The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_ktrace.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/bitstring.h>
   48 #include <sys/sysproto.h>
   49 #include <sys/eventhandler.h>
   50 #include <sys/fcntl.h>
   51 #include <sys/filedesc.h>
   52 #include <sys/jail.h>
   53 #include <sys/kernel.h>
   54 #include <sys/kthread.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/msan.h>
   59 #include <sys/mutex.h>
   60 #include <sys/priv.h>
   61 #include <sys/proc.h>
   62 #include <sys/procdesc.h>
   63 #include <sys/ptrace.h>
   64 #include <sys/racct.h>
   65 #include <sys/resourcevar.h>
   66 #include <sys/sched.h>
   67 #include <sys/syscall.h>
   68 #include <sys/vmmeter.h>
   69 #include <sys/vnode.h>
   70 #include <sys/acct.h>
   71 #include <sys/ktr.h>
   72 #include <sys/ktrace.h>
   73 #include <sys/unistd.h>
   74 #include <sys/sdt.h>
   75 #include <sys/sx.h>
   76 #include <sys/sysent.h>
   77 #include <sys/signalvar.h>
   78 
   79 #include <security/audit/audit.h>
   80 #include <security/mac/mac_framework.h>
   81 
   82 #include <vm/vm.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_extern.h>
   86 #include <vm/uma.h>
   87 
   88 #ifdef KDTRACE_HOOKS
   89 #include <sys/dtrace_bsd.h>
   90 dtrace_fork_func_t      dtrace_fasttrap_fork;
   91 #endif
   92 
   93 SDT_PROVIDER_DECLARE(proc);
   94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
   95 
   96 #ifndef _SYS_SYSPROTO_H_
   97 struct fork_args {
   98         int     dummy;
   99 };
  100 #endif
  101 
  102 /* ARGSUSED */
  103 int
  104 sys_fork(struct thread *td, struct fork_args *uap)
  105 {
  106         struct fork_req fr;
  107         int error, pid;
  108 
  109         bzero(&fr, sizeof(fr));
  110         fr.fr_flags = RFFDG | RFPROC;
  111         fr.fr_pidp = &pid;
  112         error = fork1(td, &fr);
  113         if (error == 0) {
  114                 td->td_retval[0] = pid;
  115                 td->td_retval[1] = 0;
  116         }
  117         return (error);
  118 }
  119 
  120 /* ARGUSED */
  121 int
  122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
  123 {
  124         struct fork_req fr;
  125         int error, fd, pid;
  126 
  127         bzero(&fr, sizeof(fr));
  128         fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
  129         fr.fr_pidp = &pid;
  130         fr.fr_pd_fd = &fd;
  131         fr.fr_pd_flags = uap->flags;
  132         AUDIT_ARG_FFLAGS(uap->flags);
  133         /*
  134          * It is necessary to return fd by reference because 0 is a valid file
  135          * descriptor number, and the child needs to be able to distinguish
  136          * itself from the parent using the return value.
  137          */
  138         error = fork1(td, &fr);
  139         if (error == 0) {
  140                 td->td_retval[0] = pid;
  141                 td->td_retval[1] = 0;
  142                 error = copyout(&fd, uap->fdp, sizeof(fd));
  143         }
  144         return (error);
  145 }
  146 
  147 /* ARGSUSED */
  148 int
  149 sys_vfork(struct thread *td, struct vfork_args *uap)
  150 {
  151         struct fork_req fr;
  152         int error, pid;
  153 
  154         bzero(&fr, sizeof(fr));
  155         fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  156         fr.fr_pidp = &pid;
  157         error = fork1(td, &fr);
  158         if (error == 0) {
  159                 td->td_retval[0] = pid;
  160                 td->td_retval[1] = 0;
  161         }
  162         return (error);
  163 }
  164 
  165 int
  166 sys_rfork(struct thread *td, struct rfork_args *uap)
  167 {
  168         struct fork_req fr;
  169         int error, pid;
  170 
  171         /* Don't allow kernel-only flags. */
  172         if ((uap->flags & RFKERNELONLY) != 0)
  173                 return (EINVAL);
  174         /* RFSPAWN must not appear with others */
  175         if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
  176                 return (EINVAL);
  177 
  178         AUDIT_ARG_FFLAGS(uap->flags);
  179         bzero(&fr, sizeof(fr));
  180         if ((uap->flags & RFSPAWN) != 0) {
  181                 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  182                 fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
  183         } else {
  184                 fr.fr_flags = uap->flags;
  185         }
  186         fr.fr_pidp = &pid;
  187         error = fork1(td, &fr);
  188         if (error == 0) {
  189                 td->td_retval[0] = pid;
  190                 td->td_retval[1] = 0;
  191         }
  192         return (error);
  193 }
  194 
  195 int __exclusive_cache_line      nprocs = 1;             /* process 0 */
  196 int     lastpid = 0;
  197 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
  198     "Last used PID");
  199 
  200 /*
  201  * Random component to lastpid generation.  We mix in a random factor to make
  202  * it a little harder to predict.  We sanity check the modulus value to avoid
  203  * doing it in critical paths.  Don't let it be too small or we pointlessly
  204  * waste randomness entropy, and don't let it be impossibly large.  Using a
  205  * modulus that is too big causes a LOT more process table scans and slows
  206  * down fork processing as the pidchecked caching is defeated.
