The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_exec.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1993, David Greenman
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
   27  */
   28 
   29 #include <sys/param.h>
   30 #include <sys/systm.h>
   31 #include <sys/sysproto.h>
   32 #include <sys/kernel.h>
   33 #include <sys/mount.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/fcntl.h>
   36 #include <sys/acct.h>
   37 #include <sys/exec.h>
   38 #include <sys/imgact.h>
   39 #include <sys/imgact_elf.h>
   40 #include <sys/kern_syscall.h>
   41 #include <sys/wait.h>
   42 #include <sys/malloc.h>
   43 #include <sys/proc.h>
   44 #include <sys/priv.h>
   45 #include <sys/ktrace.h>
   46 #include <sys/signalvar.h>
   47 #include <sys/pioctl.h>
   48 #include <sys/nlookup.h>
   49 #include <sys/sysent.h>
   50 #include <sys/shm.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/vnode.h>
   53 #include <sys/vmmeter.h>
   54 #include <sys/libkern.h>
   55 
   56 #include <cpu/lwbuf.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/vm_param.h>
   60 #include <sys/lock.h>
   61 #include <vm/pmap.h>
   62 #include <vm/vm_page.h>
   63 #include <vm/vm_map.h>
   64 #include <vm/vm_kern.h>
   65 #include <vm/vm_extern.h>
   66 #include <vm/vm_object.h>
   67 #include <vm/vnode_pager.h>
   68 #include <vm/vm_pager.h>
   69 
   70 #include <sys/user.h>
   71 #include <sys/reg.h>
   72 
   73 #include <sys/refcount.h>
   74 #include <sys/thread2.h>
   75 #include <sys/mplock2.h>
   76 #include <vm/vm_page2.h>
   77 
   78 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
   79 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
   80 
   81 static register_t *exec_copyout_strings (struct image_params *);
   82 
   83 /* XXX This should be vm_size_t. */
   84 static u_long ps_strings = PS_STRINGS;
   85 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
   86 
   87 /* XXX This should be vm_size_t. */
   88 static u_long usrstack = USRSTACK;
   89 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
   90 
   91 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
   92 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 
   93     &ps_arg_cache_limit, 0, "");
   94 
   95 int ps_argsopen = 1;
   96 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
   97 
   98 static int ktrace_suid = 0;
   99 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
  100 
  101 void print_execve_args(struct image_args *args);
  102 int debug_execve_args = 0;
  103 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
  104     0, "");
  105 
  106 /*
  107  * Exec arguments object cache
  108  */
  109 static struct objcache *exec_objcache;
  110 
  111 static
  112 void
  113 exec_objcache_init(void *arg __unused)
  114 {
  115         int cluster_limit;
  116         size_t limsize;
  117 
  118         /*
  119          * Maximum number of concurrent execs.  This can be limiting on
  120          * systems with a lot of cpu cores but it also eats a significant
  121          * amount of memory.
  122          */
  123         cluster_limit = (ncpus < 16) ? 16 : ncpus;
  124         limsize = kmem_lim_size();
  125         if (limsize > 7 * 1024)
  126                 cluster_limit *= 2;
  127         if (limsize > 15 * 1024)
  128                 cluster_limit *= 2;
  129 
  130         exec_objcache = objcache_create_mbacked(
  131                                         M_EXECARGS, PATH_MAX + ARG_MAX,
  132                                         cluster_limit, 8,
  133                                         NULL, NULL, NULL);
  134 }
  135 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
  136 
  137 /*
  138  * stackgap_random specifies if the stackgap should have a random size added
  139  * to it.  It must be a power of 2.  If non-zero, the stack gap will be 
  140  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
  141  */
  142 static int stackgap_random = 1024;
  143 static int
  144 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
  145 {
  146         int error, new_val;
  147         new_val = stackgap_random;
  148         error = sysctl_handle_int(oidp, &new_val, 0, req);
  149         if (error != 0 || req->newptr == NULL)
  150                 return (error);
  151         if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
  152                 return (EINVAL);
  153         stackgap_random = new_val;
  154 
  155         return(0);
  156 }
  157 
  158 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
  159         0, 0, sysctl_kern_stackgap, "I",
  160         "Max random stack gap (power of 2), static gap if negative");
  161         
  162 void
  163 print_execve_args(struct image_args *args)
  164 {
  165         char *cp;
  166         int ndx;
  167 
  168         cp = args->begin_argv;
  169         for (ndx = 0; ndx < args->argc; ndx++) {
  170                 kprintf("\targv[%d]: %s\n", ndx, cp);
  171                 while (*cp++ != '\0');
  172         }
  173         for (ndx = 0; ndx < args->envc; ndx++) {
  174                 kprintf("\tenvv[%d]: %s\n", ndx, cp);
  175                 while (*cp++ != '\0');
  176         }
  177 }
  178 
  179 /*
  180  * Each of the items is a pointer to a `const struct execsw', hence the
  181  * double pointer here.
