The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_event.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
    3  * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
    4  * Copyright (c) 2009 Apple, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include "opt_ktrace.h"
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/kernel.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/proc.h>
   40 #include <sys/malloc.h>
   41 #include <sys/unistd.h>
   42 #include <sys/file.h>
   43 #include <sys/filedesc.h>
   44 #include <sys/filio.h>
   45 #include <sys/fcntl.h>
   46 #include <sys/kthread.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/queue.h>
   49 #include <sys/event.h>
   50 #include <sys/eventvar.h>
   51 #include <sys/poll.h>
   52 #include <sys/protosw.h>
   53 #include <sys/sigio.h>
   54 #include <sys/signalvar.h>
   55 #include <sys/socket.h>
   56 #include <sys/socketvar.h>
   57 #include <sys/stat.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/sysproto.h>
   60 #include <sys/syscallsubr.h>
   61 #include <sys/taskqueue.h>
   62 #include <sys/uio.h>
   63 #ifdef KTRACE
   64 #include <sys/ktrace.h>
   65 #endif
   66 
   67 #include <vm/uma.h>
   68 
   69 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
   70 
   71 /*
   72  * This lock is used if multiple kq locks are required.  This possibly
   73  * should be made into a per proc lock.
   74  */
   75 static struct mtx       kq_global;
   76 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
   77 #define KQ_GLOBAL_LOCK(lck, haslck)     do {    \
   78         if (!haslck)                            \
   79                 mtx_lock(lck);                  \
   80         haslck = 1;                             \
   81 } while (0)
   82 #define KQ_GLOBAL_UNLOCK(lck, haslck)   do {    \
   83         if (haslck)                             \
   84                 mtx_unlock(lck);                        \
   85         haslck = 0;                             \
   86 } while (0)
   87 
   88 TASKQUEUE_DEFINE_THREAD(kqueue);
   89 
   90 static int      kevent_copyout(void *arg, struct kevent *kevp, int count);
   91 static int      kevent_copyin(void *arg, struct kevent *kevp, int count);
   92 static int      kqueue_register(struct kqueue *kq, struct kevent *kev,
   93                     struct thread *td, int waitok);
   94 static int      kqueue_acquire(struct file *fp, struct kqueue **kqp);
   95 static void     kqueue_release(struct kqueue *kq, int locked);
   96 static int      kqueue_expand(struct kqueue *kq, struct filterops *fops,
   97                     uintptr_t ident, int waitok);
   98 static void     kqueue_task(void *arg, int pending);
   99 static int      kqueue_scan(struct kqueue *kq, int maxevents,
  100                     struct kevent_copyops *k_ops,
  101                     const struct timespec *timeout,
  102                     struct kevent *keva, struct thread *td);
  103 static void     kqueue_wakeup(struct kqueue *kq);
  104 static struct filterops *kqueue_fo_find(int filt);
  105 static void     kqueue_fo_release(int filt);
  106 
  107 static fo_rdwr_t        kqueue_read;
  108 static fo_rdwr_t        kqueue_write;
  109 static fo_truncate_t    kqueue_truncate;
  110 static fo_ioctl_t       kqueue_ioctl;
  111 static fo_poll_t        kqueue_poll;
  112 static fo_kqfilter_t    kqueue_kqfilter;
  113 static fo_stat_t        kqueue_stat;
  114 static fo_close_t       kqueue_close;
  115 
  116 static struct fileops kqueueops = {
  117         .fo_read = kqueue_read,
  118         .fo_write = kqueue_write,
  119         .fo_truncate = kqueue_truncate,
  120         .fo_ioctl = kqueue_ioctl,
  121         .fo_poll = kqueue_poll,
  122         .fo_kqfilter = kqueue_kqfilter,
  123         .fo_stat = kqueue_stat,
  124         .fo_close = kqueue_close,
  125 };
  126 
  127 static int      knote_attach(struct knote *kn, struct kqueue *kq);
  128 static void     knote_drop(struct knote *kn, struct thread *td);
  129 static void     knote_enqueue(struct knote *kn);
  130 static void     knote_dequeue(struct knote *kn);
  131 static void     knote_init(void);
  132 static struct   knote *knote_alloc(int waitok);
  133 static void     knote_free(struct knote *kn);
  134 
  135 static void     filt_kqdetach(struct knote *kn);
  136 static int      filt_kqueue(struct knote *kn, long hint);
  137 static int      filt_procattach(struct knote *kn);
  138 static void     filt_procdetach(struct knote *kn);
  139 static int      filt_proc(struct knote *kn, long hint);
  140 static int      filt_fileattach(struct knote *kn);
  141 static void     filt_timerexpire(void *knx);
  142 static int      filt_timerattach(struct knote *kn);
  143 static void     filt_timerdetach(struct knote *kn);
  144 static int      filt_timer(struct knote *kn, long hint);
  145 static int      filt_userattach(struct knote *kn);
  146 static void     filt_userdetach(struct knote *kn);
  147 static int      filt_user(struct knote *kn, long hint);
  148 static void     filt_usertouch(struct knote *kn, struct kevent *kev,
  149                     u_long type);
  150 
  151 static struct filterops file_filtops =
  152         { 1, filt_fileattach, NULL, NULL };
  153 static struct filterops kqread_filtops =
  154         { 1, NULL, filt_kqdetach, filt_kqueue };
  155 /* XXX - move to kern_proc.c?  */
  156 static struct filterops proc_filtops =
  157         { 0, filt_procattach, filt_procdetach, filt_proc };
  158 static struct filterops timer_filtops =
  159         { 0, filt_timerattach, filt_timerdetach, filt_timer };
  160 static struct filterops user_filtops = {
  161         .f_attach = filt_userattach,
  162         .f_detach = filt_userdetach,
  163         .f_event = filt_user,
  164         .f_touch = filt_usertouch,
  165 };
  166 
  167 static uma_zone_t       knote_zone;
  168 static int              kq_ncallouts = 0;
  169 static int              kq_calloutmax = (4 * 1024);
  170 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
  171     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
  172 
  173 /* XXX - ensure not KN_INFLUX?? */
  174 #define KNOTE_ACTIVATE(kn, islock) do {                                 \
  175         if ((islock))                                                   \
  176                 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);            \
  177         else                                                            \
  178                 KQ_LOCK((kn)->kn_kq);                                   \
  179         (kn)->kn_status |= KN_ACTIVE;                                   \
  180         if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)         \
  181                 knote_enqueue((kn));                                    \
  182         if (!(islock))                                                  \
  183                 KQ_UNLOCK((kn)->kn_kq);                                 \
  184 } while(0)
  185 #define KQ_LOCK(kq) do {                                                \
  186         mtx_lock(&(kq)->kq_lock);                                       \
  187 } while (0)
  188 #define KQ_FLUX_WAKEUP(kq) do {                                         \
  189         if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {            \
  190                 (kq)->kq_state &= ~KQ_FLUXWAIT;                         \
  191                 wakeup((kq));                                           \
  192         }                                                               \
  193 } while (0)
  194 #define KQ_UNLOCK_FLUX(kq) do {                                         \
  195         KQ_FLUX_WAKEUP(kq);                                             \
  196         mtx_unlock(&(kq)->kq_lock);                                     \
  197 } while (0)
  198 #define KQ_UNLOCK(kq) do {                                              \
  199         mtx_unlock(&(kq)->kq_lock);                                     \
  200 } while (0)
  201 #define KQ_OWNED(kq) do {                                               \
  202         mtx_assert(&(kq)->kq_lock, MA_OWNED);                           \
  203 } while (0)
  204 #define KQ_NOTOWNED(kq) do {                                            \
  205         mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);                        \
  206 } while (0)
  207 #define KN_LIST_LOCK(kn) do {                                           \
  208         if (kn->kn_knlist != NULL)                                      \
  209                 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);      \
  210 } while (0)
  211 #define KN_LIST_UNLOCK(kn) do {                                         \
  212         if (kn->kn_knlist != NULL)                                      \
  213                 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);    \
  214 } while (0)
  215 #define KNL_ASSERT_LOCK(knl, islocked) do {                             \
  216         if (islocked)                                                   \
  217                 KNL_ASSERT_LOCKED(knl);                         \
  218         else                                                            \
  219                 KNL_ASSERT_UNLOCKED(knl);                               \
  220 } while (0)
  221 #ifdef INVARIANTS
  222 #define KNL_ASSERT_LOCKED(knl) do {                                     \
  223         knl->kl_assert_locked((knl)->kl_lockarg);                       \
  224 } while (0)
  225 #define KNL_ASSERT_UNLOCKED(knl) do {                                   \
  226         knl->kl_assert_unlocked((knl)->kl_lockarg);                     \
  227 } while (0)
  228 #else /* !INVARIANTS */
  229 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
  230 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
  231 #endif /* INVARIANTS */
  232 
  233 #define KN_HASHSIZE             64              /* XXX should be tunable */
  234 #define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))
  235 
  236 static int
  237 filt_nullattach(struct knote *kn)
  238 {
  239 
  240         return (ENXIO);
  241 };
  242 
  243 struct filterops null_filtops =
  244         { 0, filt_nullattach, NULL, NULL };
  245 
  246 /* XXX - make SYSINIT to add these, and move into respective modules. */
  247 extern struct filterops sig_filtops;
  248 extern struct filterops fs_filtops;
  249 
  250 /*
  251  * Table for for all system-defined filters.