  207  */
  208 static int randompid = 0;
  209 
  210 static int
  211 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  212 {
  213         int error, pid;
  214 
  215         error = sysctl_wire_old_buffer(req, sizeof(int));
  216         if (error != 0)
  217                 return(error);
  218         sx_xlock(&allproc_lock);
  219         pid = randompid;
  220         error = sysctl_handle_int(oidp, &pid, 0, req);
  221         if (error == 0 && req->newptr != NULL) {
  222                 if (pid == 0)
  223                         randompid = 0;
  224                 else if (pid == 1)
  225                         /* generate a random PID modulus between 100 and 1123 */
  226                         randompid = 100 + arc4random() % 1024;
  227                 else if (pid < 0 || pid > pid_max - 100)
  228                         /* out of range */
  229                         randompid = pid_max - 100;
  230                 else if (pid < 100)
  231                         /* Make it reasonable */
  232                         randompid = 100;
  233                 else
  234                         randompid = pid;
  235         }
  236         sx_xunlock(&allproc_lock);
  237         return (error);
  238 }
  239 
  240 SYSCTL_PROC(_kern, OID_AUTO, randompid,
  241     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  242     sysctl_kern_randompid, "I",
  243     "Random PID modulus. Special values: 0: disable, 1: choose random value");
  244 
  245 extern bitstr_t proc_id_pidmap;
  246 extern bitstr_t proc_id_grpidmap;
  247 extern bitstr_t proc_id_sessidmap;
  248 extern bitstr_t proc_id_reapmap;
  249 
  250 /*
  251  * Find an unused process ID
  252  *
  253  * If RFHIGHPID is set (used during system boot), do not allocate
  254  * low-numbered pids.
  255  */
  256 static int
  257 fork_findpid(int flags)
  258 {
  259         pid_t result;
  260         int trypid, random;
  261 
  262         /*
  263          * Avoid calling arc4random with procid_lock held.
  264          */
  265         random = 0;
  266         if (__predict_false(randompid))
  267                 random = arc4random() % randompid;
  268 
  269         mtx_lock(&procid_lock);
  270 
  271         trypid = lastpid + 1;
  272         if (flags & RFHIGHPID) {
  273                 if (trypid < 10)
  274                         trypid = 10;
  275         } else {
  276                 trypid += random;
  277         }
  278 retry:
  279         if (trypid >= pid_max)
  280                 trypid = 2;
  281 
  282         bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
  283         if (result == -1) {
  284                 KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
  285                 trypid = 2;
  286                 goto retry;
  287         }
  288         if (bit_test(&proc_id_grpidmap, result) ||
  289             bit_test(&proc_id_sessidmap, result) ||
  290             bit_test(&proc_id_reapmap, result)) {
  291                 trypid = result + 1;
  292                 goto retry;
  293         }
  294 
  295         /*
  296          * RFHIGHPID does not mess with the lastpid counter during boot.
  297          */
  298         if ((flags & RFHIGHPID) == 0)
  299                 lastpid = result;
  300 
  301         bit_set(&proc_id_pidmap, result);
  302         mtx_unlock(&procid_lock);
  303 
  304         return (result);
  305 }
  306 
  307 static int
  308 fork_norfproc(struct thread *td, int flags)
  309 {
  310         struct proc *p1;
  311         int error;
  312 
  313         KASSERT((flags & RFPROC) == 0,
  314             ("fork_norfproc called with RFPROC set"));
  315         p1 = td->td_proc;
  316 
  317         /*
  318          * Quiesce other threads if necessary.  If RFMEM is not specified we
  319          * must ensure that other threads do not concurrently create a second
  320          * process sharing the vmspace, see vmspace_unshare().
  321          */
  322         if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
  323             ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
  324                 PROC_LOCK(p1);
  325                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  326                         PROC_UNLOCK(p1);
  327                         return (ERESTART);
  328                 }
  329                 PROC_UNLOCK(p1);
  330         }
  331 
  332         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  333         if (error != 0)
  334                 goto fail;
  335 
  336         /*
  337          * Close all file descriptors.
  338          */
  339         if ((flags & RFCFDG) != 0) {
  340                 struct filedesc *fdtmp;
  341                 struct pwddesc *pdtmp;
  342 
  343                 pdtmp = pdinit(td->td_proc->p_pd, false);
  344                 fdtmp = fdinit();
  345                 pdescfree(td);
  346                 fdescfree(td);
  347                 p1->p_fd = fdtmp;
  348                 p1->p_pd = pdtmp;
  349         }
  350 
  351         /*
  352          * Unshare file descriptors (from parent).
