The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * Copyright (c) 2009 Apple, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/8.2/sys/kern/kern_event.c 206605 2010-04-14 15:33:15Z jhb $");
   31 
   32 #include "opt_ktrace.h"
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/kernel.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/proc.h>
   40 #include <sys/malloc.h>
   41 #include <sys/unistd.h>
   42 #include <sys/file.h>
   43 #include <sys/filedesc.h>
   44 #include <sys/filio.h>
   45 #include <sys/fcntl.h>
   46 #include <sys/kthread.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/queue.h>
   49 #include <sys/event.h>
   50 #include <sys/eventvar.h>
   51 #include <sys/poll.h>
   52 #include <sys/protosw.h>
   53 #include <sys/sigio.h>
   54 #include <sys/signalvar.h>
   55 #include <sys/socket.h>
   56 #include <sys/socketvar.h>
   57 #include <sys/stat.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/sysproto.h>
   60 #include <sys/syscallsubr.h>
   61 #include <sys/taskqueue.h>
   62 #include <sys/uio.h>
   63 #ifdef KTRACE
   64 #include <sys/ktrace.h>
   65 #endif
   66 
   67 #include <vm/uma.h>
   68 
   69 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   70 
   71 /*
   72  * This lock is used if multiple kq locks are required.  This possibly
   73  * should be made into a per proc lock.
   74  */
   75 static struct mtx       kq_global;
   76 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   77 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   78         if (!haslck)                            \
   79                 mtx_lock(lck);                  \
   80         haslck = 1;                             \
   81 } while (0)
   82 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   83         if (haslck)                             \
   84                 mtx_unlock(lck);                        \
   85         haslck = 0;                             \
   86 } while (0)
   87 
   88 TASKQUEUE_DEFINE_THREAD(kqueue);
   89 
   90 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   91 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   92 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   93                     struct thread *td, int waitok);
   94 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
   95 static void     kqueue_release(struct kqueue *kq, int locked);
   96 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
   97                     uintptr_t ident, int waitok);
   98 static void     kqueue_task(void *arg, int pending);
   99 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  100                     struct kevent_copyops *k_ops,
  101                     const struct timespec *timeout,
  102                     struct kevent *keva, struct thread *td);
  103 static void     kqueue_wakeup(struct kqueue *kq);
  104 static struct filterops *kqueue_fo_find(int filt);
  105 static void     kqueue_fo_release(int filt);
  106 
  107 static fo_rdwr_t        kqueue_read;
  108 static fo_rdwr_t        kqueue_write;
  109 static fo_truncate_t    kqueue_truncate;
  110 static fo_ioctl_t       kqueue_ioctl;
  111 static fo_poll_t        kqueue_poll;
  112 static fo_kqfilter_t    kqueue_kqfilter;
  113 static fo_stat_t        kqueue_stat;
  114 static fo_close_t       kqueue_close;
  115 
  116 static struct fileops kqueueops = {
  117         .fo_read = kqueue_read,
  118         .fo_write = kqueue_write,
  119         .fo_truncate = kqueue_truncate,
  120         .fo_ioctl = kqueue_ioctl,
  121         .fo_poll = kqueue_poll,
  122         .fo_kqfilter = kqueue_kqfilter,
  123         .fo_stat = kqueue_stat,
  124         .fo_close = kqueue_close,
  125 };
  126 
  127 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  128 static void     knote_drop(struct knote *kn, struct thread *td);
  129 static void     knote_enqueue(struct knote *kn);
  130 static void     knote_dequeue(struct knote *kn);
  131 static void     knote_init(void);
  132 static struct   knote *knote_alloc(int waitok);
  133 static void     knote_free(struct knote *kn);
  134 
  135 static void     filt_kqdetach(struct knote *kn);
  136 static int      filt_kqueue(struct knote *kn, long hint);
  137 static int      filt_procattach(struct knote *kn);
  138 static void     filt_procdetach(struct knote *kn);
  139 static int      filt_proc(struct knote *kn, long hint);
  140 static int      filt_fileattach(struct knote *kn);
  141 static void     filt_timerexpire(void *knx);
  142 static int      filt_timerattach(struct knote *kn);
  143 static void     filt_timerdetach(struct knote *kn);
  144 static int      filt_timer(struct knote *kn, long hint);
  145 static int      filt_userattach(struct knote *kn);
  146 static void     filt_userdetach(struct knote *kn);
  147 static int      filt_user(struct knote *kn, long hint);
  148 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  149                     u_long type);
  150 
  151 static struct filterops file_filtops =
  152         { 1, filt_fileattach, NULL, NULL };
  153 static struct filterops kqread_filtops =
  154         { 1, NULL, filt_kqdetach, filt_kqueue };
  155 /* XXX - move to kern_proc.c?  */
  156 static struct filterops proc_filtops =
  157         { 0, filt_procattach, filt_procdetach, filt_proc };
  158 static struct filterops timer_filtops =
  159         { 0, filt_timerattach, filt_timerdetach, filt_timer };
  160 static struct filterops user_filtops = {
  161         .f_attach = filt_userattach,
  162         .f_detach = filt_userdetach,
  163         .f_event = filt_user,
  164         .f_touch = filt_usertouch,
  165 };
  166 
  167 static uma_zone_t       knote_zone;
  168 static int              kq_ncallouts = 0;
  169 static int              kq_calloutmax = (4 * 1024);
  170 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  171     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  172 
  173 /* XXX - ensure not KN_INFLUX?? */
  174 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  175         if ((islock))                                                   \
  176                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  177         else                                                            \
  178                 KQ_LOCK((kn)->kn_kq);                                   \
  179         (kn)->kn_status |= KN_ACTIVE;                                   \
  180         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  181                 knote_enqueue((kn));                                    \
  182         if (!(islock))                                                  \
  183                 KQ_UNLOCK((kn)->kn_kq);                                 \
  184 } while(0)
  185 #define KQ_LOCK(kq) do {                                                \
  186         mtx_lock(&(kq)->kq_lock);                                       \
  187 } while (0)
  188 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  189         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  190                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  191                 wakeup((kq));                                           \
  192         }                                                               \
  193 } while (0)
  194 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  195         KQ_FLUX_WAKEUP(kq);                                             \
  196         mtx_unlock(&(kq)->kq_lock);                                     \
  197 } while (0)
  198 #define KQ_UNLOCK(kq) do {                                              \
  199         mtx_unlock(&(kq)->kq_lock);                                     \
  200 } while (0)
  201 #define KQ_OWNED(kq) do {                                               \
  202         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  203 } while (0)
  204 #define KQ_NOTOWNED(kq) do {                                            \
  205         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  206 } while (0)
  207 #define KN_LIST_LOCK(kn) do {                                           \
  208         if (kn->kn_knlist != NULL)                                      \
  209                 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);      \
  210 } while (0)
  211 #define KN_LIST_UNLOCK(kn) do {                                         \
  212         if (kn->kn_knlist != NULL)                                      \
  213                 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);    \
  214 } while (0)
  215 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  216         if (islocked)                                                   \
  217                 KNL_ASSERT_LOCKED(knl);                         \
  218         else                                                            \
  219                 KNL_ASSERT_UNLOCKED(knl);                               \
  220 } while (0)
  221 #ifdef INVARIANTS
  222 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  223         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  224 } while (0)
  225 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  226         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  227 } while (0)
  228 #else /* !INVARIANTS */
  229 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  230 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  231 #endif /* INVARIANTS */
  232 
  233 #define KN_HASHSIZE             64              /* XXX should be tunable */
  234 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  235 
  236 static int
  237 filt_nullattach(struct knote *kn)
  238 {
  239 
  240         return (ENXIO);
  241 };
  242 
  243 struct filterops null_filtops =
  244         { 0, filt_nullattach, NULL, NULL };
  245 
  246 /* XXX - make SYSINIT to add these, and move into respective modules. */
  247 extern struct filterops sig_filtops;
  248 extern struct filterops fs_filtops;
  249 
  250 /*
  251  * Table for for all system-defined filters.
  252  */
  253 static struct mtx       filterops_lock;
  254 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  255         MTX_DEF);
  256 static struct {
  257         struct filterops *for_fop;
  258         int for_refcnt;
  259 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  260         { &file_filtops },                      /* EVFILT_READ */
  261         { &file_filtops },                      /* EVFILT_WRITE */
  262         { &null_filtops },                      /* EVFILT_AIO */
  263         { &file_filtops },                      /* EVFILT_VNODE */
  264         { &proc_filtops },                      /* EVFILT_PROC */
  265         { &sig_filtops },                       /* EVFILT_SIGNAL */
  266         { &timer_filtops },                     /* EVFILT_TIMER */
  267         { &null_filtops },                      /* former EVFILT_NETDEV */
  268         { &fs_filtops },                        /* EVFILT_FS */
  269         { &null_filtops },                      /* EVFILT_LIO */
  270         { &user_filtops },                      /* EVFILT_USER */
  271 };
  272 
  273 /*
  274  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  275  * method.
