The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_exec.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1993, David Greenman
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include "opt_capsicum.h"
   33 #include "opt_hwpmc_hooks.h"
   34 #include "opt_ktrace.h"
   35 #include "opt_vm.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/acct.h>
   40 #include <sys/asan.h>
   41 #include <sys/capsicum.h>
   42 #include <sys/compressor.h>
   43 #include <sys/eventhandler.h>
   44 #include <sys/exec.h>
   45 #include <sys/fcntl.h>
   46 #include <sys/filedesc.h>
   47 #include <sys/imgact.h>
   48 #include <sys/imgact_elf.h>
   49 #include <sys/kernel.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mman.h>
   53 #include <sys/mount.h>
   54 #include <sys/mutex.h>
   55 #include <sys/namei.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/ptrace.h>
   59 #include <sys/reg.h>
   60 #include <sys/resourcevar.h>
   61 #include <sys/rwlock.h>
   62 #include <sys/sched.h>
   63 #include <sys/sdt.h>
   64 #include <sys/sf_buf.h>
   65 #include <sys/shm.h>
   66 #include <sys/signalvar.h>
   67 #include <sys/smp.h>
   68 #include <sys/stat.h>
   69 #include <sys/syscallsubr.h>
   70 #include <sys/sysctl.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timers.h>
   74 #include <sys/umtxvar.h>
   75 #include <sys/vnode.h>
   76 #include <sys/wait.h>
   77 #ifdef KTRACE
   78 #include <sys/ktrace.h>
   79 #endif
   80 
   81 #include <vm/vm.h>
   82 #include <vm/vm_param.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_page.h>
   85 #include <vm/vm_map.h>
   86 #include <vm/vm_kern.h>
   87 #include <vm/vm_extern.h>
   88 #include <vm/vm_object.h>
   89 #include <vm/vm_pager.h>
   90 
   91 #ifdef  HWPMC_HOOKS
   92 #include <sys/pmckern.h>
   93 #endif
   94 
   95 #include <security/audit/audit.h>
   96 #include <security/mac/mac_framework.h>
   97 
   98 #ifdef KDTRACE_HOOKS
   99 #include <sys/dtrace_bsd.h>
  100 dtrace_execexit_func_t  dtrace_fasttrap_exec;
  101 #endif
  102 
  103 SDT_PROVIDER_DECLARE(proc);
  104 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
  105 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
  106 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
  107 
  108 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
  109 
  110 int coredump_pack_fileinfo = 1;
  111 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
  112     &coredump_pack_fileinfo, 0,
  113     "Enable file path packing in 'procstat -f' coredump notes");
  114 
  115 int coredump_pack_vmmapinfo = 1;
  116 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
  117     &coredump_pack_vmmapinfo, 0,
  118     "Enable file path packing in 'procstat -v' coredump notes");
  119 
  120 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
  121 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
  122 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
  123 static int do_execve(struct thread *td, struct image_args *args,
  124     struct mac *mac_p, struct vmspace *oldvmspace);
  125 
  126 /* XXX This should be vm_size_t. */
  127 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
  128     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
  129     "Location of process' ps_strings structure");
  130 
  131 /* XXX This should be vm_size_t. */
  132 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
  133     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
  134     "Top of process stack");
  135 
  136 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
  137     NULL, 0, sysctl_kern_stackprot, "I",
  138     "Stack memory permissions");
  139 
  140 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
  141 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 
  142     &ps_arg_cache_limit, 0,
  143     "Process' command line characters cache limit");
  144 
  145 static int disallow_high_osrel;
  146 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
  147     &disallow_high_osrel, 0,
  148     "Disallow execution of binaries built for higher version of the world");
  149 
  150 static int map_at_zero = 0;
  151 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
  152     "Permit processes to map an object at virtual address 0.");
  153 
  154 static int core_dump_can_intr = 1;
  155 SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN,
  156     &core_dump_can_intr, 0,
  157     "Core dumping interruptible with SIGKILL");
  158 
  159 static int
  160 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
  161 {
  162         struct proc *p;
  163         vm_offset_t ps_strings;
  164 
  165         p = curproc;
  166 #ifdef SCTL_MASK32
  167         if (req->flags & SCTL_MASK32) {
  168                 unsigned int val;
  169                 val = (unsigned int)PROC_PS_STRINGS(p);
  170                 return (SYSCTL_OUT(req, &val, sizeof(val)));
  171         }
  172 #endif
  173         ps_strings = PROC_PS_STRINGS(p);
  174         return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)));
  175 }
  176 
  177 static int
  178 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
  179 {
  180         struct proc *p;
  181         vm_offset_t val;
  182 
  183         p = curproc;
  184 #ifdef SCTL_MASK32
  185         if (req->flags & SCTL_MASK32) {
  186                 unsigned int val32;
  187 
  188                 val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop);
  189                 return (SYSCTL_OUT(req, &val32, sizeof(val32)));
  190         }
  191 #endif
  192         val = round_page(p->p_vmspace->vm_stacktop);
  193         return (SYSCTL_OUT(req, &val, sizeof(val)));
  194 }
  195 
  196 static int
  197 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
  198 {
  199         struct proc *p;
  200 
  201         p = curproc;
  202         return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
  203             sizeof(p->p_sysent->sv_stackprot)));
  204 }
  205 
  206 /*
  207  * Each of the items is a pointer to a `const struct execsw', hence the
  208  * double pointer here.
  209  */
  210 static const struct execsw **execsw;
  211 
  212 #ifndef _SYS_SYSPROTO_H_
  213 struct execve_args {
  214         char    *fname;
  215         char    **argv;
  216         char    **envv;
  217 };
  218 #endif
  219 
  220 int
  221 sys_execve(struct thread *td, struct execve_args *uap)
  222 {
  223         struct image_args args;
  224         struct vmspace *oldvmspace;
  225         int error;
  226 
  227         error = pre_execve(td, &oldvmspace);
  228         if (error != 0)
  229                 return (error);
  230         error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
  231             uap->argv, uap->envv);
  232         if (error == 0)
  233                 error = kern_execve(td, &args, NULL, oldvmspace);
  234         post_execve(td, error, oldvmspace);
  235         AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
  236         return (error);
  237 }
  238 
  239 #ifndef _SYS_SYSPROTO_H_
  240 struct fexecve_args {
  241         int     fd;
  242         char    **argv;
  243         char    **envv;
  244 };
  245 #endif
  246 int
  247 sys_fexecve(struct thread *td, struct fexecve_args *uap)
  248 {
  249         struct image_args args;
  250         struct vmspace *oldvmspace;
  251         int error;
  252 
  253         error = pre_execve(td, &oldvmspace);
  254         if (error != 0)
  255                 return (error);
  256         error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
  257             uap->argv, uap->envv);
  258         if (error == 0) {
  259                 args.fd = uap->fd;
  260                 error = kern_execve(td, &args, NULL, oldvmspace);
  261         }
  262         post_execve(td, error, oldvmspace);
  263         AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
  264         return (error);
  265 }
  266 
  267 #ifndef _SYS_SYSPROTO_H_
  268 struct __mac_execve_args {
  269         char    *fname;
  270         char    **argv;
  271         char    **envv;
  272         struct mac      *mac_p;
  273 };
  274 #endif
  275 
  276 int
  277 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
  278 {
  279 #ifdef MAC
  280         struct image_args args;
  281         struct vmspace *oldvmspace;
  282         int error;
  283 
  284         error = pre_execve(td, &oldvmspace);
  285         if (error != 0)
  286                 return (error);
  287         error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
  288             uap->argv, uap->envv);
  289         if (error == 0)
  290                 error = kern_execve(td, &args, uap->mac_p, oldvmspace);
  291         post_execve(td, error, oldvmspace);
  292         AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
  293         return (error);
  294 #else
  295         return (ENOSYS);
  296 #endif
  297 }
  298 
  299 int
  300 pre_execve(struct thread *td, struct vmspace **oldvmspace)
  301 {
  302         struct proc *p;
  303         int error;
  304 
  305         KASSERT(td == curthread, ("non-current thread %p", td));
  306         error = 0;
  307         p = td->td_proc;
  308         if ((p->p_flag & P_HADTHREADS) != 0) {
  309                 PROC_LOCK(p);
  310                 if (thread_single(p, SINGLE_BOUNDARY) != 0)
  311                         error = ERESTART;
  312                 PROC_UNLOCK(p);
  313         }
  314         KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
  315             ("nested execve"));
  316         *oldvmspace = p->p_vmspace;
  317         return (error);
  318 }
  319 
  320 void
  321 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
  322 {
  323         struct proc *p;
  324 
  325         KASSERT(td == curthread, ("non-current thread %p", td));
  326         p = td->td_proc;
  327         if ((p->p_flag & P_HADTHREADS) != 0) {
  328                 PROC_LOCK(p);
  329                 /*
  330                  * If success, we upgrade to SINGLE_EXIT state to
  331                  * force other threads to suicide.
