK(fp);
  529         fp->f_flag = FREAD | FWRITE;
  530         fp->f_type = DTYPE_KQUEUE;
  531         fp->f_ops = &kqueueops;
  532         fp->f_data = kq;
  533         FILE_UNLOCK(fp);
  534         fdrop(fp, td);
  535 
  536         td->td_retval[0] = fd;
  537 done2:
  538         return (error);
  539 }
  540 
  541 #ifndef _SYS_SYSPROTO_H_
  542 struct kevent_args {
  543         int     fd;
  544         const struct kevent *changelist;
  545         int     nchanges;
  546         struct  kevent *eventlist;
  547         int     nevents;
  548         const struct timespec *timeout;
  549 };
  550 #endif
  551 /*
  552  * MPSAFE
  553  */
  554 int
  555 kevent(struct thread *td, struct kevent_args *uap)
  556 {
  557         struct timespec ts, *tsp;
  558         struct kevent_copyops k_ops = { uap,
  559                                         kevent_copyout,
  560                                         kevent_copyin};
  561         int error;
  562 
  563         if (uap->timeout != NULL) {
  564                 error = copyin(uap->timeout, &ts, sizeof(ts));
  565                 if (error)
  566                         return (error);
  567                 tsp = &ts;
  568         } else
  569                 tsp = NULL;
  570 
  571         return (kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  572             &k_ops, tsp));
  573 }
  574 
  575 /*
  576  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  577  */
  578 static int
  579 kevent_copyout(void *arg, struct kevent *kevp, int count)
  580 {
  581         struct kevent_args *uap;
  582         int error;
  583 
  584         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  585         uap = (struct kevent_args *)arg;
  586 
  587         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  588         if (error == 0)
  589                 uap->eventlist += count;
  590         return (error);
  591 }
  592 
  593 /*
  594  * Copy 'count' items from the list pointed to by uap->changelist.
  595  */
  596 static int
  597 kevent_copyin(void *arg, struct kevent *kevp, int count)
  598 {
  599         struct kevent_args *uap;
  600         int error;
  601 
  602         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  603         uap = (struct kevent_args *)arg;
  604 
  605         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  606         if (error == 0)
  607                 uap->changelist += count;
  608         return (error);
  609 }
  610 
  611 int
  612 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  613     struct kevent_copyops *k_ops, const struct timespec *timeout)
  614 {
  615         struct kevent keva[KQ_NEVENTS];
  616         struct kevent *kevp, *changes;
  617         struct kqueue *kq;
  618         struct file *fp;
  619         int i, n, nerrors, error;
  620 
  621         if ((error = fget(td, fd, &fp)) != 0)
  622                 return (error);
  623         if ((error = kqueue_aquire(fp, &kq)) != 0)
  624                 goto done_norel;
  625 
  626         nerrors = 0;
  627 
  628         while (nchanges > 0) {
  629                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  630                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  631                 if (error)
  632                         goto done;
  633                 changes = keva;
  634                 for (i = 0; i < n; i++) {
  635                         kevp = &changes[i];
  636                         kevp->flags &= ~EV_SYSFLAGS;
  637                         error = kqueue_register(kq, kevp, td, 1);
  638                         if (error) {
  639                                 if (nevents != 0) {
  640                                         kevp->flags = EV_ERROR;
  641                                         kevp->data = error;
  642                                         (void) k_ops->k_copyout(k_ops->arg,
  643                                             kevp, 1);
  644                                         nevents--;
  645                                         nerrors++;
  646                                 } else {
  647                                         goto done;
  648                                 }
  649                         }
  650                 }
  651                 nchanges -= n;
  652         }
  653         if (nerrors) {
  654                 td->td_retval[0] = nerrors;
  655                 error = 0;
  656                 goto done;
  657         }
  658 
  659         error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
  660 done:
  661         kqueue_release(kq, 0);
  662 done_norel:
  663         if (fp != NULL)
  664                 fdrop(fp, td);
  665         return (error);
  666 }
  667 
  668 int
  669 kqueue_add_filteropts(int filt, struct filterops *filtops)
  670 {
  671         int error;
  672 
  673         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
  674                 printf(
  675 "trying to add a filterop that is out of range: %d is beyond %d\n",
  676                     ~filt, EVFILT_SYSCOUNT);
  677                 return EINVAL;
  678         }
  679         mtx_lock(&filterops_lock);
  680         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
  681             sysfilt_ops[~filt].for_fop != NULL)
  682                 error = EEXIST;
  683         else {
  684                 sysfilt_ops[~filt].for_fop = filtops;
  685                 sysfilt_ops[~filt].for_refcnt = 0;
  686         }
  687         mtx_unlock(&filterops_lock);
  688 
  689         return (0);
  690 }
  691 
  692 int
  693 kqueue_del_filteropts(int filt)
  694 {
  695         int error;
  696 
  697         error = 0;
  698         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  699                 return EINVAL;
  700 
  701         mtx_lock(&filterops_lock);
  702         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
  703             sysfilt_ops[~filt].for_fop == NULL)
  704                 error = EINVAL;
  705         else if (sysfilt_ops[~filt].for_refcnt != 0)
  706                 error = EBUSY;
  707         else {
  708                 sysfilt_ops[~filt].for_fop = &null_filtops;
  709                 sysfilt_ops[~filt].for_refcnt = 0;
  710         }
  711         mtx_unlock(&filterops_lock);
  712 
  713         return error;
  714 }
  715 
  716 static struct filterops *
  717 kqueue_fo_find(int filt)
  718 {
  719 
  720         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  721                 return NULL;
  722 
  723         mtx_lock(&filterops_lock);
  724         sysfilt_ops[~filt].for_refcnt++;
  725         if (sysfilt_ops[~filt].for_fop == NULL)
  726                 sysfilt_ops[~filt].for_fop = &null_filtops;
  727         mtx_unlock(&filterops_lock);
  728 
  729         return sysfilt_ops[~filt].for_fop;
  730 }
  731 
  732 static void
  733 kqueue_fo_release(int filt)
  734 {
  735 
  736         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  737                 return;
  738 
  739         mtx_lock(&filterops_lock);
  740         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
  741             ("filter object refcount not valid on release"));
  742         sysfilt_ops[~filt].for_refcnt--;
  743         mtx_unlock(&filterops_lock);
  744 }
  745 
  746 /*
  747  * A ref to kq (obtained via kqueue_aquire) should be held.  waitok will
  748  * influence if memory allocation should wait.  Make sure it is 0 if you
  749  * hold any mutexes.