  182  */
  183 static const struct execsw **execsw;
  184 
  185 /*
  186  * Replace current vmspace with a new binary.
  187  * Returns 0 on success, > 0 on recoverable error (use as errno).
  188  * Returns -1 on lethal error which demands killing of the current
  189  * process!
  190  */
  191 int
  192 kern_execve(struct nlookupdata *nd, struct image_args *args)
  193 {
  194         struct thread *td = curthread;
  195         struct lwp *lp = td->td_lwp;
  196         struct proc *p = td->td_proc;
  197         struct vnode *ovp;
  198         register_t *stack_base;
  199         struct pargs *pa;
  200         struct sigacts *ops;
  201         struct sigacts *nps;
  202         int error, len, i;
  203         struct image_params image_params, *imgp;
  204         struct vattr attr;
  205         int (*img_first) (struct image_params *);
  206 
  207         if (debug_execve_args) {
  208                 kprintf("%s()\n", __func__);
  209                 print_execve_args(args);
  210         }
  211 
  212         KKASSERT(p);
  213         lwkt_gettoken(&p->p_token);
  214         imgp = &image_params;
  215 
  216         /*
  217          * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
  218          * no modifications to the process at all until we get there.
  219          *
  220          * Note that multiple threads may be trying to exec at the same
  221          * time.  exec_new_vmspace() handles that too.
  222          */
  223 
  224         /*
  225          * Initialize part of the common data
  226          */
  227         imgp->proc = p;
  228         imgp->args = args;
  229         imgp->attr = &attr;
  230         imgp->entry_addr = 0;
  231         imgp->resident = 0;
  232         imgp->vmspace_destroyed = 0;
  233         imgp->interpreted = 0;
  234         imgp->interpreter_name[0] = 0;
  235         imgp->auxargs = NULL;
  236         imgp->vp = NULL;
  237         imgp->firstpage = NULL;
  238         imgp->ps_strings = 0;
  239         imgp->execpath = imgp->freepath = NULL;
  240         imgp->execpathp = 0;
  241         imgp->image_header = NULL;
  242 
  243 interpret:
  244 
  245         /*
  246          * Translate the file name to a vnode.  Unlock the cache entry to
  247          * improve parallelism for programs exec'd in parallel.
  248          */
  249         nd->nl_flags |= NLC_SHAREDLOCK;
  250         if ((error = nlookup(nd)) != 0)
  251                 goto exec_fail;
  252         error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp);
  253         KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
  254         nd->nl_flags &= ~NLC_NCPISLOCKED;
  255         cache_unlock(&nd->nl_nch);
  256         if (error)
  257                 goto exec_fail;
  258 
  259         /*
  260          * Check file permissions (also 'opens' file).
  261          * Include also the top level mount in the check.
  262          */
  263         error = exec_check_permissions(imgp, nd->nl_nch.mount);
  264         if (error) {
  265                 vn_unlock(imgp->vp);
  266                 goto exec_fail_dealloc;
  267         }
  268 
  269         error = exec_map_first_page(imgp);
  270         vn_unlock(imgp->vp);
  271         if (error)
  272                 goto exec_fail_dealloc;
  273 
  274         imgp->proc->p_osrel = 0;
  275 
  276         if (debug_execve_args && imgp->interpreted) {
  277                 kprintf("    target is interpreted -- recursive pass\n");
  278                 kprintf("    interpreter: %s\n", imgp->interpreter_name);
  279                 print_execve_args(args);
  280         }
  281 
  282         /*
  283          *      If the current process has a special image activator it
  284          *      wants to try first, call it.   For example, emulating shell 
  285          *      scripts differently.
  286          */
  287         error = -1;
  288         if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
  289                 error = img_first(imgp);
  290 
  291         /*
  292          *      If the vnode has a registered vmspace, exec the vmspace
  293          */
  294         if (error == -1 && imgp->vp->v_resident) {
  295                 error = exec_resident_imgact(imgp);
  296         }
  297 
  298         /*
  299          *      Loop through the list of image activators, calling each one.
  300          *      An activator returns -1 if there is no match, 0 on success,
  301          *      and an error otherwise.
  302          */
  303         for (i = 0; error == -1 && execsw[i]; ++i) {
  304                 if (execsw[i]->ex_imgact == NULL ||
  305                     execsw[i]->ex_imgact == img_first) {
  306                         continue;
  307                 }
  308                 error = (*execsw[i]->ex_imgact)(imgp);
  309         }
  310 
  311         if (error) {
  312                 if (error == -1)
  313                         error = ENOEXEC;
  314                 goto exec_fail_dealloc;
  315         }
  316 
  317         /*
  318          * Special interpreter operation, cleanup and loop up to try to
  319          * activate the interpreter.