  332                  */
  333                 if (error == EJUSTRETURN)
  334                         thread_single(p, SINGLE_EXIT);
  335                 else
  336                         thread_single_end(p, SINGLE_BOUNDARY);
  337                 PROC_UNLOCK(p);
  338         }
  339         exec_cleanup(td, oldvmspace);
  340 }
  341 
  342 /*
  343  * kern_execve() has the astonishing property of not always returning to
  344  * the caller.  If sufficiently bad things happen during the call to
  345  * do_execve(), it can end up calling exit1(); as a result, callers must
  346  * avoid doing anything which they might need to undo (e.g., allocating
  347  * memory).
  348  */
  349 int
  350 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
  351     struct vmspace *oldvmspace)
  352 {
  353 
  354         TSEXEC(td->td_proc->p_pid, args->begin_argv);
  355         AUDIT_ARG_ARGV(args->begin_argv, args->argc,
  356             exec_args_get_begin_envv(args) - args->begin_argv);
  357         AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
  358             args->endp - exec_args_get_begin_envv(args));
  359 
  360         /* Must have at least one argument. */
  361         if (args->argc == 0) {
  362                 exec_free_args(args);
  363                 return (EINVAL);
  364         }
  365         return (do_execve(td, args, mac_p, oldvmspace));
  366 }
  367 
  368 static void
  369 execve_nosetid(struct image_params *imgp)
  370 {
  371         imgp->credential_setid = false;
  372         if (imgp->newcred != NULL) {
  373                 crfree(imgp->newcred);
  374                 imgp->newcred = NULL;
  375         }
  376 }
  377 
  378 /*
  379  * In-kernel implementation of execve().  All arguments are assumed to be
  380  * userspace pointers from the passed thread.
  381  */
  382 static int
  383 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
  384     struct vmspace *oldvmspace)
  385 {
  386         struct proc *p = td->td_proc;
  387         struct nameidata nd;
  388         struct ucred *oldcred;
  389         struct uidinfo *euip = NULL;
  390         uintptr_t stack_base;
  391         struct image_params image_params, *imgp;
  392         struct vattr attr;
  393         int (*img_first)(struct image_params *);
  394         struct pargs *oldargs = NULL, *newargs = NULL;
  395         struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
  396 #ifdef KTRACE
  397         struct ktr_io_params *kiop;
  398 #endif
  399         struct vnode *oldtextvp, *newtextvp;
  400         struct vnode *oldtextdvp, *newtextdvp;
  401         char *oldbinname, *newbinname;
  402         bool credential_changing;
  403 #ifdef MAC
  404         struct label *interpvplabel = NULL;
  405         bool will_transition;
  406 #endif
  407 #ifdef HWPMC_HOOKS
  408         struct pmckern_procexec pe;
  409 #endif
  410         int error, i, orig_osrel;
  411         uint32_t orig_fctl0;
  412         Elf_Brandinfo *orig_brandinfo;
  413         size_t freepath_size;
  414         static const char fexecv_proc_title[] = "(fexecv)";
  415 
  416         imgp = &image_params;
  417         oldtextvp = oldtextdvp = NULL;
  418         newtextvp = newtextdvp = NULL;
  419         newbinname = oldbinname = NULL;
  420 #ifdef KTRACE
  421         kiop = NULL;
  422 #endif
  423 
  424         /*
  425          * Lock the process and set the P_INEXEC flag to indicate that
  426          * it should be left alone until we're done here.  This is
  427          * necessary to avoid race conditions - e.g. in ptrace() -
  428          * that might allow a local user to illicitly obtain elevated
  429          * privileges.
  430          */
  431         PROC_LOCK(p);
  432         KASSERT((p->p_flag & P_INEXEC) == 0,
  433             ("%s(): process already has P_INEXEC flag", __func__));
  434         p->p_flag |= P_INEXEC;
  435         PROC_UNLOCK(p);
  436 
  437         /*
  438          * Initialize part of the common data
  439          */
  440         bzero(imgp, sizeof(*imgp));
  441         imgp->proc = p;
  442         imgp->attr = &attr;
  443         imgp->args = args;
  444         oldcred = p->p_ucred;
  445         orig_osrel = p->p_osrel;
  446         orig_fctl0 = p->p_fctl0;
  447         orig_brandinfo = p->p_elf_brandinfo;
  448 
  449 #ifdef MAC
  450         error = mac_execve_enter(imgp, mac_p);
  451         if (error)
  452                 goto exec_fail;
  453 #endif
  454 
  455         SDT_PROBE1(proc, , , exec, args->fname);
  456 
  457 interpret:
  458         if (args->fname != NULL) {
  459 #ifdef CAPABILITY_MODE
  460                 /*
  461                  * While capability mode can't reach this point via direct
  462                  * path arguments to execve(), we also don't allow
  463                  * interpreters to be used in capability mode (for now).
  464                  * Catch indirect lookups and return a permissions error.
  465                  */
  466                 if (IN_CAPABILITY_MODE(td)) {
  467                         error = ECAPMODE;
  468                         goto exec_fail;
  469                 }
  470 #endif
  471 
  472                 /*
  473                  * Translate the file name. namei() returns a vnode
  474                  * pointer in ni_vp among other things.
  475                  */
  476                 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
  477                     AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE,
  478                     args->fname);
  479 
  480                 error = namei(&nd);
  481                 if (error)
  482                         goto exec_fail;
  483 
  484                 newtextvp = nd.ni_vp;
  485                 newtextdvp = nd.ni_dvp;
  486                 nd.ni_dvp = NULL;
  487                 newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS,
  488                     M_WAITOK);
  489                 memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
  490                 newbinname[nd.ni_cnd.cn_namelen] = '\0';
  491                 imgp->vp = newtextvp;
  492 
  493                 /*
  494                  * Do the best to calculate the full path to the image file.
  495                  */
  496                 if (args->fname[0] == '/') {
  497                         imgp->execpath = args->fname;
  498                 } else {
  499                         VOP_UNLOCK(imgp->vp);
  500                         freepath_size = MAXPATHLEN;
  501                         if (vn_fullpath_hardlink(newtextvp, newtextdvp,
  502                             newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath,
  503                             &imgp->freepath, &freepath_size) != 0)
  504                                 imgp->execpath = args->fname;
  505                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  506                 }
  507         } else if (imgp->interpreter_vp) {
  508                 /*
  509                  * An image activator has already provided an open vnode
  510                  */
  511                 newtextvp = imgp->interpreter_vp;
  512                 imgp->interpreter_vp = NULL;
  513                 if (vn_fullpath(newtextvp, &imgp->execpath,
  514                     &imgp->freepath) != 0)
  515                         imgp->execpath = args->fname;
  516                 vn_lock(newtextvp, LK_SHARED | LK_RETRY);
  517                 AUDIT_ARG_VNODE1(newtextvp);
  518                 imgp->vp = newtextvp;
  519         } else {
  520                 AUDIT_ARG_FD(args->fd);
  521 
  522                 /*
  523                  * If the descriptors was not opened with O_PATH, then
  524                  * we require that it was opened with O_EXEC or
  525                  * O_RDONLY.  In either case, exec_check_permissions()
  526                  * below checks _current_ file access mode regardless
  527                  * of the permissions additionally checked at the
  528                  * open(2).
  529                  */
  530                 error = fgetvp_exec(td, args->fd, &cap_fexecve_rights,
  531                     &newtextvp);
  532                 if (error != 0)
  533                         goto exec_fail;
  534 
  535                 if (vn_fullpath(newtextvp, &imgp->execpath,
  536                     &imgp->freepath) != 0)
  537                         imgp->execpath = args->fname;
  538                 vn_lock(newtextvp, LK_SHARED | LK_RETRY);
  539                 AUDIT_ARG_VNODE1(newtextvp);
  540                 imgp->vp = newtextvp;
  541         }
  542 
  543         /*
  544          * Check file permissions.  Also 'opens' file and sets its vnode to
  545          * text mode.
  546          */
  547         error = exec_check_permissions(imgp);
  548         if (error)
  549                 goto exec_fail_dealloc;
  550 
  551         imgp->object = imgp->vp->v_object;
  552         if (imgp->object != NULL)
  553                 vm_object_reference(imgp->object);
  554 
  555         error = exec_map_first_page(imgp);
  556         if (error)
  557                 goto exec_fail_dealloc;
  558 
  559         imgp->proc->p_osrel = 0;
  560         imgp->proc->p_fctl0 = 0;
  561         imgp->proc->p_elf_brandinfo = NULL;
  562 
  563         /*
  564          * Implement image setuid/setgid.
  565          *
  566          * Determine new credentials before attempting image activators
  567          * so that it can be used by process_exec handlers to determine
  568          * credential/setid changes.
  569          *
  570          * Don't honor setuid/setgid if the filesystem prohibits it or if
  571          * the process is being traced.
  572          *
  573          * We disable setuid/setgid/etc in capability mode on the basis
  574          * that most setugid applications are not written with that
  575          * environment in mind, and will therefore almost certainly operate
  576          * incorrectly. In principle there's no reason that setugid
  577          * applications might not be useful in capability mode, so we may want
  578          * to reconsider this conservative design choice in the future.
