The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_ktrace.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/kernel.h>
   36 #include <sys/lock.h>
   37 #include <sys/mutex.h>
   38 #include <sys/proc.h>
   39 #include <sys/malloc.h>
   40 #include <sys/unistd.h>
   41 #include <sys/file.h>
   42 #include <sys/filedesc.h>
   43 #include <sys/filio.h>
   44 #include <sys/fcntl.h>
   45 #include <sys/kthread.h>
   46 #include <sys/selinfo.h>
   47 #include <sys/queue.h>
   48 #include <sys/event.h>
   49 #include <sys/eventvar.h>
   50 #include <sys/poll.h>
   51 #include <sys/protosw.h>
   52 #include <sys/sigio.h>
   53 #include <sys/signalvar.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/stat.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/sysproto.h>
   59 #include <sys/syscallsubr.h>
   60 #include <sys/taskqueue.h>
   61 #include <sys/uio.h>
   62 #ifdef KTRACE
   63 #include <sys/ktrace.h>
   64 #endif
   65 
   66 #include <vm/uma.h>
   67 
   68 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   69 
   70 /*
   71  * This lock is used if multiple kq locks are required.  This possibly
   72  * should be made into a per proc lock.
   73  */
   74 static struct mtx       kq_global;
   75 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   76 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   77         if (!haslck)                            \
   78                 mtx_lock(lck);                  \
   79         haslck = 1;                             \
   80 } while (0)
   81 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   82         if (haslck)                             \
   83                 mtx_unlock(lck);                        \
   84         haslck = 0;                             \
   85 } while (0)
   86 
   87 TASKQUEUE_DEFINE_THREAD(kqueue);
   88 
   89 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   90 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   91 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   92                     struct thread *td, int waitok);
   93 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
   94 static void     kqueue_release(struct kqueue *kq, int locked);
   95 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
   96                     uintptr_t ident, int waitok);
   97 static void     kqueue_task(void *arg, int pending);
   98 static int      kqueue_scan(struct kqueue *kq, int maxevents,
   99                     struct kevent_copyops *k_ops,
  100                     const struct timespec *timeout,
  101                     struct kevent *keva, struct thread *td);
  102 static void     kqueue_wakeup(struct kqueue *kq);
  103 static struct filterops *kqueue_fo_find(int filt);
  104 static void     kqueue_fo_release(int filt);
  105 
  106 static fo_rdwr_t        kqueue_read;
  107 static fo_rdwr_t        kqueue_write;
  108 static fo_ioctl_t       kqueue_ioctl;
  109 static fo_poll_t        kqueue_poll;
  110 static fo_kqfilter_t    kqueue_kqfilter;
  111 static fo_stat_t        kqueue_stat;
  112 static fo_close_t       kqueue_close;
  113 
  114 static struct fileops kqueueops = {
  115         .fo_read = kqueue_read,
  116         .fo_write = kqueue_write,
  117         .fo_ioctl = kqueue_ioctl,
  118         .fo_poll = kqueue_poll,
  119         .fo_kqfilter = kqueue_kqfilter,
  120         .fo_stat = kqueue_stat,
  121         .fo_close = kqueue_close,
  122 };
  123 
  124 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  125 static void     knote_drop(struct knote *kn, struct thread *td);
  126 static void     knote_enqueue(struct knote *kn);
  127 static void     knote_dequeue(struct knote *kn);
  128 static void     knote_init(void);
  129 static struct   knote *knote_alloc(int waitok);
  130 static void     knote_free(struct knote *kn);
  131 
  132 static void     filt_kqdetach(struct knote *kn);
  133 static int      filt_kqueue(struct knote *kn, long hint);
  134 static int      filt_procattach(struct knote *kn);
  135 static void     filt_procdetach(struct knote *kn);
  136 static int      filt_proc(struct knote *kn, long hint);
  137 static int      filt_fileattach(struct knote *kn);
  138 static void     filt_timerexpire(void *knx);
  139 static int      filt_timerattach(struct knote *kn);
  140 static void     filt_timerdetach(struct knote *kn);
  141 static int      filt_timer(struct knote *kn, long hint);
  142 
  143 static struct filterops file_filtops =
  144         { 1, filt_fileattach, NULL, NULL };
  145 static struct filterops kqread_filtops =
  146         { 1, NULL, filt_kqdetach, filt_kqueue };
  147 /* XXX - move to kern_proc.c?  */
  148 static struct filterops proc_filtops =
  149         { 0, filt_procattach, filt_procdetach, filt_proc };
  150 static struct filterops timer_filtops =
  151         { 0, filt_timerattach, filt_timerdetach, filt_timer };
  152 
  153 static uma_zone_t       knote_zone;
  154 static int              kq_ncallouts = 0;
  155 static int              kq_calloutmax = (4 * 1024);
  156 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  157     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  158 
  159 /* XXX - ensure not KN_INFLUX?? */
  160 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  161         if ((islock))                                                   \
  162                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  163         else                                                            \
  164                 KQ_LOCK((kn)->kn_kq);                                   \
  165         (kn)->kn_status |= KN_ACTIVE;                                   \
  166         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  167                 knote_enqueue((kn));                                    \
  168         if (!(islock))                                                  \
  169                 KQ_UNLOCK((kn)->kn_kq);                                 \
  170 } while(0)
  171 #define KQ_LOCK(kq) do {                                                \
  172         mtx_lock(&(kq)->kq_lock);                                       \
  173 } while (0)
  174 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  175         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  176                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  177                 wakeup((kq));                                           \
  178         }                                                               \
  179 } while (0)
  180 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  181         KQ_FLUX_WAKEUP(kq);                                             \
  182         mtx_unlock(&(kq)->kq_lock);                                     \
  183 } while (0)
  184 #define KQ_UNLOCK(kq) do {                                              \
  185         mtx_unlock(&(kq)->kq_lock);                                     \
  186 } while (0)
  187 #define KQ_OWNED(kq) do {                                               \
  188         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  189 } while (0)
  190 #define KQ_NOTOWNED(kq) do {                                            \
  191         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  192 } while (0)
  193 #define KN_LIST_LOCK(kn) do {                                           \
  194         if (kn->kn_knlist != NULL)                                      \
  195                 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);      \
  196 } while (0)
  197 #define KN_LIST_UNLOCK(kn) do {                                         \
  198         if (kn->kn_knlist != NULL)                                      \
  199                 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);    \
  200 } while (0)
  201 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  202         if (islocked)                                                   \
  203                 KNL_ASSERT_LOCKED(knl);                         \
  204         else                                                            \
  205                 KNL_ASSERT_UNLOCKED(knl);                               \
  206 } while (0)
  207 #ifdef INVARIANTS
  208 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  209         if (!knl->kl_locked((knl)->kl_lockarg))                         \
  210                         panic("knlist not locked, but should be");      \
  211 } while (0)
  212 #define KNL_ASSERT_UNLOCKED(knl) do {                           \
  213         if (knl->kl_locked((knl)->kl_lockarg))                          \
  214                 panic("knlist locked, but should not be");              \
  215 } while (0)
  216 #else /* !INVARIANTS */
  217 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  218 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  219 #endif /* INVARIANTS */
  220 
  221 #define KN_HASHSIZE             64              /* XXX should be tunable */
  222 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  223 
  224 static int
  225 filt_nullattach(struct knote *kn)
  226 {
  227 
  228         return (ENXIO);
  229 };
  230 
  231 struct filterops null_filtops =
  232         { 0, filt_nullattach, NULL, NULL };
  233 
  234 /* XXX - make SYSINIT to add these, and move into respective modules. */
  235 extern struct filterops sig_filtops;
  236 extern struct filterops fs_filtops;
  237 
  238 /*
  239  * Table for for all system-defined filters.
  240  */
  241 static struct mtx       filterops_lock;
  242 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  243         MTX_DEF);
  244 static struct {
  245         struct filterops *for_fop;
  246         int for_refcnt;
  247 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  248         { &file_filtops },                      /* EVFILT_READ */
  249         { &file_filtops },                      /* EVFILT_WRITE */
  250         { &null_filtops },                      /* EVFILT_AIO */
  251         { &file_filtops },                      /* EVFILT_VNODE */
  252         { &proc_filtops },                      /* EVFILT_PROC */
  253         { &sig_filtops },                       /* EVFILT_SIGNAL */
  254         { &timer_filtops },                     /* EVFILT_TIMER */
  255         { &file_filtops },                      /* EVFILT_NETDEV */
  256         { &fs_filtops },                        /* EVFILT_FS */
  257         { &null_filtops },                      /* EVFILT_LIO */
  258 };
  259 
  260 /*
  261  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  262  * method.