  276  */
  277 static int
  278 filt_fileattach(struct knote *kn)
  279 {
  280 
  281         return (fo_kqfilter(kn->kn_fp, kn));
  282 }
  283 
  284 /*ARGSUSED*/
  285 static int
  286 kqueue_kqfilter(struct file *fp, struct knote *kn)
  287 {
  288         struct kqueue *kq = kn->kn_fp->f_data;
  289 
  290         if (kn->kn_filter != EVFILT_READ)
  291                 return (EINVAL);
  292 
  293         kn->kn_status |= KN_KQUEUE;
  294         kn->kn_fop = &kqread_filtops;
  295         knlist_add(&kq->kq_sel.si_note, kn, 0);
  296 
  297         return (0);
  298 }
  299 
  300 static void
  301 filt_kqdetach(struct knote *kn)
  302 {
  303         struct kqueue *kq = kn->kn_fp->f_data;
  304 
  305         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  306 }
  307 
  308 /*ARGSUSED*/
  309 static int
  310 filt_kqueue(struct knote *kn, long hint)
  311 {
  312         struct kqueue *kq = kn->kn_fp->f_data;
  313 
  314         kn->kn_data = kq->kq_count;
  315         return (kn->kn_data > 0);
  316 }
  317 
  318 /* XXX - move to kern_proc.c?  */
  319 static int
  320 filt_procattach(struct knote *kn)
  321 {
  322         struct proc *p;
  323         int immediate;
  324         int error;
  325 
  326         immediate = 0;
  327         p = pfind(kn->kn_id);
  328         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  329                 p = zpfind(kn->kn_id);
  330                 immediate = 1;
  331         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  332                 immediate = 1;
  333         }
  334 
  335         if (p == NULL)
  336                 return (ESRCH);
  337         if ((error = p_cansee(curthread, p))) {
  338                 PROC_UNLOCK(p);
  339                 return (error);
  340         }
  341 
  342         kn->kn_ptr.p_proc = p;
  343         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  344 
  345         /*
  346          * internal flag indicating registration done by kernel
  347          */
  348         if (kn->kn_flags & EV_FLAG1) {
  349                 kn->kn_data = kn->kn_sdata;             /* ppid */
  350                 kn->kn_fflags = NOTE_CHILD;
  351                 kn->kn_flags &= ~EV_FLAG1;
  352         }
  353 
  354         if (immediate == 0)
  355                 knlist_add(&p->p_klist, kn, 1);
  356 
  357         /*
  358          * Immediately activate any exit notes if the target process is a
  359          * zombie.  This is necessary to handle the case where the target
  360          * process, e.g. a child, dies before the kevent is registered.
  361          */
  362         if (immediate && filt_proc(kn, NOTE_EXIT))
  363                 KNOTE_ACTIVATE(kn, 0);
  364 
  365         PROC_UNLOCK(p);
  366 
  367         return (0);
  368 }
  369 
  370 /*
  371  * The knote may be attached to a different process, which may exit,
  372  * leaving nothing for the knote to be attached to.  So when the process
  373  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  374  * it will be deleted when read out.  However, as part of the knote deletion,
  375  * this routine is called, so a check is needed to avoid actually performing
  376  * a detach, because the original process does not exist any more.
  377  */
  378 /* XXX - move to kern_proc.c?  */
  379 static void
  380 filt_procdetach(struct knote *kn)
  381 {
  382         struct proc *p;
  383 
  384         p = kn->kn_ptr.p_proc;
  385         knlist_remove(&p->p_klist, kn, 0);
  386         kn->kn_ptr.p_proc = NULL;
  387 }
  388 
  389 /* XXX - move to kern_proc.c?  */
  390 static int
  391 filt_proc(struct knote *kn, long hint)
  392 {
  393         struct proc *p = kn->kn_ptr.p_proc;
  394         u_int event;
  395 
  396         /*
  397          * mask off extra data
  398          */
  399         event = (u_int)hint & NOTE_PCTRLMASK;
  400 
  401         /*
  402          * if the user is interested in this event, record it.
  403          */
  404         if (kn->kn_sfflags & event)
  405                 kn->kn_fflags |= event;
  406 
  407         /*
  408          * process is gone, so flag the event as finished.
  409          */
  410         if (event == NOTE_EXIT) {
  411                 if (!(kn->kn_status & KN_DETACHED))
  412                         knlist_remove_inevent(&p->p_klist, kn);
  413                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  414                 kn->kn_data = p->p_xstat;
  415                 kn->kn_ptr.p_proc = NULL;
  416                 return (1);
  417         }
  418 
  419         return (kn->kn_fflags != 0);
  420 }
  421 
  422 /*
  423  * Called when the process forked. It mostly does the same as the
  424  * knote(), activating all knotes registered to be activated when the
  425  * process forked. Additionally, for each knote attached to the
  426  * parent, check whether user wants to track the new process. If so
  427  * attach a new knote to it, and immediately report an event with the
  428  * child's pid.
  429  */
  430 void
  431 knote_fork(struct knlist *list, int pid)
  432 {
  433         struct kqueue *kq;
  434         struct knote *kn;
  435         struct kevent kev;
  436         int error;
  437 
  438         if (list == NULL)
  439                 return;
  440         list->kl_lock(list->kl_lockarg);
  441 
  442         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  443                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
  444                         continue;
  445                 kq = kn->kn_kq;
  446                 KQ_LOCK(kq);
  447                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
  448                         KQ_UNLOCK(kq);
  449                         continue;
  450                 }
  451 
  452                 /*
  453                  * The same as knote(), activate the event.
  454                  */
  455                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  456                         kn->kn_status |= KN_HASKQLOCK;
  457                         if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
  458                                 KNOTE_ACTIVATE(kn, 1);
  459                         kn->kn_status &= ~KN_HASKQLOCK;
  460                         KQ_UNLOCK(kq);
  461                         continue;
  462                 }
  463 
  464                 /*
  465                  * The NOTE_TRACK case. In addition to the activation
  466                  * of the event, we need to register new event to
  467                  * track the child. Drop the locks in preparation for
  468                  * the call to kqueue_register().
  469                  */
  470                 kn->kn_status |= KN_INFLUX;
  471                 KQ_UNLOCK(kq);
  472                 list->kl_unlock(list->kl_lockarg);
  473 
  474                 /*
  475                  * Activate existing knote and register a knote with
  476                  * new process.
  477                  */
  478                 kev.ident = pid;
  479                 kev.filter = kn->kn_filter;
  480                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  481                 kev.fflags = kn->kn_sfflags;
  482                 kev.data = kn->kn_id;           /* parent */
  483                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  484                 error = kqueue_register(kq, &kev, NULL, 0);
  485                 if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
  486                         KNOTE_ACTIVATE(kn, 0);
  487                 if (error)
  488                         kn->kn_fflags |= NOTE_TRACKERR;
  489                 KQ_LOCK(kq);
  490                 kn->kn_status &= ~KN_INFLUX;
  491                 KQ_UNLOCK_FLUX(kq);
  492                 list->kl_lock(list->kl_lockarg);
  493         }
  494         list->kl_unlock(list->kl_lockarg);
  495 }
  496 
  497 static int
  498 timertoticks(intptr_t data)
  499 {
  500         struct timeval tv;
  501         int tticks;
  502 
  503         tv.tv_sec = data / 1000;
  504         tv.tv_usec = (data % 1000) * 1000;
  505         tticks = tvtohz(&tv);
  506 
  507         return tticks;
  508 }
  509 
  510 /* XXX - move to kern_timeout.c? */
  511 static void
  512 filt_timerexpire(void *knx)
  513 {
  514         struct knote *kn = knx;
  515         struct callout *calloutp;
  516 
  517         kn->kn_data++;
  518         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  519 
  520         if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
  521                 calloutp = (struct callout *)kn->kn_hook;
  522                 callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
  523                     filt_timerexpire, kn);
  524         }
  525 }
  526 
  527 /*
  528  * data contains amount of time to sleep, in milliseconds
  529  */
  530 /* XXX - move to kern_timeout.c? */
  531 static int
  532 filt_timerattach(struct knote *kn)
  533 {
  534         struct callout *calloutp;
  535 
  536         atomic_add_int(&kq_ncallouts, 1);
  537 
  538         if (kq_ncallouts >= kq_calloutmax) {
  539                 atomic_add_int(&kq_ncallouts, -1);
  540                 return (ENOMEM);
  541         }
  542 
  543         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  544         kn->kn_status &= ~KN_DETACHED;          /* knlist_add usually sets it */
  545         calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
  546         callout_init(calloutp, CALLOUT_MPSAFE);
  547         kn->kn_hook = calloutp;
  548         callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
  549             filt_timerexpire, kn);
  550 
  551         return (0);
  552 }
  553 
  554 /* XXX - move to kern_timeout.c? */
  555 static void
  556 filt_timerdetach(struct knote *kn)
  557 {
  558         struct callout *calloutp;
  559 
  560         calloutp = (struct callout *)kn->kn_hook;
  561         callout_drain(calloutp);
  562         free(calloutp, M_KQUEUE);
  563         atomic_add_int(&kq_ncallouts, -1);
  564         kn->kn_status |= KN_DETACHED;   /* knlist_remove usually clears it */
  565 }
  566 
  567 /* XXX - move to kern_timeout.c? */
  568 static int
  569 filt_timer(struct knote *kn, long hint)
  570 {
  571 
  572         return (kn->kn_data != 0);
  573 }
  574 
  575 static int
  576 filt_userattach(struct knote *kn)
  577 {
  578 
  579         /* 
  580          * EVFILT_USER knotes are not attached to anything in the kernel.