  579          *
  580          * XXXMAC: For the time being, use NOSUID to also prohibit
  581          * transitions on the file system.
  582          */
  583         credential_changing = false;
  584         credential_changing |= (attr.va_mode & S_ISUID) &&
  585             oldcred->cr_uid != attr.va_uid;
  586         credential_changing |= (attr.va_mode & S_ISGID) &&
  587             oldcred->cr_gid != attr.va_gid;
  588 #ifdef MAC
  589         will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
  590             interpvplabel, imgp) != 0;
  591         credential_changing |= will_transition;
  592 #endif
  593 
  594         /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
  595         if (credential_changing)
  596                 imgp->proc->p_pdeathsig = 0;
  597 
  598         if (credential_changing &&
  599 #ifdef CAPABILITY_MODE
  600             ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
  601 #endif
  602             (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
  603             (p->p_flag & P_TRACED) == 0) {
  604                 imgp->credential_setid = true;
  605                 VOP_UNLOCK(imgp->vp);
  606                 imgp->newcred = crdup(oldcred);
  607                 if (attr.va_mode & S_ISUID) {
  608                         euip = uifind(attr.va_uid);
  609                         change_euid(imgp->newcred, euip);
  610                 }
  611                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  612                 if (attr.va_mode & S_ISGID)
  613                         change_egid(imgp->newcred, attr.va_gid);
  614                 /*
  615                  * Implement correct POSIX saved-id behavior.
  616                  *
  617                  * XXXMAC: Note that the current logic will save the
  618                  * uid and gid if a MAC domain transition occurs, even
  619                  * though maybe it shouldn't.
  620                  */
  621                 change_svuid(imgp->newcred, imgp->newcred->cr_uid);
  622                 change_svgid(imgp->newcred, imgp->newcred->cr_gid);
  623         } else {
  624                 /*
  625                  * Implement correct POSIX saved-id behavior.
  626                  *
  627                  * XXX: It's not clear that the existing behavior is
  628                  * POSIX-compliant.  A number of sources indicate that the
  629                  * saved uid/gid should only be updated if the new ruid is
  630                  * not equal to the old ruid, or the new euid is not equal
  631                  * to the old euid and the new euid is not equal to the old
  632                  * ruid.  The FreeBSD code always updates the saved uid/gid.
  633                  * Also, this code uses the new (replaced) euid and egid as
  634                  * the source, which may or may not be the right ones to use.
  635                  */
  636                 if (oldcred->cr_svuid != oldcred->cr_uid ||
  637                     oldcred->cr_svgid != oldcred->cr_gid) {
  638                         VOP_UNLOCK(imgp->vp);
  639                         imgp->newcred = crdup(oldcred);
  640                         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  641                         change_svuid(imgp->newcred, imgp->newcred->cr_uid);
  642                         change_svgid(imgp->newcred, imgp->newcred->cr_gid);
  643                 }
  644         }
  645         /* The new credentials are installed into the process later. */
  646 
  647         /*
  648          *      If the current process has a special image activator it
  649          *      wants to try first, call it.   For example, emulating shell
  650          *      scripts differently.
  651          */
  652         error = -1;
  653         if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
  654                 error = img_first(imgp);
  655 
  656         /*
  657          *      Loop through the list of image activators, calling each one.
  658          *      An activator returns -1 if there is no match, 0 on success,
  659          *      and an error otherwise.
  660          */
  661         for (i = 0; error == -1 && execsw[i]; ++i) {
  662                 if (execsw[i]->ex_imgact == NULL ||
  663                     execsw[i]->ex_imgact == img_first) {
  664                         continue;
  665                 }
  666                 error = (*execsw[i]->ex_imgact)(imgp);
  667         }
  668 
  669         if (error) {
  670                 if (error == -1)
  671                         error = ENOEXEC;
  672                 goto exec_fail_dealloc;
  673         }
  674 
  675         /*
  676          * Special interpreter operation, cleanup and loop up to try to
  677          * activate the interpreter.
  678          */
  679         if (imgp->interpreted) {
  680                 exec_unmap_first_page(imgp);
  681                 /*
  682                  * The text reference needs to be removed for scripts.
  683                  * There is a short period before we determine that
  684                  * something is a script where text reference is active.
  685                  * The vnode lock is held over this entire period
  686                  * so nothing should illegitimately be blocked.
  687                  */
  688                 MPASS(imgp->textset);
  689                 VOP_UNSET_TEXT_CHECKED(newtextvp);
  690                 imgp->textset = false;
  691                 /* free name buffer and old vnode */
  692 #ifdef MAC
  693                 mac_execve_interpreter_enter(newtextvp, &interpvplabel);
  694 #endif
  695                 if (imgp->opened) {
  696                         VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
  697                         imgp->opened = false;
  698                 }
  699                 vput(newtextvp);
  700                 imgp->vp = newtextvp = NULL;
  701                 if (args->fname != NULL) {
  702                         if (newtextdvp != NULL) {
  703                                 vrele(newtextdvp);
  704                                 newtextdvp = NULL;
  705                         }
  706                         NDFREE_PNBUF(&nd);
  707                         free(newbinname, M_PARGS);
  708                         newbinname = NULL;
  709                 }
  710                 vm_object_deallocate(imgp->object);
  711                 imgp->object = NULL;
  712                 execve_nosetid(imgp);
  713                 imgp->execpath = NULL;
  714                 free(imgp->freepath, M_TEMP);
  715                 imgp->freepath = NULL;
  716                 /* set new name to that of the interpreter */
  717                 if (imgp->interpreter_vp) {
  718                         args->fname = NULL;
  719                 } else {
  720                         args->fname = imgp->interpreter_name;
  721                 }
  722                 goto interpret;
  723         }
  724 
  725         /*
  726          * NB: We unlock the vnode here because it is believed that none
  727          * of the sv_copyout_strings/sv_fixup operations require the vnode.
  728          */
  729         VOP_UNLOCK(imgp->vp);
  730 
  731         if (disallow_high_osrel &&
  732             P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
  733                 error = ENOEXEC;
  734                 uprintf("Osrel %d for image %s too high\n", p->p_osrel,
  735                     imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
  736                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  737                 goto exec_fail_dealloc;
  738         }
  739 
  740         /*
  741          * Copy out strings (args and env) and initialize stack base.
  742          */
  743         error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
  744         if (error != 0) {
  745                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  746                 goto exec_fail_dealloc;
  747         }
  748 
  749         /*
  750          * Stack setup.
  751          */
  752         error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
  753         if (error != 0) {
  754                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  755                 goto exec_fail_dealloc;
  756         }
  757 
  758         /*
  759          * For security and other reasons, the file descriptor table cannot be
  760          * shared after an exec.
  761          */
  762         fdunshare(td);
  763         pdunshare(td);
  764         /* close files on exec */
  765         fdcloseexec(td);
  766 
  767         /*
  768          * Malloc things before we need locks.
  769          */
  770         i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
  771         /* Cache arguments if they fit inside our allowance */
  772         if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
  773                 newargs = pargs_alloc(i);
  774                 bcopy(imgp->args->begin_argv, newargs->ar_args, i);
  775         }
  776 
  777         /*
  778          * For security and other reasons, signal handlers cannot
  779          * be shared after an exec. The new process gets a copy of the old
  780          * handlers. In execsigs(), the new process will have its signals
  781          * reset.
  782          */
  783         if (sigacts_shared(p->p_sigacts)) {
  784                 oldsigacts = p->p_sigacts;
  785                 newsigacts = sigacts_alloc();
  786                 sigacts_copy(newsigacts, oldsigacts);
  787         }
  788 
  789         vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  790 
  791         PROC_LOCK(p);
  792         if (oldsigacts)
  793                 p->p_sigacts = newsigacts;
  794         /* Stop profiling */
  795         stopprofclock(p);
  796 
  797         /* reset caught signals */
  798         execsigs(p);
  799 
  800         /* name this process - nameiexec(p, ndp) */
  801         bzero(p->p_comm, sizeof(p->p_comm));
  802         if (args->fname)
  803                 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
  804                     min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
  805         else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
  806                 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
  807         bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
  808 #ifdef KTR
  809         sched_clear_tdname(td);
  810 #endif
  811 
  812         /*
  813          * mark as execed, wakeup the process that vforked (if any) and tell
  814          * it that it now has its own resources back
  815          */
  816         p->p_flag |= P_EXEC;
  817         if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
  818                 p->p_flag2 &= ~P2_NOTRACE;
  819         if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
  820                 p->p_flag2 &= ~P2_STKGAP_DISABLE;
  821         if (p->p_flag & P_PPWAIT) {
  822                 p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
  823                 cv_broadcast(&p->p_pwait);
  824                 /* STOPs are no longer ignored, arrange for AST */
  825                 signotify(td);
  826         }
  827 
  828         if ((imgp->sysent->sv_setid_allowed != NULL &&
  829             !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
  830             (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
  831                 execve_nosetid(imgp);
  832 
  833         /*
  834          * Implement image setuid/setgid installation.