  320          */
  321         if (imgp->interpreted) {
  322                 exec_unmap_first_page(imgp);
  323                 nlookup_done(nd);
  324                 vrele(imgp->vp);
  325                 imgp->vp = NULL;
  326                 error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
  327                                         NLC_FOLLOW);
  328                 if (error)
  329                         goto exec_fail;
  330                 goto interpret;
  331         }
  332 
  333         /*
  334          * Do the best to calculate the full path to the image file
  335          */
  336         if (imgp->auxargs != NULL &&
  337            ((args->fname != NULL && args->fname[0] == '/') ||
  338             vn_fullpath(imgp->proc,
  339                         imgp->vp,
  340                         &imgp->execpath,
  341                         &imgp->freepath,
  342                         0) != 0))
  343                 imgp->execpath = args->fname;
  344 
  345         /*
  346          * Copy out strings (args and env) and initialize stack base
  347          */
  348         stack_base = exec_copyout_strings(imgp);
  349         p->p_vmspace->vm_minsaddr = (char *)stack_base;
  350 
  351         /*
  352          * If custom stack fixup routine present for this process
  353          * let it do the stack setup.  If we are running a resident
  354          * image there is no auxinfo or other image activator context
  355          * so don't try to add fixups to the stack.
  356          *
  357          * Else stuff argument count as first item on stack
  358          */
  359         if (p->p_sysent->sv_fixup && imgp->resident == 0)
  360                 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
  361         else
  362                 suword(--stack_base, imgp->args->argc);
  363 
  364         /*
  365          * For security and other reasons, the file descriptor table cannot
  366          * be shared after an exec.
  367          */
  368         if (p->p_fd->fd_refcnt > 1) {
  369                 struct filedesc *tmp;
  370 
  371                 error = fdcopy(p, &tmp);
  372                 if (error != 0)
  373                         goto exec_fail;
  374                 fdfree(p, tmp);
  375         }
  376 
  377         /*
  378          * For security and other reasons, signal handlers cannot
  379          * be shared after an exec. The new proces gets a copy of the old
  380          * handlers. In execsigs(), the new process will have its signals
  381          * reset.
  382          */
  383         ops = p->p_sigacts;
  384         if (ops->ps_refcnt > 1) {
  385                 nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
  386                 bcopy(ops, nps, sizeof(*nps));
  387                 refcount_init(&nps->ps_refcnt, 1);
  388                 p->p_sigacts = nps;
  389                 if (refcount_release(&ops->ps_refcnt)) {
  390                         kfree(ops, M_SUBPROC);
  391                         ops = NULL;
  392                 }
  393         }
  394 
  395         /*
  396          * For security and other reasons virtual kernels cannot be
  397          * inherited by an exec.  This also allows a virtual kernel
  398          * to fork/exec unrelated applications.
  399          */
  400         if (p->p_vkernel)
  401                 vkernel_exit(p);
  402 
  403         /* Stop profiling */
  404         stopprofclock(p);
  405 
  406         /* close files on exec */
  407         fdcloseexec(p);
  408 
  409         /* reset caught signals */
  410         execsigs(p);
  411 
  412         /* name this process - nameiexec(p, ndp) */
  413         len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
  414         bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
  415         p->p_comm[len] = 0;
  416         bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
  417 
  418         /*
  419          * mark as execed, wakeup the process that vforked (if any) and tell
  420          * it that it now has its own resources back
  421          *
  422          * We are using the P_PPWAIT as an interlock so an atomic op is
  423          * necessary to synchronize with the parent's cpu.
  424          */
  425         p->p_flags |= P_EXEC;
  426         if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
  427                 atomic_clear_int(&p->p_flags, P_PPWAIT);
  428                 wakeup(p->p_pptr);
  429         }
  430 
  431         /*
  432          * Implement image setuid/setgid.
  433          *
  434          * Don't honor setuid/setgid if the filesystem prohibits it or if
  435          * the process is being traced.
  436          */
  437         if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
  438              ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
  439             (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
  440             (p->p_flags & P_TRACED) == 0) {
  441                 /*
  442                  * Turn off syscall tracing for set-id programs, except for
  443                  * root.  Record any set-id flags first to make sure that
  444                  * we do not regain any tracing during a possible block.
  445                  */
  446                 setsugid();
  447                 if (p->p_tracenode && ktrace_suid == 0 &&
  448                     priv_check(td, PRIV_ROOT) != 0) {
  449                         ktrdestroy(&p->p_tracenode);
  450                         p->p_traceflag = 0;
  451                 }
  452                 /* Close any file descriptors 0..2 that reference procfs */
  453                 setugidsafety(p);
  454                 /* Make sure file descriptors 0..2 are in use. */
  455                 error = fdcheckstd(lp);
  456                 if (error != 0)
  457                         goto exec_fail_dealloc;
  458                 /*
  459                  * Set the new credentials.