  750  */
  751 int
  752 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
  753 {
  754         struct filedesc *fdp;
  755         struct filterops *fops;
  756         struct file *fp;
  757         struct knote *kn, *tkn;
  758         int error, filt, event;
  759         int haskqglobal;
  760         int fd;
  761 
  762         fdp = NULL;
  763         fp = NULL;
  764         kn = NULL;
  765         error = 0;
  766         haskqglobal = 0;
  767 
  768         filt = kev->filter;
  769         fops = kqueue_fo_find(filt);
  770         if (fops == NULL)
  771                 return EINVAL;
  772 
  773         tkn = knote_alloc(waitok);              /* prevent waiting with locks */
  774 
  775 findkn:
  776         if (fops->f_isfd) {
  777                 KASSERT(td != NULL, ("td is NULL"));
  778                 fdp = td->td_proc->p_fd;
  779                 FILEDESC_LOCK(fdp);
  780                 /* validate descriptor */
  781                 fd = kev->ident;
  782                 if (fd < 0 || fd >= fdp->fd_nfiles ||
  783                     (fp = fdp->fd_ofiles[fd]) == NULL) {
  784                         FILEDESC_UNLOCK(fdp);
  785                         error = EBADF;
  786                         goto done;
  787                 }
  788                 fhold(fp);
  789 
  790                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
  791                     kev->ident, 0) != 0) {
  792                         /* unlock and try again */
  793                         FILEDESC_UNLOCK(fdp);
  794                         fdrop(fp, td);
  795                         fp = NULL;
  796                         error = kqueue_expand(kq, fops, kev->ident, waitok);
  797                         if (error)
  798                                 goto done;
  799                         goto findkn;
  800                 }
  801 
  802                 if (fp->f_type == DTYPE_KQUEUE) {
  803                         /*
  804                          * if we add some inteligence about what we are doing,
  805                          * we should be able to support events on ourselves.
  806                          * We need to know when we are doing this to prevent
  807                          * getting both the knlist lock and the kq lock since
  808                          * they are the same thing.
  809                          */
  810                         if (fp->f_data == kq) {
  811                                 FILEDESC_UNLOCK(fdp);
  812                                 error = EINVAL;
  813                                 goto done_noglobal;
  814                         }
  815 
  816                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
  817                 }
  818 
  819                 FILEDESC_UNLOCK(fdp);
  820                 KQ_LOCK(kq);
  821                 if (kev->ident < kq->kq_knlistsize) {
  822                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
  823                                 if (kev->filter == kn->kn_filter)
  824                                         break;
  825                 }
  826         } else {
  827                 if ((kev->flags & EV_ADD) == EV_ADD)
  828                         kqueue_expand(kq, fops, kev->ident, waitok);
  829 
  830                 KQ_LOCK(kq);
  831                 if (kq->kq_knhashmask != 0) {
  832                         struct klist *list;
  833 
  834                         list = &kq->kq_knhash[
  835                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
  836                         SLIST_FOREACH(kn, list, kn_link)
  837                                 if (kev->ident == kn->kn_id &&
  838                                     kev->filter == kn->kn_filter)
  839                                         break;
  840                 }
  841         }
  842 
  843         /* knote is in the process of changing, wait for it to stablize. */
  844         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
  845                 if (fp != NULL) {
  846                         fdrop(fp, td);
  847                         fp = NULL;
  848                 }
  849                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
  850                 kq->kq_state |= KQ_FLUXWAIT;
  851                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
  852                 goto findkn;
  853         }
  854 
  855         if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
  856                 KQ_UNLOCK(kq);
  857                 error = ENOENT;
  858                 goto done;
  859         }
  860 
  861         /*
  862          * kn now contains the matching knote, or NULL if no match
  863          */
  864         if (kev->flags & EV_ADD) {
  865                 if (kn == NULL) {
  866                         kn = tkn;
  867                         tkn = NULL;
  868                         if (kn == NULL) {
  869                                 error = ENOMEM;
  870                                 goto done;
  871                         }
  872                         kn->kn_fp = fp;
  873                         kn->kn_kq = kq;
  874                         kn->kn_fop = fops;
  875                         /*
  876                          * apply reference counts to knote structure, and
  877                          * do not release it at the end of this routine.
  878                          */
  879                         fops = NULL;
  880                         fp = NULL;
  881 
  882                         kn->kn_sfflags = kev->fflags;
  883                         kn->kn_sdata = kev->data;
  884                         kev->fflags = 0;
  885                         kev->data = 0;
  886                         kn->kn_kevent = *kev;
  887                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
  888                             EV_ENABLE | EV_DISABLE);
  889                         kn->kn_status = KN_INFLUX|KN_DETACHED;
  890 
  891                         error = knote_attach(kn, kq);
  892                         KQ_UNLOCK(kq);
  893                         if (error != 0) {
  894                                 tkn = kn;
  895                                 goto done;
  896                         }
  897 
  898                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
  899                                 knote_drop(kn, td);
  900                                 goto done;
  901                         }
  902                         KN_LIST_LOCK(kn);
  903                 } else {
  904                         /*
  905                          * The user may change some filter values after the
  906                          * initial EV_ADD, but doing so will not reset any
  907                          * filter which has already been triggered.