  263  */
  264 static int
  265 filt_fileattach(struct knote *kn)
  266 {
  267 
  268         return (fo_kqfilter(kn->kn_fp, kn));
  269 }
  270 
  271 /*ARGSUSED*/
  272 static int
  273 kqueue_kqfilter(struct file *fp, struct knote *kn)
  274 {
  275         struct kqueue *kq = kn->kn_fp->f_data;
  276 
  277         if (kn->kn_filter != EVFILT_READ)
  278                 return (EINVAL);
  279 
  280         kn->kn_status |= KN_KQUEUE;
  281         kn->kn_fop = &kqread_filtops;
  282         knlist_add(&kq->kq_sel.si_note, kn, 0);
  283 
  284         return (0);
  285 }
  286 
  287 static void
  288 filt_kqdetach(struct knote *kn)
  289 {
  290         struct kqueue *kq = kn->kn_fp->f_data;
  291 
  292         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  293 }
  294 
  295 /*ARGSUSED*/
  296 static int
  297 filt_kqueue(struct knote *kn, long hint)
  298 {
  299         struct kqueue *kq = kn->kn_fp->f_data;
  300 
  301         kn->kn_data = kq->kq_count;
  302         return (kn->kn_data > 0);
  303 }
  304 
  305 /* XXX - move to kern_proc.c?  */
  306 static int
  307 filt_procattach(struct knote *kn)
  308 {
  309         struct proc *p;
  310         int immediate;
  311         int error;
  312 
  313         immediate = 0;
  314         p = pfind(kn->kn_id);
  315         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  316                 p = zpfind(kn->kn_id);
  317                 immediate = 1;
  318         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  319                 immediate = 1;
  320         }
  321 
  322         if (p == NULL)
  323                 return (ESRCH);
  324         if ((error = p_cansee(curthread, p)))
  325                 return (error);
  326 
  327         kn->kn_ptr.p_proc = p;
  328         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  329 
  330         /*
  331          * internal flag indicating registration done by kernel
  332          */
  333         if (kn->kn_flags & EV_FLAG1) {
  334                 kn->kn_data = kn->kn_sdata;             /* ppid */
  335                 kn->kn_fflags = NOTE_CHILD;
  336                 kn->kn_flags &= ~EV_FLAG1;
  337         }
  338 
  339         if (immediate == 0)
  340                 knlist_add(&p->p_klist, kn, 1);
  341 
  342         /*
  343          * Immediately activate any exit notes if the target process is a
  344          * zombie.  This is necessary to handle the case where the target
  345          * process, e.g. a child, dies before the kevent is registered.
  346          */
  347         if (immediate && filt_proc(kn, NOTE_EXIT))
  348                 KNOTE_ACTIVATE(kn, 0);
  349 
  350         PROC_UNLOCK(p);
  351 
  352         return (0);
  353 }
  354 
  355 /*
  356  * The knote may be attached to a different process, which may exit,
  357  * leaving nothing for the knote to be attached to.  So when the process
  358  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  359  * it will be deleted when read out.  However, as part of the knote deletion,
  360  * this routine is called, so a check is needed to avoid actually performing
  361  * a detach, because the original process does not exist any more.
  362  */
  363 /* XXX - move to kern_proc.c?  */
  364 static void
  365 filt_procdetach(struct knote *kn)
  366 {
  367         struct proc *p;
  368 
  369         p = kn->kn_ptr.p_proc;
  370         knlist_remove(&p->p_klist, kn, 0);
  371         kn->kn_ptr.p_proc = NULL;
  372 }
  373 
  374 /* XXX - move to kern_proc.c?  */
  375 static int
  376 filt_proc(struct knote *kn, long hint)
  377 {
  378         struct proc *p = kn->kn_ptr.p_proc;
  379         u_int event;
  380 
  381         /*
  382          * mask off extra data
  383          */
  384         event = (u_int)hint & NOTE_PCTRLMASK;
  385 
  386         /*
  387          * if the user is interested in this event, record it.
  388          */
  389         if (kn->kn_sfflags & event)
  390                 kn->kn_fflags |= event;
  391 
  392         /*
  393          * process is gone, so flag the event as finished.
  394          */
  395         if (event == NOTE_EXIT) {
  396                 if (!(kn->kn_status & KN_DETACHED))
  397                         knlist_remove_inevent(&p->p_klist, kn);
  398                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  399                 kn->kn_data = p->p_xstat;
  400                 kn->kn_ptr.p_proc = NULL;
  401                 return (1);
  402         }
  403 
  404         return (kn->kn_fflags != 0);
  405 }
  406 
  407 /*
  408  * Called when the process forked. It mostly does the same as the
  409  * knote(), activating all knotes registered to be activated when the
  410  * process forked. Additionally, for each knote attached to the
  411  * parent, check whether user wants to track the new process. If so
  412  * attach a new knote to it, and immediately report an event with the
  413  * child's pid.
  414  */
  415 void
  416 knote_fork(struct knlist *list, int pid)
  417 {
  418         struct kqueue *kq;
  419         struct knote *kn;
  420         struct kevent kev;
  421         int error;
  422 
  423         if (list == NULL)
  424                 return;
  425         list->kl_lock(list->kl_lockarg);
  426 
  427         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  428                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
  429                         continue;
  430                 kq = kn->kn_kq;
  431                 KQ_LOCK(kq);
  432                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
  433                         KQ_UNLOCK(kq);
  434                         continue;
  435                 }
  436 
  437                 /*
  438                  * The same as knote(), activate the event.
  439                  */
  440                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  441                         kn->kn_status |= KN_HASKQLOCK;
  442                         if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
  443                                 KNOTE_ACTIVATE(kn, 1);
  444                         kn->kn_status &= ~KN_HASKQLOCK;
  445                         KQ_UNLOCK(kq);
  446                         continue;
  447                 }
  448 
  449                 /*
  450                  * The NOTE_TRACK case. In addition to the activation
  451                  * of the event, we need to register new event to
  452                  * track the child. Drop the locks in preparation for
  453                  * the call to kqueue_register().
  454                  */
  455                 kn->kn_status |= KN_INFLUX;
  456                 KQ_UNLOCK(kq);
  457                 list->kl_unlock(list->kl_lockarg);
  458 
  459                 /*
  460                  * Activate existing knote and register a knote with
  461                  * new process.