  353          */
  354         if ((flags & RFFDG) != 0) {
  355                 fdunshare(td);
  356                 pdunshare(td);
  357         }
  358 
  359 fail:
  360         if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
  361             ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
  362                 PROC_LOCK(p1);
  363                 thread_single_end(p1, SINGLE_BOUNDARY);
  364                 PROC_UNLOCK(p1);
  365         }
  366         return (error);
  367 }
  368 
  369 static void
  370 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
  371     struct vmspace *vm2, struct file *fp_procdesc)
  372 {
  373         struct proc *p1, *pptr;
  374         struct filedesc *fd;
  375         struct filedesc_to_leader *fdtol;
  376         struct pwddesc *pd;
  377         struct sigacts *newsigacts;
  378 
  379         p1 = td->td_proc;
  380 
  381         PROC_LOCK(p1);
  382         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  383             __rangeof(struct proc, p_startcopy, p_endcopy));
  384         pargs_hold(p2->p_args);
  385         PROC_UNLOCK(p1);
  386 
  387         bzero(&p2->p_startzero,
  388             __rangeof(struct proc, p_startzero, p_endzero));
  389 
  390         /* Tell the prison that we exist. */
  391         prison_proc_hold(p2->p_ucred->cr_prison);
  392 
  393         p2->p_state = PRS_NEW;          /* protect against others */
  394         p2->p_pid = fork_findpid(fr->fr_flags);
  395         AUDIT_ARG_PID(p2->p_pid);
  396         TSFORK(p2->p_pid, p1->p_pid);
  397 
  398         sx_xlock(&allproc_lock);
  399         LIST_INSERT_HEAD(&allproc, p2, p_list);
  400         allproc_gen++;
  401         prison_proc_link(p2->p_ucred->cr_prison, p2);
  402         sx_xunlock(&allproc_lock);
  403 
  404         sx_xlock(PIDHASHLOCK(p2->p_pid));
  405         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  406         sx_xunlock(PIDHASHLOCK(p2->p_pid));
  407 
  408         tidhash_add(td2);
  409 
  410         /*
  411          * Malloc things while we don't hold any locks.
  412          */
  413         if (fr->fr_flags & RFSIGSHARE)
  414                 newsigacts = NULL;
  415         else
  416                 newsigacts = sigacts_alloc();
  417 
  418         /*
  419          * Copy filedesc.
  420          */
  421         if (fr->fr_flags & RFCFDG) {
  422                 pd = pdinit(p1->p_pd, false);
  423                 fd = fdinit();
  424                 fdtol = NULL;
  425         } else if (fr->fr_flags & RFFDG) {
  426                 if (fr->fr_flags2 & FR2_SHARE_PATHS)
  427                         pd = pdshare(p1->p_pd);
  428                 else
  429                         pd = pdcopy(p1->p_pd);
  430                 fd = fdcopy(p1->p_fd);
  431                 fdtol = NULL;
  432         } else {
  433                 if (fr->fr_flags2 & FR2_SHARE_PATHS)
  434                         pd = pdcopy(p1->p_pd);
  435                 else
  436                         pd = pdshare(p1->p_pd);
  437                 fd = fdshare(p1->p_fd);
  438                 if (p1->p_fdtol == NULL)
  439                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  440                             p1->p_leader);
  441                 if ((fr->fr_flags & RFTHREAD) != 0) {
  442                         /*
  443                          * Shared file descriptor table, and shared
  444                          * process leaders.
  445                          */
  446                         fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
  447                 } else {
  448                         /*
  449                          * Shared file descriptor table, and different
  450                          * process leaders.
  451                          */
  452                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  453                             p1->p_fd, p2);
  454                 }
  455         }
  456         /*
  457          * Make a proc table entry for the new process.
  458          * Start by zeroing the section of proc that is zero-initialized,
  459          * then copy the section that is copied directly from the parent.
  460          */
  461 
  462         PROC_LOCK(p2);
  463         PROC_LOCK(p1);
  464 
  465         bzero(&td2->td_startzero,
  466             __rangeof(struct thread, td_startzero, td_endzero));
  467 
  468         bcopy(&td->td_startcopy, &td2->td_startcopy,
  469             __rangeof(struct thread, td_startcopy, td_endcopy));
  470 
  471         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  472         td2->td_sigstk = td->td_sigstk;
  473         td2->td_flags = TDF_INMEM;
  474         td2->td_lend_user_pri = PRI_MAX;
  475 
  476 #ifdef VIMAGE
  477         td2->td_vnet = NULL;
  478         td2->td_vnet_lpush = NULL;
  479 #endif
  480 
  481         /*
  482          * Allow the scheduler to initialize the child.
  483          */
  484         thread_lock(td);
  485         sched_fork(td, td2);
  486         /*
  487          * Request AST to check for TDP_RFPPWAIT.  Do it here
  488          * to avoid calling thread_lock() again.