  835          */
  836         if (imgp->credential_setid) {
  837                 /*
  838                  * Turn off syscall tracing for set-id programs, except for
  839                  * root.  Record any set-id flags first to make sure that
  840                  * we do not regain any tracing during a possible block.
  841                  */
  842                 setsugid(p);
  843 #ifdef KTRACE
  844                 kiop = ktrprocexec(p);
  845 #endif
  846                 /*
  847                  * Close any file descriptors 0..2 that reference procfs,
  848                  * then make sure file descriptors 0..2 are in use.
  849                  *
  850                  * Both fdsetugidsafety() and fdcheckstd() may call functions
  851                  * taking sleepable locks, so temporarily drop our locks.
  852                  */
  853                 PROC_UNLOCK(p);
  854                 VOP_UNLOCK(imgp->vp);
  855                 fdsetugidsafety(td);
  856                 error = fdcheckstd(td);
  857                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  858                 if (error != 0)
  859                         goto exec_fail_dealloc;
  860                 PROC_LOCK(p);
  861 #ifdef MAC
  862                 if (will_transition) {
  863                         mac_vnode_execve_transition(oldcred, imgp->newcred,
  864                             imgp->vp, interpvplabel, imgp);
  865                 }
  866 #endif
  867         } else {
  868                 if (oldcred->cr_uid == oldcred->cr_ruid &&
  869                     oldcred->cr_gid == oldcred->cr_rgid)
  870                         p->p_flag &= ~P_SUGID;
  871         }
  872         /*
  873          * Set the new credentials.
  874          */
  875         if (imgp->newcred != NULL) {
  876                 proc_set_cred(p, imgp->newcred);
  877                 crfree(oldcred);
  878                 oldcred = NULL;
  879         }
  880 
  881         /*
  882          * Store the vp for use in kern.proc.pathname.  This vnode was
  883          * referenced by namei() or by fexecve variant of fname handling.
  884          */
  885         oldtextvp = p->p_textvp;
  886         p->p_textvp = newtextvp;
  887         oldtextdvp = p->p_textdvp;
  888         p->p_textdvp = newtextdvp;
  889         newtextdvp = NULL;
  890         oldbinname = p->p_binname;
  891         p->p_binname = newbinname;
  892         newbinname = NULL;
  893 
  894 #ifdef KDTRACE_HOOKS
  895         /*
  896          * Tell the DTrace fasttrap provider about the exec if it
  897          * has declared an interest.
  898          */
  899         if (dtrace_fasttrap_exec)
  900                 dtrace_fasttrap_exec(p);
  901 #endif
  902 
  903         /*
  904          * Notify others that we exec'd, and clear the P_INEXEC flag
  905          * as we're now a bona fide freshly-execed process.
  906          */
  907         KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
  908         p->p_flag &= ~P_INEXEC;
  909 
  910         /* clear "fork but no exec" flag, as we _are_ execing */
  911         p->p_acflag &= ~AFORK;
  912 
  913         /*
  914          * Free any previous argument cache and replace it with
  915          * the new argument cache, if any.
  916          */
  917         oldargs = p->p_args;
  918         p->p_args = newargs;
  919         newargs = NULL;
  920 
  921         PROC_UNLOCK(p);
  922 
  923 #ifdef  HWPMC_HOOKS
  924         /*
  925          * Check if system-wide sampling is in effect or if the
  926          * current process is using PMCs.  If so, do exec() time
  927          * processing.  This processing needs to happen AFTER the
  928          * P_INEXEC flag is cleared.
  929          */
  930         if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
  931                 VOP_UNLOCK(imgp->vp);
  932                 pe.pm_credentialschanged = credential_changing;
  933                 pe.pm_entryaddr = imgp->entry_addr;
  934 
  935                 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
  936                 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
  937         }
  938 #endif
  939 
  940         /* Set values passed into the program in registers. */
  941         (*p->p_sysent->sv_setregs)(td, imgp, stack_base);
  942 
  943         VOP_MMAPPED(imgp->vp);
  944 
  945         SDT_PROBE1(proc, , , exec__success, args->fname);
  946 
  947 exec_fail_dealloc:
  948         if (error != 0) {
  949                 p->p_osrel = orig_osrel;
  950                 p->p_fctl0 = orig_fctl0;
  951                 p->p_elf_brandinfo = orig_brandinfo;
  952         }
  953 
  954         if (imgp->firstpage != NULL)
  955                 exec_unmap_first_page(imgp);
  956 
  957         if (imgp->vp != NULL) {
  958                 if (imgp->opened)
  959                         VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
  960                 if (imgp->textset)
  961                         VOP_UNSET_TEXT_CHECKED(imgp->vp);
  962                 if (error != 0)
  963                         vput(imgp->vp);
  964                 else
  965                         VOP_UNLOCK(imgp->vp);
  966                 if (args->fname != NULL)
  967                         NDFREE_PNBUF(&nd);
  968                 if (newtextdvp != NULL)
  969                         vrele(newtextdvp);
  970                 free(newbinname, M_PARGS);
  971         }
  972 
  973         if (imgp->object != NULL)
  974                 vm_object_deallocate(imgp->object);
  975 
  976         free(imgp->freepath, M_TEMP);
  977 
  978         if (error == 0) {
  979                 if (p->p_ptevents & PTRACE_EXEC) {
  980                         PROC_LOCK(p);
  981                         if (p->p_ptevents & PTRACE_EXEC)
  982                                 td->td_dbgflags |= TDB_EXEC;
  983                         PROC_UNLOCK(p);
  984                 }
  985         } else {
  986 exec_fail:
  987                 /* we're done here, clear P_INEXEC */
  988                 PROC_LOCK(p);
  989                 p->p_flag &= ~P_INEXEC;
  990                 PROC_UNLOCK(p);
  991 
  992                 SDT_PROBE1(proc, , , exec__failure, error);
  993         }
  994 
  995         if (imgp->newcred != NULL && oldcred != NULL)
  996                 crfree(imgp->newcred);
  997 
  998 #ifdef MAC
  999         mac_execve_exit(imgp);
 1000         mac_execve_interpreter_exit(interpvplabel);
 1001 #endif
 1002         exec_free_args(args);
 1003 
 1004         /*
 1005          * Handle deferred decrement of ref counts.
 1006          */
 1007         if (oldtextvp != NULL)
 1008                 vrele(oldtextvp);
 1009         if (oldtextdvp != NULL)
 1010                 vrele(oldtextdvp);
 1011         free(oldbinname, M_PARGS);
 1012 #ifdef KTRACE
 1013         ktr_io_params_free(kiop);
 1014 #endif
 1015         pargs_drop(oldargs);
 1016         pargs_drop(newargs);
 1017         if (oldsigacts != NULL)
 1018                 sigacts_free(oldsigacts);
 1019         if (euip != NULL)
 1020                 uifree(euip);
 1021 
 1022         if (error && imgp->vmspace_destroyed) {
 1023                 /* sorry, no more process anymore. exit gracefully */
 1024                 exec_cleanup(td, oldvmspace);
 1025                 exit1(td, 0, SIGABRT);
 1026                 /* NOT REACHED */
 1027         }
 1028 
 1029 #ifdef KTRACE
 1030         if (error == 0)
 1031                 ktrprocctor(p);
 1032 #endif
 1033 
 1034         /*
 1035          * We don't want cpu_set_syscall_retval() to overwrite any of
 1036          * the register values put in place by exec_setregs().
 1037          * Implementations of cpu_set_syscall_retval() will leave
 1038          * registers unmodified when returning EJUSTRETURN.
 1039          */
 1040         return (error == 0 ? EJUSTRETURN : error);
 1041 }
 1042 
 1043 void
 1044 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
 1045 {
 1046         if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
 1047                 KASSERT(td->td_proc->p_vmspace != oldvmspace,
 1048                     ("oldvmspace still used"));
 1049                 vmspace_free(oldvmspace);
 1050                 td->td_pflags &= ~TDP_EXECVMSPC;
 1051         }
 1052 }
 1053 
 1054 int
 1055 exec_map_first_page(struct image_params *imgp)
 1056 {
 1057         vm_object_t object;
 1058         vm_page_t m;
 1059         int error;
 1060 
 1061         if (imgp->firstpage != NULL)
 1062                 exec_unmap_first_page(imgp);
 1063 
 1064         object = imgp->vp->v_object;
 1065         if (object == NULL)
 1066                 return (EACCES);
 1067 #if VM_NRESERVLEVEL > 0
 1068         if ((object->flags & OBJ_COLORED) == 0) {
 1069                 VM_OBJECT_WLOCK(object);
 1070                 vm_object_color(object, 0);
 1071                 VM_OBJECT_WUNLOCK(object);
 1072         }
 1073 #endif
 1074         error = vm_page_grab_valid_unlocked(&m, object, 0,
 1075             VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
 1076             VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
 1077 
 1078         if (error != VM_PAGER_OK)
 1079                 return (EIO);
 1080         imgp->firstpage = sf_buf_alloc(m, 0);
 1081         imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
 1082 
 1083         return (0);
 1084 }
 1085 
 1086 void
 1087 exec_unmap_first_page(struct image_params *imgp)
 1088 {
 1089         vm_page_t m;
 1090 
 1091         if (imgp->firstpage != NULL) {
 1092                 m = sf_buf_page(imgp->firstpage);
 1093                 sf_buf_free(imgp->firstpage);
 1094                 imgp->firstpage = NULL;
 1095                 vm_page_unwire(m, PQ_ACTIVE);
 1096         }
 1097 }
 1098 
 1099 void
 1100 exec_onexec_old(struct thread *td)
 1101 {
 1102         sigfastblock_clear(td);
 1103         umtx_exec(td->td_proc);
 1104 }
 1105 
 1106 /*
 1107  * This is an optimization which removes the unmanaged shared page
 1108  * mapping. In combination with pmap_remove_pages(), which cleans all
 1109  * managed mappings in the process' vmspace pmap, no work will be left
 1110  * for pmap_remove(min, max).