  252  */
  253 static struct mtx       filterops_lock;
  254 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
  255         MTX_DEF);
  256 static struct {
  257         struct filterops *for_fop;
  258         int for_refcnt;
  259 } sysfilt_ops[EVFILT_SYSCOUNT] = {
  260         { &file_filtops },                      /* EVFILT_READ */
  261         { &file_filtops },                      /* EVFILT_WRITE */
  262         { &null_filtops },                      /* EVFILT_AIO */
  263         { &file_filtops },                      /* EVFILT_VNODE */
  264         { &proc_filtops },                      /* EVFILT_PROC */
  265         { &sig_filtops },                       /* EVFILT_SIGNAL */
  266         { &timer_filtops },                     /* EVFILT_TIMER */
  267         { &null_filtops },                      /* former EVFILT_NETDEV */
  268         { &fs_filtops },                        /* EVFILT_FS */
  269         { &null_filtops },                      /* EVFILT_LIO */
  270         { &user_filtops },                      /* EVFILT_USER */
  271 };
  272 
  273 /*
  274  * Simple redirection for all cdevsw style objects to call their fo_kqfilter
  275  * method.
  276  */
  277 static int
  278 filt_fileattach(struct knote *kn)
  279 {
  280 
  281         return (fo_kqfilter(kn->kn_fp, kn));
  282 }
  283 
  284 /*ARGSUSED*/
  285 static int
  286 kqueue_kqfilter(struct file *fp, struct knote *kn)
  287 {
  288         struct kqueue *kq = kn->kn_fp->f_data;
  289 
  290         if (kn->kn_filter != EVFILT_READ)
  291                 return (EINVAL);
  292 
  293         kn->kn_status |= KN_KQUEUE;
  294         kn->kn_fop = &kqread_filtops;
  295         knlist_add(&kq->kq_sel.si_note, kn, 0);
  296 
  297         return (0);
  298 }
  299 
  300 static void
  301 filt_kqdetach(struct knote *kn)
  302 {
  303         struct kqueue *kq = kn->kn_fp->f_data;
  304 
  305         knlist_remove(&kq->kq_sel.si_note, kn, 0);
  306 }
  307 
  308 /*ARGSUSED*/
  309 static int
  310 filt_kqueue(struct knote *kn, long hint)
  311 {
  312         struct kqueue *kq = kn->kn_fp->f_data;
  313 
  314         kn->kn_data = kq->kq_count;
  315         return (kn->kn_data > 0);
  316 }
  317 
  318 /* XXX - move to kern_proc.c?  */
  319 static int
  320 filt_procattach(struct knote *kn)
  321 {
  322         struct proc *p;
  323         int immediate;
  324         int error;
  325 
  326         immediate = 0;
  327         p = pfind(kn->kn_id);
  328         if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
  329                 p = zpfind(kn->kn_id);
  330                 immediate = 1;
  331         } else if (p != NULL && (p->p_flag & P_WEXIT)) {
  332                 immediate = 1;
  333         }
  334 
  335         if (p == NULL)
  336                 return (ESRCH);
  337         if ((error = p_cansee(curthread, p))) {
  338                 PROC_UNLOCK(p);
  339                 return (error);
  340         }
  341 
  342         kn->kn_ptr.p_proc = p;
  343         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  344 
  345         /*
  346          * internal flag indicating registration done by kernel
  347          */
  348         if (kn->kn_flags & EV_FLAG1) {
  349                 kn->kn_data = kn->kn_sdata;             /* ppid */
  350                 kn->kn_fflags = NOTE_CHILD;
  351                 kn->kn_flags &= ~EV_FLAG1;
  352         }
  353 
  354         if (immediate == 0)
  355                 knlist_add(&p->p_klist, kn, 1);
  356 
  357         /*
  358          * Immediately activate any exit notes if the target process is a
  359          * zombie.  This is necessary to handle the case where the target
  360          * process, e.g. a child, dies before the kevent is registered.
  361          */
  362         if (immediate && filt_proc(kn, NOTE_EXIT))
  363                 KNOTE_ACTIVATE(kn, 0);
  364 
  365         PROC_UNLOCK(p);
  366 
  367         return (0);
  368 }
  369 
  370 /*
  371  * The knote may be attached to a different process, which may exit,
  372  * leaving nothing for the knote to be attached to.  So when the process
  373  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  374  * it will be deleted when read out.  However, as part of the knote deletion,
  375  * this routine is called, so a check is needed to avoid actually performing
  376  * a detach, because the original process does not exist any more.
  377  */
  378 /* XXX - move to kern_proc.c?  */
  379 static void
  380 filt_procdetach(struct knote *kn)
  381 {
  382         struct proc *p;
  383 
  384         p = kn->kn_ptr.p_proc;
  385         knlist_remove(&p->p_klist, kn, 0);
  386         kn->kn_ptr.p_proc = NULL;
  387 }
  388 
  389 /* XXX - move to kern_proc.c?  */
  390 static int
  391 filt_proc(struct knote *kn, long hint)
  392 {
  393         struct proc *p = kn->kn_ptr.p_proc;
  394         u_int event;
  395 
  396         /*
  397          * mask off extra data
  398          */
  399         event = (u_int)hint & NOTE_PCTRLMASK;
  400 
  401         /*
  402          * if the user is interested in this event, record it.
  403          */
  404         if (kn->kn_sfflags & event)
  405                 kn->kn_fflags |= event;
  406 
  407         /*
  408          * process is gone, so flag the event as finished.
  409          */
  410         if (event == NOTE_EXIT) {
  411                 if (!(kn->kn_status & KN_DETACHED))
  412                         knlist_remove_inevent(&p->p_klist, kn);
  413                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  414                 kn->kn_ptr.p_proc = NULL;
  415                 if (kn->kn_fflags & NOTE_EXIT)
  416                         kn->kn_data = p->p_xstat;
  417                 if (kn->kn_fflags == 0)
  418                         kn->kn_flags |= EV_DROP;
  419                 return (1);
  420         }
  421 
  422         return (kn->kn_fflags != 0);
  423 }
  424 
  425 /*
  426  * Called when the process forked. It mostly does the same as the
  427  * knote(), activating all knotes registered to be activated when the
  428  * process forked. Additionally, for each knote attached to the
  429  * parent, check whether user wants to track the new process. If so
  430  * attach a new knote to it, and immediately report an event with the
  431  * child's pid.
  432  */
  433 void
  434 knote_fork(struct knlist *list, int pid)
  435 {
  436         struct kqueue *kq;
  437         struct knote *kn;
  438         struct kevent kev;
  439         int error;
  440 
  441         if (list == NULL)
  442                 return;
  443         list->kl_lock(list->kl_lockarg);
  444 
  445         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
  446                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
  447                         continue;
  448                 kq = kn->kn_kq;
  449                 KQ_LOCK(kq);
  450                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
  451                         KQ_UNLOCK(kq);
  452                         continue;
  453                 }
  454 
  455                 /*
  456                  * The same as knote(), activate the event.
  457                  */
  458                 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
  459                         kn->kn_status |= KN_HASKQLOCK;
  460                         if (kn->kn_fop->f_event(kn, NOTE_FORK))
  461                                 KNOTE_ACTIVATE(kn, 1);
  462                         kn->kn_status &= ~KN_HASKQLOCK;
  463                         KQ_UNLOCK(kq);
  464                         continue;
  465                 }
  466 
  467                 /*
  468                  * The NOTE_TRACK case. In addition to the activation
  469                  * of the event, we need to register new event to
  470                  * track the child. Drop the locks in preparation for
  471                  * the call to kqueue_register().
  472                  */
  473                 kn->kn_status |= KN_INFLUX;
  474                 KQ_UNLOCK(kq);
  475                 list->kl_unlock(list->kl_lockarg);
  476 
  477                 /*
  478                  * Activate existing knote and register a knote with
  479                  * new process.
  480                  */
  481                 kev.ident = pid;
  482                 kev.filter = kn->kn_filter;
  483                 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  484                 kev.fflags = kn->kn_sfflags;
  485                 kev.data = kn->kn_id;           /* parent */
  486                 kev.udata = kn->kn_kevent.udata;/* preserve udata */
  487                 error = kqueue_register(kq, &kev, NULL, 0);
  488                 if (error)
  489                         kn->kn_fflags |= NOTE_TRACKERR;
  490                 if (kn->kn_fop->f_event(kn, NOTE_FORK))
  491                         KNOTE_ACTIVATE(kn, 0);
  492                 KQ_LOCK(kq);
  493                 kn->kn_status &= ~KN_INFLUX;
  494                 KQ_UNLOCK_FLUX(kq);
  495                 list->kl_lock(list->kl_lockarg);
  496         }
  497         list->kl_unlock(list->kl_lockarg);
  498 }
  499 
  500 /*
  501  * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
  502  * interval timer support code.
  503  */
  504 static int
  505 timertoticks(intptr_t data)
  506 {
  507         struct timeval tv;
  508         int tticks;
  509 
  510         tv.tv_sec = data / 1000;
  511         tv.tv_usec = (data % 1000) * 1000;
  512         tticks = tvtohz(&tv);
  513 
  514         return tticks;
  515 }
  516 
  517 static void
  518 filt_timerexpire(void *knx)
  519 {
  520         struct knote *kn = knx;
  521         struct callout *calloutp;
  522 
  523         kn->kn_data++;
  524         KNOTE_ACTIVATE(kn, 0);  /* XXX - handle locking */
  525 
  526         /*
  527          * timertoticks() uses tvtohz() which always adds 1 to allow
  528          * for the time until the next clock interrupt being strictly
  529          * less than 1 clock tick.  We don't want that here since we
  530          * want to appear to be in sync with the clock interrupt even
  531          * when we're delayed.