  489          */
  490         if ((fr->fr_flags & RFPPWAIT) != 0)
  491                 ast_sched_locked(td, TDA_VFORK);
  492         thread_unlock(td);
  493 
  494         /*
  495          * Duplicate sub-structures as needed.
  496          * Increase reference counts on shared objects.
  497          */
  498         p2->p_flag = P_INMEM;
  499         p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
  500             P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
  501             P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
  502             P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
  503             P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
  504         p2->p_swtick = ticks;
  505         if (p1->p_flag & P_PROFIL)
  506                 startprofclock(p2);
  507 
  508         if (fr->fr_flags & RFSIGSHARE) {
  509                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  510         } else {
  511                 sigacts_copy(newsigacts, p1->p_sigacts);
  512                 p2->p_sigacts = newsigacts;
  513                 if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
  514                         mtx_lock(&p2->p_sigacts->ps_mtx);
  515                         if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
  516                                 sig_drop_caught(p2);
  517                         if ((fr->fr_flags2 & FR2_KPROC) != 0)
  518                                 p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
  519                         mtx_unlock(&p2->p_sigacts->ps_mtx);
  520                 }
  521         }
  522 
  523         if (fr->fr_flags & RFTSIGZMB)
  524                 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
  525         else if (fr->fr_flags & RFLINUXTHPN)
  526                 p2->p_sigparent = SIGUSR1;
  527         else
  528                 p2->p_sigparent = SIGCHLD;
  529 
  530         if ((fr->fr_flags2 & FR2_KPROC) != 0) {
  531                 p2->p_flag |= P_SYSTEM | P_KPROC;
  532                 td2->td_pflags |= TDP_KTHREAD;
  533         }
  534 
  535         p2->p_textvp = p1->p_textvp;
  536         p2->p_textdvp = p1->p_textdvp;
  537         p2->p_fd = fd;
  538         p2->p_fdtol = fdtol;
  539         p2->p_pd = pd;
  540 
  541         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  542                 p2->p_flag |= P_PROTECTED;
  543                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  544         }
  545 
  546         /*
  547          * p_limit is copy-on-write.  Bump its refcount.
  548          */
  549         lim_fork(p1, p2);
  550 
  551         thread_cow_get_proc(td2, p2);
  552 
  553         pstats_fork(p1->p_stats, p2->p_stats);
  554 
  555         PROC_UNLOCK(p1);
  556         PROC_UNLOCK(p2);
  557 
  558         /*
  559          * Bump references to the text vnode and directory, and copy
  560          * the hardlink name.
  561          */
  562         if (p2->p_textvp != NULL)
  563                 vrefact(p2->p_textvp);
  564         if (p2->p_textdvp != NULL)
  565                 vrefact(p2->p_textdvp);
  566         p2->p_binname = p1->p_binname == NULL ? NULL :
  567             strdup(p1->p_binname, M_PARGS);
  568 
  569         /*
  570          * Set up linkage for kernel based threading.
  571          */
  572         if ((fr->fr_flags & RFTHREAD) != 0) {
  573                 mtx_lock(&ppeers_lock);
  574                 p2->p_peers = p1->p_peers;
  575                 p1->p_peers = p2;
  576                 p2->p_leader = p1->p_leader;
  577                 mtx_unlock(&ppeers_lock);
  578                 PROC_LOCK(p1->p_leader);
  579                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  580                         PROC_UNLOCK(p1->p_leader);
  581                         /*
  582                          * The task leader is exiting, so process p1 is
  583                          * going to be killed shortly.  Since p1 obviously
  584                          * isn't dead yet, we know that the leader is either
  585                          * sending SIGKILL's to all the processes in this
  586                          * task or is sleeping waiting for all the peers to
  587                          * exit.  We let p1 complete the fork, but we need
  588                          * to go ahead and kill the new process p2 since
  589                          * the task leader may not get a chance to send
  590                          * SIGKILL to it.  We leave it on the list so that
  591                          * the task leader will wait for this new process
  592                          * to commit suicide.
  593                          */
  594                         PROC_LOCK(p2);
  595                         kern_psignal(p2, SIGKILL);
  596                         PROC_UNLOCK(p2);
  597                 } else
  598                         PROC_UNLOCK(p1->p_leader);
  599         } else {
  600                 p2->p_peers = NULL;
  601                 p2->p_leader = p2;
  602         }
  603 
  604         sx_xlock(&proctree_lock);
  605         PGRP_LOCK(p1->p_pgrp);
  606         PROC_LOCK(p2);
  607         PROC_LOCK(p1);
  608 
  609         /*
  610          * Preserve some more flags in subprocess.  P_PROFIL has already
  611          * been preserved.