  581          */ 
  582         kn->kn_hook = NULL;
  583         if (kn->kn_fflags & NOTE_TRIGGER)
  584                 kn->kn_hookid = 1;
  585         else
  586                 kn->kn_hookid = 0;
  587         return (0);
  588 }
  589 
  590 static void
  591 filt_userdetach(__unused struct knote *kn)
  592 {
  593 
  594         /*
  595          * EVFILT_USER knotes are not attached to anything in the kernel.
  596          */
  597 }
  598 
  599 static int
  600 filt_user(struct knote *kn, __unused long hint)
  601 {
  602 
  603         return (kn->kn_hookid);
  604 }
  605 
  606 static void
  607 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  608 {
  609         u_int ffctrl;
  610 
  611         switch (type) {
  612         case EVENT_REGISTER:
  613                 if (kev->fflags & NOTE_TRIGGER)
  614                         kn->kn_hookid = 1;
  615 
  616                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  617                 kev->fflags &= NOTE_FFLAGSMASK;
  618                 switch (ffctrl) {
  619                 case NOTE_FFNOP:
  620                         break;
  621 
  622                 case NOTE_FFAND:
  623                         kn->kn_sfflags &= kev->fflags;
  624                         break;
  625 
  626                 case NOTE_FFOR:
  627                         kn->kn_sfflags |= kev->fflags;
  628                         break;
  629 
  630                 case NOTE_FFCOPY:
  631                         kn->kn_sfflags = kev->fflags;
  632                         break;
  633 
  634                 default:
  635                         /* XXX Return error? */
  636                         break;
  637                 }
  638                 kn->kn_sdata = kev->data;
  639                 if (kev->flags & EV_CLEAR) {
  640                         kn->kn_hookid = 0;
  641                         kn->kn_data = 0;
  642                         kn->kn_fflags = 0;
  643                 }
  644                 break;
  645 
  646         case EVENT_PROCESS:
  647                 *kev = kn->kn_kevent;
  648                 kev->fflags = kn->kn_sfflags;
  649                 kev->data = kn->kn_sdata;
  650                 if (kn->kn_flags & EV_CLEAR) {
  651                         kn->kn_hookid = 0;
  652                         kn->kn_data = 0;
  653                         kn->kn_fflags = 0;
  654                 }
  655                 break;
  656 
  657         default:
  658                 panic("filt_usertouch() - invalid type (%ld)", type);
  659                 break;
  660         }
  661 }
  662 
  663 int
  664 kqueue(struct thread *td, struct kqueue_args *uap)
  665 {
  666         struct filedesc *fdp;
  667         struct kqueue *kq;
  668         struct file *fp;
  669         int fd, error;
  670 
  671         fdp = td->td_proc->p_fd;
  672         error = falloc(td, &fp, &fd);
  673         if (error)
  674                 goto done2;
  675 
  676         /* An extra reference on `nfp' has been held for us by falloc(). */
  677         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  678         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
  679         TAILQ_INIT(&kq->kq_head);
  680         kq->kq_fdp = fdp;
  681         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  682         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  683 
  684         FILEDESC_XLOCK(fdp);
  685         SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  686         FILEDESC_XUNLOCK(fdp);
  687 
  688         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
  689         fdrop(fp, td);
  690 
  691         td->td_retval[0] = fd;
  692 done2:
  693         return (error);
  694 }
  695 
  696 #ifndef _SYS_SYSPROTO_H_
  697 struct kevent_args {
  698         int     fd;
  699         const struct kevent *changelist;
  700         int     nchanges;
  701         struct  kevent *eventlist;
  702         int     nevents;
  703         const struct timespec *timeout;
  704 };
  705 #endif
  706 int
  707 kevent(struct thread *td, struct kevent_args *uap)
  708 {
  709         struct timespec ts, *tsp;
  710         struct kevent_copyops k_ops = { uap,
  711                                         kevent_copyout,
  712                                         kevent_copyin};
  713         int error;
  714 #ifdef KTRACE
  715         struct uio ktruio;
  716         struct iovec ktriov;
  717         struct uio *ktruioin = NULL;
  718         struct uio *ktruioout = NULL;
  719 #endif
  720 
  721         if (uap->timeout != NULL) {
  722                 error = copyin(uap->timeout, &ts, sizeof(ts));
  723                 if (error)
  724                         return (error);
  725                 tsp = &ts;
  726         } else
  727                 tsp = NULL;
  728 
  729 #ifdef KTRACE
  730         if (KTRPOINT(td, KTR_GENIO)) {
  731                 ktriov.iov_base = uap->changelist;
  732                 ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
  733                 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
  734                     .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
  735                     .uio_td = td };
  736                 ktruioin = cloneuio(&ktruio);
  737                 ktriov.iov_base = uap->eventlist;
  738                 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
  739                 ktruioout = cloneuio(&ktruio);
  740         }
  741 #endif
  742 
  743         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  744             &k_ops, tsp);
  745 
  746 #ifdef KTRACE
  747         if (ktruioin != NULL) {
  748                 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
  749                 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
  750                 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
  751                 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
  752         }
  753 #endif
  754 
  755         return (error);
  756 }
  757 
  758 /*
  759  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  760  */
  761 static int
  762 kevent_copyout(void *arg, struct kevent *kevp, int count)
  763 {
  764         struct kevent_args *uap;
  765         int error;
  766 
  767         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  768         uap = (struct kevent_args *)arg;
  769 
  770         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  771         if (error == 0)
  772                 uap->eventlist += count;
  773         return (error);
  774 }
  775 
  776 /*
  777  * Copy 'count' items from the list pointed to by uap->changelist.