  532          */
  533         if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
  534                 calloutp = (struct callout *)kn->kn_hook;
  535                 callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata) - 1,
  536                     filt_timerexpire, kn);
  537         }
  538 }
  539 
  540 /*
  541  * data contains amount of time to sleep, in milliseconds
  542  */
  543 static int
  544 filt_timerattach(struct knote *kn)
  545 {
  546         struct callout *calloutp;
  547 
  548         atomic_add_int(&kq_ncallouts, 1);
  549 
  550         if (kq_ncallouts >= kq_calloutmax) {
  551                 atomic_add_int(&kq_ncallouts, -1);
  552                 return (ENOMEM);
  553         }
  554 
  555         kn->kn_flags |= EV_CLEAR;               /* automatically set */
  556         kn->kn_status &= ~KN_DETACHED;          /* knlist_add usually sets it */
  557         calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
  558         callout_init(calloutp, CALLOUT_MPSAFE);
  559         kn->kn_hook = calloutp;
  560         callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
  561             filt_timerexpire, kn);
  562 
  563         return (0);
  564 }
  565 
  566 static void
  567 filt_timerdetach(struct knote *kn)
  568 {
  569         struct callout *calloutp;
  570 
  571         calloutp = (struct callout *)kn->kn_hook;
  572         callout_drain(calloutp);
  573         free(calloutp, M_KQUEUE);
  574         atomic_add_int(&kq_ncallouts, -1);
  575         kn->kn_status |= KN_DETACHED;   /* knlist_remove usually clears it */
  576 }
  577 
  578 static int
  579 filt_timer(struct knote *kn, long hint)
  580 {
  581 
  582         return (kn->kn_data != 0);
  583 }
  584 
  585 static int
  586 filt_userattach(struct knote *kn)
  587 {
  588 
  589         /* 
  590          * EVFILT_USER knotes are not attached to anything in the kernel.
  591          */ 
  592         kn->kn_hook = NULL;
  593         if (kn->kn_fflags & NOTE_TRIGGER)
  594                 kn->kn_hookid = 1;
  595         else
  596                 kn->kn_hookid = 0;
  597         return (0);
  598 }
  599 
  600 static void
  601 filt_userdetach(__unused struct knote *kn)
  602 {
  603 
  604         /*
  605          * EVFILT_USER knotes are not attached to anything in the kernel.
  606          */
  607 }
  608 
  609 static int
  610 filt_user(struct knote *kn, __unused long hint)
  611 {
  612 
  613         return (kn->kn_hookid);
  614 }
  615 
  616 static void
  617 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
  618 {
  619         u_int ffctrl;
  620 
  621         switch (type) {
  622         case EVENT_REGISTER:
  623                 if (kev->fflags & NOTE_TRIGGER)
  624                         kn->kn_hookid = 1;
  625 
  626                 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
  627                 kev->fflags &= NOTE_FFLAGSMASK;
  628                 switch (ffctrl) {
  629                 case NOTE_FFNOP:
  630                         break;
  631 
  632                 case NOTE_FFAND:
  633                         kn->kn_sfflags &= kev->fflags;
  634                         break;
  635 
  636                 case NOTE_FFOR:
  637                         kn->kn_sfflags |= kev->fflags;
  638                         break;
  639 
  640                 case NOTE_FFCOPY:
  641                         kn->kn_sfflags = kev->fflags;
  642                         break;
  643 
  644                 default:
  645                         /* XXX Return error? */
  646                         break;
  647                 }
  648                 kn->kn_sdata = kev->data;
  649                 if (kev->flags & EV_CLEAR) {
  650                         kn->kn_hookid = 0;
  651                         kn->kn_data = 0;
  652                         kn->kn_fflags = 0;
  653                 }
  654                 break;
  655 
  656         case EVENT_PROCESS:
  657                 *kev = kn->kn_kevent;
  658                 kev->fflags = kn->kn_sfflags;
  659                 kev->data = kn->kn_sdata;
  660                 if (kn->kn_flags & EV_CLEAR) {
  661                         kn->kn_hookid = 0;
  662                         kn->kn_data = 0;
  663                         kn->kn_fflags = 0;
  664                 }
  665                 break;
  666 
  667         default:
  668                 panic("filt_usertouch() - invalid type (%ld)", type);
  669                 break;
  670         }
  671 }
  672 
  673 int
  674 kqueue(struct thread *td, struct kqueue_args *uap)
  675 {
  676         struct filedesc *fdp;
  677         struct kqueue *kq;
  678         struct file *fp;
  679         int fd, error;
  680 
  681         fdp = td->td_proc->p_fd;
  682         error = falloc(td, &fp, &fd);
  683         if (error)
  684                 goto done2;
  685 
  686         /* An extra reference on `nfp' has been held for us by falloc(). */
  687         kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
  688         mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
  689         TAILQ_INIT(&kq->kq_head);
  690         kq->kq_fdp = fdp;
  691         knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
  692         TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
  693 
  694         FILEDESC_XLOCK(fdp);
  695         SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
  696         FILEDESC_XUNLOCK(fdp);
  697 
  698         finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
  699         fdrop(fp, td);
  700 
  701         td->td_retval[0] = fd;
  702 done2:
  703         return (error);
  704 }
  705 
  706 #ifndef _SYS_SYSPROTO_H_
  707 struct kevent_args {
  708         int     fd;
  709         const struct kevent *changelist;
  710         int     nchanges;
  711         struct  kevent *eventlist;
  712         int     nevents;
  713         const struct timespec *timeout;
  714 };
  715 #endif
  716 int
  717 kevent(struct thread *td, struct kevent_args *uap)
  718 {
  719         struct timespec ts, *tsp;
  720         struct kevent_copyops k_ops = { uap,
  721                                         kevent_copyout,
  722                                         kevent_copyin};
  723         int error;
  724 #ifdef KTRACE
  725         struct uio ktruio;
  726         struct iovec ktriov;
  727         struct uio *ktruioin = NULL;
  728         struct uio *ktruioout = NULL;
  729 #endif
  730 
  731         if (uap->timeout != NULL) {
  732                 error = copyin(uap->timeout, &ts, sizeof(ts));
  733                 if (error)
  734                         return (error);
  735                 tsp = &ts;
  736         } else
  737                 tsp = NULL;
  738 
  739 #ifdef KTRACE
  740         if (KTRPOINT(td, KTR_GENIO)) {
  741                 ktriov.iov_base = uap->changelist;
  742                 ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
  743                 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
  744                     .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
  745                     .uio_td = td };
  746                 ktruioin = cloneuio(&ktruio);
  747                 ktriov.iov_base = uap->eventlist;
  748                 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
  749                 ktruioout = cloneuio(&ktruio);
  750         }
  751 #endif
  752 
  753         error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
  754             &k_ops, tsp);
  755 
  756 #ifdef KTRACE
  757         if (ktruioin != NULL) {
  758                 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
  759                 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
  760                 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
  761                 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
  762         }
  763 #endif
  764 
  765         return (error);
  766 }
  767 
  768 /*
  769  * Copy 'count' items into the destination list pointed to by uap->eventlist.
  770  */
  771 static int
  772 kevent_copyout(void *arg, struct kevent *kevp, int count)
  773 {
  774         struct kevent_args *uap;
  775         int error;
  776 
  777         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  778         uap = (struct kevent_args *)arg;
  779 
  780         error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
  781         if (error == 0)
  782                 uap->eventlist += count;
  783         return (error);
  784 }
  785 
  786 /*
  787  * Copy 'count' items from the list pointed to by uap->changelist.