  612          */
  613         p2->p_flag |= p1->p_flag & P_SUGID;
  614         td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK));
  615         SESS_LOCK(p1->p_session);
  616         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  617                 p2->p_flag |= P_CONTROLT;
  618         SESS_UNLOCK(p1->p_session);
  619         if (fr->fr_flags & RFPPWAIT)
  620                 p2->p_flag |= P_PPWAIT;
  621 
  622         p2->p_pgrp = p1->p_pgrp;
  623         LIST_INSERT_AFTER(p1, p2, p_pglist);
  624         PGRP_UNLOCK(p1->p_pgrp);
  625         LIST_INIT(&p2->p_children);
  626         LIST_INIT(&p2->p_orphans);
  627 
  628         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  629         TAILQ_INIT(&p2->p_kqtim_stop);
  630 
  631         /*
  632          * This begins the section where we must prevent the parent
  633          * from being swapped.
  634          */
  635         _PHOLD(p1);
  636         PROC_UNLOCK(p1);
  637 
  638         /*
  639          * Attach the new process to its parent.
  640          *
  641          * If RFNOWAIT is set, the newly created process becomes a child
  642          * of init.  This effectively disassociates the child from the
  643          * parent.
  644          */
  645         if ((fr->fr_flags & RFNOWAIT) != 0) {
  646                 pptr = p1->p_reaper;
  647                 p2->p_reaper = pptr;
  648         } else {
  649                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  650                     p1 : p1->p_reaper;
  651                 pptr = p1;
  652         }
  653         p2->p_pptr = pptr;
  654         p2->p_oppid = pptr->p_pid;
  655         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  656         LIST_INIT(&p2->p_reaplist);
  657         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  658         if (p2->p_reaper == p1 && p1 != initproc) {
  659                 p2->p_reapsubtree = p2->p_pid;
  660                 proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
  661         }
  662         sx_xunlock(&proctree_lock);
  663 
  664         /* Inform accounting that we have forked. */
  665         p2->p_acflag = AFORK;
  666         PROC_UNLOCK(p2);
  667 
  668 #ifdef KTRACE
  669         ktrprocfork(p1, p2);
  670 #endif
  671 
  672         /*
  673          * Finish creating the child process.  It will return via a different
  674          * execution path later.  (ie: directly into user mode)
  675          */
  676         vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
  677 
  678         if (fr->fr_flags == (RFFDG | RFPROC)) {
  679                 VM_CNT_INC(v_forks);
  680                 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
  681                     p2->p_vmspace->vm_ssize);
  682         } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  683                 VM_CNT_INC(v_vforks);
  684                 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
  685                     p2->p_vmspace->vm_ssize);
  686         } else if (p1 == &proc0) {
  687                 VM_CNT_INC(v_kthreads);
  688                 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
  689                     p2->p_vmspace->vm_ssize);
  690         } else {
  691                 VM_CNT_INC(v_rforks);
  692                 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
  693                     p2->p_vmspace->vm_ssize);
  694         }
  695 
  696         /*
  697          * Associate the process descriptor with the process before anything
  698          * can happen that might cause that process to need the descriptor.
  699          * However, don't do this until after fork(2) can no longer fail.
  700          */
  701         if (fr->fr_flags & RFPROCDESC)
  702                 procdesc_new(p2, fr->fr_pd_flags);
  703 
  704         /*
  705          * Both processes are set up, now check if any loadable modules want
  706          * to adjust anything.
  707          */
  708         EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
  709 
  710         /*
  711          * Set the child start time and mark the process as being complete.
  712          */
  713         PROC_LOCK(p2);
  714         PROC_LOCK(p1);
  715         microuptime(&p2->p_stats->p_start);
  716         PROC_SLOCK(p2);
  717         p2->p_state = PRS_NORMAL;
  718         PROC_SUNLOCK(p2);
  719 
  720 #ifdef KDTRACE_HOOKS
  721         /*
  722          * Tell the DTrace fasttrap provider about the new process so that any
  723          * tracepoints inherited from the parent can be removed. We have to do
  724          * this only after p_state is PRS_NORMAL since the fasttrap module will
  725          * use pfind() later on.
  726          */
  727         if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  728                 dtrace_fasttrap_fork(p1, p2);
  729 #endif
  730         if (fr->fr_flags & RFPPWAIT) {
  731                 td->td_pflags |= TDP_RFPPWAIT;
  732                 td->td_rfppwait_p = p2;
  733                 td->td_dbgflags |= TDB_VFORK;
  734         }
  735         PROC_UNLOCK(p2);
  736 
  737         /*
  738          * Tell any interested parties about the new process.
  739          */
  740         knote_fork(p1->p_klist, p2->p_pid);
  741 
  742         /*
  743          * Now can be swapped.
  744          */
  745         _PRELE(p1);
  746         PROC_UNLOCK(p1);
  747         SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
  748 
  749         if (fr->fr_flags & RFPROCDESC) {
  750                 procdesc_finit(p2->p_procdesc, fp_procdesc);
  751                 fdrop(fp_procdesc, td);
  752         }
  753 
  754         /*
  755          * Speculative check for PTRACE_FORK. PTRACE_FORK is not
  756          * synced with forks in progress so it is OK if we miss it
  757          * if being set atm.