  778  */
  779 static int
  780 kevent_copyin(void *arg, struct kevent *kevp, int count)
  781 {
  782         struct kevent_args *uap;
  783         int error;
  784 
  785         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  786         uap = (struct kevent_args *)arg;
  787 
  788         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  789         if (error == 0)
  790                 uap->changelist += count;
  791         return (error);
  792 }
  793 
  794 int
  795 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  796     struct kevent_copyops *k_ops, const struct timespec *timeout)
  797 {
  798         struct kevent keva[KQ_NEVENTS];
  799         struct kevent *kevp, *changes;
  800         struct kqueue *kq;
  801         struct file *fp;
  802         int i, n, nerrors, error;
  803 
  804         if ((error = fget(td, fd, &fp)) != 0)
  805                 return (error);
  806         if ((error = kqueue_acquire(fp, &kq)) != 0)
  807                 goto done_norel;
  808 
  809         nerrors = 0;
  810 
  811         while (nchanges > 0) {
  812                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  813                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  814                 if (error)
  815                         goto done;
  816                 changes = keva;
  817                 for (i = 0; i < n; i++) {
  818                         kevp = &changes[i];
  819                         if (!kevp->filter)
  820                                 continue;
  821                         kevp->flags &= ~EV_SYSFLAGS;
  822                         error = kqueue_register(kq, kevp, td, 1);
  823                         if (error || (kevp->flags & EV_RECEIPT)) {
  824                                 if (nevents != 0) {
  825                                         kevp->flags = EV_ERROR;
  826                                         kevp->data = error;
  827                                         (void) k_ops->k_copyout(k_ops->arg,
  828                                             kevp, 1);
  829                                         nevents--;
  830                                         nerrors++;
  831                                 } else {
  832                                         goto done;
  833                                 }
  834                         }
  835                 }
  836                 nchanges -= n;
  837         }
  838         if (nerrors) {
  839                 td->td_retval[0] = nerrors;
  840                 error = 0;
  841                 goto done;
  842         }
  843 
  844         error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
  845 done:
  846         kqueue_release(kq, 0);
  847 done_norel:
  848         fdrop(fp, td);
  849         return (error);
  850 }
  851 
  852 int
  853 kqueue_add_filteropts(int filt, struct filterops *filtops)
  854 {
  855         int error;
  856 
  857         error = 0;
  858         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
  859                 printf(
  860 "trying to add a filterop that is out of range: %d is beyond %d\n",
  861                     ~filt, EVFILT_SYSCOUNT);
  862                 return EINVAL;
  863         }
  864         mtx_lock(&filterops_lock);
  865         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
  866             sysfilt_ops[~filt].for_fop != NULL)
  867                 error = EEXIST;
  868         else {
  869                 sysfilt_ops[~filt].for_fop = filtops;
  870                 sysfilt_ops[~filt].for_refcnt = 0;
  871         }
  872         mtx_unlock(&filterops_lock);
  873 
  874         return (error);
  875 }
  876 
  877 int
  878 kqueue_del_filteropts(int filt)
  879 {
  880         int error;
  881 
  882         error = 0;
  883         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  884                 return EINVAL;
  885 
  886         mtx_lock(&filterops_lock);
  887         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
  888             sysfilt_ops[~filt].for_fop == NULL)
  889                 error = EINVAL;
  890         else if (sysfilt_ops[~filt].for_refcnt != 0)
  891                 error = EBUSY;
  892         else {
  893                 sysfilt_ops[~filt].for_fop = &null_filtops;
  894                 sysfilt_ops[~filt].for_refcnt = 0;
  895         }
  896         mtx_unlock(&filterops_lock);
  897 
  898         return error;
  899 }
  900 
  901 static struct filterops *
  902 kqueue_fo_find(int filt)
  903 {
  904 
  905         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  906                 return NULL;
  907 
  908         mtx_lock(&filterops_lock);
  909         sysfilt_ops[~filt].for_refcnt++;
  910         if (sysfilt_ops[~filt].for_fop == NULL)
  911                 sysfilt_ops[~filt].for_fop = &null_filtops;
  912         mtx_unlock(&filterops_lock);
  913 
  914         return sysfilt_ops[~filt].for_fop;
  915 }
  916 
  917 static void
  918 kqueue_fo_release(int filt)
  919 {
  920 
  921         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  922                 return;
  923 
  924         mtx_lock(&filterops_lock);
  925         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
  926             ("filter object refcount not valid on release"));
  927         sysfilt_ops[~filt].for_refcnt--;
  928         mtx_unlock(&filterops_lock);
  929 }
  930 
  931 /*
  932  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
  933  * influence if memory allocation should wait.  Make sure it is 0 if you
  934  * hold any mutexes.
  935  */
  936 static int
  937 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
  938 {
  939         struct filterops *fops;
  940         struct file *fp;
  941         struct knote *kn, *tkn;
  942         int error, filt, event;
  943         int haskqglobal;
  944 
  945         fp = NULL;
  946         kn = NULL;
  947         error = 0;
  948         haskqglobal = 0;
  949 
  950         filt = kev->filter;
  951         fops = kqueue_fo_find(filt);
  952         if (fops == NULL)
  953                 return EINVAL;
  954 
  955         tkn = knote_alloc(waitok);              /* prevent waiting with locks */
  956 
  957 findkn:
  958         if (fops->f_isfd) {
  959                 KASSERT(td != NULL, ("td is NULL"));
  960                 error = fget(td, kev->ident, &fp);
  961                 if (error)
  962                         goto done;
  963 
  964                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
  965                     kev->ident, 0) != 0) {
  966                         /* try again */
  967                         fdrop(fp, td);
  968                         fp = NULL;
  969                         error = kqueue_expand(kq, fops, kev->ident, waitok);
  970                         if (error)
  971                                 goto done;
  972                         goto findkn;
  973                 }
  974 
  975                 if (fp->f_type == DTYPE_KQUEUE) {
  976                         /*
  977                          * if we add some inteligence about what we are doing,
  978                          * we should be able to support events on ourselves.
  979                          * We need to know when we are doing this to prevent
  980                          * getting both the knlist lock and the kq lock since
  981                          * they are the same thing.
  982                          */
  983                         if (fp->f_data == kq) {
  984                                 error = EINVAL;
  985                                 goto done;
  986                         }
  987 
  988                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
  989                 }
  990 
  991                 KQ_LOCK(kq);
  992                 if (kev->ident < kq->kq_knlistsize) {
  993                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
  994                                 if (kev->filter == kn->kn_filter)
  995                                         break;
  996                 }
  997         } else {
  998                 if ((kev->flags & EV_ADD) == EV_ADD)
  999                         kqueue_expand(kq, fops, kev->ident, waitok);
 1000 
 1001                 KQ_LOCK(kq);
 1002                 if (kq->kq_knhashmask != 0) {
 1003                         struct klist *list;
 1004 
 1005                         list = &kq->kq_knhash[
 1006                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1007                         SLIST_FOREACH(kn, list, kn_link)
 1008                                 if (kev->ident == kn->kn_id &&
 1009                                     kev->filter == kn->kn_filter)
 1010                                         break;
 1011                 }
 1012         }
 1013 
 1014         /* knote is in the process of changing, wait for it to stablize. */
 1015         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1016                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1017                 kq->kq_state |= KQ_FLUXWAIT;
 1018                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1019                 if (fp != NULL) {
 1020                         fdrop(fp, td);
 1021                         fp = NULL;
 1022                 }
 1023                 goto findkn;
 1024         }
 1025 
 1026         /*
 1027          * kn now contains the matching knote, or NULL if no match
 1028          */
 1029         if (kn == NULL) {
 1030                 if (kev->flags & EV_ADD) {
 1031                         kn = tkn;
 1032                         tkn = NULL;
 1033                         if (kn == NULL) {
 1034                                 KQ_UNLOCK(kq);
 1035                                 error = ENOMEM;
 1036                                 goto done;
 1037                         }
 1038                         kn->kn_fp = fp;
 1039                         kn->kn_kq = kq;
 1040                         kn->kn_fop = fops;
 1041                         /*
 1042                          * apply reference counts to knote structure, and
 1043                          * do not release it at the end of this routine.
 1044                          */
 1045                         fops = NULL;
 1046                         fp = NULL;
 1047 
 1048                         kn->kn_sfflags = kev->fflags;
 1049                         kn->kn_sdata = kev->data;
 1050                         kev->fflags = 0;
 1051                         kev->data = 0;
 1052                         kn->kn_kevent = *kev;
 1053                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1054                             EV_ENABLE | EV_DISABLE);
 1055                         kn->kn_status = KN_INFLUX|KN_DETACHED;
 1056 
 1057                         error = knote_attach(kn, kq);
 1058                         KQ_UNLOCK(kq);
 1059                         if (error != 0) {
 1060                                 tkn = kn;
 1061                                 goto done;
 1062                         }
 1063 
 1064                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1065                                 knote_drop(kn, td);
 1066                                 goto done;
 1067                         }
 1068                         KN_LIST_LOCK(kn);
 1069                         goto done_ev_add;
 1070                 } else {
 1071                         /* No matching knote and the EV_ADD flag is not set. */
 1072                         KQ_UNLOCK(kq);
 1073                         error = ENOENT;
 1074                         goto done;
 1075                 }
 1076         }
 1077         
 1078         if (kev->flags & EV_DELETE) {
 1079                 kn->kn_status |= KN_INFLUX;
 1080                 KQ_UNLOCK(kq);
 1081                 if (!(kn->kn_status & KN_DETACHED))
 1082                         kn->kn_fop->f_detach(kn);
 1083                 knote_drop(kn, td);
 1084                 goto done;
 1085         }
 1086 
 1087         /*
 1088          * The user may change some filter values after the initial EV_ADD,
 1089          * but doing so will not reset any filter which has already been
 1090          * triggered.
 1091          */
 1092         kn->kn_status |= KN_INFLUX;
 1093         KQ_UNLOCK(kq);
 1094         KN_LIST_LOCK(kn);
 1095         kn->kn_kevent.udata = kev->udata;
 1096         if (!fops->f_isfd && fops->f_touch != NULL) {
 1097                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1098         } else {
 1099                 kn->kn_sfflags = kev->fflags;
 1100                 kn->kn_sdata = kev->data;
 1101         }
 1102 
 1103         /*
 1104          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1105          * the initial attach event decides that the event is "completed" 
 1106          * already.  i.e. filt_procattach is called on a zombie process.  It
 1107          * will call filt_proc which will remove it from the list, and NULL
 1108          * kn_knlist.