  788  */
  789 static int
  790 kevent_copyin(void *arg, struct kevent *kevp, int count)
  791 {
  792         struct kevent_args *uap;
  793         int error;
  794 
  795         KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
  796         uap = (struct kevent_args *)arg;
  797 
  798         error = copyin(uap->changelist, kevp, count * sizeof *kevp);
  799         if (error == 0)
  800                 uap->changelist += count;
  801         return (error);
  802 }
  803 
  804 int
  805 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
  806     struct kevent_copyops *k_ops, const struct timespec *timeout)
  807 {
  808         struct kevent keva[KQ_NEVENTS];
  809         struct kevent *kevp, *changes;
  810         struct kqueue *kq;
  811         struct file *fp;
  812         int i, n, nerrors, error;
  813 
  814         if ((error = fget(td, fd, &fp)) != 0)
  815                 return (error);
  816         if ((error = kqueue_acquire(fp, &kq)) != 0)
  817                 goto done_norel;
  818 
  819         nerrors = 0;
  820 
  821         while (nchanges > 0) {
  822                 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
  823                 error = k_ops->k_copyin(k_ops->arg, keva, n);
  824                 if (error)
  825                         goto done;
  826                 changes = keva;
  827                 for (i = 0; i < n; i++) {
  828                         kevp = &changes[i];
  829                         if (!kevp->filter)
  830                                 continue;
  831                         kevp->flags &= ~EV_SYSFLAGS;
  832                         error = kqueue_register(kq, kevp, td, 1);
  833                         if (error || (kevp->flags & EV_RECEIPT)) {
  834                                 if (nevents != 0) {
  835                                         kevp->flags = EV_ERROR;
  836                                         kevp->data = error;
  837                                         (void) k_ops->k_copyout(k_ops->arg,
  838                                             kevp, 1);
  839                                         nevents--;
  840                                         nerrors++;
  841                                 } else {
  842                                         goto done;
  843                                 }
  844                         }
  845                 }
  846                 nchanges -= n;
  847         }
  848         if (nerrors) {
  849                 td->td_retval[0] = nerrors;
  850                 error = 0;
  851                 goto done;
  852         }
  853 
  854         error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
  855 done:
  856         kqueue_release(kq, 0);
  857 done_norel:
  858         fdrop(fp, td);
  859         return (error);
  860 }
  861 
  862 int
  863 kqueue_add_filteropts(int filt, struct filterops *filtops)
  864 {
  865         int error;
  866 
  867         error = 0;
  868         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
  869                 printf(
  870 "trying to add a filterop that is out of range: %d is beyond %d\n",
  871                     ~filt, EVFILT_SYSCOUNT);
  872                 return EINVAL;
  873         }
  874         mtx_lock(&filterops_lock);
  875         if (sysfilt_ops[~filt].for_fop != &null_filtops &&
  876             sysfilt_ops[~filt].for_fop != NULL)
  877                 error = EEXIST;
  878         else {
  879                 sysfilt_ops[~filt].for_fop = filtops;
  880                 sysfilt_ops[~filt].for_refcnt = 0;
  881         }
  882         mtx_unlock(&filterops_lock);
  883 
  884         return (error);
  885 }
  886 
  887 int
  888 kqueue_del_filteropts(int filt)
  889 {
  890         int error;
  891 
  892         error = 0;
  893         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  894                 return EINVAL;
  895 
  896         mtx_lock(&filterops_lock);
  897         if (sysfilt_ops[~filt].for_fop == &null_filtops ||
  898             sysfilt_ops[~filt].for_fop == NULL)
  899                 error = EINVAL;
  900         else if (sysfilt_ops[~filt].for_refcnt != 0)
  901                 error = EBUSY;
  902         else {
  903                 sysfilt_ops[~filt].for_fop = &null_filtops;
  904                 sysfilt_ops[~filt].for_refcnt = 0;
  905         }
  906         mtx_unlock(&filterops_lock);
  907 
  908         return error;
  909 }
  910 
  911 static struct filterops *
  912 kqueue_fo_find(int filt)
  913 {
  914 
  915         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  916                 return NULL;
  917 
  918         mtx_lock(&filterops_lock);
  919         sysfilt_ops[~filt].for_refcnt++;
  920         if (sysfilt_ops[~filt].for_fop == NULL)
  921                 sysfilt_ops[~filt].for_fop = &null_filtops;
  922         mtx_unlock(&filterops_lock);
  923 
  924         return sysfilt_ops[~filt].for_fop;
  925 }
  926 
  927 static void
  928 kqueue_fo_release(int filt)
  929 {
  930 
  931         if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
  932                 return;
  933 
  934         mtx_lock(&filterops_lock);
  935         KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
  936             ("filter object refcount not valid on release"));
  937         sysfilt_ops[~filt].for_refcnt--;
  938         mtx_unlock(&filterops_lock);
  939 }
  940 
  941 /*
  942  * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
  943  * influence if memory allocation should wait.  Make sure it is 0 if you
  944  * hold any mutexes.
  945  */
  946 static int
  947 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
  948 {
  949         struct filterops *fops;
  950         struct file *fp;
  951         struct knote *kn, *tkn;
  952         int error, filt, event;
  953         int haskqglobal;
  954 
  955         fp = NULL;
  956         kn = NULL;
  957         error = 0;
  958         haskqglobal = 0;
  959 
  960         filt = kev->filter;
  961         fops = kqueue_fo_find(filt);
  962         if (fops == NULL)
  963                 return EINVAL;
  964 
  965         tkn = knote_alloc(waitok);              /* prevent waiting with locks */
  966 
  967 findkn:
  968         if (fops->f_isfd) {
  969                 KASSERT(td != NULL, ("td is NULL"));
  970                 error = fget(td, kev->ident, &fp);
  971                 if (error)
  972                         goto done;
  973 
  974                 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
  975                     kev->ident, 0) != 0) {
  976                         /* try again */
  977                         fdrop(fp, td);
  978                         fp = NULL;
  979                         error = kqueue_expand(kq, fops, kev->ident, waitok);
  980                         if (error)
  981                                 goto done;
  982                         goto findkn;
  983                 }
  984 
  985                 if (fp->f_type == DTYPE_KQUEUE) {
  986                         /*
  987                          * if we add some inteligence about what we are doing,
  988                          * we should be able to support events on ourselves.
  989                          * We need to know when we are doing this to prevent
  990                          * getting both the knlist lock and the kq lock since
  991                          * they are the same thing.
  992                          */
  993                         if (fp->f_data == kq) {
  994                                 error = EINVAL;
  995                                 goto done;
  996                         }
  997 
  998                         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
  999                 }
 1000 
 1001                 KQ_LOCK(kq);
 1002                 if (kev->ident < kq->kq_knlistsize) {
 1003                         SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
 1004                                 if (kev->filter == kn->kn_filter)
 1005                                         break;
 1006                 }
 1007         } else {
 1008                 if ((kev->flags & EV_ADD) == EV_ADD)
 1009                         kqueue_expand(kq, fops, kev->ident, waitok);
 1010 
 1011                 KQ_LOCK(kq);
 1012                 if (kq->kq_knhashmask != 0) {
 1013                         struct klist *list;
 1014 
 1015                         list = &kq->kq_knhash[
 1016                             KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
 1017                         SLIST_FOREACH(kn, list, kn_link)
 1018                                 if (kev->ident == kn->kn_id &&
 1019                                     kev->filter == kn->kn_filter)
 1020                                         break;
 1021                 }
 1022         }
 1023 
 1024         /* knote is in the process of changing, wait for it to stablize. */
 1025         if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1026                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1027                 kq->kq_state |= KQ_FLUXWAIT;
 1028                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
 1029                 if (fp != NULL) {
 1030                         fdrop(fp, td);
 1031                         fp = NULL;
 1032                 }
 1033                 goto findkn;
 1034         }
 1035 
 1036         /*
 1037          * kn now contains the matching knote, or NULL if no match
 1038          */
 1039         if (kn == NULL) {
 1040                 if (kev->flags & EV_ADD) {
 1041                         kn = tkn;
 1042                         tkn = NULL;
 1043                         if (kn == NULL) {
 1044                                 KQ_UNLOCK(kq);
 1045                                 error = ENOMEM;
 1046                                 goto done;
 1047                         }
 1048                         kn->kn_fp = fp;
 1049                         kn->kn_kq = kq;
 1050                         kn->kn_fop = fops;
 1051                         /*
 1052                          * apply reference counts to knote structure, and
 1053                          * do not release it at the end of this routine.
 1054                          */
 1055                         fops = NULL;
 1056                         fp = NULL;
 1057 
 1058                         kn->kn_sfflags = kev->fflags;
 1059                         kn->kn_sdata = kev->data;
 1060                         kev->fflags = 0;
 1061                         kev->data = 0;
 1062                         kn->kn_kevent = *kev;
 1063                         kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
 1064                             EV_ENABLE | EV_DISABLE);
 1065                         kn->kn_status = KN_INFLUX|KN_DETACHED;
 1066 
 1067                         error = knote_attach(kn, kq);
 1068                         KQ_UNLOCK(kq);
 1069                         if (error != 0) {
 1070                                 tkn = kn;
 1071                                 goto done;
 1072                         }
 1073 
 1074                         if ((error = kn->kn_fop->f_attach(kn)) != 0) {
 1075                                 knote_drop(kn, td);
 1076                                 goto done;
 1077                         }
 1078                         KN_LIST_LOCK(kn);
 1079                         goto done_ev_add;
 1080                 } else {
 1081                         /* No matching knote and the EV_ADD flag is not set. */
 1082                         KQ_UNLOCK(kq);
 1083                         error = ENOENT;
 1084                         goto done;
 1085                 }
 1086         }
 1087         
 1088         if (kev->flags & EV_DELETE) {
 1089                 kn->kn_status |= KN_INFLUX;
 1090                 KQ_UNLOCK(kq);
 1091                 if (!(kn->kn_status & KN_DETACHED))
 1092                         kn->kn_fop->f_detach(kn);
 1093                 knote_drop(kn, td);
 1094                 goto done;
 1095         }
 1096 
 1097         /*
 1098          * The user may change some filter values after the initial EV_ADD,
 1099          * but doing so will not reset any filter which has already been
 1100          * triggered.
 1101          */
 1102         kn->kn_status |= KN_INFLUX;
 1103         KQ_UNLOCK(kq);
 1104         KN_LIST_LOCK(kn);
 1105         kn->kn_kevent.udata = kev->udata;
 1106         if (!fops->f_isfd && fops->f_touch != NULL) {
 1107                 fops->f_touch(kn, kev, EVENT_REGISTER);
 1108         } else {
 1109                 kn->kn_sfflags = kev->fflags;
 1110                 kn->kn_sdata = kev->data;
 1111         }
 1112 
 1113         /*
 1114          * We can get here with kn->kn_knlist == NULL.  This can happen when
 1115          * the initial attach event decides that the event is "completed" 
 1116          * already.  i.e. filt_procattach is called on a zombie process.  It
 1117          * will call filt_proc which will remove it from the list, and NULL
 1118          * kn_knlist.