  460                  */
  461                 cratom(&p->p_ucred);
  462                 if (attr.va_mode & VSUID)
  463                         change_euid(attr.va_uid);
  464                 if (attr.va_mode & VSGID)
  465                         p->p_ucred->cr_gid = attr.va_gid;
  466 
  467                 /*
  468                  * Clear local varsym variables
  469                  */
  470                 varsymset_clean(&p->p_varsymset);
  471         } else {
  472                 if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
  473                     p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
  474                         p->p_flags &= ~P_SUGID;
  475         }
  476 
  477         /*
  478          * Implement correct POSIX saved-id behavior.
  479          */
  480         if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
  481             p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
  482                 cratom(&p->p_ucred);
  483                 p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
  484                 p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
  485         }
  486 
  487         /*
  488          * Store the vp for use in procfs.  Be sure to keep p_textvp
  489          * consistent if we block during the switch-over.
  490          */
  491         ovp = p->p_textvp;
  492         vref(imgp->vp);                 /* ref new vp */
  493         p->p_textvp = imgp->vp;
  494         if (ovp)                        /* release old vp */
  495                 vrele(ovp);
  496 
  497         /* Release old namecache handle to text file */
  498         if (p->p_textnch.ncp)
  499                 cache_drop(&p->p_textnch);
  500 
  501         if (nd->nl_nch.mount)
  502                 cache_copy(&nd->nl_nch, &p->p_textnch);
  503 
  504         /*
  505          * Notify others that we exec'd, and clear the P_INEXEC flag
  506          * as we're now a bona fide freshly-execed process.
  507          */
  508         KNOTE(&p->p_klist, NOTE_EXEC);
  509         p->p_flags &= ~P_INEXEC;
  510         if (p->p_stops)
  511                 wakeup(&p->p_stype);
  512 
  513         /*
  514          * If tracing the process, trap to debugger so breakpoints
  515          *      can be set before the program executes.
  516          */
  517         STOPEVENT(p, S_EXEC, 0);
  518 
  519         if (p->p_flags & P_TRACED)
  520                 ksignal(p, SIGTRAP);
  521 
  522         /* clear "fork but no exec" flag, as we _are_ execing */
  523         p->p_acflag &= ~AFORK;
  524 
  525         /* Set values passed into the program in registers. */
  526         exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
  527                      imgp->ps_strings);
  528 
  529         /* Set the access time on the vnode */
  530         vn_mark_atime(imgp->vp, td);
  531 
  532         /*
  533          * Free any previous argument cache
  534          */
  535         pa = p->p_args;
  536         p->p_args = NULL;
  537         if (pa && refcount_release(&pa->ar_ref)) {
  538                 kfree(pa, M_PARGS);
  539                 pa = NULL;
  540         }
  541 
  542         /*
  543          * Cache arguments if they fit inside our allowance
  544          */
  545         i = imgp->args->begin_envv - imgp->args->begin_argv;
  546         if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
  547                 pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
  548                 refcount_init(&pa->ar_ref, 1);
  549                 pa->ar_length = i;
  550                 bcopy(imgp->args->begin_argv, pa->ar_args, i);
  551                 KKASSERT(p->p_args == NULL);
  552                 p->p_args = pa;
  553         }
  554 
  555 exec_fail_dealloc:
  556 
  557         /*
  558          * free various allocated resources
  559          */
  560         if (imgp->firstpage)
  561                 exec_unmap_first_page(imgp);
  562 
  563         if (imgp->vp) {
  564                 vrele(imgp->vp);
  565                 imgp->vp = NULL;
  566         }
  567 
  568         if (imgp->freepath)
  569                 kfree(imgp->freepath, M_TEMP);
  570 
  571         if (error == 0) {
  572                 ++mycpu->gd_cnt.v_exec;
  573                 lwkt_reltoken(&p->p_token);
  574                 return (0);
  575         }
  576 
  577 exec_fail:
  578         /*
  579          * we're done here, clear P_INEXEC if we were the ones that
  580          * set it.  Otherwise if vmspace_destroyed is still set we
  581          * raced another thread and that thread is responsible for
  582          * clearing it.
  583          */
  584         if (imgp->vmspace_destroyed & 2) {
  585                 p->p_flags &= ~P_INEXEC;
  586                 if (p->p_stops)
  587                         wakeup(&p->p_stype);
  588         }
  589         lwkt_reltoken(&p->p_token);
  590         if (imgp->vmspace_destroyed) {
  591                 /*
  592                  * Sorry, no more process anymore. exit gracefully.
  593                  * However we can't die right here, because our
  594                  * caller might have to clean up, so indicate a
  595                  * lethal error by returning -1.
  596                  */
  597                 return(-1);
  598         } else {
  599                 return(error);
  600         }
  601 }
  602 
  603 /*
  604  * execve() system call.