  462                  */
  463                 kev.ident = pid;
  464                 kev.filter = kn->kn_filter;
  465                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  466                 kev.fflags = kn->kn_sfflags;
  467                 kev.data = kn->kn_id;           /* parent */
  468                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  469                 error = kqueue_register(kq, &kev, NULL, 0);
  470                 if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
  471                         KNOTE_ACTIVATE(kn, 0);
  472                 if (error)
  473                         kn->kn_fflags |= NOTE_TRACKERR;
  474                 KQ_LOCK(kq);
  475                 kn->kn_status &= ~KN_INFLUX;
  476                 KQ_UNLOCK_FLUX(kq);
  477                 list->kl_lock(list->kl_lockarg);
  478         }
  479         list->kl_unlock(list->kl_lockarg);
  480 }
  481 
  482 static int
  483 timertoticks(intptr_t data)
  484 {
  485         struct timeval tv;
  486         int tticks;
  487 
  488         tv.tv_sec = data / 1000;
  489         tv.tv_usec = (data % 1000) * 1000;
  490         tticks = tvtohz(&tv);
  491 
  492         return tticks;
  493 }
  494 
  495 /* XXX - move to kern_timeout.c? */
  496 static void
  497 filt_timerexpire(void *knx)
  498 {
  499         struct knote *kn = knx;
  500         struct callout *calloutp;
  501 
  502         kn->kn_data++;
  503         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  504 
  505         if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
  506                 calloutp = (struct callout *)kn->kn_hook;
  507                 callout_reset(calloutp, timertoticks(kn->kn_sdata),
  508                     filt_timerexpire, kn);
  509         }
  510 }
  511 
  512 /*
  513  * data contains amount of time to sleep, in milliseconds
  514  */
  515 /* XXX - move to kern_timeout.c? */
  516 static int
  517 filt_timerattach(struct knote *kn)
  518 {
  519         struct callout *calloutp;
  520 
  521         atomic_add_int(&kq_ncallouts, 1);
  522 
  523         if (kq_ncallouts >= kq_calloutmax) {
  524                 atomic_add_int(&kq_ncallouts, -1);
  525                 return (ENOMEM);
  526         }
  527 
  528         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  529         kn->kn_status &= ~KN_DETACHED;          /* knlist_add usually sets it */
  530         MALLOC(calloutp, struct callout *, sizeof(*calloutp),
  531             M_KQUEUE, M_WAITOK);
  532         callout_init(calloutp, CALLOUT_MPSAFE);
  533         kn->kn_hook = calloutp;
  534         callout_reset(calloutp, timertoticks(kn->kn_sdata), filt_timerexpire,
  535             kn);
  536 
  537         return (0);
  538 }
  539 
  540 /* XXX - move to kern_timeout.c? */
  541 static void
  542 filt_timerdetach(struct knote *kn)
  543 {
  544         struct callout *calloutp;
  545 
  546         calloutp = (struct callout *)kn->kn_hook;
  547         callout_drain(calloutp);
  548         FREE(calloutp, M_KQUEUE);
  549         atomic_add_int(&kq_ncallouts, -1);
  550         kn->kn_status |= KN_DETACHED;   /* knlist_remove usually clears it */
  551 }
  552 
  553 /* XXX - move to kern_timeout.c? */
  554 static int
  555 filt_timer(struct knote *kn, long hint)
  556 {
  557 
  558         return (kn->kn_data != 0);
  559 }
  560 
  561 int
  562 kqueue(struct thread *td, struct kqueue_args *uap)
  563 {
  564         struct filedesc *fdp;
  565         struct kqueue *kq;
  566         struct file *fp;
  567         int fd, error;
  568 
  569         fdp = td->td_proc->p_fd;
  570         error = falloc(td, &fp, &fd);
  571         if (error)
  572                 goto done2;
  573 
  574         /* An extra reference on `nfp' has been held for us by falloc(). */
  575         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  576         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
  577         TAILQ_INIT(&kq->kq_head);
  578         kq->kq_fdp = fdp;
  579         knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL);
  580         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  581 
  582         FILEDESC_XLOCK(fdp);
  583         SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  584         FILEDESC_XUNLOCK(fdp);
  585 
  586         FILE_LOCK(fp);
  587         fp->f_flag = FREAD | FWRITE;
  588         fp->f_type = DTYPE_KQUEUE;
  589         fp->f_data = kq;
  590         fp->f_ops = &kqueueops;
  591         FILE_UNLOCK(fp);
  592         fdrop(fp, td);
  593 
  594         td->td_retval[0] = fd;
  595 done2:
  596         return (error);
  597 }
  598 
  599 #ifndef _SYS_SYSPROTO_H_
  600 struct kevent_args {
  601         int     fd;
  602         const struct kevent *changelist;
  603         int     nchanges;
  604         struct  kevent *eventlist;
  605         int     nevents;
  606         const struct timespec *timeout;
  607 };
  608 #endif
  609 int
  610 kevent(struct thread *td, struct kevent_args *uap)
  611 {
  612         struct timespec ts, *tsp;
  613         struct kevent_copyops k_ops = { uap,
  614                                         kevent_copyout,
  615                                         kevent_copyin};
  616         int error;
  617 #ifdef KTRACE
  618         struct uio ktruio;
  619         struct iovec ktriov;
  620         struct uio *ktruioin = NULL;
  621         struct uio *ktruioout = NULL;
  622 #endif
  623 
  624         if (uap->timeout != NULL) {
  625                 error = copyin(uap->timeout, &ts, sizeof(ts));
  626                 if (error)
  627                         return (error);
  628                 tsp = &ts;
  629         } else
  630                 tsp = NULL;
  631 
  632 #ifdef KTRACE
  633         if (KTRPOINT(td, KTR_GENIO)) {
  634                 ktriov.iov_base = uap->changelist;
  635                 ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
  636                 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
  637                     .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
  638                     .uio_td = td };
  639                 ktruioin = cloneuio(&ktruio);
  640                 ktriov.iov_base = uap->eventlist;
  641                 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
  642                 ktruioout = cloneuio(&ktruio);
  643         }
  644 #endif
  645 
  646         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  647             &k_ops, tsp);
  648 
  649 #ifdef KTRACE
  650         if (ktruioin != NULL) {
  651                 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
  652                 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
  653                 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
  654                 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
  655         }
  656 #endif
  657 
  658         return (error);
  659 }
  660 
  661 /*
  662  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  663  */
  664 static int
  665 kevent_copyout(void *arg, struct kevent *kevp, int count)
  666 {
  667         struct kevent_args *uap;
  668         int error;
  669 
  670         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  671         uap = (struct kevent_args *)arg;
  672 
  673         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  674         if (error == 0)
  675                 uap->eventlist += count;
  676         return (error);
  677 }
  678 
  679 /*
  680  * Copy 'count' items from the list pointed to by uap->changelist.
  681  */
  682 static int
  683 kevent_copyin(void *arg, struct kevent *kevp, int count)
  684 {
  685         struct kevent_args *uap;
  686         int error;
  687 
  688         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  689         uap = (struct kevent_args *)arg;
  690 
  691         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  692         if (error == 0)
  693                 uap->changelist += count;
  694         return (error);
  695 }
  696 
  697 int
  698 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  699     struct kevent_copyops *k_ops, const struct timespec *timeout)
  700 {
  701         struct kevent keva[KQ_NEVENTS];
  702         struct kevent *kevp, *changes;
  703         struct kqueue *kq;
  704         struct file *fp;
  705         int i, n, nerrors, error;
  706 
  707         if ((error = fget(td, fd, &fp)) != 0)
  708                 return (error);
  709         if ((error = kqueue_acquire(fp, &kq)) != 0)
  710                 goto done_norel;
  711 
  712         nerrors = 0;
  713 
  714         while (nchanges > 0) {
  715                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  716                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  717                 if (error)
  718                         goto done;
  719                 changes = keva;
  720                 for (i = 0; i < n; i++) {
  721                         kevp = &changes[i];
  722                         if (!kevp->filter)
  723                                 continue;
  724                         kevp->flags &= ~EV_SYSFLAGS;
  725                         error = kqueue_register(kq, kevp, td, 1);
  726                         if (error) {
  727                                 if (nevents != 0) {
  728                                         kevp->flags = EV_ERROR;
  729                                         kevp->data = error;
  730                                         (void) k_ops->k_copyout(k_ops->arg,
  731                                             kevp, 1);
  732                                         nevents--;
  733                                         nerrors++;
  734                                 } else {
  735                                         goto done;
  736                                 }
  737                         }
  738                 }
  739                 nchanges -= n;
  740         }
  741         if (nerrors) {
  742                 td->td_retval[0] = nerrors;
  743                 error = 0;
  744                 goto done;
  745         }
  746 
  747         error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
  748 done:
  749         kqueue_release(kq, 0);
  750 done_norel:
  751         fdrop(fp, td);
  752         return (error);
  753 }
  754 
  755 int
  756 kqueue_add_filteropts(int filt, struct filterops *filtops)
  757 {
  758         int error;
  759 
  760         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
  761                 printf(
  762 "trying to add a filterop that is out of range: %d is beyond %d\n",
  763                     ~filt, EVFILT_SYSCOUNT);
  764                 return EINVAL;
  765         }
  766         mtx_lock(&filterops_lock);
  767         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
  768             sysfilt_ops[~filt].for_fop != NULL)
  769                 error = EEXIST;
  770         else {
  771                 sysfilt_ops[~filt].for_fop = filtops;
  772                 sysfilt_ops[~filt].for_refcnt = 0;
  773         }
  774         mtx_unlock(&filterops_lock);
  775 
  776         return (0);
  777 }
  778 
  779 int
  780 kqueue_del_filteropts(int filt)
  781 {
  782         int error;
  783 
  784         error = 0;
  785         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  786                 return EINVAL;
  787 
  788         mtx_lock(&filterops_lock);
  789         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
  790             sysfilt_ops[~filt].for_fop == NULL)
  791                 error = EINVAL;
  792         else if (sysfilt_ops[~filt].for_refcnt != 0)
  793                 error = EBUSY;
  794         else {
  795                 sysfilt_ops[~filt].for_fop = &null_filtops;
  796                 sysfilt_ops[~filt].for_refcnt = 0;
  797         }
  798         mtx_unlock(&filterops_lock);
  799 
  800         return error;
  801 }
  802 
  803 static struct filterops *
  804 kqueue_fo_find(int filt)
  805 {
  806 
  807         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  808                 return NULL;
  809 
  810         mtx_lock(&filterops_lock);
  811         sysfilt_ops[~filt].for_refcnt++;
  812         if (sysfilt_ops[~filt].for_fop == NULL)
  813                 sysfilt_ops[~filt].for_fop = &null_filtops;
  814         mtx_unlock(&filterops_lock);
  815 
  816         return sysfilt_ops[~filt].for_fop;
  817 }
  818 
  819 static void
  820 kqueue_fo_release(int filt)
  821 {
  822 
  823         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  824                 return;
  825 
  826         mtx_lock(&filterops_lock);
  827         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
  828             ("filter object refcount not valid on release"));
  829         sysfilt_ops[~filt].for_refcnt--;
  830         mtx_unlock(&filterops_lock);
  831 }
  832 
  833 /*
  834  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
  835  * influence if memory allocation should wait.  Make sure it is 0 if you
  836  * hold any mutexes.