  908                          */
  909                         kn->kn_status |= KN_INFLUX;
  910                         KQ_UNLOCK(kq);
  911                         KN_LIST_LOCK(kn);
  912                         kn->kn_sfflags = kev->fflags;
  913                         kn->kn_sdata = kev->data;
  914                         kn->kn_kevent.udata = kev->udata;
  915                 }
  916 
  917                 /*
  918                  * We can get here with kn->kn_knlist == NULL.
  919                  * This can happen when the initial attach event decides that
  920                  * the event is "completed" already.  i.e. filt_procattach
  921                  * is called on a zombie process.  It will call filt_proc
  922                  * which will remove it from the list, and NULL kn_knlist.
  923                  */
  924                 event = kn->kn_fop->f_event(kn, 0);
  925                 KQ_LOCK(kq);
  926                 if (event)
  927                         KNOTE_ACTIVATE(kn, 1);
  928                 kn->kn_status &= ~KN_INFLUX;
  929                 KN_LIST_UNLOCK(kn);
  930         } else if (kev->flags & EV_DELETE) {
  931                 kn->kn_status |= KN_INFLUX;
  932                 KQ_UNLOCK(kq);
  933                 if (!(kn->kn_status & KN_DETACHED))
  934                         kn->kn_fop->f_detach(kn);
  935                 knote_drop(kn, td);
  936                 goto done;
  937         }
  938 
  939         if ((kev->flags & EV_DISABLE) &&
  940             ((kn->kn_status & KN_DISABLED) == 0)) {
  941                 kn->kn_status |= KN_DISABLED;
  942         }
  943 
  944         if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
  945                 kn->kn_status &= ~KN_DISABLED;
  946                 if ((kn->kn_status & KN_ACTIVE) &&
  947                     ((kn->kn_status & KN_QUEUED) == 0))
  948                         knote_enqueue(kn);
  949         }
  950         KQ_UNLOCK_FLUX(kq);
  951 
  952 done:
  953         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
  954 done_noglobal:
  955         if (fp != NULL)
  956                 fdrop(fp, td);
  957         if (tkn != NULL)
  958                 knote_free(tkn);
  959         if (fops != NULL)
  960                 kqueue_fo_release(filt);
  961         return (error);
  962 }
  963 
  964 static int
  965 kqueue_aquire(struct file *fp, struct kqueue **kqp)
  966 {
  967         int error;
  968         struct kqueue *kq;
  969 
  970         error = 0;
  971 
  972         FILE_LOCK(fp);
  973         do {
  974                 kq = fp->f_data;
  975                 if (fp->f_type != DTYPE_KQUEUE || kq == NULL) {
  976                         error = EBADF;
  977                         break;
  978                 }
  979                 *kqp = kq;
  980                 KQ_LOCK(kq);
  981                 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
  982                         KQ_UNLOCK(kq);
  983                         error = EBADF;
  984                         break;
  985                 }
  986                 kq->kq_refcnt++;
  987                 KQ_UNLOCK(kq);
  988         } while (0);
  989         FILE_UNLOCK(fp);
  990 
  991         return error;
  992 }
  993 
  994 static void
  995 kqueue_release(struct kqueue *kq, int locked)
  996 {
  997         if (locked)
  998                 KQ_OWNED(kq);
  999         else
 1000                 KQ_LOCK(kq);
 1001         kq->kq_refcnt--;
 1002         if (kq->kq_refcnt == 1)
 1003                 wakeup(&kq->kq_refcnt);
 1004         if (!locked)
 1005                 KQ_UNLOCK(kq);
 1006 }
 1007 
 1008 static void
 1009 kqueue_schedtask(struct kqueue *kq)
 1010 {
 1011 
 1012         KQ_OWNED(kq);
 1013         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1014             ("scheduling kqueue task while draining"));
 1015 
 1016         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1017                 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
 1018                 kq->kq_state |= KQ_TASKSCHED;
 1019         }
 1020 }
 1021 
 1022 /*
 1023  * Expand the kq to make sure we have storage for fops/ident pair.
 1024  *
 1025  * Return 0 on success (or no work necessary), return errno on failure.
 1026  *
 1027  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1028  * If kqueue_register is called from a non-fd context, there usually/should
 1029  * be no locks held.