 1111  */
 1112 void
 1113 exec_free_abi_mappings(struct proc *p)
 1114 {
 1115         struct vmspace *vmspace;
 1116 
 1117         vmspace = p->p_vmspace;
 1118         if (refcount_load(&vmspace->vm_refcnt) != 1)
 1119                 return;
 1120 
 1121         if (!PROC_HAS_SHP(p))
 1122                 return;
 1123 
 1124         pmap_remove(vmspace_pmap(vmspace), vmspace->vm_shp_base,
 1125             vmspace->vm_shp_base + p->p_sysent->sv_shared_page_len);
 1126 }
 1127 
 1128 /*
 1129  * Run down the current address space and install a new one.
 1130  */
 1131 int
 1132 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
 1133 {
 1134         int error;
 1135         struct proc *p = imgp->proc;
 1136         struct vmspace *vmspace = p->p_vmspace;
 1137         struct thread *td = curthread;
 1138         vm_offset_t sv_minuser;
 1139         vm_map_t map;
 1140 
 1141         imgp->vmspace_destroyed = true;
 1142         imgp->sysent = sv;
 1143 
 1144         if (p->p_sysent->sv_onexec_old != NULL)
 1145                 p->p_sysent->sv_onexec_old(td);
 1146         itimers_exec(p);
 1147 
 1148         EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
 1149 
 1150         /*
 1151          * Blow away entire process VM, if address space not shared,
 1152          * otherwise, create a new VM space so that other threads are
 1153          * not disrupted
 1154          */
 1155         map = &vmspace->vm_map;
 1156         if (map_at_zero)
 1157                 sv_minuser = sv->sv_minuser;
 1158         else
 1159                 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
 1160         if (refcount_load(&vmspace->vm_refcnt) == 1 &&
 1161             vm_map_min(map) == sv_minuser &&
 1162             vm_map_max(map) == sv->sv_maxuser &&
 1163             cpu_exec_vmspace_reuse(p, map)) {
 1164                 exec_free_abi_mappings(p);
 1165                 shmexit(vmspace);
 1166                 pmap_remove_pages(vmspace_pmap(vmspace));
 1167                 vm_map_remove(map, vm_map_min(map), vm_map_max(map));
 1168                 /*
 1169                  * An exec terminates mlockall(MCL_FUTURE).
 1170                  * ASLR and W^X states must be re-evaluated.
 1171                  */
 1172                 vm_map_lock(map);
 1173                 vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
 1174                     MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX);
 1175                 vm_map_unlock(map);
 1176         } else {
 1177                 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
 1178                 if (error)
 1179                         return (error);
 1180                 vmspace = p->p_vmspace;
 1181                 map = &vmspace->vm_map;
 1182         }
 1183         map->flags |= imgp->map_flags;
 1184 
 1185         return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
 1186 }
 1187 
 1188 /*
 1189  * Compute the stack size limit and map the main process stack.
 1190  * Map the shared page.
 1191  */
 1192 int
 1193 exec_map_stack(struct image_params *imgp)
 1194 {
 1195         struct rlimit rlim_stack;
 1196         struct sysentvec *sv;
 1197         struct proc *p;
 1198         vm_map_t map;
 1199         struct vmspace *vmspace;
 1200         vm_offset_t stack_addr, stack_top;
 1201         vm_offset_t sharedpage_addr;
 1202         u_long ssiz;
 1203         int error, find_space, stack_off;
 1204         vm_prot_t stack_prot;
 1205         vm_object_t obj;
 1206 
 1207         p = imgp->proc;
 1208         sv = p->p_sysent;
 1209 
 1210         if (imgp->stack_sz != 0) {
 1211                 ssiz = trunc_page(imgp->stack_sz);
 1212                 PROC_LOCK(p);
 1213                 lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
 1214                 PROC_UNLOCK(p);
 1215                 if (ssiz > rlim_stack.rlim_max)
 1216                         ssiz = rlim_stack.rlim_max;
 1217                 if (ssiz > rlim_stack.rlim_cur) {
 1218                         rlim_stack.rlim_cur = ssiz;
 1219                         kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
 1220                 }
 1221         } else if (sv->sv_maxssiz != NULL) {
 1222                 ssiz = *sv->sv_maxssiz;
 1223         } else {
 1224                 ssiz = maxssiz;
 1225         }
 1226 
 1227         vmspace = p->p_vmspace;
 1228         map = &vmspace->vm_map;
 1229 
 1230         stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ?
 1231             imgp->stack_prot : sv->sv_stackprot;
 1232         if ((map->flags & MAP_ASLR_STACK) != 0) {
 1233                 stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
 1234                     lim_max(curthread, RLIMIT_DATA));
 1235                 find_space = VMFS_ANY_SPACE;
 1236         } else {
 1237                 stack_addr = sv->sv_usrstack - ssiz;
 1238                 find_space = VMFS_NO_SPACE;
 1239         }
 1240         error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz,
 1241             sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL,
 1242             MAP_STACK_GROWS_DOWN);
 1243         if (error != KERN_SUCCESS) {
 1244                 uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
 1245                     "failed, mach error %d errno %d\n", (uintmax_t)ssiz,
 1246                     stack_prot, error, vm_mmap_to_errno(error));
 1247                 return (vm_mmap_to_errno(error));
 1248         }
 1249 
 1250         stack_top = stack_addr + ssiz;
 1251         if ((map->flags & MAP_ASLR_STACK) != 0) {
 1252                 /* Randomize within the first page of the stack. */
 1253                 arc4rand(&stack_off, sizeof(stack_off), 0);
 1254                 stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *));
 1255         }
 1256 
 1257         /* Map a shared page */
 1258         obj = sv->sv_shared_page_obj;
 1259         if (obj == NULL) {
 1260                 sharedpage_addr = 0;
 1261                 goto out;
 1262         }
 1263 
 1264         /*
 1265          * If randomization is disabled then the shared page will
 1266          * be mapped at address specified in sysentvec.
 1267          * Otherwise any address above .data section can be selected.
 1268          * Same logic is used for stack address randomization.
 1269          * If the address randomization is applied map a guard page
 1270          * at the top of UVA.
 1271          */
 1272         vm_object_reference(obj);
 1273         if ((imgp->imgp_flags & IMGP_ASLR_SHARED_PAGE) != 0) {
 1274                 sharedpage_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
 1275                     lim_max(curthread, RLIMIT_DATA));
 1276 
 1277                 error = vm_map_fixed(map, NULL, 0,
 1278                     sv->sv_maxuser - PAGE_SIZE, PAGE_SIZE,
 1279                     VM_PROT_NONE, VM_PROT_NONE, MAP_CREATE_GUARD);
 1280                 if (error != KERN_SUCCESS) {
 1281                         /*
 1282                          * This is not fatal, so let's just print a warning
 1283                          * and continue.
 1284                          */
 1285                         uprintf("%s: Mapping guard page at the top of UVA failed"
 1286                             " mach error %d errno %d",
 1287                             __func__, error, vm_mmap_to_errno(error));
 1288                 }
 1289 
 1290                 error = vm_map_find(map, obj, 0,
 1291                     &sharedpage_addr, sv->sv_shared_page_len,
 1292                     sv->sv_maxuser, VMFS_ANY_SPACE,
 1293                     VM_PROT_READ | VM_PROT_EXECUTE,
 1294                     VM_PROT_READ | VM_PROT_EXECUTE,
 1295                     MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
 1296         } else {
 1297                 sharedpage_addr = sv->sv_shared_page_base;
 1298                 vm_map_fixed(map, obj, 0,
 1299                     sharedpage_addr, sv->sv_shared_page_len,
 1300                     VM_PROT_READ | VM_PROT_EXECUTE,
 1301                     VM_PROT_READ | VM_PROT_EXECUTE,
 1302                     MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
 1303         }
 1304         if (error != KERN_SUCCESS) {
 1305                 uprintf("%s: mapping shared page at addr: %p"
 1306                     "failed, mach error %d errno %d\n", __func__,
 1307                     (void *)sharedpage_addr, error, vm_mmap_to_errno(error));
 1308                 vm_object_deallocate(obj);
 1309                 return (vm_mmap_to_errno(error));
 1310         }
 1311 out:
 1312         /*
 1313          * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
 1314          * are still used to enforce the stack rlimit on the process stack.