  837  */
  838 static int
  839 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
  840 {
  841         struct filterops *fops;
  842         struct file *fp;
  843         struct knote *kn, *tkn;
  844         int error, filt, event;
  845         int haskqglobal;
  846 
  847         fp = NULL;
  848         kn = NULL;
  849         error = 0;
  850         haskqglobal = 0;
  851 
  852         filt = kev->filter;
  853         fops = kqueue_fo_find(filt);
  854         if (fops == NULL)
  855                 return EINVAL;
  856 
  857         tkn = knote_alloc(waitok);              /* prevent waiting with locks */
  858 
  859 findkn:
  860         if (fops->f_isfd) {
  861                 KASSERT(td != NULL, ("td is NULL"));
  862                 error = fget(td, kev->ident, &fp);
  863                 if (error)
  864                         goto done;
  865 
  866                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
  867                     kev->ident, 0) != 0) {
  868                         /* try again */
  869                         fdrop(fp, td);
  870                         fp = NULL;
  871                         error = kqueue_expand(kq, fops, kev->ident, waitok);
  872                         if (error)
  873                                 goto done;
  874                         goto findkn;
  875                 }
  876 
  877                 if (fp->f_type == DTYPE_KQUEUE) {
  878                         /*
  879                          * if we add some inteligence about what we are doing,
  880                          * we should be able to support events on ourselves.
  881                          * We need to know when we are doing this to prevent
  882                          * getting both the knlist lock and the kq lock since
  883                          * they are the same thing.
  884                          */
  885                         if (fp->f_data == kq) {
  886                                 error = EINVAL;
  887                                 goto done;
  888                         }
  889 
  890                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
  891                 }
  892 
  893                 KQ_LOCK(kq);
  894                 if (kev->ident < kq->kq_knlistsize) {
  895                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
  896                                 if (kev->filter == kn->kn_filter)
  897                                         break;
  898                 }
  899         } else {
  900                 if ((kev->flags & EV_ADD) == EV_ADD)
  901                         kqueue_expand(kq, fops, kev->ident, waitok);
  902 
  903                 KQ_LOCK(kq);
  904                 if (kq->kq_knhashmask != 0) {
  905                         struct klist *list;
  906 
  907                         list = &kq->kq_knhash[
  908                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
  909                         SLIST_FOREACH(kn, list, kn_link)
  910                                 if (kev->ident == kn->kn_id &&
  911                                     kev->filter == kn->kn_filter)
  912                                         break;
  913                 }
  914         }
  915 
  916         /* knote is in the process of changing, wait for it to stablize. */
  917         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
  918                 if (fp != NULL) {
  919                         fdrop(fp, td);
  920                         fp = NULL;
  921                 }
  922                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
  923                 kq->kq_state |= KQ_FLUXWAIT;
  924                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
  925                 goto findkn;
  926         }
  927 
  928         if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
  929                 KQ_UNLOCK(kq);
  930                 error = ENOENT;
  931                 goto done;
  932         }
  933 
  934         /*
  935          * kn now contains the matching knote, or NULL if no match
  936          */
  937         if (kev->flags & EV_ADD) {
  938                 if (kn == NULL) {
  939                         kn = tkn;
  940                         tkn = NULL;
  941                         if (kn == NULL) {
  942                                 KQ_UNLOCK(kq);
  943                                 error = ENOMEM;
  944                                 goto done;
  945                         }
  946                         kn->kn_fp = fp;
  947                         kn->kn_kq = kq;
  948                         kn->kn_fop = fops;
  949                         /*
  950                          * apply reference counts to knote structure, and
  951                          * do not release it at the end of this routine.
  952                          */
  953                         fops = NULL;
  954                         fp = NULL;
  955 
  956                         kn->kn_sfflags = kev->fflags;
  957                         kn->kn_sdata = kev->data;
  958                         kev->fflags = 0;
  959                         kev->data = 0;
  960                         kn->kn_kevent = *kev;
  961                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
  962                             EV_ENABLE | EV_DISABLE);
  963                         kn->kn_status = KN_INFLUX|KN_DETACHED;
  964 
  965                         error = knote_attach(kn, kq);
  966                         KQ_UNLOCK(kq);
  967                         if (error != 0) {
  968                                 tkn = kn;
  969                                 goto done;
  970                         }
  971 
  972                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
  973                                 knote_drop(kn, td);
  974                                 goto done;
  975                         }
  976                         KN_LIST_LOCK(kn);
  977                 } else {
  978                         /*
  979                          * The user may change some filter values after the
  980                          * initial EV_ADD, but doing so will not reset any
  981                          * filter which has already been triggered.
  982                          */
  983                         kn->kn_status |= KN_INFLUX;
  984                         KQ_UNLOCK(kq);
  985                         KN_LIST_LOCK(kn);
  986                         kn->kn_sfflags = kev->fflags;
  987                         kn->kn_sdata = kev->data;
  988                         kn->kn_kevent.udata = kev->udata;
  989                 }
  990 
  991                 /*
  992                  * We can get here with kn->kn_knlist == NULL.
  993                  * This can happen when the initial attach event decides that
  994                  * the event is "completed" already.  i.e. filt_procattach
  995                  * is called on a zombie process.  It will call filt_proc
  996                  * which will remove it from the list, and NULL kn_knlist.