 1109          */
 1110 done_ev_add:
 1111         event = kn->kn_fop->f_event(kn, 0);
 1112         KQ_LOCK(kq);
 1113         if (event)
 1114                 KNOTE_ACTIVATE(kn, 1);
 1115         kn->kn_status &= ~KN_INFLUX;
 1116         KN_LIST_UNLOCK(kn);
 1117 
 1118         if ((kev->flags & EV_DISABLE) &&
 1119             ((kn->kn_status & KN_DISABLED) == 0)) {
 1120                 kn->kn_status |= KN_DISABLED;
 1121         }
 1122 
 1123         if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
 1124                 kn->kn_status &= ~KN_DISABLED;
 1125                 if ((kn->kn_status & KN_ACTIVE) &&
 1126                     ((kn->kn_status & KN_QUEUED) == 0))
 1127                         knote_enqueue(kn);
 1128         }
 1129         KQ_UNLOCK_FLUX(kq);
 1130 
 1131 done:
 1132         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1133         if (fp != NULL)
 1134                 fdrop(fp, td);
 1135         if (tkn != NULL)
 1136                 knote_free(tkn);
 1137         if (fops != NULL)
 1138                 kqueue_fo_release(filt);
 1139         return (error);
 1140 }
 1141 
 1142 static int
 1143 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1144 {
 1145         int error;
 1146         struct kqueue *kq;
 1147 
 1148         error = 0;
 1149 
 1150         kq = fp->f_data;
 1151         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1152                 return (EBADF);
 1153         *kqp = kq;
 1154         KQ_LOCK(kq);
 1155         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1156                 KQ_UNLOCK(kq);
 1157                 return (EBADF);
 1158         }
 1159         kq->kq_refcnt++;
 1160         KQ_UNLOCK(kq);
 1161 
 1162         return error;
 1163 }
 1164 
 1165 static void
 1166 kqueue_release(struct kqueue *kq, int locked)
 1167 {
 1168         if (locked)
 1169                 KQ_OWNED(kq);
 1170         else
 1171                 KQ_LOCK(kq);
 1172         kq->kq_refcnt--;
 1173         if (kq->kq_refcnt == 1)
 1174                 wakeup(&kq->kq_refcnt);
 1175         if (!locked)
 1176                 KQ_UNLOCK(kq);
 1177 }
 1178 
 1179 static void
 1180 kqueue_schedtask(struct kqueue *kq)
 1181 {
 1182 
 1183         KQ_OWNED(kq);
 1184         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1185             ("scheduling kqueue task while draining"));
 1186 
 1187         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1188                 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
 1189                 kq->kq_state |= KQ_TASKSCHED;
 1190         }
 1191 }
 1192 
 1193 /*
 1194  * Expand the kq to make sure we have storage for fops/ident pair.
 1195  *
 1196  * Return 0 on success (or no work necessary), return errno on failure.
 1197  *
 1198  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1199  * If kqueue_register is called from a non-fd context, there usually/should
 1200  * be no locks held.
 1201  */
 1202 static int
 1203 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1204         int waitok)
 1205 {
 1206         struct klist *list, *tmp_knhash, *to_free;
 1207         u_long tmp_knhashmask;
 1208         int size;
 1209         int fd;
 1210         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1211 
 1212         KQ_NOTOWNED(kq);
 1213 
 1214         to_free = NULL;
 1215         if (fops->f_isfd) {
 1216                 fd = ident;
 1217                 if (kq->kq_knlistsize <= fd) {
 1218                         size = kq->kq_knlistsize;
 1219                         while (size <= fd)
 1220                                 size += KQEXTENT;
 1221                         list = malloc(size * sizeof list, M_KQUEUE, mflag);
 1222                         if (list == NULL)
 1223                                 return ENOMEM;
 1224                         KQ_LOCK(kq);
 1225                         if (kq->kq_knlistsize > fd) {
 1226                                 to_free = list;
 1227                                 list = NULL;
 1228                         } else {
 1229                                 if (kq->kq_knlist != NULL) {
 1230                                         bcopy(kq->kq_knlist, list,
 1231                                             kq->kq_knlistsize * sizeof list);
 1232                                         to_free = kq->kq_knlist;
 1233                                         kq->kq_knlist = NULL;
 1234                                 }
 1235                                 bzero((caddr_t)list +
 1236                                     kq->kq_knlistsize * sizeof list,
 1237                                     (size - kq->kq_knlistsize) * sizeof list);
 1238                                 kq->kq_knlistsize = size;
 1239                                 kq->kq_knlist = list;
 1240                         }
 1241                         KQ_UNLOCK(kq);
 1242                 }
 1243         } else {
 1244                 if (kq->kq_knhashmask == 0) {
 1245                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1246                             &tmp_knhashmask);
 1247                         if (tmp_knhash == NULL)
 1248                                 return ENOMEM;
 1249                         KQ_LOCK(kq);
 1250                         if (kq->kq_knhashmask == 0) {
 1251                                 kq->kq_knhash = tmp_knhash;
 1252                                 kq->kq_knhashmask = tmp_knhashmask;
 1253                         } else {
 1254                                 to_free = tmp_knhash;
 1255                         }
 1256                         KQ_UNLOCK(kq);
 1257                 }
 1258         }
 1259         free(to_free, M_KQUEUE);
 1260 
 1261         KQ_NOTOWNED(kq);
 1262         return 0;
 1263 }
 1264 
 1265 static void
 1266 kqueue_task(void *arg, int pending)
 1267 {
 1268         struct kqueue *kq;
 1269         int haskqglobal;
 1270 
 1271         haskqglobal = 0;
 1272         kq = arg;
 1273 
 1274         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1275         KQ_LOCK(kq);
 1276 
 1277         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1278 
 1279         kq->kq_state &= ~KQ_TASKSCHED;
 1280         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1281                 wakeup(&kq->kq_state);
 1282         }
 1283         KQ_UNLOCK(kq);
 1284         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1285 }
 1286 
 1287 /*
 1288  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1289  * We treat KN_MARKER knotes as if they are INFLUX.
 1290  */
 1291 static int
 1292 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1293     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1294 {
 1295         struct kevent *kevp;
 1296         struct timeval atv, rtv, ttv;
 1297         struct knote *kn, *marker;
 1298         int count, timeout, nkev, error, influx;
 1299         int haskqglobal, touch;
 1300 
 1301         count = maxevents;
 1302         nkev = 0;
 1303         error = 0;
 1304         haskqglobal = 0;
 1305 
 1306         if (maxevents == 0)
 1307                 goto done_nl;
 1308 
 1309         if (tsp != NULL) {
 1310                 TIMESPEC_TO_TIMEVAL(&atv, tsp);
 1311                 if (itimerfix(&atv)) {
 1312                         error = EINVAL;
 1313                         goto done_nl;
 1314                 }
 1315                 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
 1316                         timeout = -1;
 1317                 else
 1318                         timeout = atv.tv_sec > 24 * 60 * 60 ?
 1319                             24 * 60 * 60 * hz : tvtohz(&atv);
 1320                 getmicrouptime(&rtv);
 1321                 timevaladd(&atv, &rtv);
 1322         } else {
 1323                 atv.tv_sec = 0;
 1324                 atv.tv_usec = 0;
 1325                 timeout = 0;
 1326         }
 1327         marker = knote_alloc(1);
 1328         if (marker == NULL) {
 1329                 error = ENOMEM;
 1330                 goto done_nl;
 1331         }
 1332         marker->kn_status = KN_MARKER;
 1333         KQ_LOCK(kq);
 1334         goto start;
 1335 
 1336 retry:
 1337         if (atv.tv_sec || atv.tv_usec) {
 1338                 getmicrouptime(&rtv);
 1339                 if (timevalcmp(&rtv, &atv, >=))
 1340                         goto done;
 1341                 ttv = atv;
 1342                 timevalsub(&ttv, &rtv);
 1343                 timeout = ttv.tv_sec > 24 * 60 * 60 ?
 1344                         24 * 60 * 60 * hz : tvtohz(&ttv);
 1345         }
 1346 
 1347 start:
 1348         kevp = keva;
 1349         if (kq->kq_count == 0) {
 1350                 if (timeout < 0) {
 1351                         error = EWOULDBLOCK;
 1352                 } else {
 1353                         kq->kq_state |= KQ_SLEEP;
 1354                         error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
 1355                             "kqread", timeout);
 1356                 }
 1357                 if (error == 0)
 1358                         goto retry;
 1359                 /* don't restart after signals... */
 1360                 if (error == ERESTART)
 1361                         error = EINTR;
 1362                 else if (error == EWOULDBLOCK)
 1363                         error = 0;
 1364                 goto done;
 1365         }
 1366 
 1367         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1368         influx = 0;
 1369         while (count) {
 1370                 KQ_OWNED(kq);
 1371                 kn = TAILQ_FIRST(&kq->kq_head);
 1372 
 1373                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1374                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1375                         if (influx) {
 1376                                 influx = 0;
 1377                                 KQ_FLUX_WAKEUP(kq);
 1378                         }
 1379                         kq->kq_state |= KQ_FLUXWAIT;
 1380                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1381                             "kqflxwt", 0);
 1382                         continue;
 1383                 }
 1384 
 1385                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1386                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1387                         kn->kn_status &= ~KN_QUEUED;
 1388                         kq->kq_count--;
 1389                         continue;
 1390                 }
 1391                 if (kn == marker) {
 1392                         KQ_FLUX_WAKEUP(kq);
 1393                         if (count == maxevents)
 1394                                 goto retry;
 1395                         goto done;
 1396                 }
 1397                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1398                     ("KN_INFLUX set when not suppose to be"));
 1399 
 1400                 if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1401                         kn->kn_status &= ~KN_QUEUED;
 1402                         kn->kn_status |= KN_INFLUX;
 1403                         kq->kq_count--;
 1404                         KQ_UNLOCK(kq);
 1405                         /*
 1406                          * We don't need to lock the list since we've marked
 1407                          * it _INFLUX.