  758          */
  759         if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  760                 sx_xlock(&proctree_lock);
  761                 PROC_LOCK(p2);
  762 
  763                 /*
  764                  * p1->p_ptevents & p1->p_pptr are protected by both
  765                  * process and proctree locks for modifications,
  766                  * so owning proctree_lock allows the race-free read.
  767                  */
  768                 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  769                         /*
  770                          * Arrange for debugger to receive the fork event.
  771                          *
  772                          * We can report PL_FLAG_FORKED regardless of
  773                          * P_FOLLOWFORK settings, but it does not make a sense
  774                          * for runaway child.
  775                          */
  776                         td->td_dbgflags |= TDB_FORK;
  777                         td->td_dbg_forked = p2->p_pid;
  778                         td2->td_dbgflags |= TDB_STOPATFORK;
  779                         proc_set_traced(p2, true);
  780                         CTR2(KTR_PTRACE,
  781                             "do_fork: attaching to new child pid %d: oppid %d",
  782                             p2->p_pid, p2->p_oppid);
  783                         proc_reparent(p2, p1->p_pptr, false);
  784                 }
  785                 PROC_UNLOCK(p2);
  786                 sx_xunlock(&proctree_lock);
  787         }
  788 
  789         racct_proc_fork_done(p2);
  790 
  791         if ((fr->fr_flags & RFSTOPPED) == 0) {
  792                 if (fr->fr_pidp != NULL)
  793                         *fr->fr_pidp = p2->p_pid;
  794                 /*
  795                  * If RFSTOPPED not requested, make child runnable and
  796                  * add to run queue.
  797                  */
  798                 thread_lock(td2);
  799                 TD_SET_CAN_RUN(td2);
  800                 sched_add(td2, SRQ_BORING);
  801         } else {
  802                 *fr->fr_procp = p2;
  803         }
  804 }
  805 
  806 static void
  807 ast_vfork(struct thread *td, int tda __unused)
  808 {
  809         struct proc *p, *p2;
  810 
  811         MPASS(td->td_pflags & TDP_RFPPWAIT);
  812 
  813         p = td->td_proc;
  814         /*
  815          * Preserve synchronization semantics of vfork.  If
  816          * waiting for child to exec or exit, fork set
  817          * P_PPWAIT on child, and there we sleep on our proc
  818          * (in case of exit).
  819          *
  820          * Do it after the ptracestop() above is finished, to
  821          * not block our debugger until child execs or exits
  822          * to finish vfork wait.
  823          */
  824         td->td_pflags &= ~TDP_RFPPWAIT;
  825         p2 = td->td_rfppwait_p;
  826 again:
  827         PROC_LOCK(p2);
  828         while (p2->p_flag & P_PPWAIT) {
  829                 PROC_LOCK(p);
  830                 if (thread_suspend_check_needed()) {
  831                         PROC_UNLOCK(p2);
  832                         thread_suspend_check(0);
  833                         PROC_UNLOCK(p);
  834                         goto again;
  835                 } else {
  836                         PROC_UNLOCK(p);
  837                 }
  838                 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
  839         }
  840         PROC_UNLOCK(p2);
  841 
  842         if (td->td_dbgflags & TDB_VFORK) {
  843                 PROC_LOCK(p);
  844                 if (p->p_ptevents & PTRACE_VFORK)
  845                         ptracestop(td, SIGTRAP, NULL);
  846                 td->td_dbgflags &= ~TDB_VFORK;
  847                 PROC_UNLOCK(p);
  848         }
  849 }
  850 
  851 int
  852 fork1(struct thread *td, struct fork_req *fr)
  853 {
  854         struct proc *p1, *newproc;
  855         struct thread *td2;
  856         struct vmspace *vm2;
  857         struct ucred *cred;
  858         struct file *fp_procdesc;
  859         vm_ooffset_t mem_charged;
  860         int error, nprocs_new;
  861         static int curfail;
  862         static struct timeval lastfail;
  863         int flags, pages;
  864 
  865         flags = fr->fr_flags;
  866         pages = fr->fr_pages;
  867 
  868         if ((flags & RFSTOPPED) != 0)
  869                 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
  870         else
  871                 MPASS(fr->fr_procp == NULL);
  872 
  873         /* Check for the undefined or unimplemented flags. */
  874         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  875                 return (EINVAL);
  876 
  877         /* Signal value requires RFTSIGZMB. */
  878         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  879                 return (EINVAL);
  880 
  881         /* Can't copy and clear. */
  882         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  883                 return (EINVAL);
  884 
  885         /* Check the validity of the signal number. */
  886         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  887                 return (EINVAL);
  888 
  889         if ((flags & RFPROCDESC) != 0) {
  890                 /* Can't not create a process yet get a process descriptor. */
  891                 if ((flags & RFPROC) == 0)
  892                         return (EINVAL);
  893 
  894                 /* Must provide a place to put a procdesc if creating one. */
  895                 if (fr->fr_pd_fd == NULL)
  896                         return (EINVAL);
  897 
  898                 /* Check if we are using supported flags. */
  899                 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
  900                         return (EINVAL);
  901         }
  902 
  903         p1 = td->td_proc;
  904 
  905         /*
  906          * Here we don't create a new process, but we divorce
  907          * certain parts of a process from itself.