  605  */
  606 int
  607 sys_execve(struct execve_args *uap)
  608 {
  609         struct nlookupdata nd;
  610         struct image_args args;
  611         int error;
  612 
  613         bzero(&args, sizeof(args));
  614 
  615         error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
  616         if (error == 0) {
  617                 error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
  618                                         uap->argv, uap->envv);
  619         }
  620         if (error == 0)
  621                 error = kern_execve(&nd, &args);
  622         nlookup_done(&nd);
  623         exec_free_args(&args);
  624 
  625         if (error < 0) {
  626                 /* We hit a lethal error condition.  Let's die now. */
  627                 exit1(W_EXITCODE(0, SIGABRT));
  628                 /* NOTREACHED */
  629         }
  630 
  631         /*
  632          * The syscall result is returned in registers to the new program.
  633          * Linux will register %edx as an atexit function and we must be
  634          * sure to set it to 0.  XXX
  635          */
  636         if (error == 0)
  637                 uap->sysmsg_result64 = 0;
  638 
  639         return (error);
  640 }
  641 
  642 int
  643 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
  644               struct lwbuf **plwb, const char **pdata)
  645 {
  646         int rv;
  647         vm_page_t ma;
  648         vm_page_t m;
  649         vm_object_t object;
  650 
  651         /*
  652          * The file has to be mappable.
  653          */
  654         if ((object = imgp->vp->v_object) == NULL)
  655                 return (EIO);
  656 
  657         if (pageno >= object->size)
  658                 return (EIO);
  659 
  660         /*
  661          * Shortcut using shared locks, improve concurrent execs.
  662          */
  663         vm_object_hold_shared(object);
  664         m = vm_page_lookup(object, pageno);
  665         if (m) {
  666                 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
  667                         vm_page_hold(m);
  668                         vm_page_sleep_busy(m, FALSE, "execpg");
  669                         if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
  670                                 vm_object_drop(object);
  671                                 goto done;
  672                         }
  673                 }
  674                 vm_page_unhold(m);
  675         }
  676         vm_object_drop(object);
  677 
  678         /*
  679          * Do it the hard way
  680          */
  681         vm_object_hold(object);
  682         m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  683         while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
  684                 ma = m;
  685 
  686                 /*
  687                  * get_pages unbusies all the requested pages except the
  688                  * primary page (at index 0 in this case).  The primary
  689                  * page may have been wired during the pagein (e.g. by
  690                  * the buffer cache) so vnode_pager_freepage() must be
  691                  * used to properly release it.
  692                  */
  693                 rv = vm_pager_get_page(object, &ma, 1);
  694                 m = vm_page_lookup(object, pageno);
  695 
  696                 if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
  697                         if (m) {
  698                                 vm_page_protect(m, VM_PROT_NONE);
  699                                 vnode_pager_freepage(m);
  700                         }
  701                         vm_object_drop(object);
  702                         return EIO;
  703                 }
  704         }
  705         vm_page_hold(m);
  706         vm_page_wakeup(m);      /* unbusy the page */
  707         vm_object_drop(object);
  708 
  709 done:
  710         *plwb = lwbuf_alloc(m, *plwb);
  711         *pdata = (void *)lwbuf_kva(*plwb);
  712 
  713         return (0);
  714 }
  715 
  716 /*
  717  * Map the first page of an executable image.
  718  *
  719  * NOTE: If the mapping fails we have to NULL-out firstpage which may
  720  *       still be pointing to our supplied lwp structure.
  721  */
  722 int
  723 exec_map_first_page(struct image_params *imgp)
  724 {
  725         int err;
  726 
  727         if (imgp->firstpage)
  728                 exec_unmap_first_page(imgp);
  729 
  730         imgp->firstpage = &imgp->firstpage_cache;
  731         err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
  732 
  733         if (err) {
  734                 imgp->firstpage = NULL;
  735                 return err;
  736         }
  737 
  738         return 0;
  739 }
  740 
  741 void
  742 exec_unmap_page(struct lwbuf *lwb)
  743 {
  744         vm_page_t m;
  745 
  746         crit_enter();
  747         if (lwb != NULL) {
  748                 m = lwbuf_page(lwb);
  749                 lwbuf_free(lwb);
  750                 vm_page_unhold(m);
  751         }
  752         crit_exit();
  753 }
  754 
  755 void
  756 exec_unmap_first_page(struct image_params *imgp)
  757 {
  758         exec_unmap_page(imgp->firstpage);
  759         imgp->firstpage = NULL;
  760         imgp->image_header = NULL;
  761 }
  762 
  763 /*
  764  * Destroy old address space, and allocate a new stack
  765  *      The new stack is only SGROWSIZ large because it is grown
  766  *      automatically in trap.c.
  767  *
  768  * This is the point of no return.
  769  */
  770 int
  771 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
  772 {
  773         struct vmspace *vmspace = imgp->proc->p_vmspace;
  774         vm_offset_t stack_addr = USRSTACK - maxssiz;
  775         struct proc *p;
  776         vm_map_t map;
  777         int error;
  778 
  779         /*
  780          * Indicate that we cannot gracefully error out any more, kill
  781          * any other threads present, and set P_INEXEC to indicate that
  782          * we are now messing with the process structure proper.