 1408                          */
 1409                         *kevp = kn->kn_kevent;
 1410                         if (!(kn->kn_status & KN_DETACHED))
 1411                                 kn->kn_fop->f_detach(kn);
 1412                         knote_drop(kn, td);
 1413                         KQ_LOCK(kq);
 1414                         kn = NULL;
 1415                 } else {
 1416                         kn->kn_status |= KN_INFLUX;
 1417                         KQ_UNLOCK(kq);
 1418                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1419                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1420                         KN_LIST_LOCK(kn);
 1421                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1422                                 KQ_LOCK(kq);
 1423                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1424                                 kn->kn_status &=
 1425                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
 1426                                 kq->kq_count--;
 1427                                 KN_LIST_UNLOCK(kn);
 1428                                 influx = 1;
 1429                                 continue;
 1430                         }
 1431                         touch = (!kn->kn_fop->f_isfd &&
 1432                             kn->kn_fop->f_touch != NULL);
 1433                         if (touch)
 1434                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1435                         else
 1436                                 *kevp = kn->kn_kevent;
 1437                         KQ_LOCK(kq);
 1438                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1439                         if (kn->kn_flags & (EV_CLEAR |  EV_DISPATCH)) {
 1440                                 /* 
 1441                                  * Manually clear knotes who weren't 
 1442                                  * 'touch'ed.
 1443                                  */
 1444                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1445                                         kn->kn_data = 0;
 1446                                         kn->kn_fflags = 0;
 1447                                 }
 1448                                 if (kn->kn_flags & EV_DISPATCH)
 1449                                         kn->kn_status |= KN_DISABLED;
 1450                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1451                                 kq->kq_count--;
 1452                         } else
 1453                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1454                         
 1455                         kn->kn_status &= ~(KN_INFLUX);
 1456                         KN_LIST_UNLOCK(kn);
 1457                         influx = 1;
 1458                 }
 1459 
 1460                 /* we are returning a copy to the user */
 1461                 kevp++;
 1462                 nkev++;
 1463                 count--;
 1464 
 1465                 if (nkev == KQ_NEVENTS) {
 1466                         influx = 0;
 1467                         KQ_UNLOCK_FLUX(kq);
 1468                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1469                         nkev = 0;
 1470                         kevp = keva;
 1471                         KQ_LOCK(kq);
 1472                         if (error)
 1473                                 break;
 1474                 }
 1475         }
 1476         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1477 done:
 1478         KQ_OWNED(kq);
 1479         KQ_UNLOCK_FLUX(kq);
 1480         knote_free(marker);
 1481 done_nl:
 1482         KQ_NOTOWNED(kq);
 1483         if (nkev != 0)
 1484                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1485         td->td_retval[0] = maxevents - count;
 1486         return (error);
 1487 }
 1488 
 1489 /*
 1490  * XXX
 1491  * This could be expanded to call kqueue_scan, if desired.
 1492  */
 1493 /*ARGSUSED*/
 1494 static int
 1495 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1496         int flags, struct thread *td)
 1497 {
 1498         return (ENXIO);
 1499 }
 1500 
 1501 /*ARGSUSED*/
 1502 static int
 1503 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1504          int flags, struct thread *td)
 1505 {
 1506         return (ENXIO);
 1507 }
 1508 
 1509 /*ARGSUSED*/
 1510 static int
 1511 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1512         struct thread *td)
 1513 {
 1514 
 1515         return (EINVAL);
 1516 }
 1517 
 1518 /*ARGSUSED*/
 1519 static int
 1520 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1521         struct ucred *active_cred, struct thread *td)
 1522 {
 1523         /*
 1524          * Enabling sigio causes two major problems:
 1525          * 1) infinite recursion:
 1526          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1527          * set.  On receipt of a signal this will cause a kqueue to recurse
 1528          * into itself over and over.  Sending the sigio causes the kqueue
 1529          * to become ready, which in turn posts sigio again, forever.
 1530          * Solution: this can be solved by setting a flag in the kqueue that
 1531          * we have a SIGIO in progress.
 1532          * 2) locking problems:
 1533          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1534          * us above the proc and pgrp locks.
 1535          * Solution: Post a signal using an async mechanism, being sure to
 1536          * record a generation count in the delivery so that we do not deliver
 1537          * a signal to the wrong process.
 1538          *
 1539          * Note, these two mechanisms are somewhat mutually exclusive!
 1540          */
 1541 #if 0
 1542         struct kqueue *kq;
 1543 
 1544         kq = fp->f_data;
 1545         switch (cmd) {
 1546         case FIOASYNC:
 1547                 if (*(int *)data) {
 1548                         kq->kq_state |= KQ_ASYNC;
 1549                 } else {
 1550                         kq->kq_state &= ~KQ_ASYNC;
 1551                 }
 1552                 return (0);
 1553 
 1554         case FIOSETOWN:
 1555                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1556 
 1557         case FIOGETOWN:
 1558                 *(int *)data = fgetown(&kq->kq_sigio);
 1559                 return (0);
 1560         }
 1561 #endif
 1562 
 1563         return (ENOTTY);
 1564 }
 1565 
 1566 /*ARGSUSED*/
 1567 static int
 1568 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1569         struct thread *td)
 1570 {
 1571         struct kqueue *kq;
 1572         int revents = 0;
 1573         int error;
 1574 
 1575         if ((error = kqueue_acquire(fp, &kq)))
 1576                 return POLLERR;
 1577 
 1578         KQ_LOCK(kq);
 1579         if (events & (POLLIN | POLLRDNORM)) {
 1580                 if (kq->kq_count) {
 1581                         revents |= events & (POLLIN | POLLRDNORM);
 1582                 } else {
 1583                         selrecord(td, &kq->kq_sel);
 1584                         if (SEL_WAITING(&kq->kq_sel))
 1585                                 kq->kq_state |= KQ_SEL;
 1586                 }
 1587         }
 1588         kqueue_release(kq, 1);
 1589         KQ_UNLOCK(kq);
 1590         return (revents);
 1591 }
 1592 
 1593 /*ARGSUSED*/
 1594 static int
 1595 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1596         struct thread *td)
 1597 {
 1598 
 1599         bzero((void *)st, sizeof *st);
 1600         /*
 1601          * We no longer return kq_count because the unlocked value is useless.
 1602          * If you spent all this time getting the count, why not spend your
 1603          * syscall better by calling kevent?
 1604          *
 1605          * XXX - This is needed for libc_r.