  997                  */
  998                 event = kn->kn_fop->f_event(kn, 0);
  999                 KQ_LOCK(kq);
 1000                 if (event)
 1001                         KNOTE_ACTIVATE(kn, 1);
 1002                 kn->kn_status &= ~KN_INFLUX;
 1003                 KN_LIST_UNLOCK(kn);
 1004         } else if (kev->flags & EV_DELETE) {
 1005                 kn->kn_status |= KN_INFLUX;
 1006                 KQ_UNLOCK(kq);
 1007                 if (!(kn->kn_status & KN_DETACHED))
 1008                         kn->kn_fop->f_detach(kn);
 1009                 knote_drop(kn, td);
 1010                 goto done;
 1011         }
 1012 
 1013         if ((kev->flags & EV_DISABLE) &&
 1014             ((kn->kn_status & KN_DISABLED) == 0)) {
 1015                 kn->kn_status |= KN_DISABLED;
 1016         }
 1017 
 1018         if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
 1019                 kn->kn_status &= ~KN_DISABLED;
 1020                 if ((kn->kn_status & KN_ACTIVE) &&
 1021                     ((kn->kn_status & KN_QUEUED) == 0))
 1022                         knote_enqueue(kn);
 1023         }
 1024         KQ_UNLOCK_FLUX(kq);
 1025 
 1026 done:
 1027         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1028         if (fp != NULL)
 1029                 fdrop(fp, td);
 1030         if (tkn != NULL)
 1031                 knote_free(tkn);
 1032         if (fops != NULL)
 1033                 kqueue_fo_release(filt);
 1034         return (error);
 1035 }
 1036 
 1037 static int
 1038 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1039 {
 1040         int error;
 1041         struct kqueue *kq;
 1042 
 1043         error = 0;
 1044 
 1045         FILE_LOCK(fp);
 1046         do {
 1047                 kq = fp->f_data;
 1048                 if (fp->f_type != DTYPE_KQUEUE || kq == NULL) {
 1049                         error = EBADF;
 1050                         break;
 1051                 }
 1052                 *kqp = kq;
 1053                 KQ_LOCK(kq);
 1054                 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1055                         KQ_UNLOCK(kq);
 1056                         error = EBADF;
 1057                         break;
 1058                 }
 1059                 kq->kq_refcnt++;
 1060                 KQ_UNLOCK(kq);
 1061         } while (0);
 1062         FILE_UNLOCK(fp);
 1063 
 1064         return error;
 1065 }
 1066 
 1067 static void
 1068 kqueue_release(struct kqueue *kq, int locked)
 1069 {
 1070         if (locked)
 1071                 KQ_OWNED(kq);
 1072         else
 1073                 KQ_LOCK(kq);
 1074         kq->kq_refcnt--;
 1075         if (kq->kq_refcnt == 1)
 1076                 wakeup(&kq->kq_refcnt);
 1077         if (!locked)
 1078                 KQ_UNLOCK(kq);
 1079 }
 1080 
 1081 static void
 1082 kqueue_schedtask(struct kqueue *kq)
 1083 {
 1084 
 1085         KQ_OWNED(kq);
 1086         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1087             ("scheduling kqueue task while draining"));
 1088 
 1089         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1090                 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
 1091                 kq->kq_state |= KQ_TASKSCHED;
 1092         }
 1093 }
 1094 
 1095 /*
 1096  * Expand the kq to make sure we have storage for fops/ident pair.
 1097  *
 1098  * Return 0 on success (or no work necessary), return errno on failure.
 1099  *
 1100  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1101  * If kqueue_register is called from a non-fd context, there usually/should
 1102  * be no locks held.
 1103  */
 1104 static int
 1105 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1106         int waitok)
 1107 {
 1108         struct klist *list, *tmp_knhash;
 1109         u_long tmp_knhashmask;
 1110         int size;
 1111         int fd;
 1112         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1113 
 1114         KQ_NOTOWNED(kq);
 1115 
 1116         if (fops->f_isfd) {
 1117                 fd = ident;
 1118                 if (kq->kq_knlistsize <= fd) {
 1119                         size = kq->kq_knlistsize;
 1120                         while (size <= fd)
 1121                                 size += KQEXTENT;
 1122                         MALLOC(list, struct klist *,
 1123                             size * sizeof list, M_KQUEUE, mflag);
 1124                         if (list == NULL)
 1125                                 return ENOMEM;
 1126                         KQ_LOCK(kq);
 1127                         if (kq->kq_knlistsize > fd) {
 1128                                 FREE(list, M_KQUEUE);
 1129                                 list = NULL;
 1130                         } else {
 1131                                 if (kq->kq_knlist != NULL) {
 1132                                         bcopy(kq->kq_knlist, list,
 1133                                             kq->kq_knlistsize * sizeof list);
 1134                                         FREE(kq->kq_knlist, M_KQUEUE);
 1135                                         kq->kq_knlist = NULL;
 1136                                 }
 1137                                 bzero((caddr_t)list +
 1138                                     kq->kq_knlistsize * sizeof list,
 1139                                     (size - kq->kq_knlistsize) * sizeof list);
 1140                                 kq->kq_knlistsize = size;
 1141                                 kq->kq_knlist = list;
 1142                         }
 1143                         KQ_UNLOCK(kq);
 1144                 }
 1145         } else {
 1146                 if (kq->kq_knhashmask == 0) {
 1147                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1148                             &tmp_knhashmask);
 1149                         if (tmp_knhash == NULL)
 1150                                 return ENOMEM;
 1151                         KQ_LOCK(kq);
 1152                         if (kq->kq_knhashmask == 0) {
 1153                                 kq->kq_knhash = tmp_knhash;
 1154                                 kq->kq_knhashmask = tmp_knhashmask;
 1155                         } else {
 1156                                 free(tmp_knhash, M_KQUEUE);
 1157                         }
 1158                         KQ_UNLOCK(kq);
 1159                 }
 1160         }
 1161 
 1162         KQ_NOTOWNED(kq);
 1163         return 0;
 1164 }
 1165 
 1166 static void
 1167 kqueue_task(void *arg, int pending)
 1168 {
 1169         struct kqueue *kq;
 1170         int haskqglobal;
 1171 
 1172         haskqglobal = 0;
 1173         kq = arg;
 1174 
 1175         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1176         KQ_LOCK(kq);
 1177 
 1178         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1179 
 1180         kq->kq_state &= ~KQ_TASKSCHED;
 1181         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1182                 wakeup(&kq->kq_state);
 1183         }
 1184         KQ_UNLOCK(kq);
 1185         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1186 }
 1187 
 1188 /*
 1189  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1190  * We treat KN_MARKER knotes as if they are INFLUX.
 1191  */
 1192 static int
 1193 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1194     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1195 {
 1196         struct kevent *kevp;
 1197         struct timeval atv, rtv, ttv;
 1198         struct knote *kn, *marker;
 1199         int count, timeout, nkev, error, influx;
 1200         int haskqglobal;
 1201 
 1202         count = maxevents;
 1203         nkev = 0;
 1204         error = 0;
 1205         haskqglobal = 0;
 1206 
 1207         if (maxevents == 0)
 1208                 goto done_nl;
 1209 
 1210         if (tsp != NULL) {
 1211                 TIMESPEC_TO_TIMEVAL(&atv, tsp);
 1212                 if (itimerfix(&atv)) {
 1213                         error = EINVAL;
 1214                         goto done_nl;
 1215                 }
 1216                 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
 1217                         timeout = -1;
 1218                 else
 1219                         timeout = atv.tv_sec > 24 * 60 * 60 ?
 1220                             24 * 60 * 60 * hz : tvtohz(&atv);
 1221                 getmicrouptime(&rtv);
 1222                 timevaladd(&atv, &rtv);
 1223         } else {
 1224                 atv.tv_sec = 0;
 1225                 atv.tv_usec = 0;
 1226                 timeout = 0;
 1227         }
 1228         marker = knote_alloc(1);
 1229         if (marker == NULL) {
 1230                 error = ENOMEM;
 1231                 goto done_nl;
 1232         }
 1233         marker->kn_status = KN_MARKER;
 1234         KQ_LOCK(kq);
 1235         goto start;
 1236 
 1237 retry:
 1238         if (atv.tv_sec || atv.tv_usec) {
 1239                 getmicrouptime(&rtv);
 1240                 if (timevalcmp(&rtv, &atv, >=))
 1241                         goto done;
 1242                 ttv = atv;
 1243                 timevalsub(&ttv, &rtv);
 1244                 timeout = ttv.tv_sec > 24 * 60 * 60 ?
 1245                         24 * 60 * 60 * hz : tvtohz(&ttv);
 1246         }
 1247 
 1248 start:
 1249         kevp = keva;
 1250         if (kq->kq_count == 0) {
 1251                 if (timeout < 0) {
 1252                         error = EWOULDBLOCK;
 1253                 } else {
 1254                         kq->kq_state |= KQ_SLEEP;
 1255                         error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
 1256                             "kqread", timeout);
 1257                 }
 1258                 if (error == 0)
 1259                         goto retry;
 1260                 /* don't restart after signals... */
 1261                 if (error == ERESTART)
 1262                         error = EINTR;
 1263                 else if (error == EWOULDBLOCK)
 1264                         error = 0;
 1265                 goto done;
 1266         }
 1267 
 1268         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1269         influx = 0;
 1270         while (count) {
 1271                 KQ_OWNED(kq);
 1272                 kn = TAILQ_FIRST(&kq->kq_head);
 1273 
 1274                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1275                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1276                         if (influx) {
 1277                                 influx = 0;
 1278                                 KQ_FLUX_WAKEUP(kq);
 1279                         }
 1280                         kq->kq_state |= KQ_FLUXWAIT;
 1281                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1282                             "kqflxwt", 0);
 1283                         continue;
 1284                 }
 1285 
 1286                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1287                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1288                         kn->kn_status &= ~KN_QUEUED;
 1289                         kq->kq_count--;
 1290                         continue;
 1291                 }
 1292                 if (kn == marker) {
 1293                         KQ_FLUX_WAKEUP(kq);
 1294                         if (count == maxevents)
 1295                                 goto retry;
 1296                         goto done;
 1297                 }
 1298                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1299                     ("KN_INFLUX set when not suppose to be"));
 1300 
 1301                 if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1302                         kn->kn_status &= ~KN_QUEUED;
 1303                         kn->kn_status |= KN_INFLUX;
 1304                         kq->kq_count--;
 1305                         KQ_UNLOCK(kq);
 1306                         /*
 1307                          * We don't need to lock the list since we've marked
 1308                          * it _INFLUX.