 1315          */
 1316         vmspace->vm_maxsaddr = (char *)stack_addr;
 1317         vmspace->vm_stacktop = stack_top;
 1318         vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
 1319         vmspace->vm_shp_base = sharedpage_addr;
 1320 
 1321         return (0);
 1322 }
 1323 
 1324 /*
 1325  * Copy out argument and environment strings from the old process address
 1326  * space into the temporary string buffer.
 1327  */
 1328 int
 1329 exec_copyin_args(struct image_args *args, const char *fname,
 1330     enum uio_seg segflg, char **argv, char **envv)
 1331 {
 1332         u_long arg, env;
 1333         int error;
 1334 
 1335         bzero(args, sizeof(*args));
 1336         if (argv == NULL)
 1337                 return (EFAULT);
 1338 
 1339         /*
 1340          * Allocate demand-paged memory for the file name, argument, and
 1341          * environment strings.
 1342          */
 1343         error = exec_alloc_args(args);
 1344         if (error != 0)
 1345                 return (error);
 1346 
 1347         /*
 1348          * Copy the file name.
 1349          */
 1350         error = exec_args_add_fname(args, fname, segflg);
 1351         if (error != 0)
 1352                 goto err_exit;
 1353 
 1354         /*
 1355          * extract arguments first
 1356          */
 1357         for (;;) {
 1358                 error = fueword(argv++, &arg);
 1359                 if (error == -1) {
 1360                         error = EFAULT;
 1361                         goto err_exit;
 1362                 }
 1363                 if (arg == 0)
 1364                         break;
 1365                 error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
 1366                     UIO_USERSPACE);
 1367                 if (error != 0)
 1368                         goto err_exit;
 1369         }
 1370 
 1371         /*
 1372          * extract environment strings
 1373          */
 1374         if (envv) {
 1375                 for (;;) {
 1376                         error = fueword(envv++, &env);
 1377                         if (error == -1) {
 1378                                 error = EFAULT;
 1379                                 goto err_exit;
 1380                         }
 1381                         if (env == 0)
 1382                                 break;
 1383                         error = exec_args_add_env(args,
 1384                             (char *)(uintptr_t)env, UIO_USERSPACE);
 1385                         if (error != 0)
 1386                                 goto err_exit;
 1387                 }
 1388         }
 1389 
 1390         return (0);
 1391 
 1392 err_exit:
 1393         exec_free_args(args);
 1394         return (error);
 1395 }
 1396 
 1397 struct exec_args_kva {
 1398         vm_offset_t addr;
 1399         u_int gen;
 1400         SLIST_ENTRY(exec_args_kva) next;
 1401 };
 1402 
 1403 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
 1404 
 1405 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
 1406 static struct mtx exec_args_kva_mtx;
 1407 static u_int exec_args_gen;
 1408 
 1409 static void
 1410 exec_prealloc_args_kva(void *arg __unused)
 1411 {
 1412         struct exec_args_kva *argkva;
 1413         u_int i;
 1414 
 1415         SLIST_INIT(&exec_args_kva_freelist);
 1416         mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
 1417         for (i = 0; i < exec_map_entries; i++) {
 1418                 argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
 1419                 argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
 1420                 argkva->gen = exec_args_gen;
 1421                 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
 1422         }
 1423 }
 1424 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
 1425 
 1426 static vm_offset_t
 1427 exec_alloc_args_kva(void **cookie)
 1428 {
 1429         struct exec_args_kva *argkva;
 1430 
 1431         argkva = (void *)atomic_readandclear_ptr(
 1432             (uintptr_t *)DPCPU_PTR(exec_args_kva));
 1433         if (argkva == NULL) {
 1434                 mtx_lock(&exec_args_kva_mtx);
 1435                 while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
 1436                         (void)mtx_sleep(&exec_args_kva_freelist,
 1437                             &exec_args_kva_mtx, 0, "execkva", 0);
 1438                 SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
 1439                 mtx_unlock(&exec_args_kva_mtx);
 1440         }
 1441         kasan_mark((void *)argkva->addr, exec_map_entry_size,
 1442             exec_map_entry_size, 0);
 1443         *(struct exec_args_kva **)cookie = argkva;
 1444         return (argkva->addr);
 1445 }
 1446 
 1447 static void
 1448 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
 1449 {
 1450         vm_offset_t base;
 1451 
 1452         base = argkva->addr;
 1453         kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
 1454             KASAN_EXEC_ARGS_FREED);
 1455         if (argkva->gen != gen) {
 1456                 (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
 1457                     MADV_FREE);
 1458                 argkva->gen = gen;
 1459         }
 1460         if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
 1461             (uintptr_t)NULL, (uintptr_t)argkva)) {
 1462                 mtx_lock(&exec_args_kva_mtx);
 1463                 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
 1464                 wakeup_one(&exec_args_kva_freelist);
 1465                 mtx_unlock(&exec_args_kva_mtx);
 1466         }
 1467 }
 1468 
 1469 static void
 1470 exec_free_args_kva(void *cookie)
 1471 {
 1472 
 1473         exec_release_args_kva(cookie, exec_args_gen);
 1474 }
 1475 
 1476 static void
 1477 exec_args_kva_lowmem(void *arg __unused)
 1478 {
 1479         SLIST_HEAD(, exec_args_kva) head;
 1480         struct exec_args_kva *argkva;
 1481         u_int gen;
 1482         int i;
 1483 
 1484         gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
 1485 
 1486         /*
 1487          * Force an madvise of each KVA range. Any currently allocated ranges
 1488          * will have MADV_FREE applied once they are freed.
 1489          */
 1490         SLIST_INIT(&head);
 1491         mtx_lock(&exec_args_kva_mtx);
 1492         SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
 1493         mtx_unlock(&exec_args_kva_mtx);
 1494         while ((argkva = SLIST_FIRST(&head)) != NULL) {
 1495                 SLIST_REMOVE_HEAD(&head, next);
 1496                 exec_release_args_kva(argkva, gen);
 1497         }
 1498 
 1499         CPU_FOREACH(i) {
 1500                 argkva = (void *)atomic_readandclear_ptr(
 1501                     (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
 1502                 if (argkva != NULL)
 1503                         exec_release_args_kva(argkva, gen);
 1504         }
 1505 }
 1506 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
 1507     EVENTHANDLER_PRI_ANY);
 1508 
 1509 /*
 1510  * Allocate temporary demand-paged, zero-filled memory for the file name,
 1511  * argument, and environment strings.
 1512  */
 1513 int
 1514 exec_alloc_args(struct image_args *args)
 1515 {
 1516 
 1517         args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
 1518         return (0);
 1519 }
 1520 
 1521 void
 1522 exec_free_args(struct image_args *args)
 1523 {
 1524 
 1525         if (args->buf != NULL) {
 1526                 exec_free_args_kva(args->bufkva);
 1527                 args->buf = NULL;
 1528         }
 1529         if (args->fname_buf != NULL) {
 1530                 free(args->fname_buf, M_TEMP);
 1531                 args->fname_buf = NULL;
 1532         }
 1533 }
 1534 
 1535 /*
 1536  * A set to functions to fill struct image args.
 1537  *
 1538  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
 1539  * fname) before the other functions.  All exec_args_add_arg() calls must
 1540  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
 1541  * may be called any time after exec_args_add_fname().
 1542  *
 1543  * exec_args_add_fname() - install path to be executed
 1544  * exec_args_add_arg() - append an argument string
 1545  * exec_args_add_env() - append an env string
 1546  * exec_args_adjust_args() - adjust location of the argument list to
 1547  *                           allow new arguments to be prepended
 1548  */
 1549 int
 1550 exec_args_add_fname(struct image_args *args, const char *fname,
 1551     enum uio_seg segflg)
 1552 {
 1553         int error;
 1554         size_t length;
 1555 
 1556         KASSERT(args->fname == NULL, ("fname already appended"));
 1557         KASSERT(args->endp == NULL, ("already appending to args"));
 1558 
 1559         if (fname != NULL) {
 1560                 args->fname = args->buf;
 1561                 error = segflg == UIO_SYSSPACE ?