 1030  */
 1031 static int
 1032 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1033         int waitok)
 1034 {
 1035         struct klist *list, *tmp_knhash;
 1036         u_long tmp_knhashmask;
 1037         int size;
 1038         int fd;
 1039         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1040 
 1041         KQ_NOTOWNED(kq);
 1042 
 1043         if (fops->f_isfd) {
 1044                 fd = ident;
 1045                 if (kq->kq_knlistsize <= fd) {
 1046                         size = kq->kq_knlistsize;
 1047                         while (size <= fd)
 1048                                 size += KQEXTENT;
 1049                         MALLOC(list, struct klist *,
 1050                             size * sizeof list, M_KQUEUE, mflag);
 1051                         if (list == NULL)
 1052                                 return ENOMEM;
 1053                         KQ_LOCK(kq);
 1054                         if (kq->kq_knlistsize > fd) {
 1055                                 FREE(list, M_KQUEUE);
 1056                                 list = NULL;
 1057                         } else {
 1058                                 if (kq->kq_knlist != NULL) {
 1059                                         bcopy(kq->kq_knlist, list,
 1060                                             kq->kq_knlistsize * sizeof list);
 1061                                         FREE(kq->kq_knlist, M_KQUEUE);
 1062                                         kq->kq_knlist = NULL;
 1063                                 }
 1064                                 bzero((caddr_t)list +
 1065                                     kq->kq_knlistsize * sizeof list,
 1066                                     (size - kq->kq_knlistsize) * sizeof list);
 1067                                 kq->kq_knlistsize = size;
 1068                                 kq->kq_knlist = list;
 1069                         }
 1070                         KQ_UNLOCK(kq);
 1071                 }
 1072         } else {
 1073                 if (kq->kq_knhashmask == 0) {
 1074                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1075                             &tmp_knhashmask);
 1076                         if (tmp_knhash == NULL)
 1077                                 return ENOMEM;
 1078                         KQ_LOCK(kq);
 1079                         if (kq->kq_knhashmask == 0) {
 1080                                 kq->kq_knhash = tmp_knhash;
 1081                                 kq->kq_knhashmask = tmp_knhashmask;
 1082                         } else {
 1083                                 free(tmp_knhash, M_KQUEUE);
 1084                         }
 1085                         KQ_UNLOCK(kq);
 1086                 }
 1087         }
 1088 
 1089         KQ_NOTOWNED(kq);
 1090         return 0;
 1091 }
 1092 
 1093 static void
 1094 kqueue_task(void *arg, int pending)
 1095 {
 1096         struct kqueue *kq;
 1097         int haskqglobal;
 1098 
 1099         haskqglobal = 0;
 1100         kq = arg;
 1101 
 1102         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1103         KQ_LOCK(kq);
 1104 
 1105         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1106 
 1107         kq->kq_state &= ~KQ_TASKSCHED;
 1108         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1109                 wakeup(&kq->kq_state);
 1110         }
 1111         KQ_UNLOCK(kq);
 1112         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1113 }
 1114 
 1115 /*
 1116  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1117  * We treat KN_MARKER knotes as if they are INFLUX.
 1118  */
 1119 static int
 1120 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1121     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1122 {
 1123         struct kevent *kevp;
 1124         struct timeval atv, rtv, ttv;
 1125         struct knote *kn, *marker;
 1126         int count, timeout, nkev, error;
 1127         int haskqglobal;
 1128 
 1129         count = maxevents;
 1130         nkev = 0;
 1131         error = 0;
 1132         haskqglobal = 0;
 1133 
 1134         if (maxevents == 0)
 1135                 goto done_nl;
 1136 
 1137         if (tsp != NULL) {
 1138                 TIMESPEC_TO_TIMEVAL(&atv, tsp);
 1139                 if (itimerfix(&atv)) {
 1140                         error = EINVAL;
 1141                         goto done_nl;
 1142                 }
 1143                 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
 1144                         timeout = -1;
 1145                 else
 1146                         timeout = atv.tv_sec > 24 * 60 * 60 ?
 1147                             24 * 60 * 60 * hz : tvtohz(&atv);
 1148                 getmicrouptime(&rtv);
 1149                 timevaladd(&atv, &rtv);
 1150         } else {
 1151                 atv.tv_sec = 0;
 1152                 atv.tv_usec = 0;
 1153                 timeout = 0;
 1154         }
 1155         marker = knote_alloc(1);
 1156         if (marker == NULL) {
 1157                 error = ENOMEM;
 1158                 goto done_nl;
 1159         }
 1160         marker->kn_status = KN_MARKER;
 1161         KQ_LOCK(kq);
 1162         goto start;
 1163 
 1164 retry:
 1165         if (atv.tv_sec || atv.tv_usec) {
 1166                 getmicrouptime(&rtv);
 1167                 if (timevalcmp(&rtv, &atv, >=))
 1168                         goto done;
 1169                 ttv = atv;
 1170                 timevalsub(&ttv, &rtv);
 1171                 timeout = ttv.tv_sec > 24 * 60 * 60 ?
 1172                         24 * 60 * 60 * hz : tvtohz(&ttv);
 1173         }
 1174 
 1175 start:
 1176         kevp = keva;
 1177         if (kq->kq_count == 0) {
 1178                 if (timeout < 0) {
 1179                         error = EWOULDBLOCK;
 1180                 } else {
 1181                         kq->kq_state |= KQ_SLEEP;
 1182                         error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
 1183                             "kqread", timeout);
 1184                 }
 1185                 if (error == 0)
 1186                         goto retry;
 1187                 /* don't restart after signals... */
 1188                 if (error == ERESTART)
 1189                         error = EINTR;
 1190                 else if (error == EWOULDBLOCK)
 1191                         error = 0;
 1192                 goto done;
 1193         }
 1194 
 1195         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1196         while (count) {
 1197                 KQ_OWNED(kq);
 1198                 kn = TAILQ_FIRST(&kq->kq_head);
 1199 
 1200                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1201                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1202                         kq->kq_state |= KQ_FLUXWAIT;
 1203                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1204                             "kqflxwt", 0);
 1205                         continue;
 1206                 }
 1207 
 1208                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1209                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1210                         kn->kn_status &= ~KN_QUEUED;
 1211                         kq->kq_count--;
 1212                         continue;
 1213                 }
 1214                 if (kn == marker) {
 1215                         KQ_FLUX_WAKEUP(kq);
 1216                         if (count == maxevents)
 1217                                 goto retry;
 1218                         goto done;
 1219                 }
 1220                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1221                     ("KN_INFLUX set when not suppose to be"));
 1222 
 1223                 if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1224                         kn->kn_status &= ~KN_QUEUED;
 1225                         kn->kn_status |= KN_INFLUX;
 1226                         kq->kq_count--;
 1227                         KQ_UNLOCK(kq);
 1228                         /*
 1229                          * We don't need to lock the list since we've marked
 1230                          * it _INFLUX.