 1309                          */
 1310                         *kevp = kn->kn_kevent;
 1311                         if (!(kn->kn_status & KN_DETACHED))
 1312                                 kn->kn_fop->f_detach(kn);
 1313                         knote_drop(kn, td);
 1314                         KQ_LOCK(kq);
 1315                         kn = NULL;
 1316                 } else {
 1317                         kn->kn_status |= KN_INFLUX;
 1318                         KQ_UNLOCK(kq);
 1319                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1320                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1321                         KN_LIST_LOCK(kn);
 1322                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1323                                 KQ_LOCK(kq);
 1324                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1325                                 kn->kn_status &=
 1326                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
 1327                                 kq->kq_count--;
 1328                                 KN_LIST_UNLOCK(kn);
 1329                                 influx = 1;
 1330                                 continue;
 1331                         }
 1332                         *kevp = kn->kn_kevent;
 1333                         KQ_LOCK(kq);
 1334                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1335                         if (kn->kn_flags & EV_CLEAR) {
 1336                                 kn->kn_data = 0;
 1337                                 kn->kn_fflags = 0;
 1338                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1339                                 kq->kq_count--;
 1340                         } else
 1341                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1342                         
 1343                         kn->kn_status &= ~(KN_INFLUX);
 1344                         KN_LIST_UNLOCK(kn);
 1345                         influx = 1;
 1346                 }
 1347 
 1348                 /* we are returning a copy to the user */
 1349                 kevp++;
 1350                 nkev++;
 1351                 count--;
 1352 
 1353                 if (nkev == KQ_NEVENTS) {
 1354                         influx = 0;
 1355                         KQ_UNLOCK_FLUX(kq);
 1356                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1357                         nkev = 0;
 1358                         kevp = keva;
 1359                         KQ_LOCK(kq);
 1360                         if (error)
 1361                                 break;
 1362                 }
 1363         }
 1364         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1365 done:
 1366         KQ_OWNED(kq);
 1367         KQ_UNLOCK_FLUX(kq);
 1368         knote_free(marker);
 1369 done_nl:
 1370         KQ_NOTOWNED(kq);
 1371         if (nkev != 0)
 1372                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1373         td->td_retval[0] = maxevents - count;
 1374         return (error);
 1375 }
 1376 
 1377 /*
 1378  * XXX
 1379  * This could be expanded to call kqueue_scan, if desired.
 1380  */
 1381 /*ARGSUSED*/
 1382 static int
 1383 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1384         int flags, struct thread *td)
 1385 {
 1386         return (ENXIO);
 1387 }
 1388 
 1389 /*ARGSUSED*/
 1390 static int
 1391 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1392          int flags, struct thread *td)
 1393 {
 1394         return (ENXIO);
 1395 }
 1396 
 1397 /*ARGSUSED*/
 1398 static int
 1399 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1400         struct ucred *active_cred, struct thread *td)
 1401 {
 1402         /*
 1403          * Enabling sigio causes two major problems:
 1404          * 1) infinite recursion:
 1405          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1406          * set.  On receipt of a signal this will cause a kqueue to recurse
 1407          * into itself over and over.  Sending the sigio causes the kqueue
 1408          * to become ready, which in turn posts sigio again, forever.
 1409          * Solution: this can be solved by setting a flag in the kqueue that
 1410          * we have a SIGIO in progress.
 1411          * 2) locking problems:
 1412          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1413          * us above the proc and pgrp locks.
 1414          * Solution: Post a signal using an async mechanism, being sure to
 1415          * record a generation count in the delivery so that we do not deliver
 1416          * a signal to the wrong process.
 1417          *
 1418          * Note, these two mechanisms are somewhat mutually exclusive!
 1419          */
 1420 #if 0
 1421         struct kqueue *kq;
 1422 
 1423         kq = fp->f_data;
 1424         switch (cmd) {
 1425         case FIOASYNC:
 1426                 if (*(int *)data) {
 1427                         kq->kq_state |= KQ_ASYNC;
 1428                 } else {
 1429                         kq->kq_state &= ~KQ_ASYNC;
 1430                 }
 1431                 return (0);
 1432 
 1433         case FIOSETOWN:
 1434                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1435 
 1436         case FIOGETOWN:
 1437                 *(int *)data = fgetown(&kq->kq_sigio);
 1438                 return (0);
 1439         }
 1440 #endif
 1441 
 1442         return (ENOTTY);
 1443 }
 1444 
 1445 /*ARGSUSED*/
 1446 static int
 1447 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1448         struct thread *td)
 1449 {
 1450         struct kqueue *kq;
 1451         int revents = 0;
 1452         int error;
 1453 
 1454         if ((error = kqueue_acquire(fp, &kq)))
 1455                 return POLLERR;
 1456 
 1457         KQ_LOCK(kq);
 1458         if (events & (POLLIN | POLLRDNORM)) {
 1459                 if (kq->kq_count) {
 1460                         revents |= events & (POLLIN | POLLRDNORM);
 1461                 } else {
 1462                         selrecord(td, &kq->kq_sel);
 1463                         kq->kq_state |= KQ_SEL;
 1464                 }
 1465         }
 1466         kqueue_release(kq, 1);
 1467         KQ_UNLOCK(kq);
 1468         return (revents);
 1469 }
 1470 
 1471 /*ARGSUSED*/
 1472 static int
 1473 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1474         struct thread *td)
 1475 {
 1476 
 1477         bzero((void *)st, sizeof *st);
 1478         /*
 1479          * We no longer return kq_count because the unlocked value is useless.
 1480          * If you spent all this time getting the count, why not spend your
 1481          * syscall better by calling kevent?
 1482          *
 1483          * XXX - This is needed for libc_r.