  783          *
  784          * If killalllwps() races return an error which coupled with
  785          * vmspace_destroyed will cause us to exit.  This is what we
  786          * want since another thread is patiently waiting for us to exit
  787          * in that case.
  788          */
  789         p = curproc;
  790         imgp->vmspace_destroyed = 1;
  791 
  792         if (curthread->td_proc->p_nthreads > 1) {
  793                 error = killalllwps(1);
  794                 if (error)
  795                         return (error);
  796         }
  797         imgp->vmspace_destroyed |= 2;   /* we are responsible for P_INEXEC */
  798         p->p_flags |= P_INEXEC;
  799 
  800         /*
  801          * Tell procfs to release its hold on the process.  It
  802          * will return EAGAIN.
  803          */
  804         if (p->p_stops)
  805                 wakeup(&p->p_stype);
  806 
  807         /*
  808          * After setting P_INEXEC wait for any remaining references to
  809          * the process (p) to go away.
  810          *
  811          * In particular, a vfork/exec sequence will replace p->p_vmspace
  812          * and we must interlock anyone trying to access the space (aka
  813          * procfs or sys_process.c calling procfs_domem()).
  814          *
  815          * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
  816          */
  817         PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
  818 
  819         /*
  820          * Blow away entire process VM, if address space not shared,
  821          * otherwise, create a new VM space so that other threads are
  822          * not disrupted.  If we are execing a resident vmspace we
  823          * create a duplicate of it and remap the stack.
  824          */
  825         map = &vmspace->vm_map;
  826         if (vmcopy) {
  827                 vmspace_exec(imgp->proc, vmcopy);
  828                 vmspace = imgp->proc->p_vmspace;
  829                 pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
  830                 map = &vmspace->vm_map;
  831         } else if (vmspace->vm_sysref.refcnt == 1) {
  832                 shmexit(vmspace);
  833                 pmap_remove_pages(vmspace_pmap(vmspace),
  834                                   0, VM_MAX_USER_ADDRESS);
  835                 vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
  836         } else {
  837                 vmspace_exec(imgp->proc, NULL);
  838                 vmspace = imgp->proc->p_vmspace;
  839                 map = &vmspace->vm_map;
  840         }
  841 
  842         /* Allocate a new stack */
  843         error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
  844                              0, VM_PROT_ALL, VM_PROT_ALL, 0);
  845         if (error)
  846                 return (error);
  847 
  848         /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
  849          * VM_STACK case, but they are still used to monitor the size of the
  850          * process stack so we can check the stack rlimit.
  851          */
  852         vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
  853         vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
  854 
  855         return(0);
  856 }
  857 
  858 /*
  859  * Copy out argument and environment strings from the old process
  860  *      address space into the temporary string buffer.
  861  */
  862 int
  863 exec_copyin_args(struct image_args *args, char *fname,
  864                 enum exec_path_segflg segflg, char **argv, char **envv)
  865 {
  866         char    *argp, *envp;
  867         int     error = 0;
  868         size_t  length;
  869 
  870         args->buf = objcache_get(exec_objcache, M_WAITOK);
  871         if (args->buf == NULL)
  872                 return (ENOMEM);
  873         args->begin_argv = args->buf;
  874         args->endp = args->begin_argv;
  875         args->space = ARG_MAX;
  876 
  877         args->fname = args->buf + ARG_MAX;
  878 
  879         /*
  880          * Copy the file name.
  881          */
  882         if (segflg == PATH_SYSSPACE) {
  883                 error = copystr(fname, args->fname, PATH_MAX, &length);
  884         } else if (segflg == PATH_USERSPACE) {
  885                 error = copyinstr(fname, args->fname, PATH_MAX, &length);
  886         }
  887 
  888         /*
  889          * Extract argument strings.  argv may not be NULL.  The argv
  890          * array is terminated by a NULL entry.  We special-case the
  891          * situation where argv[0] is NULL by passing { filename, NULL }
  892          * to the new program to guarentee that the interpreter knows what
  893          * file to open in case we exec an interpreted file.   Note that
  894          * a NULL argv[0] terminates the argv[] array.
  895          *
  896          * XXX the special-casing of argv[0] is historical and needs to be
  897          * revisited.
  898          */
  899         if (argv == NULL)
  900                 error = EFAULT;
  901         if (error == 0) {
  902                 while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
  903                         if (argp == (caddr_t)-1) {
  904                                 error = EFAULT;
  905                                 break;
  906                         }
  907                         error = copyinstr(argp, args->endp,
  908                                           args->space, &length);
  909                         if (error) {
  910                                 if (error == ENAMETOOLONG)
  911                                         error = E2BIG;
  912                                 break;
  913                         }
  914                         args->space -= length;
  915                         args->endp += length;
  916                         args->argc++;
  917                 }
  918                 if (args->argc == 0 && error == 0) {
  919                         length = strlen(args->fname) + 1;
  920                         if (length > args->space) {
  921                                 error = E2BIG;
  922                         } else {
  923                                 bcopy(args->fname, args->endp, length);
  924                                 args->space -= length;
  925                                 args->endp += length;
  926                                 args->argc++;
  927                         }
  928                 }
  929         }       
  930 
  931         args->begin_envv = args->endp;
  932 
  933         /*
  934          * extract environment strings.  envv may be NULL.