 1119          */
 1120 done_ev_add:
 1121         event = kn->kn_fop->f_event(kn, 0);
 1122         KQ_LOCK(kq);
 1123         if (event)
 1124                 KNOTE_ACTIVATE(kn, 1);
 1125         kn->kn_status &= ~KN_INFLUX;
 1126         KN_LIST_UNLOCK(kn);
 1127 
 1128         if ((kev->flags & EV_DISABLE) &&
 1129             ((kn->kn_status & KN_DISABLED) == 0)) {
 1130                 kn->kn_status |= KN_DISABLED;
 1131         }
 1132 
 1133         if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
 1134                 kn->kn_status &= ~KN_DISABLED;
 1135                 if ((kn->kn_status & KN_ACTIVE) &&
 1136                     ((kn->kn_status & KN_QUEUED) == 0))
 1137                         knote_enqueue(kn);
 1138         }
 1139         KQ_UNLOCK_FLUX(kq);
 1140 
 1141 done:
 1142         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1143         if (fp != NULL)
 1144                 fdrop(fp, td);
 1145         if (tkn != NULL)
 1146                 knote_free(tkn);
 1147         if (fops != NULL)
 1148                 kqueue_fo_release(filt);
 1149         return (error);
 1150 }
 1151 
 1152 static int
 1153 kqueue_acquire(struct file *fp, struct kqueue **kqp)
 1154 {
 1155         int error;
 1156         struct kqueue *kq;
 1157 
 1158         error = 0;
 1159 
 1160         kq = fp->f_data;
 1161         if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
 1162                 return (EBADF);
 1163         *kqp = kq;
 1164         KQ_LOCK(kq);
 1165         if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
 1166                 KQ_UNLOCK(kq);
 1167                 return (EBADF);
 1168         }
 1169         kq->kq_refcnt++;
 1170         KQ_UNLOCK(kq);
 1171 
 1172         return error;
 1173 }
 1174 
 1175 static void
 1176 kqueue_release(struct kqueue *kq, int locked)
 1177 {
 1178         if (locked)
 1179                 KQ_OWNED(kq);
 1180         else
 1181                 KQ_LOCK(kq);
 1182         kq->kq_refcnt--;
 1183         if (kq->kq_refcnt == 1)
 1184                 wakeup(&kq->kq_refcnt);
 1185         if (!locked)
 1186                 KQ_UNLOCK(kq);
 1187 }
 1188 
 1189 static void
 1190 kqueue_schedtask(struct kqueue *kq)
 1191 {
 1192 
 1193         KQ_OWNED(kq);
 1194         KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
 1195             ("scheduling kqueue task while draining"));
 1196 
 1197         if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
 1198                 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
 1199                 kq->kq_state |= KQ_TASKSCHED;
 1200         }
 1201 }
 1202 
 1203 /*
 1204  * Expand the kq to make sure we have storage for fops/ident pair.
 1205  *
 1206  * Return 0 on success (or no work necessary), return errno on failure.
 1207  *
 1208  * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
 1209  * If kqueue_register is called from a non-fd context, there usually/should
 1210  * be no locks held.
 1211  */
 1212 static int
 1213 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
 1214         int waitok)
 1215 {
 1216         struct klist *list, *tmp_knhash, *to_free;
 1217         u_long tmp_knhashmask;
 1218         int size;
 1219         int fd;
 1220         int mflag = waitok ? M_WAITOK : M_NOWAIT;
 1221 
 1222         KQ_NOTOWNED(kq);
 1223 
 1224         to_free = NULL;
 1225         if (fops->f_isfd) {
 1226                 fd = ident;
 1227                 if (kq->kq_knlistsize <= fd) {
 1228                         size = kq->kq_knlistsize;
 1229                         while (size <= fd)
 1230                                 size += KQEXTENT;
 1231                         list = malloc(size * sizeof list, M_KQUEUE, mflag);
 1232                         if (list == NULL)
 1233                                 return ENOMEM;
 1234                         KQ_LOCK(kq);
 1235                         if (kq->kq_knlistsize > fd) {
 1236                                 to_free = list;
 1237                                 list = NULL;
 1238                         } else {
 1239                                 if (kq->kq_knlist != NULL) {
 1240                                         bcopy(kq->kq_knlist, list,
 1241                                             kq->kq_knlistsize * sizeof list);
 1242                                         to_free = kq->kq_knlist;
 1243                                         kq->kq_knlist = NULL;
 1244                                 }
 1245                                 bzero((caddr_t)list +
 1246                                     kq->kq_knlistsize * sizeof list,
 1247                                     (size - kq->kq_knlistsize) * sizeof list);
 1248                                 kq->kq_knlistsize = size;
 1249                                 kq->kq_knlist = list;
 1250                         }
 1251                         KQ_UNLOCK(kq);
 1252                 }
 1253         } else {
 1254                 if (kq->kq_knhashmask == 0) {
 1255                         tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
 1256                             &tmp_knhashmask);
 1257                         if (tmp_knhash == NULL)
 1258                                 return ENOMEM;
 1259                         KQ_LOCK(kq);
 1260                         if (kq->kq_knhashmask == 0) {
 1261                                 kq->kq_knhash = tmp_knhash;
 1262                                 kq->kq_knhashmask = tmp_knhashmask;
 1263                         } else {
 1264                                 to_free = tmp_knhash;
 1265                         }
 1266                         KQ_UNLOCK(kq);
 1267                 }
 1268         }
 1269         free(to_free, M_KQUEUE);
 1270 
 1271         KQ_NOTOWNED(kq);
 1272         return 0;
 1273 }
 1274 
 1275 static void
 1276 kqueue_task(void *arg, int pending)
 1277 {
 1278         struct kqueue *kq;
 1279         int haskqglobal;
 1280 
 1281         haskqglobal = 0;
 1282         kq = arg;
 1283 
 1284         KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1285         KQ_LOCK(kq);
 1286 
 1287         KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
 1288 
 1289         kq->kq_state &= ~KQ_TASKSCHED;
 1290         if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
 1291                 wakeup(&kq->kq_state);
 1292         }
 1293         KQ_UNLOCK(kq);
 1294         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1295 }
 1296 
 1297 /*
 1298  * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
 1299  * We treat KN_MARKER knotes as if they are INFLUX.
 1300  */
 1301 static int
 1302 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
 1303     const struct timespec *tsp, struct kevent *keva, struct thread *td)
 1304 {
 1305         struct kevent *kevp;
 1306         struct timeval atv, rtv, ttv;
 1307         struct knote *kn, *marker;
 1308         int count, timeout, nkev, error, influx;
 1309         int haskqglobal, touch;
 1310 
 1311         count = maxevents;
 1312         nkev = 0;
 1313         error = 0;
 1314         haskqglobal = 0;
 1315 
 1316         if (maxevents == 0)
 1317                 goto done_nl;
 1318 
 1319         if (tsp != NULL) {
 1320                 TIMESPEC_TO_TIMEVAL(&atv, tsp);
 1321                 if (itimerfix(&atv)) {
 1322                         error = EINVAL;
 1323                         goto done_nl;
 1324                 }
 1325                 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
 1326                         timeout = -1;
 1327                 else
 1328                         timeout = atv.tv_sec > 24 * 60 * 60 ?
 1329                             24 * 60 * 60 * hz : tvtohz(&atv);
 1330                 getmicrouptime(&rtv);
 1331                 timevaladd(&atv, &rtv);
 1332         } else {
 1333                 atv.tv_sec = 0;
 1334                 atv.tv_usec = 0;
 1335                 timeout = 0;
 1336         }
 1337         marker = knote_alloc(1);
 1338         if (marker == NULL) {
 1339                 error = ENOMEM;
 1340                 goto done_nl;
 1341         }
 1342         marker->kn_status = KN_MARKER;
 1343         KQ_LOCK(kq);
 1344         goto start;
 1345 
 1346 retry:
 1347         if (atv.tv_sec || atv.tv_usec) {
 1348                 getmicrouptime(&rtv);
 1349                 if (timevalcmp(&rtv, &atv, >=))
 1350                         goto done;
 1351                 ttv = atv;
 1352                 timevalsub(&ttv, &rtv);
 1353                 timeout = ttv.tv_sec > 24 * 60 * 60 ?
 1354                         24 * 60 * 60 * hz : tvtohz(&ttv);
 1355         }
 1356 
 1357 start:
 1358         kevp = keva;
 1359         if (kq->kq_count == 0) {
 1360                 if (timeout < 0) {
 1361                         error = EWOULDBLOCK;
 1362                 } else {
 1363                         kq->kq_state |= KQ_SLEEP;
 1364                         error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
 1365                             "kqread", timeout);
 1366                 }
 1367                 if (error == 0)
 1368                         goto retry;
 1369                 /* don't restart after signals... */
 1370                 if (error == ERESTART)
 1371                         error = EINTR;
 1372                 else if (error == EWOULDBLOCK)
 1373                         error = 0;
 1374                 goto done;
 1375         }
 1376 
 1377         TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
 1378         influx = 0;
 1379         while (count) {
 1380                 KQ_OWNED(kq);
 1381                 kn = TAILQ_FIRST(&kq->kq_head);
 1382 
 1383                 if ((kn->kn_status == KN_MARKER && kn != marker) ||
 1384                     (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1385                         if (influx) {
 1386                                 influx = 0;
 1387                                 KQ_FLUX_WAKEUP(kq);
 1388                         }
 1389                         kq->kq_state |= KQ_FLUXWAIT;
 1390                         error = msleep(kq, &kq->kq_lock, PSOCK,
 1391                             "kqflxwt", 0);
 1392                         continue;
 1393                 }
 1394 
 1395                 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 1396                 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
 1397                         kn->kn_status &= ~KN_QUEUED;
 1398                         kq->kq_count--;
 1399                         continue;
 1400                 }
 1401                 if (kn == marker) {
 1402                         KQ_FLUX_WAKEUP(kq);
 1403                         if (count == maxevents)
 1404                                 goto retry;
 1405                         goto done;
 1406                 }
 1407                 KASSERT((kn->kn_status & KN_INFLUX) == 0,
 1408                     ("KN_INFLUX set when not suppose to be"));
 1409 
 1410                 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
 1411                         kn->kn_status &= ~KN_QUEUED;
 1412                         kn->kn_status |= KN_INFLUX;
 1413                         kq->kq_count--;
 1414                         KQ_UNLOCK(kq);
 1415                         /*
 1416                          * We don't need to lock the list since we've marked
 1417                          * it _INFLUX.