 1231                          */
 1232                         *kevp = kn->kn_kevent;
 1233                         if (!(kn->kn_status & KN_DETACHED))
 1234                                 kn->kn_fop->f_detach(kn);
 1235                         knote_drop(kn, td);
 1236                         KQ_LOCK(kq);
 1237                         kn = NULL;
 1238                 } else {
 1239                         kn->kn_status |= KN_INFLUX;
 1240                         KQ_UNLOCK(kq);
 1241                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1242                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1243                         KN_LIST_LOCK(kn);
 1244                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1245                                 KQ_LOCK(kq);
 1246                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1247                                 kn->kn_status &=
 1248                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
 1249                                 kq->kq_count--;
 1250                                 KN_LIST_UNLOCK(kn);
 1251                                 continue;
 1252                         }
 1253                         *kevp = kn->kn_kevent;
 1254                         KQ_LOCK(kq);
 1255                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1256                         if (kn->kn_flags & EV_CLEAR) {
 1257                                 kn->kn_data = 0;
 1258                                 kn->kn_fflags = 0;
 1259                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1260                                 kq->kq_count--;
 1261                         } else
 1262                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1263                         
 1264                         kn->kn_status &= ~(KN_INFLUX);
 1265                         KN_LIST_UNLOCK(kn);
 1266                 }
 1267 
 1268                 /* we are returning a copy to the user */
 1269                 kevp++;
 1270                 nkev++;
 1271                 count--;
 1272 
 1273                 if (nkev == KQ_NEVENTS) {
 1274                         KQ_UNLOCK_FLUX(kq);
 1275                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1276                         nkev = 0;
 1277                         kevp = keva;
 1278                         KQ_LOCK(kq);
 1279                         if (error)
 1280                                 break;
 1281                 }
 1282         }
 1283         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1284 done:
 1285         KQ_OWNED(kq);
 1286         KQ_UNLOCK_FLUX(kq);
 1287         knote_free(marker);
 1288 done_nl:
 1289         KQ_NOTOWNED(kq);
 1290         if (nkev != 0)
 1291                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1292         td->td_retval[0] = maxevents - count;
 1293         return (error);
 1294 }
 1295 
 1296 /*
 1297  * XXX
 1298  * This could be expanded to call kqueue_scan, if desired.
 1299  */
 1300 /*ARGSUSED*/
 1301 static int
 1302 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1303         int flags, struct thread *td)
 1304 {
 1305         return (ENXIO);
 1306 }
 1307 
 1308 /*ARGSUSED*/
 1309 static int
 1310 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1311          int flags, struct thread *td)
 1312 {
 1313         return (ENXIO);
 1314 }
 1315 
 1316 /*ARGSUSED*/
 1317 static int
 1318 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1319         struct ucred *active_cred, struct thread *td)
 1320 {
 1321         /*
 1322          * Enabling sigio causes two major problems:
 1323          * 1) infinite recursion:
 1324          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1325          * set.  On receipt of a signal this will cause a kqueue to recurse
 1326          * into itself over and over.  Sending the sigio causes the kqueue
 1327          * to become ready, which in turn posts sigio again, forever.
 1328          * Solution: this can be solved by setting a flag in the kqueue that
 1329          * we have a SIGIO in progress.
 1330          * 2) locking problems:
 1331          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1332          * us above the proc and pgrp locks.
 1333          * Solution: Post a signal using an async mechanism, being sure to
 1334          * record a generation count in the delivery so that we do not deliver
 1335          * a signal to the wrong process.
 1336          *
 1337          * Note, these two mechanisms are somewhat mutually exclusive!
 1338          */
 1339 #if 0
 1340         struct kqueue *kq;
 1341 
 1342         kq = fp->f_data;
 1343         switch (cmd) {
 1344         case FIOASYNC:
 1345                 if (*(int *)data) {
 1346                         kq->kq_state |= KQ_ASYNC;
 1347                 } else {
 1348                         kq->kq_state &= ~KQ_ASYNC;
 1349                 }
 1350                 return (0);
 1351 
 1352         case FIOSETOWN:
 1353                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1354 
 1355         case FIOGETOWN:
 1356                 *(int *)data = fgetown(&kq->kq_sigio);
 1357                 return (0);
 1358         }
 1359 #endif
 1360 
 1361         return (ENOTTY);
 1362 }
 1363 
 1364 /*ARGSUSED*/
 1365 static int
 1366 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1367         struct thread *td)
 1368 {
 1369         struct kqueue *kq;
 1370         int revents = 0;
 1371         int error;
 1372 
 1373         if ((error = kqueue_aquire(fp, &kq)))
 1374                 return POLLERR;
 1375 
 1376         KQ_LOCK(kq);
 1377         if (events & (POLLIN | POLLRDNORM)) {
 1378                 if (kq->kq_count) {
 1379                         revents |= events & (POLLIN | POLLRDNORM);
 1380                 } else {
 1381                         selrecord(td, &kq->kq_sel);
 1382                         kq->kq_state |= KQ_SEL;
 1383                 }
 1384         }
 1385         kqueue_release(kq, 1);
 1386         KQ_UNLOCK(kq);
 1387         return (revents);
 1388 }
 1389 
 1390 /*ARGSUSED*/
 1391 static int
 1392 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1393         struct thread *td)
 1394 {
 1395 
 1396         bzero((void *)st, sizeof *st);
 1397         /*
 1398          * We no longer return kq_count because the unlocked value is useless.
 1399          * If you spent all this time getting the count, why not spend your
 1400          * syscall better by calling kevent?
 1401          *
 1402          * XXX - This is needed for libc_r.