 1484          */
 1485         st->st_mode = S_IFIFO;
 1486         return (0);
 1487 }
 1488 
 1489 /*ARGSUSED*/
 1490 static int
 1491 kqueue_close(struct file *fp, struct thread *td)
 1492 {
 1493         struct kqueue *kq = fp->f_data;
 1494         struct filedesc *fdp;
 1495         struct knote *kn;
 1496         int i;
 1497         int error;
 1498 
 1499         if ((error = kqueue_acquire(fp, &kq)))
 1500                 return error;
 1501 
 1502         KQ_LOCK(kq);
 1503 
 1504         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1505             ("kqueue already closing"));
 1506         kq->kq_state |= KQ_CLOSING;
 1507         if (kq->kq_refcnt > 1)
 1508                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1509 
 1510         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1511         fdp = kq->kq_fdp;
 1512 
 1513         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1514             ("kqueue's knlist not empty"));
 1515 
 1516         for (i = 0; i < kq->kq_knlistsize; i++) {
 1517                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1518                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1519                                 kq->kq_state |= KQ_FLUXWAIT;
 1520                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1521                                 continue;
 1522                         }
 1523                         kn->kn_status |= KN_INFLUX;
 1524                         KQ_UNLOCK(kq);
 1525                         if (!(kn->kn_status & KN_DETACHED))
 1526                                 kn->kn_fop->f_detach(kn);
 1527                         knote_drop(kn, td);
 1528                         KQ_LOCK(kq);
 1529                 }
 1530         }
 1531         if (kq->kq_knhashmask != 0) {
 1532                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1533                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1534                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1535                                         kq->kq_state |= KQ_FLUXWAIT;
 1536                                         msleep(kq, &kq->kq_lock, PSOCK,
 1537                                                "kqclo2", 0);
 1538                                         continue;
 1539                                 }
 1540                                 kn->kn_status |= KN_INFLUX;
 1541                                 KQ_UNLOCK(kq);
 1542                                 if (!(kn->kn_status & KN_DETACHED))
 1543                                         kn->kn_fop->f_detach(kn);
 1544                                 knote_drop(kn, td);
 1545                                 KQ_LOCK(kq);
 1546                         }
 1547                 }
 1548         }
 1549 
 1550         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1551                 kq->kq_state |= KQ_TASKDRAIN;
 1552                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1553         }
 1554 
 1555         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1556                 kq->kq_state &= ~KQ_SEL;
 1557                 selwakeuppri(&kq->kq_sel, PSOCK);
 1558         }
 1559 
 1560         KQ_UNLOCK(kq);
 1561 
 1562         FILEDESC_XLOCK(fdp);
 1563         SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
 1564         FILEDESC_XUNLOCK(fdp);
 1565 
 1566         knlist_destroy(&kq->kq_sel.si_note);
 1567         mtx_destroy(&kq->kq_lock);
 1568         kq->kq_fdp = NULL;
 1569 
 1570         if (kq->kq_knhash != NULL)
 1571                 free(kq->kq_knhash, M_KQUEUE);
 1572         if (kq->kq_knlist != NULL)
 1573                 free(kq->kq_knlist, M_KQUEUE);
 1574 
 1575         funsetown(&kq->kq_sigio);
 1576         free(kq, M_KQUEUE);
 1577         fp->f_data = NULL;
 1578 
 1579         return (0);
 1580 }
 1581 
 1582 static void
 1583 kqueue_wakeup(struct kqueue *kq)
 1584 {
 1585         KQ_OWNED(kq);
 1586 
 1587         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1588                 kq->kq_state &= ~KQ_SLEEP;
 1589                 wakeup(kq);
 1590         }
 1591         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1592                 kq->kq_state &= ~KQ_SEL;
 1593                 selwakeuppri(&kq->kq_sel, PSOCK);
 1594         }
 1595         if (!knlist_empty(&kq->kq_sel.si_note))
 1596                 kqueue_schedtask(kq);
 1597         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1598                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1599         }
 1600 }
 1601 
 1602 /*
 1603  * Walk down a list of knotes, activating them if their event has triggered.
 1604  *
 1605  * There is a possibility to optimize in the case of one kq watching another.
 1606  * Instead of scheduling a task to wake it up, you could pass enough state
 1607  * down the chain to make up the parent kqueue.  Make this code functional
 1608  * first.
 1609  */
 1610 void
 1611 knote(struct knlist *list, long hint, int islocked)
 1612 {
 1613         struct kqueue *kq;
 1614         struct knote *kn;
 1615 
 1616         if (list == NULL)
 1617                 return;
 1618 
 1619         KNL_ASSERT_LOCK(list, islocked);
 1620 
 1621         if (!islocked) 
 1622                 list->kl_lock(list->kl_lockarg); 
 1623 
 1624         /*
 1625          * If we unlock the list lock (and set KN_INFLUX), we can eliminate
 1626          * the kqueue scheduling, but this will introduce four
 1627          * lock/unlock's for each knote to test.  If we do, continue to use
 1628          * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
 1629          * only safe if you want to remove the current item, which we are
 1630          * not doing.
 1631          */
 1632         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
 1633                 kq = kn->kn_kq;
 1634                 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
 1635                         KQ_LOCK(kq);
 1636                         if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
 1637                                 kn->kn_status |= KN_HASKQLOCK;
 1638                                 if (kn->kn_fop->f_event(kn, hint))
 1639                                         KNOTE_ACTIVATE(kn, 1);
 1640                                 kn->kn_status &= ~KN_HASKQLOCK;
 1641                         }
 1642                         KQ_UNLOCK(kq);
 1643                 }
 1644                 kq = NULL;
 1645         }
 1646         if (!islocked)
 1647                 list->kl_unlock(list->kl_lockarg); 
 1648 }
 1649 
 1650 /*
 1651  * add a knote to a knlist
 1652  */
 1653 void
 1654 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 1655 {
 1656         KNL_ASSERT_LOCK(knl, islocked);
 1657         KQ_NOTOWNED(kn->kn_kq);
 1658         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 1659             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 1660         if (!islocked)
 1661                 knl->kl_lock(knl->kl_lockarg);
 1662         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 1663         if (!islocked)
 1664                 knl->kl_unlock(knl->kl_lockarg);
 1665         KQ_LOCK(kn->kn_kq);
 1666         kn->kn_knlist = knl;
 1667         kn->kn_status &= ~KN_DETACHED;
 1668         KQ_UNLOCK(kn->kn_kq);
 1669 }
 1670 
 1671 static void
 1672 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
 1673 {
 1674         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 1675         KNL_ASSERT_LOCK(knl, knlislocked);
 1676         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 1677         if (!kqislocked)
 1678                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 1679     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 1680         if (!knlislocked)
 1681                 knl->kl_lock(knl->kl_lockarg);
 1682         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 1683         kn->kn_knlist = NULL;
 1684         if (!knlislocked)
 1685                 knl->kl_unlock(knl->kl_lockarg);
 1686         if (!kqislocked)
 1687                 KQ_LOCK(kn->kn_kq);
 1688         kn->kn_status |= KN_DETACHED;
 1689         if (!kqislocked)
 1690                 KQ_UNLOCK(kn->kn_kq);
 1691 }
 1692 
 1693 /*
 1694  * remove all knotes from a specified klist
 1695  */
 1696 void
 1697 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 1698 {
 1699 
 1700         knlist_remove_kq(knl, kn, islocked, 0);
 1701 }
 1702 
 1703 /*
 1704  * remove knote from a specified klist while in f_event handler.
 1705  */
 1706 void
 1707 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
 1708 {
 1709 
 1710         knlist_remove_kq(knl, kn, 1,
 1711             (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
 1712 }
 1713 
 1714 int
 1715 knlist_empty(struct knlist *knl)
 1716 {
 1717         KNL_ASSERT_LOCKED(knl);
 1718         return SLIST_EMPTY(&knl->kl_list);
 1719 }
 1720 
 1721 static struct mtx       knlist_lock;
 1722 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 1723         MTX_DEF);
 1724 static void knlist_mtx_lock(void *arg);
 1725 static void knlist_mtx_unlock(void *arg);
 1726 static int knlist_mtx_locked(void *arg);
 1727 
 1728 static void
 1729 knlist_mtx_lock(void *arg)
 1730 {
 1731         mtx_lock((struct mtx *)arg);
 1732 }
 1733 
 1734 static void
 1735 knlist_mtx_unlock(void *arg)
 1736 {
 1737         mtx_unlock((struct mtx *)arg);
 1738 }
 1739 
 1740 static int
 1741 knlist_mtx_locked(void *arg)
 1742 {
 1743         return (mtx_owned((struct mtx *)arg));
 1744 }
 1745 
 1746 void
 1747 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 1748     void (*kl_unlock)(void *), int (*kl_locked)(void *))
 1749 {
 1750 
 1751         if (lock == NULL)
 1752                 knl->kl_lockarg = &knlist_lock;
 1753         else
 1754                 knl->kl_lockarg = lock;
 1755 
 1756         if (kl_lock == NULL)
 1757                 knl->kl_lock = knlist_mtx_lock;
 1758         else
 1759                 knl->kl_lock = kl_lock;
 1760         if (kl_unlock == NULL)
 1761                 knl->kl_unlock = knlist_mtx_unlock;
 1762         else
 1763                 knl->kl_unlock = kl_unlock;
 1764         if (kl_locked == NULL)
 1765                 knl->kl_locked = knlist_mtx_locked;
 1766         else
 1767                 knl->kl_locked = kl_locked;
 1768 
 1769         SLIST_INIT(&knl->kl_list);
 1770 }
 1771 
 1772 void
 1773 knlist_destroy(struct knlist *knl)
 1774 {
 1775 
 1776 #ifdef INVARIANTS
 1777         /*
 1778          * if we run across this error, we need to find the offending
 1779          * driver and have it call knlist_clear.