  908          */
  909         if ((flags & RFPROC) == 0) {
  910                 if (fr->fr_procp != NULL)
  911                         *fr->fr_procp = NULL;
  912                 else if (fr->fr_pidp != NULL)
  913                         *fr->fr_pidp = 0;
  914                 return (fork_norfproc(td, flags));
  915         }
  916 
  917         fp_procdesc = NULL;
  918         newproc = NULL;
  919         vm2 = NULL;
  920 
  921         /*
  922          * Increment the nprocs resource before allocations occur.
  923          * Although process entries are dynamically created, we still
  924          * keep a global limit on the maximum number we will
  925          * create. There are hard-limits as to the number of processes
  926          * that can run, established by the KVA and memory usage for
  927          * the process data.
  928          *
  929          * Don't allow a nonprivileged user to use the last ten
  930          * processes; don't let root exceed the limit.
  931          */
  932         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  933         if (nprocs_new >= maxproc - 10) {
  934                 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
  935                     nprocs_new >= maxproc) {
  936                         error = EAGAIN;
  937                         sx_xlock(&allproc_lock);
  938                         if (ppsratecheck(&lastfail, &curfail, 1)) {
  939                                 printf("maxproc limit exceeded by uid %u "
  940                                     "(pid %d); see tuning(7) and "
  941                                     "login.conf(5)\n",
  942                                     td->td_ucred->cr_ruid, p1->p_pid);
  943                         }
  944                         sx_xunlock(&allproc_lock);
  945                         goto fail2;
  946                 }
  947         }
  948 
  949         /*
  950          * If required, create a process descriptor in the parent first; we
  951          * will abandon it if something goes wrong. We don't finit() until
  952          * later.
  953          */
  954         if (flags & RFPROCDESC) {
  955                 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
  956                     fr->fr_pd_flags, fr->fr_pd_fcaps);
  957                 if (error != 0)
  958                         goto fail2;
  959                 AUDIT_ARG_FD(*fr->fr_pd_fd);
  960         }
  961 
  962         mem_charged = 0;
  963         if (pages == 0)
  964                 pages = kstack_pages;
  965         /* Allocate new proc. */
  966         newproc = uma_zalloc(proc_zone, M_WAITOK);
  967         td2 = FIRST_THREAD_IN_PROC(newproc);
  968         if (td2 == NULL) {
  969                 td2 = thread_alloc(pages);
  970                 if (td2 == NULL) {
  971                         error = ENOMEM;
  972                         goto fail2;
  973                 }
  974                 proc_linkup(newproc, td2);
  975         } else {
  976                 kmsan_thread_alloc(td2);
  977                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  978                         if (td2->td_kstack != 0)
  979                                 vm_thread_dispose(td2);
  980                         if (!thread_alloc_stack(td2, pages)) {
  981                                 error = ENOMEM;
  982                                 goto fail2;
  983                         }
  984                 }
  985         }
  986 
  987         if ((flags & RFMEM) == 0) {
  988                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  989                 if (vm2 == NULL) {
  990                         error = ENOMEM;
  991                         goto fail2;
  992                 }
  993                 if (!swap_reserve(mem_charged)) {
  994                         /*
  995                          * The swap reservation failed. The accounting
  996                          * from the entries of the copied vm2 will be
  997                          * subtracted in vmspace_free(), so force the
  998                          * reservation there.
  999                          */
 1000                         swap_reserve_force(mem_charged);
 1001                         error = ENOMEM;
 1002                         goto fail2;
 1003                 }
 1004         } else
 1005                 vm2 = NULL;
 1006 
 1007         /*
 1008          * XXX: This is ugly; when we copy resource usage, we need to bump
 1009          *      per-cred resource counters.
 1010          */
 1011         proc_set_cred_init(newproc, td->td_ucred);
 1012 
 1013         /*
 1014          * Initialize resource accounting for the child process.
 1015          */
 1016         error = racct_proc_fork(p1, newproc);
 1017         if (error != 0) {
 1018                 error = EAGAIN;
 1019                 goto fail1;
 1020         }
 1021 
 1022 #ifdef MAC
 1023         mac_proc_init(newproc);
 1024 #endif
 1025         newproc->p_klist = knlist_alloc(&newproc->p_mtx);
 1026         STAILQ_INIT(&newproc->p_ktr);
 1027 
 1028         /*
 1029          * Increment the count of procs running with this uid. Don't allow
 1030          * a nonprivileged user to exceed their current limit.