 1606          */
 1607         st->st_mode = S_IFIFO;
 1608         return (0);
 1609 }
 1610 
 1611 /*ARGSUSED*/
 1612 static int
 1613 kqueue_close(struct file *fp, struct thread *td)
 1614 {
 1615         struct kqueue *kq = fp->f_data;
 1616         struct filedesc *fdp;
 1617         struct knote *kn;
 1618         int i;
 1619         int error;
 1620 
 1621         if ((error = kqueue_acquire(fp, &kq)))
 1622                 return error;
 1623 
 1624         KQ_LOCK(kq);
 1625 
 1626         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1627             ("kqueue already closing"));
 1628         kq->kq_state |= KQ_CLOSING;
 1629         if (kq->kq_refcnt > 1)
 1630                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1631 
 1632         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1633         fdp = kq->kq_fdp;
 1634 
 1635         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1636             ("kqueue's knlist not empty"));
 1637 
 1638         for (i = 0; i < kq->kq_knlistsize; i++) {
 1639                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1640                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1641                                 kq->kq_state |= KQ_FLUXWAIT;
 1642                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1643                                 continue;
 1644                         }
 1645                         kn->kn_status |= KN_INFLUX;
 1646                         KQ_UNLOCK(kq);
 1647                         if (!(kn->kn_status & KN_DETACHED))
 1648                                 kn->kn_fop->f_detach(kn);
 1649                         knote_drop(kn, td);
 1650                         KQ_LOCK(kq);
 1651                 }
 1652         }
 1653         if (kq->kq_knhashmask != 0) {
 1654                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1655                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1656                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1657                                         kq->kq_state |= KQ_FLUXWAIT;
 1658                                         msleep(kq, &kq->kq_lock, PSOCK,
 1659                                                "kqclo2", 0);
 1660                                         continue;
 1661                                 }
 1662                                 kn->kn_status |= KN_INFLUX;
 1663                                 KQ_UNLOCK(kq);
 1664                                 if (!(kn->kn_status & KN_DETACHED))
 1665                                         kn->kn_fop->f_detach(kn);
 1666                                 knote_drop(kn, td);
 1667                                 KQ_LOCK(kq);
 1668                         }
 1669                 }
 1670         }
 1671 
 1672         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1673                 kq->kq_state |= KQ_TASKDRAIN;
 1674                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1675         }
 1676 
 1677         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1678                 selwakeuppri(&kq->kq_sel, PSOCK);
 1679                 if (!SEL_WAITING(&kq->kq_sel))
 1680                         kq->kq_state &= ~KQ_SEL;
 1681         }
 1682 
 1683         KQ_UNLOCK(kq);
 1684 
 1685         FILEDESC_XLOCK(fdp);
 1686         SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
 1687         FILEDESC_XUNLOCK(fdp);
 1688 
 1689         knlist_destroy(&kq->kq_sel.si_note);
 1690         mtx_destroy(&kq->kq_lock);
 1691         kq->kq_fdp = NULL;
 1692 
 1693         if (kq->kq_knhash != NULL)
 1694                 free(kq->kq_knhash, M_KQUEUE);
 1695         if (kq->kq_knlist != NULL)
 1696                 free(kq->kq_knlist, M_KQUEUE);
 1697 
 1698         funsetown(&kq->kq_sigio);
 1699         free(kq, M_KQUEUE);
 1700         fp->f_data = NULL;
 1701 
 1702         return (0);
 1703 }
 1704 
 1705 static void
 1706 kqueue_wakeup(struct kqueue *kq)
 1707 {
 1708         KQ_OWNED(kq);
 1709 
 1710         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1711                 kq->kq_state &= ~KQ_SLEEP;
 1712                 wakeup(kq);
 1713         }
 1714         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1715                 selwakeuppri(&kq->kq_sel, PSOCK);
 1716                 if (!SEL_WAITING(&kq->kq_sel))
 1717                         kq->kq_state &= ~KQ_SEL;
 1718         }
 1719         if (!knlist_empty(&kq->kq_sel.si_note))
 1720                 kqueue_schedtask(kq);
 1721         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1722                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1723         }
 1724 }
 1725 
 1726 /*
 1727  * Walk down a list of knotes, activating them if their event has triggered.
 1728  *
 1729  * There is a possibility to optimize in the case of one kq watching another.
 1730  * Instead of scheduling a task to wake it up, you could pass enough state
 1731  * down the chain to make up the parent kqueue.  Make this code functional
 1732  * first.
 1733  */
 1734 void
 1735 knote(struct knlist *list, long hint, int lockflags)
 1736 {
 1737         struct kqueue *kq;
 1738         struct knote *kn;
 1739         int error;
 1740 
 1741         if (list == NULL)
 1742                 return;
 1743 
 1744         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 1745 
 1746         if ((lockflags & KNF_LISTLOCKED) == 0)
 1747                 list->kl_lock(list->kl_lockarg); 
 1748 
 1749         /*
 1750          * If we unlock the list lock (and set KN_INFLUX), we can eliminate
 1751          * the kqueue scheduling, but this will introduce four
 1752          * lock/unlock's for each knote to test.  If we do, continue to use
 1753          * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
 1754          * only safe if you want to remove the current item, which we are
 1755          * not doing.
 1756          */
 1757         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
 1758                 kq = kn->kn_kq;
 1759                 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
 1760                         KQ_LOCK(kq);
 1761                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1762                                 KQ_UNLOCK(kq);
 1763                         } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 1764                                 kn->kn_status |= KN_INFLUX;
 1765                                 KQ_UNLOCK(kq);
 1766                                 error = kn->kn_fop->f_event(kn, hint);
 1767                                 KQ_LOCK(kq);
 1768                                 kn->kn_status &= ~KN_INFLUX;
 1769                                 if (error)
 1770                                         KNOTE_ACTIVATE(kn, 1);
 1771                                 KQ_UNLOCK_FLUX(kq);
 1772                         } else {
 1773                                 kn->kn_status |= KN_HASKQLOCK;
 1774                                 if (kn->kn_fop->f_event(kn, hint))
 1775                                         KNOTE_ACTIVATE(kn, 1);
 1776                                 kn->kn_status &= ~KN_HASKQLOCK;
 1777                                 KQ_UNLOCK(kq);
 1778                         }
 1779                 }
 1780                 kq = NULL;
 1781         }
 1782         if ((lockflags & KNF_LISTLOCKED) == 0)
 1783                 list->kl_unlock(list->kl_lockarg); 
 1784 }
 1785 
 1786 /*
 1787  * add a knote to a knlist
 1788  */
 1789 void
 1790 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 1791 {
 1792         KNL_ASSERT_LOCK(knl, islocked);
 1793         KQ_NOTOWNED(kn->kn_kq);
 1794         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 1795             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 1796         if (!islocked)
 1797                 knl->kl_lock(knl->kl_lockarg);
 1798         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 1799         if (!islocked)
 1800                 knl->kl_unlock(knl->kl_lockarg);
 1801         KQ_LOCK(kn->kn_kq);
 1802         kn->kn_knlist = knl;
 1803         kn->kn_status &= ~KN_DETACHED;
 1804         KQ_UNLOCK(kn->kn_kq);
 1805 }
 1806 
 1807 static void
 1808 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
 1809 {
 1810         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 1811         KNL_ASSERT_LOCK(knl, knlislocked);
 1812         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 1813         if (!kqislocked)
 1814                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 1815     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 1816         if (!knlislocked)
 1817                 knl->kl_lock(knl->kl_lockarg);
 1818         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 1819         kn->kn_knlist = NULL;
 1820         if (!knlislocked)
 1821                 knl->kl_unlock(knl->kl_lockarg);
 1822         if (!kqislocked)
 1823                 KQ_LOCK(kn->kn_kq);
 1824         kn->kn_status |= KN_DETACHED;
 1825         if (!kqislocked)
 1826                 KQ_UNLOCK(kn->kn_kq);
 1827 }
 1828 
 1829 /*
 1830  * remove all knotes from a specified klist
 1831  */
 1832 void
 1833 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 1834 {
 1835 
 1836         knlist_remove_kq(knl, kn, islocked, 0);
 1837 }
 1838 
 1839 /*
 1840  * remove knote from a specified klist while in f_event handler.
 1841  */
 1842 void
 1843 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
 1844 {
 1845 
 1846         knlist_remove_kq(knl, kn, 1,
 1847             (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
 1848 }
 1849 
 1850 int
 1851 knlist_empty(struct knlist *knl)
 1852 {
 1853         KNL_ASSERT_LOCKED(knl);
 1854         return SLIST_EMPTY(&knl->kl_list);
 1855 }
 1856 
 1857 static struct mtx       knlist_lock;
 1858 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 1859         MTX_DEF);
 1860 static void knlist_mtx_lock(void *arg);
 1861 static void knlist_mtx_unlock(void *arg);
 1862 
 1863 static void
 1864 knlist_mtx_lock(void *arg)
 1865 {
 1866         mtx_lock((struct mtx *)arg);
 1867 }
 1868 
 1869 static void
 1870 knlist_mtx_unlock(void *arg)
 1871 {
 1872         mtx_unlock((struct mtx *)arg);
 1873 }
 1874 
 1875 static void
 1876 knlist_mtx_assert_locked(void *arg)
 1877 {
 1878         mtx_assert((struct mtx *)arg, MA_OWNED);
 1879 }
 1880 
 1881 static void
 1882 knlist_mtx_assert_unlocked(void *arg)
 1883 {
 1884         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 1885 }
 1886 
 1887 void
 1888 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 1889     void (*kl_unlock)(void *),
 1890     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 1891 {
 1892 
 1893         if (lock == NULL)
 1894                 knl->kl_lockarg = &knlist_lock;
 1895         else
 1896                 knl->kl_lockarg = lock;
 1897 
 1898         if (kl_lock == NULL)
 1899                 knl->kl_lock = knlist_mtx_lock;
 1900         else
 1901                 knl->kl_lock = kl_lock;
 1902         if (kl_unlock == NULL)
 1903                 knl->kl_unlock = knlist_mtx_unlock;
 1904         else
 1905                 knl->kl_unlock = kl_unlock;
 1906         if (kl_assert_locked == NULL)
 1907                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 1908         else
 1909                 knl->kl_assert_locked = kl_assert_locked;
 1910         if (kl_assert_unlocked == NULL)
 1911                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 1912         else
 1913                 knl->kl_assert_unlocked = kl_assert_unlocked;
 1914 
 1915         SLIST_INIT(&knl->kl_list);
 1916 }
 1917 
 1918 void
 1919 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 1920 {
 1921 
 1922         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 1923 }
 1924 
 1925 void
 1926 knlist_destroy(struct knlist *knl)
 1927 {
 1928 
 1929 #ifdef INVARIANTS
 1930         /*
 1931          * if we run across this error, we need to find the offending
 1932          * driver and have it call knlist_clear.