 1780          */
 1781         if (!SLIST_EMPTY(&knl->kl_list))
 1782                 printf("WARNING: destroying knlist w/ knotes on it!\n");
 1783 #endif
 1784 
 1785         knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
 1786         SLIST_INIT(&knl->kl_list);
 1787 }
 1788 
 1789 /*
 1790  * Even if we are locked, we may need to drop the lock to allow any influx
 1791  * knotes time to "settle".
 1792  */
 1793 void
 1794 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 1795 {
 1796         struct knote *kn, *kn2;
 1797         struct kqueue *kq;
 1798 
 1799         if (islocked)
 1800                 KNL_ASSERT_LOCKED(knl);
 1801         else {
 1802                 KNL_ASSERT_UNLOCKED(knl);
 1803 again:          /* need to reacquire lock since we have dropped it */
 1804                 knl->kl_lock(knl->kl_lockarg);
 1805         }
 1806 
 1807         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 1808                 kq = kn->kn_kq;
 1809                 KQ_LOCK(kq);
 1810                 if ((kn->kn_status & KN_INFLUX)) {
 1811                         KQ_UNLOCK(kq);
 1812                         continue;
 1813                 }
 1814                 knlist_remove_kq(knl, kn, 1, 1);
 1815                 if (killkn) {
 1816                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 1817                         KQ_UNLOCK(kq);
 1818                         knote_drop(kn, td);
 1819                 } else {
 1820                         /* Make sure cleared knotes disappear soon */
 1821                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 1822                         KQ_UNLOCK(kq);
 1823                 }
 1824                 kq = NULL;
 1825         }
 1826 
 1827         if (!SLIST_EMPTY(&knl->kl_list)) {
 1828                 /* there are still KN_INFLUX remaining */
 1829                 kn = SLIST_FIRST(&knl->kl_list);
 1830                 kq = kn->kn_kq;
 1831                 KQ_LOCK(kq);
 1832                 KASSERT(kn->kn_status & KN_INFLUX,
 1833                     ("knote removed w/o list lock"));
 1834                 knl->kl_unlock(knl->kl_lockarg);
 1835                 kq->kq_state |= KQ_FLUXWAIT;
 1836                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 1837                 kq = NULL;
 1838                 goto again;
 1839         }
 1840 
 1841         if (islocked)
 1842                 KNL_ASSERT_LOCKED(knl);
 1843         else {
 1844                 knl->kl_unlock(knl->kl_lockarg);
 1845                 KNL_ASSERT_UNLOCKED(knl);
 1846         }
 1847 }
 1848 
 1849 /*
 1850  * Remove all knotes referencing a specified fd must be called with FILEDESC
 1851  * lock.  This prevents a race where a new fd comes along and occupies the
 1852  * entry and we attach a knote to the fd.
 1853  */
 1854 void
 1855 knote_fdclose(struct thread *td, int fd)
 1856 {
 1857         struct filedesc *fdp = td->td_proc->p_fd;
 1858         struct kqueue *kq;
 1859         struct knote *kn;
 1860         int influx;
 1861 
 1862         FILEDESC_XLOCK_ASSERT(fdp);
 1863 
 1864         /*
 1865          * We shouldn't have to worry about new kevents appearing on fd
 1866          * since filedesc is locked.
 1867          */
 1868         SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 1869                 KQ_LOCK(kq);
 1870 
 1871 again:
 1872                 influx = 0;
 1873                 while (kq->kq_knlistsize > fd &&
 1874                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 1875                         if (kn->kn_status & KN_INFLUX) {
 1876                                 /* someone else might be waiting on our knote */
 1877                                 if (influx)
 1878                                         wakeup(kq);
 1879                                 kq->kq_state |= KQ_FLUXWAIT;
 1880                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 1881                                 goto again;
 1882                         }
 1883                         kn->kn_status |= KN_INFLUX;
 1884                         KQ_UNLOCK(kq);
 1885                         if (!(kn->kn_status & KN_DETACHED))
 1886                                 kn->kn_fop->f_detach(kn);
 1887                         knote_drop(kn, td);
 1888                         influx = 1;
 1889                         KQ_LOCK(kq);
 1890                 }
 1891                 KQ_UNLOCK_FLUX(kq);
 1892         }
 1893 }
 1894 
 1895 static int
 1896 knote_attach(struct knote *kn, struct kqueue *kq)
 1897 {
 1898         struct klist *list;
 1899 
 1900         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 1901         KQ_OWNED(kq);
 1902 
 1903         if (kn->kn_fop->f_isfd) {
 1904                 if (kn->kn_id >= kq->kq_knlistsize)
 1905                         return ENOMEM;
 1906                 list = &kq->kq_knlist[kn->kn_id];
 1907         } else {
 1908                 if (kq->kq_knhash == NULL)
 1909                         return ENOMEM;
 1910                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 1911         }
 1912 
 1913         SLIST_INSERT_HEAD(list, kn, kn_link);
 1914 
 1915         return 0;
 1916 }
 1917 
 1918 /*
 1919  * knote must already have been detached using the f_detach method.
 1920  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 1921  * to prevent other removal.
 1922  */
 1923 static void
 1924 knote_drop(struct knote *kn, struct thread *td)
 1925 {
 1926         struct kqueue *kq;
 1927         struct klist *list;
 1928 
 1929         kq = kn->kn_kq;
 1930 
 1931         KQ_NOTOWNED(kq);
 1932         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 1933             ("knote_drop called without KN_INFLUX set in kn_status"));
 1934 
 1935         KQ_LOCK(kq);
 1936         if (kn->kn_fop->f_isfd)
 1937                 list = &kq->kq_knlist[kn->kn_id];
 1938         else
 1939                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 1940 
 1941         if (!SLIST_EMPTY(list))
 1942                 SLIST_REMOVE(list, kn, knote, kn_link);
 1943         if (kn->kn_status & KN_QUEUED)
 1944                 knote_dequeue(kn);
 1945         KQ_UNLOCK_FLUX(kq);
 1946 
 1947         if (kn->kn_fop->f_isfd) {
 1948                 fdrop(kn->kn_fp, td);
 1949                 kn->kn_fp = NULL;
 1950         }
 1951         kqueue_fo_release(kn->kn_kevent.filter);
 1952         kn->kn_fop = NULL;
 1953         knote_free(kn);
 1954 }
 1955 
 1956 static void
 1957 knote_enqueue(struct knote *kn)
 1958 {
 1959         struct kqueue *kq = kn->kn_kq;
 1960 
 1961         KQ_OWNED(kn->kn_kq);
 1962         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 1963 
 1964         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1965         kn->kn_status |= KN_QUEUED;
 1966         kq->kq_count++;
 1967         kqueue_wakeup(kq);
 1968 }
 1969 
 1970 static void
 1971 knote_dequeue(struct knote *kn)
 1972 {
 1973         struct kqueue *kq = kn->kn_kq;
 1974 
 1975         KQ_OWNED(kn->kn_kq);
 1976         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 1977 
 1978         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1979         kn->kn_status &= ~KN_QUEUED;
 1980         kq->kq_count--;
 1981 }
 1982 
 1983 static void
 1984 knote_init(void)
 1985 {
 1986 
 1987         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 1988             NULL, NULL, UMA_ALIGN_PTR, 0);
 1989 }
 1990 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 1991 
 1992 static struct knote *
 1993 knote_alloc(int waitok)
 1994 {
 1995         return ((struct knote *)uma_zalloc(knote_zone,
 1996             (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
 1997 }
 1998 
 1999 static void
 2000 knote_free(struct knote *kn)
 2001 {
 2002         if (kn != NULL)
 2003                 uma_zfree(knote_zone, kn);
 2004 }
 2005 
 2006 /*
 2007  * Register the kev w/ the kq specified by fd.
 2008  */
 2009 int 
 2010 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2011 {
 2012         struct kqueue *kq;
 2013         struct file *fp;
 2014         int error;
 2015 
 2016         if ((error = fget(td, fd, &fp)) != 0)
 2017                 return (error);
 2018         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2019                 goto noacquire;
 2020 
 2021         error = kqueue_register(kq, kev, td, waitok);
 2022 
 2023         kqueue_release(kq, 0);
 2024 
 2025 noacquire:
 2026         fdrop(fp, td);
 2027 
 2028         return error;
 2029 }

Cache object: eac1429f19f190cced6692248d9102d7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.