 1031          */
 1032         cred = td->td_ucred;
 1033         if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
 1034                 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
 1035                         goto fail0;
 1036                 chgproccnt(cred->cr_ruidinfo, 1, 0);
 1037         }
 1038 
 1039         do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
 1040         return (0);
 1041 fail0:
 1042         error = EAGAIN;
 1043 #ifdef MAC
 1044         mac_proc_destroy(newproc);
 1045 #endif
 1046         racct_proc_exit(newproc);
 1047 fail1:
 1048         proc_unset_cred(newproc);
 1049 fail2:
 1050         if (vm2 != NULL)
 1051                 vmspace_free(vm2);
 1052         uma_zfree(proc_zone, newproc);
 1053         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
 1054                 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
 1055                 fdrop(fp_procdesc, td);
 1056         }
 1057         atomic_add_int(&nprocs, -1);
 1058         pause("fork", hz / 2);
 1059         return (error);
 1060 }
 1061 
 1062 /*
 1063  * Handle the return of a child process from fork1().  This function
 1064  * is called from the MD fork_trampoline() entry point.
 1065  */
 1066 void
 1067 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
 1068     struct trapframe *frame)
 1069 {
 1070         struct proc *p;
 1071         struct thread *td;
 1072         struct thread *dtd;
 1073 
 1074         kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
 1075 
 1076         td = curthread;
 1077         p = td->td_proc;
 1078         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1079 
 1080         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1081             td, td_get_sched(td), p->p_pid, td->td_name);
 1082 
 1083         sched_fork_exit(td);
 1084 
 1085         /*
 1086          * Processes normally resume in mi_switch() after being
 1087          * cpu_switch()'ed to, but when children start up they arrive here
 1088          * instead, so we must do much the same things as mi_switch() would.
 1089          */
 1090         if ((dtd = PCPU_GET(deadthread))) {
 1091                 PCPU_SET(deadthread, NULL);
 1092                 thread_stash(dtd);
 1093         }
 1094         thread_unlock(td);
 1095 
 1096         /*
 1097          * cpu_fork_kthread_handler intercepts this function call to
 1098          * have this call a non-return function to stay in kernel mode.
 1099          * initproc has its own fork handler, but it does return.
 1100          */
 1101         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1102         callout(arg, frame);
 1103 
 1104         /*
 1105          * Check if a kernel thread misbehaved and returned from its main
 1106          * function.
 1107          */
 1108         if (p->p_flag & P_KPROC) {
 1109                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1110                     td->td_name, p->p_pid);
 1111                 kthread_exit();
 1112         }
 1113         mtx_assert(&Giant, MA_NOTOWNED);
 1114 
 1115         if (p->p_sysent->sv_schedtail != NULL)
 1116                 (p->p_sysent->sv_schedtail)(td);
 1117 }
 1118 
 1119 /*
 1120  * Simplified back end of syscall(), used when returning from fork()
 1121  * directly into user mode.  This function is passed in to fork_exit()
 1122  * as the first parameter and is called when returning to a new
 1123  * userland process.
 1124  */
 1125 void
 1126 fork_return(struct thread *td, struct trapframe *frame)
 1127 {
 1128         struct proc *p;
 1129 
 1130         p = td->td_proc;
 1131         if (td->td_dbgflags & TDB_STOPATFORK) {
 1132                 PROC_LOCK(p);
 1133                 if ((p->p_flag & P_TRACED) != 0) {
 1134                         /*
 1135                          * Inform the debugger if one is still present.
 1136                          */
 1137                         td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
 1138                         ptracestop(td, SIGSTOP, NULL);
 1139                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1140                 } else {
 1141                         /*
 1142                          * ... otherwise clear the request.
 1143                          */
 1144                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1145                 }
 1146                 PROC_UNLOCK(p);
 1147         } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
 1148                 /*
 1149                  * This is the start of a new thread in a traced
 1150                  * process.  Report a system call exit event.
 1151                  */
 1152                 PROC_LOCK(p);
 1153                 td->td_dbgflags |= TDB_SCX;
 1154                 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
 1155                     (td->td_dbgflags & TDB_BORN) != 0)
 1156                         ptracestop(td, SIGTRAP, NULL);
 1157                 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
 1158                 PROC_UNLOCK(p);
 1159         }
 1160 
 1161         /*
 1162          * If the prison was killed mid-fork, die along with it.
 1163          */
 1164         if (!prison_isalive(td->td_ucred->cr_prison))
 1165                 exit1(td, 0, SIGKILL);
 1166 
 1167         userret(td, frame);
 1168 
 1169 #ifdef KTRACE
 1170         if (KTRPOINT(td, KTR_SYSRET))
 1171                 ktrsysret(SYS_fork, 0, 0);
 1172 #endif
 1173 }
 1174 
 1175 static void
 1176 fork_init(void *arg __unused)
 1177 {
 1178         ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
 1179             ast_vfork);
 1180 }
 1181 SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);

Cache object: 7e7742d245fbb658625a732c4141241b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.