 1403          */
 1404         st->st_mode = S_IFIFO;
 1405         return (0);
 1406 }
 1407 
 1408 /*ARGSUSED*/
 1409 static int
 1410 kqueue_close(struct file *fp, struct thread *td)
 1411 {
 1412         struct kqueue *kq = fp->f_data;
 1413         struct filedesc *fdp;
 1414         struct knote *kn;
 1415         int i;
 1416         int error;
 1417 
 1418         if ((error = kqueue_aquire(fp, &kq)))
 1419                 return error;
 1420 
 1421         KQ_LOCK(kq);
 1422 
 1423         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1424             ("kqueue already closing"));
 1425         kq->kq_state |= KQ_CLOSING;
 1426         if (kq->kq_refcnt > 1)
 1427                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1428 
 1429         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1430         fdp = kq->kq_fdp;
 1431 
 1432         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1433             ("kqueue's knlist not empty"));
 1434 
 1435         for (i = 0; i < kq->kq_knlistsize; i++) {
 1436                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1437                         KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1438                             ("KN_INFLUX set when not suppose to be"));
 1439                         kn->kn_status |= KN_INFLUX;
 1440                         KQ_UNLOCK(kq);
 1441                         if (!(kn->kn_status & KN_DETACHED))
 1442                                 kn->kn_fop->f_detach(kn);
 1443                         knote_drop(kn, td);
 1444                         KQ_LOCK(kq);
 1445                 }
 1446         }
 1447         if (kq->kq_knhashmask != 0) {
 1448                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1449                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1450                                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1451                                     ("KN_INFLUX set when not suppose to be"));
 1452                                 kn->kn_status |= KN_INFLUX;
 1453                                 KQ_UNLOCK(kq);
 1454                                 if (!(kn->kn_status & KN_DETACHED))
 1455                                         kn->kn_fop->f_detach(kn);
 1456                                 knote_drop(kn, td);
 1457                                 KQ_LOCK(kq);
 1458                         }
 1459                 }
 1460         }
 1461 
 1462         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1463                 kq->kq_state |= KQ_TASKDRAIN;
 1464                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1465         }
 1466 
 1467         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1468                 kq->kq_state &= ~KQ_SEL;
 1469                 selwakeuppri(&kq->kq_sel, PSOCK);
 1470         }
 1471 
 1472         KQ_UNLOCK(kq);
 1473 
 1474         FILEDESC_LOCK_FAST(fdp);
 1475         SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
 1476         FILEDESC_UNLOCK_FAST(fdp);
 1477 
 1478         knlist_destroy(&kq->kq_sel.si_note);
 1479         mtx_destroy(&kq->kq_lock);
 1480         kq->kq_fdp = NULL;
 1481 
 1482         if (kq->kq_knhash != NULL)
 1483                 free(kq->kq_knhash, M_KQUEUE);
 1484         if (kq->kq_knlist != NULL)
 1485                 free(kq->kq_knlist, M_KQUEUE);
 1486 
 1487         funsetown(&kq->kq_sigio);
 1488         free(kq, M_KQUEUE);
 1489         fp->f_data = NULL;
 1490 
 1491         return (0);
 1492 }
 1493 
 1494 static void
 1495 kqueue_wakeup(struct kqueue *kq)
 1496 {
 1497         KQ_OWNED(kq);
 1498 
 1499         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1500                 kq->kq_state &= ~KQ_SLEEP;
 1501                 wakeup(kq);
 1502         }
 1503         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1504                 kq->kq_state &= ~KQ_SEL;
 1505                 selwakeuppri(&kq->kq_sel, PSOCK);
 1506         }
 1507         if (!knlist_empty(&kq->kq_sel.si_note))
 1508                 kqueue_schedtask(kq);
 1509         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1510                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1511         }
 1512 }
 1513 
 1514 /*
 1515  * Walk down a list of knotes, activating them if their event has triggered.
 1516  *
 1517  * There is a possibility to optimize in the case of one kq watching another.
 1518  * Instead of scheduling a task to wake it up, you could pass enough state
 1519  * down the chain to make up the parent kqueue.  Make this code functional
 1520  * first.
 1521  */
 1522 void
 1523 knote(struct knlist *list, long hint, int islocked)
 1524 {
 1525         struct kqueue *kq;
 1526         struct knote *kn;
 1527 
 1528         if (list == NULL)
 1529                 return;
 1530 
 1531         KNL_ASSERT_LOCK(list, islocked);
 1532 
 1533         if (!islocked) 
 1534                 list->kl_lock(list->kl_lockarg); 
 1535 
 1536         /*
 1537          * If we unlock the list lock (and set KN_INFLUX), we can eliminate
 1538          * the kqueue scheduling, but this will introduce four
 1539          * lock/unlock's for each knote to test.  If we do, continue to use
 1540          * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
 1541          * only safe if you want to remove the current item, which we are
 1542          * not doing.