 1418                          */
 1419                         if (!(kn->kn_status & KN_DETACHED))
 1420                                 kn->kn_fop->f_detach(kn);
 1421                         knote_drop(kn, td);
 1422                         KQ_LOCK(kq);
 1423                         continue;
 1424                 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
 1425                         kn->kn_status &= ~KN_QUEUED;
 1426                         kn->kn_status |= KN_INFLUX;
 1427                         kq->kq_count--;
 1428                         KQ_UNLOCK(kq);
 1429                         /*
 1430                          * We don't need to lock the list since we've marked
 1431                          * it _INFLUX.
 1432                          */
 1433                         *kevp = kn->kn_kevent;
 1434                         if (!(kn->kn_status & KN_DETACHED))
 1435                                 kn->kn_fop->f_detach(kn);
 1436                         knote_drop(kn, td);
 1437                         KQ_LOCK(kq);
 1438                         kn = NULL;
 1439                 } else {
 1440                         kn->kn_status |= KN_INFLUX;
 1441                         KQ_UNLOCK(kq);
 1442                         if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
 1443                                 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
 1444                         KN_LIST_LOCK(kn);
 1445                         if (kn->kn_fop->f_event(kn, 0) == 0) {
 1446                                 KQ_LOCK(kq);
 1447                                 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1448                                 kn->kn_status &=
 1449                                     ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
 1450                                 kq->kq_count--;
 1451                                 KN_LIST_UNLOCK(kn);
 1452                                 influx = 1;
 1453                                 continue;
 1454                         }
 1455                         touch = (!kn->kn_fop->f_isfd &&
 1456                             kn->kn_fop->f_touch != NULL);
 1457                         if (touch)
 1458                                 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
 1459                         else
 1460                                 *kevp = kn->kn_kevent;
 1461                         KQ_LOCK(kq);
 1462                         KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
 1463                         if (kn->kn_flags & (EV_CLEAR |  EV_DISPATCH)) {
 1464                                 /* 
 1465                                  * Manually clear knotes who weren't 
 1466                                  * 'touch'ed.
 1467                                  */
 1468                                 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
 1469                                         kn->kn_data = 0;
 1470                                         kn->kn_fflags = 0;
 1471                                 }
 1472                                 if (kn->kn_flags & EV_DISPATCH)
 1473                                         kn->kn_status |= KN_DISABLED;
 1474                                 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
 1475                                 kq->kq_count--;
 1476                         } else
 1477                                 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 1478                         
 1479                         kn->kn_status &= ~(KN_INFLUX);
 1480                         KN_LIST_UNLOCK(kn);
 1481                         influx = 1;
 1482                 }
 1483 
 1484                 /* we are returning a copy to the user */
 1485                 kevp++;
 1486                 nkev++;
 1487                 count--;
 1488 
 1489                 if (nkev == KQ_NEVENTS) {
 1490                         influx = 0;
 1491                         KQ_UNLOCK_FLUX(kq);
 1492                         error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1493                         nkev = 0;
 1494                         kevp = keva;
 1495                         KQ_LOCK(kq);
 1496                         if (error)
 1497                                 break;
 1498                 }
 1499         }
 1500         TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
 1501 done:
 1502         KQ_OWNED(kq);
 1503         KQ_UNLOCK_FLUX(kq);
 1504         knote_free(marker);
 1505 done_nl:
 1506         KQ_NOTOWNED(kq);
 1507         if (nkev != 0)
 1508                 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
 1509         td->td_retval[0] = maxevents - count;
 1510         return (error);
 1511 }
 1512 
 1513 /*
 1514  * XXX
 1515  * This could be expanded to call kqueue_scan, if desired.
 1516  */
 1517 /*ARGSUSED*/
 1518 static int
 1519 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1520         int flags, struct thread *td)
 1521 {
 1522         return (ENXIO);
 1523 }
 1524 
 1525 /*ARGSUSED*/
 1526 static int
 1527 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1528          int flags, struct thread *td)
 1529 {
 1530         return (ENXIO);
 1531 }
 1532 
 1533 /*ARGSUSED*/
 1534 static int
 1535 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1536         struct thread *td)
 1537 {
 1538 
 1539         return (EINVAL);
 1540 }
 1541 
 1542 /*ARGSUSED*/
 1543 static int
 1544 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
 1545         struct ucred *active_cred, struct thread *td)
 1546 {
 1547         /*
 1548          * Enabling sigio causes two major problems:
 1549          * 1) infinite recursion:
 1550          * Synopsys: kevent is being used to track signals and have FIOASYNC
 1551          * set.  On receipt of a signal this will cause a kqueue to recurse
 1552          * into itself over and over.  Sending the sigio causes the kqueue
 1553          * to become ready, which in turn posts sigio again, forever.
 1554          * Solution: this can be solved by setting a flag in the kqueue that
 1555          * we have a SIGIO in progress.
 1556          * 2) locking problems:
 1557          * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
 1558          * us above the proc and pgrp locks.
 1559          * Solution: Post a signal using an async mechanism, being sure to
 1560          * record a generation count in the delivery so that we do not deliver
 1561          * a signal to the wrong process.
 1562          *
 1563          * Note, these two mechanisms are somewhat mutually exclusive!
 1564          */
 1565 #if 0
 1566         struct kqueue *kq;
 1567 
 1568         kq = fp->f_data;
 1569         switch (cmd) {
 1570         case FIOASYNC:
 1571                 if (*(int *)data) {
 1572                         kq->kq_state |= KQ_ASYNC;
 1573                 } else {
 1574                         kq->kq_state &= ~KQ_ASYNC;
 1575                 }
 1576                 return (0);
 1577 
 1578         case FIOSETOWN:
 1579                 return (fsetown(*(int *)data, &kq->kq_sigio));
 1580 
 1581         case FIOGETOWN:
 1582                 *(int *)data = fgetown(&kq->kq_sigio);
 1583                 return (0);
 1584         }
 1585 #endif
 1586 
 1587         return (ENOTTY);
 1588 }
 1589 
 1590 /*ARGSUSED*/
 1591 static int
 1592 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
 1593         struct thread *td)
 1594 {
 1595         struct kqueue *kq;
 1596         int revents = 0;
 1597         int error;
 1598 
 1599         if ((error = kqueue_acquire(fp, &kq)))
 1600                 return POLLERR;
 1601 
 1602         KQ_LOCK(kq);
 1603         if (events & (POLLIN | POLLRDNORM)) {
 1604                 if (kq->kq_count) {
 1605                         revents |= events & (POLLIN | POLLRDNORM);
 1606                 } else {
 1607                         selrecord(td, &kq->kq_sel);
 1608                         if (SEL_WAITING(&kq->kq_sel))
 1609                                 kq->kq_state |= KQ_SEL;
 1610                 }
 1611         }
 1612         kqueue_release(kq, 1);
 1613         KQ_UNLOCK(kq);
 1614         return (revents);
 1615 }
 1616 
 1617 /*ARGSUSED*/
 1618 static int
 1619 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
 1620         struct thread *td)
 1621 {
 1622 
 1623         bzero((void *)st, sizeof *st);
 1624         /*
 1625          * We no longer return kq_count because the unlocked value is useless.
 1626          * If you spent all this time getting the count, why not spend your
 1627          * syscall better by calling kevent?
 1628          *
 1629          * XXX - This is needed for libc_r.