 1933          */
 1934         if (!SLIST_EMPTY(&knl->kl_list))
 1935                 printf("WARNING: destroying knlist w/ knotes on it!\n");
 1936 #endif
 1937 
 1938         knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
 1939         SLIST_INIT(&knl->kl_list);
 1940 }
 1941 
 1942 /*
 1943  * Even if we are locked, we may need to drop the lock to allow any influx
 1944  * knotes time to "settle".
 1945  */
 1946 void
 1947 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 1948 {
 1949         struct knote *kn, *kn2;
 1950         struct kqueue *kq;
 1951 
 1952         if (islocked)
 1953                 KNL_ASSERT_LOCKED(knl);
 1954         else {
 1955                 KNL_ASSERT_UNLOCKED(knl);
 1956 again:          /* need to reacquire lock since we have dropped it */
 1957                 knl->kl_lock(knl->kl_lockarg);
 1958         }
 1959 
 1960         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 1961                 kq = kn->kn_kq;
 1962                 KQ_LOCK(kq);
 1963                 if ((kn->kn_status & KN_INFLUX)) {
 1964                         KQ_UNLOCK(kq);
 1965                         continue;
 1966                 }
 1967                 knlist_remove_kq(knl, kn, 1, 1);
 1968                 if (killkn) {
 1969                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 1970                         KQ_UNLOCK(kq);
 1971                         knote_drop(kn, td);
 1972                 } else {
 1973                         /* Make sure cleared knotes disappear soon */
 1974                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 1975                         KQ_UNLOCK(kq);
 1976                 }
 1977                 kq = NULL;
 1978         }
 1979 
 1980         if (!SLIST_EMPTY(&knl->kl_list)) {
 1981                 /* there are still KN_INFLUX remaining */
 1982                 kn = SLIST_FIRST(&knl->kl_list);
 1983                 kq = kn->kn_kq;
 1984                 KQ_LOCK(kq);
 1985                 KASSERT(kn->kn_status & KN_INFLUX,
 1986                     ("knote removed w/o list lock"));
 1987                 knl->kl_unlock(knl->kl_lockarg);
 1988                 kq->kq_state |= KQ_FLUXWAIT;
 1989                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 1990                 kq = NULL;
 1991                 goto again;
 1992         }
 1993 
 1994         if (islocked)
 1995                 KNL_ASSERT_LOCKED(knl);
 1996         else {
 1997                 knl->kl_unlock(knl->kl_lockarg);
 1998                 KNL_ASSERT_UNLOCKED(knl);
 1999         }
 2000 }
 2001 
 2002 /*
 2003  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2004  * lock.  This prevents a race where a new fd comes along and occupies the
 2005  * entry and we attach a knote to the fd.
 2006  */
 2007 void
 2008 knote_fdclose(struct thread *td, int fd)
 2009 {
 2010         struct filedesc *fdp = td->td_proc->p_fd;
 2011         struct kqueue *kq;
 2012         struct knote *kn;
 2013         int influx;
 2014 
 2015         FILEDESC_XLOCK_ASSERT(fdp);
 2016 
 2017         /*
 2018          * We shouldn't have to worry about new kevents appearing on fd
 2019          * since filedesc is locked.
 2020          */
 2021         SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2022                 KQ_LOCK(kq);
 2023 
 2024 again:
 2025                 influx = 0;
 2026                 while (kq->kq_knlistsize > fd &&
 2027                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2028                         if (kn->kn_status & KN_INFLUX) {
 2029                                 /* someone else might be waiting on our knote */
 2030                                 if (influx)
 2031                                         wakeup(kq);
 2032                                 kq->kq_state |= KQ_FLUXWAIT;
 2033                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2034                                 goto again;
 2035                         }
 2036                         kn->kn_status |= KN_INFLUX;
 2037                         KQ_UNLOCK(kq);
 2038                         if (!(kn->kn_status & KN_DETACHED))
 2039                                 kn->kn_fop->f_detach(kn);
 2040                         knote_drop(kn, td);
 2041                         influx = 1;
 2042                         KQ_LOCK(kq);
 2043                 }
 2044                 KQ_UNLOCK_FLUX(kq);
 2045         }
 2046 }
 2047 
 2048 static int
 2049 knote_attach(struct knote *kn, struct kqueue *kq)
 2050 {
 2051         struct klist *list;
 2052 
 2053         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 2054         KQ_OWNED(kq);
 2055 
 2056         if (kn->kn_fop->f_isfd) {
 2057                 if (kn->kn_id >= kq->kq_knlistsize)
 2058                         return ENOMEM;
 2059                 list = &kq->kq_knlist[kn->kn_id];
 2060         } else {
 2061                 if (kq->kq_knhash == NULL)
 2062                         return ENOMEM;
 2063                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2064         }
 2065 
 2066         SLIST_INSERT_HEAD(list, kn, kn_link);
 2067 
 2068         return 0;
 2069 }
 2070 
 2071 /*
 2072  * knote must already have been detached using the f_detach method.
 2073  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 2074  * to prevent other removal.
 2075  */
 2076 static void
 2077 knote_drop(struct knote *kn, struct thread *td)
 2078 {
 2079         struct kqueue *kq;
 2080         struct klist *list;
 2081 
 2082         kq = kn->kn_kq;
 2083 
 2084         KQ_NOTOWNED(kq);
 2085         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 2086             ("knote_drop called without KN_INFLUX set in kn_status"));
 2087 
 2088         KQ_LOCK(kq);
 2089         if (kn->kn_fop->f_isfd)
 2090                 list = &kq->kq_knlist[kn->kn_id];
 2091         else
 2092                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2093 
 2094         if (!SLIST_EMPTY(list))
 2095                 SLIST_REMOVE(list, kn, knote, kn_link);
 2096         if (kn->kn_status & KN_QUEUED)
 2097                 knote_dequeue(kn);
 2098         KQ_UNLOCK_FLUX(kq);
 2099 
 2100         if (kn->kn_fop->f_isfd) {
 2101                 fdrop(kn->kn_fp, td);
 2102                 kn->kn_fp = NULL;
 2103         }
 2104         kqueue_fo_release(kn->kn_kevent.filter);
 2105         kn->kn_fop = NULL;
 2106         knote_free(kn);
 2107 }
 2108 
 2109 static void
 2110 knote_enqueue(struct knote *kn)
 2111 {
 2112         struct kqueue *kq = kn->kn_kq;
 2113 
 2114         KQ_OWNED(kn->kn_kq);
 2115         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2116 
 2117         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2118         kn->kn_status |= KN_QUEUED;
 2119         kq->kq_count++;
 2120         kqueue_wakeup(kq);
 2121 }
 2122 
 2123 static void
 2124 knote_dequeue(struct knote *kn)
 2125 {
 2126         struct kqueue *kq = kn->kn_kq;
 2127 
 2128         KQ_OWNED(kn->kn_kq);
 2129         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2130 
 2131         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2132         kn->kn_status &= ~KN_QUEUED;
 2133         kq->kq_count--;
 2134 }
 2135 
 2136 static void
 2137 knote_init(void)
 2138 {
 2139 
 2140         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2141             NULL, NULL, UMA_ALIGN_PTR, 0);
 2142 }
 2143 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2144 
 2145 static struct knote *
 2146 knote_alloc(int waitok)
 2147 {
 2148         return ((struct knote *)uma_zalloc(knote_zone,
 2149             (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
 2150 }
 2151 
 2152 static void
 2153 knote_free(struct knote *kn)
 2154 {
 2155         if (kn != NULL)
 2156                 uma_zfree(knote_zone, kn);
 2157 }
 2158 
 2159 /*
 2160  * Register the kev w/ the kq specified by fd.
 2161  */
 2162 int 
 2163 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2164 {
 2165         struct kqueue *kq;
 2166         struct file *fp;
 2167         int error;
 2168 
 2169         if ((error = fget(td, fd, &fp)) != 0)
 2170                 return (error);
 2171         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2172                 goto noacquire;
 2173 
 2174         error = kqueue_register(kq, kev, td, waitok);
 2175 
 2176         kqueue_release(kq, 0);
 2177 
 2178 noacquire:
 2179         fdrop(fp, td);
 2180 
 2181         return error;
 2182 }

Cache object: 204233e39cf240d6732991a325ed096f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.