  935          */
  936         if (envv && error == 0) {
  937                 while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
  938                         if (envp == (caddr_t) -1) {
  939                                 error = EFAULT;
  940                                 break;
  941                         }
  942                         error = copyinstr(envp, args->endp,
  943                                           args->space, &length);
  944                         if (error) {
  945                                 if (error == ENAMETOOLONG)
  946                                         error = E2BIG;
  947                                 break;
  948                         }
  949                         args->space -= length;
  950                         args->endp += length;
  951                         args->envc++;
  952                 }
  953         }
  954         return (error);
  955 }
  956 
  957 void
  958 exec_free_args(struct image_args *args)
  959 {
  960         if (args->buf) {
  961                 objcache_put(exec_objcache, args->buf);
  962                 args->buf = NULL;
  963         }
  964 }
  965 
  966 /*
  967  * Copy strings out to the new process address space, constructing
  968  * new arg and env vector tables. Return a pointer to the base
  969  * so that it can be used as the initial stack pointer.
  970  *
  971  * The format is, roughly:
  972  *
  973  *      [argv[]]                        <-- vectp
  974  *      [envp[]]
  975  *      [ELF_Auxargs]
  976  *
  977  *      [args & env]                    <-- destp
  978  *      [sgap]
  979  *      [SPARE_USRSPACE]
  980  *      [execpath]
  981  *      [szsigcode]
  982  *      [ps_strings]                    top of user stack
  983  *
  984  */
  985 register_t *
  986 exec_copyout_strings(struct image_params *imgp)
  987 {
  988         int argc, envc, sgap;
  989         int gap;
  990         int argsenvspace;
  991         char **vectp;
  992         char *stringp, *destp;
  993         register_t *stack_base;
  994         struct ps_strings *arginfo;
  995         size_t execpath_len;
  996         int szsigcode;
  997 
  998         /*
  999          * Calculate string base and vector table pointers.
 1000          * Also deal with signal trampoline code for this exec type.
 1001          */
 1002         if (imgp->execpath != NULL && imgp->auxargs != NULL)
 1003                 execpath_len = strlen(imgp->execpath) + 1;
 1004         else
 1005                 execpath_len = 0;
 1006         arginfo = (struct ps_strings *)PS_STRINGS;
 1007         szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
 1008 
 1009         argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
 1010         gap = stackgap_random;
 1011         cpu_ccfence();
 1012         if (gap != 0) {
 1013                 if (gap < 0)
 1014                         sgap = ALIGN(-gap);
 1015                 else
 1016                         sgap = ALIGN(karc4random() & (gap - 1));
 1017         } else {
 1018                 sgap = 0;
 1019         }
 1020 
 1021         /*
 1022          * Calculate destp, which points to [args & env] and above.
 1023          */
 1024         destp = (caddr_t)arginfo -
 1025                 szsigcode -
 1026                 roundup(execpath_len, sizeof(char *)) -
 1027                 SPARE_USRSPACE -
 1028                 sgap -
 1029                 argsenvspace;
 1030 
 1031         /*
 1032          * install sigcode
 1033          */
 1034         if (szsigcode) {
 1035                 copyout(imgp->proc->p_sysent->sv_sigcode,
 1036                         ((caddr_t)arginfo - szsigcode), szsigcode);
 1037         }
 1038 
 1039         /*
 1040          * Copy the image path for the rtld
 1041          */
 1042         if (execpath_len) {
 1043                 imgp->execpathp = (uintptr_t)arginfo
 1044                                   - szsigcode
 1045                                   - roundup(execpath_len, sizeof(char *));
 1046                 copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
 1047         }
 1048 
 1049         /*
 1050          * Calculate base for argv[], envp[], and ELF_Auxargs.
 1051          */
 1052         vectp = (char **)destp - (AT_COUNT * 2);
 1053         vectp -= imgp->args->argc + imgp->args->envc + 2;
 1054 
 1055         stack_base = (register_t *)vectp;
 1056 
 1057         stringp = imgp->args->begin_argv;
 1058         argc = imgp->args->argc;
 1059         envc = imgp->args->envc;
 1060 
 1061         /*
 1062          * Copy out strings - arguments and environment (at destp)
 1063          */
 1064         copyout(stringp, destp, ARG_MAX - imgp->args->space);
 1065 
 1066         /*
 1067          * Fill in "ps_strings" struct for ps, w, etc.