 1630          */
 1631         st->st_mode = S_IFIFO;
 1632         return (0);
 1633 }
 1634 
 1635 /*ARGSUSED*/
 1636 static int
 1637 kqueue_close(struct file *fp, struct thread *td)
 1638 {
 1639         struct kqueue *kq = fp->f_data;
 1640         struct filedesc *fdp;
 1641         struct knote *kn;
 1642         int i;
 1643         int error;
 1644 
 1645         if ((error = kqueue_acquire(fp, &kq)))
 1646                 return error;
 1647 
 1648         KQ_LOCK(kq);
 1649 
 1650         KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
 1651             ("kqueue already closing"));
 1652         kq->kq_state |= KQ_CLOSING;
 1653         if (kq->kq_refcnt > 1)
 1654                 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
 1655 
 1656         KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
 1657         fdp = kq->kq_fdp;
 1658 
 1659         KASSERT(knlist_empty(&kq->kq_sel.si_note),
 1660             ("kqueue's knlist not empty"));
 1661 
 1662         for (i = 0; i < kq->kq_knlistsize; i++) {
 1663                 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
 1664                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1665                                 kq->kq_state |= KQ_FLUXWAIT;
 1666                                 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
 1667                                 continue;
 1668                         }
 1669                         kn->kn_status |= KN_INFLUX;
 1670                         KQ_UNLOCK(kq);
 1671                         if (!(kn->kn_status & KN_DETACHED))
 1672                                 kn->kn_fop->f_detach(kn);
 1673                         knote_drop(kn, td);
 1674                         KQ_LOCK(kq);
 1675                 }
 1676         }
 1677         if (kq->kq_knhashmask != 0) {
 1678                 for (i = 0; i <= kq->kq_knhashmask; i++) {
 1679                         while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
 1680                                 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1681                                         kq->kq_state |= KQ_FLUXWAIT;
 1682                                         msleep(kq, &kq->kq_lock, PSOCK,
 1683                                                "kqclo2", 0);
 1684                                         continue;
 1685                                 }
 1686                                 kn->kn_status |= KN_INFLUX;
 1687                                 KQ_UNLOCK(kq);
 1688                                 if (!(kn->kn_status & KN_DETACHED))
 1689                                         kn->kn_fop->f_detach(kn);
 1690                                 knote_drop(kn, td);
 1691                                 KQ_LOCK(kq);
 1692                         }
 1693                 }
 1694         }
 1695 
 1696         if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
 1697                 kq->kq_state |= KQ_TASKDRAIN;
 1698                 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
 1699         }
 1700 
 1701         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1702                 selwakeuppri(&kq->kq_sel, PSOCK);
 1703                 if (!SEL_WAITING(&kq->kq_sel))
 1704                         kq->kq_state &= ~KQ_SEL;
 1705         }
 1706 
 1707         KQ_UNLOCK(kq);
 1708 
 1709         FILEDESC_XLOCK(fdp);
 1710         SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
 1711         FILEDESC_XUNLOCK(fdp);
 1712 
 1713         seldrain(&kq->kq_sel);
 1714         knlist_destroy(&kq->kq_sel.si_note);
 1715         mtx_destroy(&kq->kq_lock);
 1716         kq->kq_fdp = NULL;
 1717 
 1718         if (kq->kq_knhash != NULL)
 1719                 free(kq->kq_knhash, M_KQUEUE);
 1720         if (kq->kq_knlist != NULL)
 1721                 free(kq->kq_knlist, M_KQUEUE);
 1722 
 1723         funsetown(&kq->kq_sigio);
 1724         free(kq, M_KQUEUE);
 1725         fp->f_data = NULL;
 1726 
 1727         return (0);
 1728 }
 1729 
 1730 static void
 1731 kqueue_wakeup(struct kqueue *kq)
 1732 {
 1733         KQ_OWNED(kq);
 1734 
 1735         if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
 1736                 kq->kq_state &= ~KQ_SLEEP;
 1737                 wakeup(kq);
 1738         }
 1739         if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
 1740                 selwakeuppri(&kq->kq_sel, PSOCK);
 1741                 if (!SEL_WAITING(&kq->kq_sel))
 1742                         kq->kq_state &= ~KQ_SEL;
 1743         }
 1744         if (!knlist_empty(&kq->kq_sel.si_note))
 1745                 kqueue_schedtask(kq);
 1746         if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
 1747                 pgsigio(&kq->kq_sigio, SIGIO, 0);
 1748         }
 1749 }
 1750 
 1751 /*
 1752  * Walk down a list of knotes, activating them if their event has triggered.
 1753  *
 1754  * There is a possibility to optimize in the case of one kq watching another.
 1755  * Instead of scheduling a task to wake it up, you could pass enough state
 1756  * down the chain to make up the parent kqueue.  Make this code functional
 1757  * first.
 1758  */
 1759 void
 1760 knote(struct knlist *list, long hint, int lockflags)
 1761 {
 1762         struct kqueue *kq;
 1763         struct knote *kn;
 1764         int error;
 1765 
 1766         if (list == NULL)
 1767                 return;
 1768 
 1769         KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
 1770 
 1771         if ((lockflags & KNF_LISTLOCKED) == 0)
 1772                 list->kl_lock(list->kl_lockarg); 
 1773 
 1774         /*
 1775          * If we unlock the list lock (and set KN_INFLUX), we can eliminate
 1776          * the kqueue scheduling, but this will introduce four
 1777          * lock/unlock's for each knote to test.  If we do, continue to use
 1778          * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
 1779          * only safe if you want to remove the current item, which we are
 1780          * not doing.
 1781          */
 1782         SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
 1783                 kq = kn->kn_kq;
 1784                 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
 1785                         KQ_LOCK(kq);
 1786                         if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
 1787                                 KQ_UNLOCK(kq);
 1788                         } else if ((lockflags & KNF_NOKQLOCK) != 0) {
 1789                                 kn->kn_status |= KN_INFLUX;
 1790                                 KQ_UNLOCK(kq);
 1791                                 error = kn->kn_fop->f_event(kn, hint);
 1792                                 KQ_LOCK(kq);
 1793                                 kn->kn_status &= ~KN_INFLUX;
 1794                                 if (error)
 1795                                         KNOTE_ACTIVATE(kn, 1);
 1796                                 KQ_UNLOCK_FLUX(kq);
 1797                         } else {
 1798                                 kn->kn_status |= KN_HASKQLOCK;
 1799                                 if (kn->kn_fop->f_event(kn, hint))
 1800                                         KNOTE_ACTIVATE(kn, 1);
 1801                                 kn->kn_status &= ~KN_HASKQLOCK;
 1802                                 KQ_UNLOCK(kq);
 1803                         }
 1804                 }
 1805                 kq = NULL;
 1806         }
 1807         if ((lockflags & KNF_LISTLOCKED) == 0)
 1808                 list->kl_unlock(list->kl_lockarg); 
 1809 }
 1810 
 1811 /*
 1812  * add a knote to a knlist
 1813  */
 1814 void
 1815 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
 1816 {
 1817         KNL_ASSERT_LOCK(knl, islocked);
 1818         KQ_NOTOWNED(kn->kn_kq);
 1819         KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
 1820             (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
 1821         if (!islocked)
 1822                 knl->kl_lock(knl->kl_lockarg);
 1823         SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
 1824         if (!islocked)
 1825                 knl->kl_unlock(knl->kl_lockarg);
 1826         KQ_LOCK(kn->kn_kq);
 1827         kn->kn_knlist = knl;
 1828         kn->kn_status &= ~KN_DETACHED;
 1829         KQ_UNLOCK(kn->kn_kq);
 1830 }
 1831 
 1832 static void
 1833 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
 1834 {
 1835         KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
 1836         KNL_ASSERT_LOCK(knl, knlislocked);
 1837         mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
 1838         if (!kqislocked)
 1839                 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
 1840     ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
 1841         if (!knlislocked)
 1842                 knl->kl_lock(knl->kl_lockarg);
 1843         SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
 1844         kn->kn_knlist = NULL;
 1845         if (!knlislocked)
 1846                 knl->kl_unlock(knl->kl_lockarg);
 1847         if (!kqislocked)
 1848                 KQ_LOCK(kn->kn_kq);
 1849         kn->kn_status |= KN_DETACHED;
 1850         if (!kqislocked)
 1851                 KQ_UNLOCK(kn->kn_kq);
 1852 }
 1853 
 1854 /*
 1855  * remove all knotes from a specified klist
 1856  */
 1857 void
 1858 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
 1859 {
 1860 
 1861         knlist_remove_kq(knl, kn, islocked, 0);
 1862 }
 1863 
 1864 /*
 1865  * remove knote from a specified klist while in f_event handler.
 1866  */
 1867 void
 1868 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
 1869 {
 1870 
 1871         knlist_remove_kq(knl, kn, 1,
 1872             (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
 1873 }
 1874 
 1875 int
 1876 knlist_empty(struct knlist *knl)
 1877 {
 1878         KNL_ASSERT_LOCKED(knl);
 1879         return SLIST_EMPTY(&knl->kl_list);
 1880 }
 1881 
 1882 static struct mtx       knlist_lock;
 1883 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
 1884         MTX_DEF);
 1885 static void knlist_mtx_lock(void *arg);
 1886 static void knlist_mtx_unlock(void *arg);
 1887 
 1888 static void
 1889 knlist_mtx_lock(void *arg)
 1890 {
 1891         mtx_lock((struct mtx *)arg);
 1892 }
 1893 
 1894 static void
 1895 knlist_mtx_unlock(void *arg)
 1896 {
 1897         mtx_unlock((struct mtx *)arg);
 1898 }
 1899 
 1900 static void
 1901 knlist_mtx_assert_locked(void *arg)
 1902 {
 1903         mtx_assert((struct mtx *)arg, MA_OWNED);
 1904 }
 1905 
 1906 static void
 1907 knlist_mtx_assert_unlocked(void *arg)
 1908 {
 1909         mtx_assert((struct mtx *)arg, MA_NOTOWNED);
 1910 }
 1911 
 1912 void
 1913 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
 1914     void (*kl_unlock)(void *),
 1915     void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
 1916 {
 1917 
 1918         if (lock == NULL)
 1919                 knl->kl_lockarg = &knlist_lock;
 1920         else
 1921                 knl->kl_lockarg = lock;
 1922 
 1923         if (kl_lock == NULL)
 1924                 knl->kl_lock = knlist_mtx_lock;
 1925         else
 1926                 knl->kl_lock = kl_lock;
 1927         if (kl_unlock == NULL)
 1928                 knl->kl_unlock = knlist_mtx_unlock;
 1929         else
 1930                 knl->kl_unlock = kl_unlock;
 1931         if (kl_assert_locked == NULL)
 1932                 knl->kl_assert_locked = knlist_mtx_assert_locked;
 1933         else
 1934                 knl->kl_assert_locked = kl_assert_locked;
 1935         if (kl_assert_unlocked == NULL)
 1936                 knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
 1937         else
 1938                 knl->kl_assert_unlocked = kl_assert_unlocked;
 1939 
 1940         SLIST_INIT(&knl->kl_list);
 1941 }
 1942 
 1943 void
 1944 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
 1945 {
 1946 
 1947         knlist_init(knl, lock, NULL, NULL, NULL, NULL);
 1948 }
 1949 
 1950 void
 1951 knlist_destroy(struct knlist *knl)
 1952 {
 1953 
 1954 #ifdef INVARIANTS
 1955         /*
 1956          * if we run across this error, we need to find the offending
 1957          * driver and have it call knlist_clear.