 1543          */
 1544         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
 1545                 kq = kn->kn_kq;
 1546                 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
 1547                         KQ_LOCK(kq);
 1548                         if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
 1549                                 kn->kn_status |= KN_HASKQLOCK;
 1550                                 if (kn->kn_fop->f_event(kn, hint))
 1551                                         KNOTE_ACTIVATE(kn, 1);
 1552                                 kn->kn_status &= ~KN_HASKQLOCK;
 1553                         }
 1554                         KQ_UNLOCK(kq);
 1555                 }
 1556                 kq = NULL;
 1557         }
 1558         if (!islocked)
 1559                 list->kl_unlock(list->kl_lockarg); 
 1560 }
 1561 
 1562 /*
 1563  * add a knote to a knlist
 1564  */
 1565 void
 1566 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 1567 {
 1568         KNL_ASSERT_LOCK(knl, islocked);
 1569         KQ_NOTOWNED(kn->kn_kq);
 1570         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 1571             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 1572         if (!islocked)
 1573                 knl->kl_lock(knl->kl_lockarg);
 1574         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 1575         if (!islocked)
 1576                 knl->kl_unlock(knl->kl_lockarg);
 1577         KQ_LOCK(kn->kn_kq);
 1578         kn->kn_knlist = knl;
 1579         kn->kn_status &= ~KN_DETACHED;
 1580         KQ_UNLOCK(kn->kn_kq);
 1581 }
 1582 
 1583 static void
 1584 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
 1585 {
 1586         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 1587         KNL_ASSERT_LOCK(knl, knlislocked);
 1588         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 1589         if (!kqislocked)
 1590                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 1591     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 1592         if (!knlislocked)
 1593                 knl->kl_lock(knl->kl_lockarg);
 1594         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 1595         kn->kn_knlist = NULL;
 1596         if (!knlislocked)
 1597                 knl->kl_unlock(knl->kl_lockarg);
 1598         if (!kqislocked)
 1599                 KQ_LOCK(kn->kn_kq);
 1600         kn->kn_status |= KN_DETACHED;
 1601         if (!kqislocked)
 1602                 KQ_UNLOCK(kn->kn_kq);
 1603 }
 1604 
 1605 /*
 1606  * remove all knotes from a specified klist
 1607  */
 1608 void
 1609 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 1610 {
 1611 
 1612         knlist_remove_kq(knl, kn, islocked, 0);
 1613 }
 1614 
 1615 /*
 1616  * remove knote from a specified klist while in f_event handler.
 1617  */
 1618 void
 1619 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
 1620 {
 1621 
 1622         knlist_remove_kq(knl, kn, 1,
 1623             (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
 1624 }
 1625 
 1626 int
 1627 knlist_empty(struct knlist *knl)
 1628 {
 1629         KNL_ASSERT_LOCKED(knl);
 1630         return SLIST_EMPTY(&knl->kl_list);
 1631 }
 1632 
 1633 static struct mtx       knlist_lock;
 1634 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 1635         MTX_DEF);
 1636 static void knlist_mtx_lock(void *arg);
 1637 static void knlist_mtx_unlock(void *arg);
 1638 static int knlist_mtx_locked(void *arg);
 1639 
 1640 static void
 1641 knlist_mtx_lock(void *arg)
 1642 {
 1643         mtx_lock((struct mtx *)arg);
 1644 }
 1645 
 1646 static void
 1647 knlist_mtx_unlock(void *arg)
 1648 {
 1649         mtx_unlock((struct mtx *)arg);
 1650 }
 1651 
 1652 static int
 1653 knlist_mtx_locked(void *arg)
 1654 {
 1655         return (mtx_owned((struct mtx *)arg));
 1656 }
 1657 
 1658 void
 1659 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 1660     void (*kl_unlock)(void *), int (*kl_locked)(void *))
 1661 {
 1662 
 1663         if (lock == NULL)
 1664                 knl->kl_lockarg = &knlist_lock;
 1665         else
 1666                 knl->kl_lockarg = lock;
 1667 
 1668         if (kl_lock == NULL)
 1669                 knl->kl_lock = knlist_mtx_lock;
 1670         else
 1671                 knl->kl_lock = kl_lock;
 1672         if (kl_lock == NULL)
 1673                 knl->kl_unlock = knlist_mtx_unlock;
 1674         else
 1675                 knl->kl_unlock = kl_unlock;
 1676         if (kl_locked == NULL)
 1677                 knl->kl_locked = knlist_mtx_locked;
 1678         else
 1679                 knl->kl_locked = kl_locked;
 1680 
 1681         SLIST_INIT(&knl->kl_list);
 1682 }
 1683 
 1684 void
 1685 knlist_destroy(struct knlist *knl)
 1686 {
 1687 
 1688 #ifdef INVARIANTS
 1689         /*
 1690          * if we run across this error, we need to find the offending
 1691          * driver and have it call knlist_clear.
 1692          */
 1693         if (!SLIST_EMPTY(&knl->kl_list))
 1694                 printf("WARNING: destroying knlist w/ knotes on it!\n");
 1695 #endif
 1696 
 1697         knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
 1698         SLIST_INIT(&knl->kl_list);
 1699 }
 1700 
 1701 /*
 1702  * Even if we are locked, we may need to drop the lock to allow any influx
 1703  * knotes time to "settle".
 1704  */
 1705 void
 1706 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 1707 {
 1708         struct knote *kn;
 1709         struct kqueue *kq;
 1710 
 1711         if (islocked)
 1712                 KNL_ASSERT_LOCKED(knl);
 1713         else {
 1714                 KNL_ASSERT_UNLOCKED(knl);
 1715 again:          /* need to reaquire lock since we have dropped it */
 1716                 knl->kl_lock(knl->kl_lockarg);
 1717         }
 1718 
 1719         SLIST_FOREACH(kn, &knl->kl_list, kn_selnext) {
 1720                 kq = kn->kn_kq;
 1721                 KQ_LOCK(kq);
 1722                 if ((kn->kn_status & KN_INFLUX)) {
 1723                         KQ_UNLOCK(kq);
 1724                         continue;
 1725                 }
 1726                 knlist_remove_kq(knl, kn, 1, 1);
 1727                 if (killkn) {
 1728                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 1729                         KQ_UNLOCK(kq);
 1730                         knote_drop(kn, td);
 1731                 } else {
 1732                         /* Make sure cleared knotes disappear soon */
 1733                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 1734                         KQ_UNLOCK(kq);
 1735                 }
 1736                 kq = NULL;
 1737         }
 1738 
 1739         if (!SLIST_EMPTY(&knl->kl_list)) {
 1740                 /* there are still KN_INFLUX remaining */
 1741                 kn = SLIST_FIRST(&knl->kl_list);
 1742                 kq = kn->kn_kq;
 1743                 KQ_LOCK(kq);
 1744                 KASSERT(kn->kn_status & KN_INFLUX,
 1745                     ("knote removed w/o list lock"));
 1746                 knl->kl_unlock(knl->kl_lockarg);
 1747                 kq->kq_state |= KQ_FLUXWAIT;
 1748                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 1749                 kq = NULL;
 1750                 goto again;
 1751         }
 1752 
 1753         if (islocked)
 1754                 KNL_ASSERT_LOCKED(knl);
 1755         else {
 1756                 knl->kl_unlock(knl->kl_lockarg);
 1757                 KNL_ASSERT_UNLOCKED(knl);
 1758         }
 1759 }
 1760 
 1761 /*
 1762  * remove all knotes referencing a specified fd
 1763  * must be called with FILEDESC lock.  This prevents a race where a new fd
 1764  * comes along and occupies the entry and we attach a knote to the fd.