 1562                     copystr(fname, args->fname, PATH_MAX, &length) :
 1563                     copyinstr(fname, args->fname, PATH_MAX, &length);
 1564                 if (error != 0)
 1565                         return (error == ENAMETOOLONG ? E2BIG : error);
 1566         } else
 1567                 length = 0;
 1568 
 1569         /* Set up for _arg_*()/_env_*() */
 1570         args->endp = args->buf + length;
 1571         /* begin_argv must be set and kept updated */
 1572         args->begin_argv = args->endp;
 1573         KASSERT(exec_map_entry_size - length >= ARG_MAX,
 1574             ("too little space remaining for arguments %zu < %zu",
 1575             exec_map_entry_size - length, (size_t)ARG_MAX));
 1576         args->stringspace = ARG_MAX;
 1577 
 1578         return (0);
 1579 }
 1580 
 1581 static int
 1582 exec_args_add_str(struct image_args *args, const char *str,
 1583     enum uio_seg segflg, int *countp)
 1584 {
 1585         int error;
 1586         size_t length;
 1587 
 1588         KASSERT(args->endp != NULL, ("endp not initialized"));
 1589         KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
 1590 
 1591         error = (segflg == UIO_SYSSPACE) ?
 1592             copystr(str, args->endp, args->stringspace, &length) :
 1593             copyinstr(str, args->endp, args->stringspace, &length);
 1594         if (error != 0)
 1595                 return (error == ENAMETOOLONG ? E2BIG : error);
 1596         args->stringspace -= length;
 1597         args->endp += length;
 1598         (*countp)++;
 1599 
 1600         return (0);
 1601 }
 1602 
 1603 int
 1604 exec_args_add_arg(struct image_args *args, const char *argp,
 1605     enum uio_seg segflg)
 1606 {
 1607 
 1608         KASSERT(args->envc == 0, ("appending args after env"));
 1609 
 1610         return (exec_args_add_str(args, argp, segflg, &args->argc));
 1611 }
 1612 
 1613 int
 1614 exec_args_add_env(struct image_args *args, const char *envp,
 1615     enum uio_seg segflg)
 1616 {
 1617 
 1618         if (args->envc == 0)
 1619                 args->begin_envv = args->endp;
 1620 
 1621         return (exec_args_add_str(args, envp, segflg, &args->envc));
 1622 }
 1623 
 1624 int
 1625 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
 1626 {
 1627         ssize_t offset;
 1628 
 1629         KASSERT(args->endp != NULL, ("endp not initialized"));
 1630         KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
 1631 
 1632         offset = extend - consume;
 1633         if (args->stringspace < offset)
 1634                 return (E2BIG);
 1635         memmove(args->begin_argv + extend, args->begin_argv + consume,
 1636             args->endp - args->begin_argv + consume);
 1637         if (args->envc > 0)
 1638                 args->begin_envv += offset;
 1639         args->endp += offset;
 1640         args->stringspace -= offset;
 1641         return (0);
 1642 }
 1643 
 1644 char *
 1645 exec_args_get_begin_envv(struct image_args *args)
 1646 {
 1647 
 1648         KASSERT(args->endp != NULL, ("endp not initialized"));
 1649 
 1650         if (args->envc > 0)
 1651                 return (args->begin_envv);
 1652         return (args->endp);
 1653 }
 1654 
 1655 /*
 1656  * Copy strings out to the new process address space, constructing new arg
 1657  * and env vector tables. Return a pointer to the base so that it can be used
 1658  * as the initial stack pointer.
 1659  */
 1660 int
 1661 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
 1662 {
 1663         int argc, envc;
 1664         char **vectp;
 1665         char *stringp;
 1666         uintptr_t destp, ustringp;
 1667         struct ps_strings *arginfo;
 1668         struct proc *p;
 1669         struct sysentvec *sysent;
 1670         size_t execpath_len;
 1671         int error, szsigcode;
 1672         char canary[sizeof(long) * 8];
 1673 
 1674         p = imgp->proc;
 1675         sysent = p->p_sysent;
 1676 
 1677         destp = PROC_PS_STRINGS(p);
 1678         arginfo = imgp->ps_strings = (void *)destp;
 1679 
 1680         /*
 1681          * Install sigcode.
 1682          */
 1683         if (sysent->sv_shared_page_base == 0 && sysent->sv_szsigcode != NULL) {
 1684                 szsigcode = *(sysent->sv_szsigcode);
 1685                 destp -= szsigcode;
 1686                 destp = rounddown2(destp, sizeof(void *));
 1687                 error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode);
 1688                 if (error != 0)
 1689                         return (error);
 1690         }
 1691 
 1692         /*
 1693          * Copy the image path for the rtld.
 1694          */
 1695         if (imgp->execpath != NULL && imgp->auxargs != NULL) {
 1696                 execpath_len = strlen(imgp->execpath) + 1;
 1697                 destp -= execpath_len;
 1698                 destp = rounddown2(destp, sizeof(void *));
 1699                 imgp->execpathp = (void *)destp;
 1700                 error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
 1701                 if (error != 0)
 1702                         return (error);
 1703         }
 1704 
 1705         /*
 1706          * Prepare the canary for SSP.
 1707          */
 1708         arc4rand(canary, sizeof(canary), 0);
 1709         destp -= sizeof(canary);
 1710         imgp->canary = (void *)destp;
 1711         error = copyout(canary, imgp->canary, sizeof(canary));
 1712         if (error != 0)
 1713                 return (error);
 1714         imgp->canarylen = sizeof(canary);
 1715 
 1716         /*
 1717          * Prepare the pagesizes array.
 1718          */
 1719         imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES;
 1720         destp -= imgp->pagesizeslen;
 1721         destp = rounddown2(destp, sizeof(void *));
 1722         imgp->pagesizes = (void *)destp;
 1723         error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen);
 1724         if (error != 0)
 1725                 return (error);
 1726 
 1727         /*
 1728          * Allocate room for the argument and environment strings.
 1729          */
 1730         destp -= ARG_MAX - imgp->args->stringspace;
 1731         destp = rounddown2(destp, sizeof(void *));
 1732         ustringp = destp;
 1733 
 1734         if (imgp->auxargs) {
 1735                 /*
 1736                  * Allocate room on the stack for the ELF auxargs
 1737                  * array.  It has up to AT_COUNT entries.
 1738                  */
 1739                 destp -= AT_COUNT * sizeof(Elf_Auxinfo);
 1740                 destp = rounddown2(destp, sizeof(void *));
 1741         }
 1742 
 1743         vectp = (char **)destp;
 1744 
 1745         /*
 1746          * Allocate room for the argv[] and env vectors including the
 1747          * terminating NULL pointers.
 1748          */
 1749         vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
 1750 
 1751         /*
 1752          * vectp also becomes our initial stack base
 1753          */
 1754         *stack_base = (uintptr_t)vectp;
 1755 
 1756         stringp = imgp->args->begin_argv;
 1757         argc = imgp->args->argc;
 1758         envc = imgp->args->envc;
 1759 
 1760         /*
 1761          * Copy out strings - arguments and environment.
 1762          */
 1763         error = copyout(stringp, (void *)ustringp,
 1764             ARG_MAX - imgp->args->stringspace);
 1765         if (error != 0)
 1766                 return (error);
 1767 
 1768         /*
 1769          * Fill in "ps_strings" struct for ps, w, etc.
 1770          */
 1771         imgp->argv = vectp;
 1772         if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
 1773             suword32(&arginfo->ps_nargvstr, argc) != 0)
 1774                 return (EFAULT);
 1775 
 1776         /*
 1777          * Fill in argument portion of vector table.
 1778          */
 1779         for (; argc > 0; --argc) {
 1780                 if (suword(vectp++, ustringp) != 0)
 1781                         return (EFAULT);
 1782                 while (*stringp++ != 0)
 1783                         ustringp++;
 1784                 ustringp++;
 1785         }
 1786 
 1787         /* a null vector table pointer separates the argp's from the envp's */
 1788         if (suword(vectp++, 0) != 0)
 1789                 return (EFAULT);
 1790 
 1791         imgp->envv = vectp;
 1792         if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
 1793             suword32(&arginfo->ps_nenvstr, envc) != 0)
 1794                 return (EFAULT);
 1795 
 1796         /*
 1797          * Fill in environment portion of vector table.
 1798          */
 1799         for (; envc > 0; --envc) {
 1800                 if (suword(vectp++, ustringp) != 0)
 1801                         return (EFAULT);
 1802                 while (*stringp++ != 0)
 1803                         ustringp++;
 1804                 ustringp++;
 1805         }
 1806 
 1807         /* end of vector table is a null pointer */
 1808         if (suword(vectp, 0) != 0)
 1809                 return (EFAULT);
 1810 
 1811         if (imgp->auxargs) {
 1812                 vectp++;
 1813                 error = imgp->sysent->sv_copyout_auxargs(imgp,
 1814                     (uintptr_t)vectp);
 1815                 if (error != 0)
 1816                         return (error);
 1817         }
 1818 
 1819         return (0);
 1820 }
 1821 
 1822 /*
 1823  * Check permissions of file to execute.
 1824  *      Called with imgp->vp locked.
 1825  *      Return 0 for success or error code on failure.