 1958          */
 1959         if (!SLIST_EMPTY(&knl->kl_list))
 1960                 printf("WARNING: destroying knlist w/ knotes on it!\n");
 1961 #endif
 1962 
 1963         knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
 1964         SLIST_INIT(&knl->kl_list);
 1965 }
 1966 
 1967 /*
 1968  * Even if we are locked, we may need to drop the lock to allow any influx
 1969  * knotes time to "settle".
 1970  */
 1971 void
 1972 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
 1973 {
 1974         struct knote *kn, *kn2;
 1975         struct kqueue *kq;
 1976 
 1977         if (islocked)
 1978                 KNL_ASSERT_LOCKED(knl);
 1979         else {
 1980                 KNL_ASSERT_UNLOCKED(knl);
 1981 again:          /* need to reacquire lock since we have dropped it */
 1982                 knl->kl_lock(knl->kl_lockarg);
 1983         }
 1984 
 1985         SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
 1986                 kq = kn->kn_kq;
 1987                 KQ_LOCK(kq);
 1988                 if ((kn->kn_status & KN_INFLUX)) {
 1989                         KQ_UNLOCK(kq);
 1990                         continue;
 1991                 }
 1992                 knlist_remove_kq(knl, kn, 1, 1);
 1993                 if (killkn) {
 1994                         kn->kn_status |= KN_INFLUX | KN_DETACHED;
 1995                         KQ_UNLOCK(kq);
 1996                         knote_drop(kn, td);
 1997                 } else {
 1998                         /* Make sure cleared knotes disappear soon */
 1999                         kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 2000                         KQ_UNLOCK(kq);
 2001                 }
 2002                 kq = NULL;
 2003         }
 2004 
 2005         if (!SLIST_EMPTY(&knl->kl_list)) {
 2006                 /* there are still KN_INFLUX remaining */
 2007                 kn = SLIST_FIRST(&knl->kl_list);
 2008                 kq = kn->kn_kq;
 2009                 KQ_LOCK(kq);
 2010                 KASSERT(kn->kn_status & KN_INFLUX,
 2011                     ("knote removed w/o list lock"));
 2012                 knl->kl_unlock(knl->kl_lockarg);
 2013                 kq->kq_state |= KQ_FLUXWAIT;
 2014                 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
 2015                 kq = NULL;
 2016                 goto again;
 2017         }
 2018 
 2019         if (islocked)
 2020                 KNL_ASSERT_LOCKED(knl);
 2021         else {
 2022                 knl->kl_unlock(knl->kl_lockarg);
 2023                 KNL_ASSERT_UNLOCKED(knl);
 2024         }
 2025 }
 2026 
 2027 /*
 2028  * Remove all knotes referencing a specified fd must be called with FILEDESC
 2029  * lock.  This prevents a race where a new fd comes along and occupies the
 2030  * entry and we attach a knote to the fd.
 2031  */
 2032 void
 2033 knote_fdclose(struct thread *td, int fd)
 2034 {
 2035         struct filedesc *fdp = td->td_proc->p_fd;
 2036         struct kqueue *kq;
 2037         struct knote *kn;
 2038         int influx;
 2039 
 2040         FILEDESC_XLOCK_ASSERT(fdp);
 2041 
 2042         /*
 2043          * We shouldn't have to worry about new kevents appearing on fd
 2044          * since filedesc is locked.
 2045          */
 2046         SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
 2047                 KQ_LOCK(kq);
 2048 
 2049 again:
 2050                 influx = 0;
 2051                 while (kq->kq_knlistsize > fd &&
 2052                     (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
 2053                         if (kn->kn_status & KN_INFLUX) {
 2054                                 /* someone else might be waiting on our knote */
 2055                                 if (influx)
 2056                                         wakeup(kq);
 2057                                 kq->kq_state |= KQ_FLUXWAIT;
 2058                                 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
 2059                                 goto again;
 2060                         }
 2061                         kn->kn_status |= KN_INFLUX;
 2062                         KQ_UNLOCK(kq);
 2063                         if (!(kn->kn_status & KN_DETACHED))
 2064                                 kn->kn_fop->f_detach(kn);
 2065                         knote_drop(kn, td);
 2066                         influx = 1;
 2067                         KQ_LOCK(kq);
 2068                 }
 2069                 KQ_UNLOCK_FLUX(kq);
 2070         }
 2071 }
 2072 
 2073 static int
 2074 knote_attach(struct knote *kn, struct kqueue *kq)
 2075 {
 2076         struct klist *list;
 2077 
 2078         KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
 2079         KQ_OWNED(kq);
 2080 
 2081         if (kn->kn_fop->f_isfd) {
 2082                 if (kn->kn_id >= kq->kq_knlistsize)
 2083                         return ENOMEM;
 2084                 list = &kq->kq_knlist[kn->kn_id];
 2085         } else {
 2086                 if (kq->kq_knhash == NULL)
 2087                         return ENOMEM;
 2088                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2089         }
 2090 
 2091         SLIST_INSERT_HEAD(list, kn, kn_link);
 2092 
 2093         return 0;
 2094 }
 2095 
 2096 /*
 2097  * knote must already have been detached using the f_detach method.
 2098  * no lock need to be held, it is assumed that the KN_INFLUX flag is set
 2099  * to prevent other removal.
 2100  */
 2101 static void
 2102 knote_drop(struct knote *kn, struct thread *td)
 2103 {
 2104         struct kqueue *kq;
 2105         struct klist *list;
 2106 
 2107         kq = kn->kn_kq;
 2108 
 2109         KQ_NOTOWNED(kq);
 2110         KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
 2111             ("knote_drop called without KN_INFLUX set in kn_status"));
 2112 
 2113         KQ_LOCK(kq);
 2114         if (kn->kn_fop->f_isfd)
 2115                 list = &kq->kq_knlist[kn->kn_id];
 2116         else
 2117                 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
 2118 
 2119         if (!SLIST_EMPTY(list))
 2120                 SLIST_REMOVE(list, kn, knote, kn_link);
 2121         if (kn->kn_status & KN_QUEUED)
 2122                 knote_dequeue(kn);
 2123         KQ_UNLOCK_FLUX(kq);
 2124 
 2125         if (kn->kn_fop->f_isfd) {
 2126                 fdrop(kn->kn_fp, td);
 2127                 kn->kn_fp = NULL;
 2128         }
 2129         kqueue_fo_release(kn->kn_kevent.filter);
 2130         kn->kn_fop = NULL;
 2131         knote_free(kn);
 2132 }
 2133 
 2134 static void
 2135 knote_enqueue(struct knote *kn)
 2136 {
 2137         struct kqueue *kq = kn->kn_kq;
 2138 
 2139         KQ_OWNED(kn->kn_kq);
 2140         KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
 2141 
 2142         TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
 2143         kn->kn_status |= KN_QUEUED;
 2144         kq->kq_count++;
 2145         kqueue_wakeup(kq);
 2146 }
 2147 
 2148 static void
 2149 knote_dequeue(struct knote *kn)
 2150 {
 2151         struct kqueue *kq = kn->kn_kq;
 2152 
 2153         KQ_OWNED(kn->kn_kq);
 2154         KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
 2155 
 2156         TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
 2157         kn->kn_status &= ~KN_QUEUED;
 2158         kq->kq_count--;
 2159 }
 2160 
 2161 static void
 2162 knote_init(void)
 2163 {
 2164 
 2165         knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
 2166             NULL, NULL, UMA_ALIGN_PTR, 0);
 2167 }
 2168 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
 2169 
 2170 static struct knote *
 2171 knote_alloc(int waitok)
 2172 {
 2173         return ((struct knote *)uma_zalloc(knote_zone,
 2174             (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
 2175 }
 2176 
 2177 static void
 2178 knote_free(struct knote *kn)
 2179 {
 2180         if (kn != NULL)
 2181                 uma_zfree(knote_zone, kn);
 2182 }
 2183 
 2184 /*
 2185  * Register the kev w/ the kq specified by fd.
 2186  */
 2187 int 
 2188 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
 2189 {
 2190         struct kqueue *kq;
 2191         struct file *fp;
 2192         int error;
 2193 
 2194         if ((error = fget(td, fd, &fp)) != 0)
 2195                 return (error);
 2196         if ((error = kqueue_acquire(fp, &kq)) != 0)
 2197                 goto noacquire;
 2198 
 2199         error = kqueue_register(kq, kev, td, waitok);
 2200 
 2201         kqueue_release(kq, 0);
 2202 
 2203 noacquire:
 2204         fdrop(fp, td);
 2205 
 2206         return error;
 2207 }

Cache object: 50a981471efa143cb6577e45618a7dd4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.