 1765  */
 1766 void
 1767 knote_fdclose(struct thread *td, int fd)
 1768 {
 1769         struct filedesc *fdp = td->td_proc->p_fd;
 1770         struct kqueue *kq;
 1771         struct knote *kn;
 1772         int influx;
 1773 
 1774         FILEDESC_LOCK_ASSERT(fdp, MA_OWNED);
 1775 
 1776         /*
 1777          * We shouldn't have to worry about new kevents appearing on fd
 1778          * since filedesc is locked.
 1779          */
 1780         SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 1781                 KQ_LOCK(kq);
 1782 
 1783 again:
 1784                 influx = 0;
 1785                 while (kq->kq_knlistsize > fd &&
 1786                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 1787                         if (kn->kn_status & KN_INFLUX) {
 1788                                 /* someone else might be waiting on our knote */
 1789                                 if (influx)
 1790                                         wakeup(kq);
 1791                                 kq->kq_state |= KQ_FLUXWAIT;
 1792                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 1793                                 goto again;
 1794                         }
 1795                         kn->kn_status |= KN_INFLUX;
 1796                         KQ_UNLOCK(kq);
 1797                         if (!(kn->kn_status & KN_DETACHED))
 1798                                 kn->kn_fop->f_detach(kn);
 1799                         knote_drop(kn, td);
 1800                         influx = 1;
 1801                         KQ_LOCK(kq);
 1802                 }
 1803                 KQ_UNLOCK_FLUX(kq);
 1804         }
 1805 }
 1806 
 1807 static int
 1808 knote_attach(struct knote *kn, struct kqueue *kq)
 1809 {
 1810         struct klist *list;
 1811 
 1812         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 1813         KQ_OWNED(kq);
 1814 
 1815         if (kn->kn_fop->f_isfd) {
 1816                 if (kn->kn_id >= kq->kq_knlistsize)
 1817                         return ENOMEM;
 1818                 list = &kq->kq_knlist[kn->kn_id];
 1819         } else {
 1820                 if (kq->kq_knhash == NULL)
 1821                         return ENOMEM;
 1822                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 1823         }
 1824 
 1825         SLIST_INSERT_HEAD(list, kn, kn_link);
 1826 
 1827         return 0;
 1828 }
 1829 
 1830 /*
 1831  * knote must already have been detatched using the f_detach method.
 1832  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 1833  * to prevent other removal.
 1834  */
 1835 static void
 1836 knote_drop(struct knote *kn, struct thread *td)
 1837 {
 1838         struct kqueue *kq;
 1839         struct klist *list;
 1840 
 1841         kq = kn->kn_kq;
 1842 
 1843         KQ_NOTOWNED(kq);
 1844         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 1845             ("knote_drop called without KN_INFLUX set in kn_status"));
 1846 
 1847         KQ_LOCK(kq);
 1848         if (kn->kn_fop->f_isfd)
 1849                 list = &kq->kq_knlist[kn->kn_id];
 1850         else
 1851                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 1852 
 1853         SLIST_REMOVE(list, kn, knote, kn_link);
 1854         if (kn->kn_status & KN_QUEUED)
 1855                 knote_dequeue(kn);
 1856         KQ_UNLOCK_FLUX(kq);
 1857 
 1858         if (kn->kn_fop->f_isfd) {
 1859                 fdrop(kn->kn_fp, td);
 1860                 kn->kn_fp = NULL;
 1861         }
 1862         kqueue_fo_release(kn->kn_kevent.filter);
 1863         kn->kn_fop = NULL;
 1864         knote_free(kn);
 1865 }
 1866 
 1867 static void
 1868 knote_enqueue(struct knote *kn)
 1869 {
 1870         struct kqueue *kq = kn->kn_kq;
 1871 
 1872         KQ_OWNED(kn->kn_kq);
 1873         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 1874 
 1875         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1876         kn->kn_status |= KN_QUEUED;
 1877         kq->kq_count++;
 1878         kqueue_wakeup(kq);
 1879 }
 1880 
 1881 static void
 1882 knote_dequeue(struct knote *kn)
 1883 {
 1884         struct kqueue *kq = kn->kn_kq;
 1885 
 1886         KQ_OWNED(kn->kn_kq);
 1887         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 1888 
 1889         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1890         kn->kn_status &= ~KN_QUEUED;
 1891         kq->kq_count--;
 1892 }
 1893 
 1894 static void
 1895 knote_init(void)
 1896 {
 1897 
 1898         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 1899             NULL, NULL, UMA_ALIGN_PTR, 0);
 1900 }
 1901 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
 1902 
 1903 static struct knote *
 1904 knote_alloc(int waitok)
 1905 {
 1906         return ((struct knote *)uma_zalloc(knote_zone,
 1907             (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
 1908 }
 1909 
 1910 static void
 1911 knote_free(struct knote *kn)
 1912 {
 1913         if (kn != NULL)
 1914                 uma_zfree(knote_zone, kn);
 1915 }

Cache object: a2972ca43ebeb36370a1df3d5c27af43


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.