 1068          */
 1069         suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
 1070         suword32(&arginfo->ps_nargvstr, argc);
 1071 
 1072         /*
 1073          * Fill in argument portion of vector table.
 1074          */
 1075         for (; argc > 0; --argc) {
 1076                 suword(vectp++, (long)(intptr_t)destp);
 1077                 while (*stringp++ != 0)
 1078                         destp++;
 1079                 destp++;
 1080         }
 1081 
 1082         /* a null vector table pointer separates the argp's from the envp's */
 1083         suword(vectp++, 0);
 1084 
 1085         suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
 1086         suword32(&arginfo->ps_nenvstr, envc);
 1087 
 1088         /*
 1089          * Fill in environment portion of vector table.
 1090          */
 1091         for (; envc > 0; --envc) {
 1092                 suword(vectp++, (long)(intptr_t)destp);
 1093                 while (*stringp++ != 0)
 1094                         destp++;
 1095                 destp++;
 1096         }
 1097 
 1098         /* end of vector table is a null pointer */
 1099         suword(vectp, 0);
 1100 
 1101         return (stack_base);
 1102 }
 1103 
 1104 /*
 1105  * Check permissions of file to execute.
 1106  *      Return 0 for success or error code on failure.
 1107  */
 1108 int
 1109 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
 1110 {
 1111         struct proc *p = imgp->proc;
 1112         struct vnode *vp = imgp->vp;
 1113         struct vattr *attr = imgp->attr;
 1114         int error;
 1115 
 1116         /* Get file attributes */
 1117         error = VOP_GETATTR(vp, attr);
 1118         if (error)
 1119                 return (error);
 1120 
 1121         /*
 1122          * 1) Check if file execution is disabled for the filesystem that this
 1123          *      file resides on.
 1124          * 2) Insure that at least one execute bit is on - otherwise root
 1125          *      will always succeed, and we don't want to happen unless the
 1126          *      file really is executable.
 1127          * 3) Insure that the file is a regular file.
 1128          */
 1129         if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
 1130             ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
 1131             ((attr->va_mode & 0111) == 0) ||
 1132             (attr->va_type != VREG)) {
 1133                 return (EACCES);
 1134         }
 1135 
 1136         /*
 1137          * Zero length files can't be exec'd
 1138          */
 1139         if (attr->va_size == 0)
 1140                 return (ENOEXEC);
 1141 
 1142         /*
 1143          *  Check for execute permission to file based on current credentials.
 1144          */
 1145         error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
 1146         if (error)
 1147                 return (error);
 1148 
 1149         /*
 1150          * Check number of open-for-writes on the file and deny execution
 1151          * if there are any.
 1152          */
 1153         if (vp->v_writecount)
 1154                 return (ETXTBSY);
 1155 
 1156         /*
 1157          * Call filesystem specific open routine, which allows us to read,
 1158          * write, and mmap the file.  Without the VOP_OPEN we can only
 1159          * stat the file.
 1160          */
 1161         error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
 1162         if (error)
 1163                 return (error);
 1164 
 1165         return (0);
 1166 }
 1167 
 1168 /*
 1169  * Exec handler registration
 1170  */
 1171 int
 1172 exec_register(const struct execsw *execsw_arg)
 1173 {
 1174         const struct execsw **es, **xs, **newexecsw;
 1175         int count = 2;  /* New slot and trailing NULL */
 1176 
 1177         if (execsw)
 1178                 for (es = execsw; *es; es++)
 1179                         count++;
 1180         newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
 1181         xs = newexecsw;
 1182         if (execsw)
 1183                 for (es = execsw; *es; es++)
 1184                         *xs++ = *es;
 1185         *xs++ = execsw_arg;
 1186         *xs = NULL;
 1187         if (execsw)
 1188                 kfree(execsw, M_TEMP);
 1189         execsw = newexecsw;
 1190         return 0;
 1191 }
 1192 
 1193 int
 1194 exec_unregister(const struct execsw *execsw_arg)
 1195 {
 1196         const struct execsw **es, **xs, **newexecsw;
 1197         int count = 1;
 1198 
 1199         if (execsw == NULL)
 1200                 panic("unregister with no handlers left?");
 1201 
 1202         for (es = execsw; *es; es++) {
 1203                 if (*es == execsw_arg)
 1204                         break;
 1205         }
 1206         if (*es == NULL)
 1207                 return ENOENT;
 1208         for (es = execsw; *es; es++)
 1209                 if (*es != execsw_arg)
 1210                         count++;
 1211         newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
 1212         xs = newexecsw;
 1213         for (es = execsw; *es; es++)
 1214                 if (*es != execsw_arg)
 1215                         *xs++ = *es;
 1216         *xs = NULL;
 1217         if (execsw)
 1218                 kfree(execsw, M_TEMP);
 1219         execsw = newexecsw;
 1220         return 0;
 1221 }

Cache object: 654263fa5b217ba7749f8f15b2ba4331


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.