 1826  */
 1827 int
 1828 exec_check_permissions(struct image_params *imgp)
 1829 {
 1830         struct vnode *vp = imgp->vp;
 1831         struct vattr *attr = imgp->attr;
 1832         struct thread *td;
 1833         int error;
 1834 
 1835         td = curthread;
 1836 
 1837         /* Get file attributes */
 1838         error = VOP_GETATTR(vp, attr, td->td_ucred);
 1839         if (error)
 1840                 return (error);
 1841 
 1842 #ifdef MAC
 1843         error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
 1844         if (error)
 1845                 return (error);
 1846 #endif
 1847 
 1848         /*
 1849          * 1) Check if file execution is disabled for the filesystem that
 1850          *    this file resides on.
 1851          * 2) Ensure that at least one execute bit is on. Otherwise, a
 1852          *    privileged user will always succeed, and we don't want this
 1853          *    to happen unless the file really is executable.
 1854          * 3) Ensure that the file is a regular file.
 1855          */
 1856         if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
 1857             (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
 1858             (attr->va_type != VREG))
 1859                 return (EACCES);
 1860 
 1861         /*
 1862          * Zero length files can't be exec'd
 1863          */
 1864         if (attr->va_size == 0)
 1865                 return (ENOEXEC);
 1866 
 1867         /*
 1868          *  Check for execute permission to file based on current credentials.
 1869          */
 1870         error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
 1871         if (error)
 1872                 return (error);
 1873 
 1874         /*
 1875          * Check number of open-for-writes on the file and deny execution
 1876          * if there are any.
 1877          *
 1878          * Add a text reference now so no one can write to the
 1879          * executable while we're activating it.
 1880          *
 1881          * Remember if this was set before and unset it in case this is not
 1882          * actually an executable image.
 1883          */
 1884         error = VOP_SET_TEXT(vp);
 1885         if (error != 0)
 1886                 return (error);
 1887         imgp->textset = true;
 1888 
 1889         /*
 1890          * Call filesystem specific open routine (which does nothing in the
 1891          * general case).
 1892          */
 1893         error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
 1894         if (error == 0)
 1895                 imgp->opened = true;
 1896         return (error);
 1897 }
 1898 
 1899 /*
 1900  * Exec handler registration
 1901  */
 1902 int
 1903 exec_register(const struct execsw *execsw_arg)
 1904 {
 1905         const struct execsw **es, **xs, **newexecsw;
 1906         u_int count = 2;        /* New slot and trailing NULL */
 1907 
 1908         if (execsw)
 1909                 for (es = execsw; *es; es++)
 1910                         count++;
 1911         newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
 1912         xs = newexecsw;
 1913         if (execsw)
 1914                 for (es = execsw; *es; es++)
 1915                         *xs++ = *es;
 1916         *xs++ = execsw_arg;
 1917         *xs = NULL;
 1918         if (execsw)
 1919                 free(execsw, M_TEMP);
 1920         execsw = newexecsw;
 1921         return (0);
 1922 }
 1923 
 1924 int
 1925 exec_unregister(const struct execsw *execsw_arg)
 1926 {
 1927         const struct execsw **es, **xs, **newexecsw;
 1928         int count = 1;
 1929 
 1930         if (execsw == NULL)
 1931                 panic("unregister with no handlers left?\n");
 1932 
 1933         for (es = execsw; *es; es++) {
 1934                 if (*es == execsw_arg)
 1935                         break;
 1936         }
 1937         if (*es == NULL)
 1938                 return (ENOENT);
 1939         for (es = execsw; *es; es++)
 1940                 if (*es != execsw_arg)
 1941                         count++;
 1942         newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
 1943         xs = newexecsw;
 1944         for (es = execsw; *es; es++)
 1945                 if (*es != execsw_arg)
 1946                         *xs++ = *es;
 1947         *xs = NULL;
 1948         if (execsw)
 1949                 free(execsw, M_TEMP);
 1950         execsw = newexecsw;
 1951         return (0);
 1952 }
 1953 
 1954 /*
 1955  * Write out a core segment to the compression stream.
 1956  */
 1957 static int
 1958 compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
 1959 {
 1960         size_t chunk_len;
 1961         int error;
 1962 
 1963         while (len > 0) {
 1964                 chunk_len = MIN(len, CORE_BUF_SIZE);
 1965 
 1966                 /*
 1967                  * We can get EFAULT error here.
 1968                  * In that case zero out the current chunk of the segment.
 1969                  */
 1970                 error = copyin(base, buf, chunk_len);
 1971                 if (error != 0)
 1972                         bzero(buf, chunk_len);
 1973                 error = compressor_write(cp->comp, buf, chunk_len);
 1974                 if (error != 0)
 1975                         break;
 1976                 base += chunk_len;
 1977                 len -= chunk_len;
 1978         }
 1979         return (error);
 1980 }
 1981 
 1982 int
 1983 core_write(struct coredump_params *cp, const void *base, size_t len,
 1984     off_t offset, enum uio_seg seg, size_t *resid)
 1985 {
 1986 
 1987         return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
 1988             len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
 1989             cp->active_cred, cp->file_cred, resid, cp->td));
 1990 }
 1991 
 1992 int
 1993 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
 1994     void *tmpbuf)
 1995 {
 1996         vm_map_t map;
 1997         struct mount *mp;
 1998         size_t resid, runlen;
 1999         int error;
 2000         bool success;
 2001 
 2002         KASSERT((uintptr_t)base % PAGE_SIZE == 0,
 2003             ("%s: user address %p is not page-aligned", __func__, base));
 2004 
 2005         if (cp->comp != NULL)
 2006                 return (compress_chunk(cp, base, tmpbuf, len));
 2007 
 2008         map = &cp->td->td_proc->p_vmspace->vm_map;
 2009         for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
 2010                 /*
 2011                  * Attempt to page in all virtual pages in the range.  If a
 2012                  * virtual page is not backed by the pager, it is represented as
 2013                  * a hole in the file.  This can occur with zero-filled
 2014                  * anonymous memory or truncated files, for example.
 2015                  */
 2016                 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
 2017                         if (core_dump_can_intr && curproc_sigkilled())
 2018                                 return (EINTR);
 2019                         error = vm_fault(map, (uintptr_t)base + runlen,
 2020                             VM_PROT_READ, VM_FAULT_NOFILL, NULL);
 2021                         if (runlen == 0)
 2022                                 success = error == KERN_SUCCESS;
 2023                         else if ((error == KERN_SUCCESS) != success)
 2024                                 break;
 2025                 }
 2026 
 2027                 if (success) {
 2028                         error = core_write(cp, base, runlen, offset,
 2029                             UIO_USERSPACE, &resid);
 2030                         if (error != 0) {
 2031                                 if (error != EFAULT)
 2032                                         break;
 2033 
 2034                                 /*
 2035                                  * EFAULT may be returned if the user mapping
 2036                                  * could not be accessed, e.g., because a mapped
 2037                                  * file has been truncated.  Skip the page if no
 2038                                  * progress was made, to protect against a
 2039                                  * hypothetical scenario where vm_fault() was
 2040                                  * successful but core_write() returns EFAULT
 2041                                  * anyway.
 2042                                  */
 2043                                 runlen -= resid;
 2044                                 if (runlen == 0) {
 2045                                         success = false;
 2046                                         runlen = PAGE_SIZE;
 2047                                 }
 2048                         }
 2049                 }
 2050                 if (!success) {
 2051                         error = vn_start_write(cp->vp, &mp, V_WAIT);
 2052                         if (error != 0)
 2053                                 break;
 2054                         vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
 2055                         error = vn_truncate_locked(cp->vp, offset + runlen,
 2056                             false, cp->td->td_ucred);
 2057                         VOP_UNLOCK(cp->vp);
 2058                         vn_finished_write(mp);
 2059                         if (error != 0)
 2060                                 break;
 2061                 }
 2062         }
 2063         return (error);
 2064 }
 2065 
 2066 /*
 2067  * Drain into a core file.
 2068  */
 2069 int
 2070 sbuf_drain_core_output(void *arg, const char *data, int len)
 2071 {
 2072         struct coredump_params *cp;
 2073         struct proc *p;
 2074         int error, locked;
 2075 
 2076         cp = arg;
 2077         p = cp->td->td_proc;
 2078 
 2079         /*
 2080          * Some kern_proc out routines that print to this sbuf may
 2081          * call us with the process lock held. Draining with the
 2082          * non-sleepable lock held is unsafe. The lock is needed for
 2083          * those routines when dumping a live process. In our case we
 2084          * can safely release the lock before draining and acquire
 2085          * again after.
 2086          */
 2087         locked = PROC_LOCKED(p);
 2088         if (locked)
 2089                 PROC_UNLOCK(p);
 2090         if (cp->comp != NULL)
 2091                 error = compressor_write(cp->comp, __DECONST(char *, data),
 2092                     len);
 2093         else
 2094                 error = core_write(cp, __DECONST(void *, data), len, cp->offset,
 2095                     UIO_SYSSPACE, NULL);
 2096         if (locked)
 2097                 PROC_LOCK(p);
 2098         if (error != 0)
 2099                 return (-error);
 2100         cp->offset += len;
 2101         return (len);
 2102 }

Cache object: f3234e262ce2b260410e659e47f53989


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.