The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/10.3/sys/kern/kern_fork.c 295674 2016-02-16 21:36:48Z jhb $");
   39 
   40 #include "opt_kdtrace.h"
   41 #include "opt_ktrace.h"
   42 #include "opt_kstack_pages.h"
   43 #include "opt_procdesc.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/sysproto.h>
   48 #include <sys/eventhandler.h>
   49 #include <sys/fcntl.h>
   50 #include <sys/filedesc.h>
   51 #include <sys/jail.h>
   52 #include <sys/kernel.h>
   53 #include <sys/kthread.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/lock.h>
   56 #include <sys/malloc.h>
   57 #include <sys/mutex.h>
   58 #include <sys/priv.h>
   59 #include <sys/proc.h>
   60 #include <sys/procdesc.h>
   61 #include <sys/pioctl.h>
   62 #include <sys/ptrace.h>
   63 #include <sys/racct.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/sched.h>
   66 #include <sys/syscall.h>
   67 #include <sys/vmmeter.h>
   68 #include <sys/vnode.h>
   69 #include <sys/acct.h>
   70 #include <sys/ktr.h>
   71 #include <sys/ktrace.h>
   72 #include <sys/unistd.h> 
   73 #include <sys/sdt.h>
   74 #include <sys/sx.h>
   75 #include <sys/sysent.h>
   76 #include <sys/signalvar.h>
   77 
   78 #include <security/audit/audit.h>
   79 #include <security/mac/mac_framework.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #ifdef KDTRACE_HOOKS
   88 #include <sys/dtrace_bsd.h>
   89 dtrace_fork_func_t      dtrace_fasttrap_fork;
   90 #endif
   91 
   92 SDT_PROVIDER_DECLARE(proc);
   93 SDT_PROBE_DEFINE3(proc, kernel, , create, "struct proc *",
   94     "struct proc *", "int");
   95 
   96 #ifndef _SYS_SYSPROTO_H_
   97 struct fork_args {
   98         int     dummy;
   99 };
  100 #endif
  101 
  102 /* ARGSUSED */
  103 int
  104 sys_fork(struct thread *td, struct fork_args *uap)
  105 {
  106         int error;
  107         struct proc *p2;
  108 
  109         error = fork1(td, RFFDG | RFPROC, 0, &p2, NULL, 0);
  110         if (error == 0) {
  111                 td->td_retval[0] = p2->p_pid;
  112                 td->td_retval[1] = 0;
  113         }
  114         return (error);
  115 }
  116 
  117 /* ARGUSED */
  118 int
  119 sys_pdfork(td, uap)
  120         struct thread *td;
  121         struct pdfork_args *uap;
  122 {
  123 #ifdef PROCDESC
  124         int error, fd;
  125         struct proc *p2;
  126 
  127         /*
  128          * It is necessary to return fd by reference because 0 is a valid file
  129          * descriptor number, and the child needs to be able to distinguish
  130          * itself from the parent using the return value.
  131          */
  132         error = fork1(td, RFFDG | RFPROC | RFPROCDESC, 0, &p2,
  133             &fd, uap->flags);
  134         if (error == 0) {
  135                 td->td_retval[0] = p2->p_pid;
  136                 td->td_retval[1] = 0;
  137                 error = copyout(&fd, uap->fdp, sizeof(fd));
  138         }
  139         return (error);
  140 #else
  141         return (ENOSYS);
  142 #endif
  143 }
  144 
  145 /* ARGSUSED */
  146 int
  147 sys_vfork(struct thread *td, struct vfork_args *uap)
  148 {
  149         int error, flags;
  150         struct proc *p2;
  151 
  152         flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  153         error = fork1(td, flags, 0, &p2, NULL, 0);
  154         if (error == 0) {
  155                 td->td_retval[0] = p2->p_pid;
  156                 td->td_retval[1] = 0;
  157         }
  158         return (error);
  159 }
  160 
  161 int
  162 sys_rfork(struct thread *td, struct rfork_args *uap)
  163 {
  164         struct proc *p2;
  165         int error;
  166 
  167         /* Don't allow kernel-only flags. */
  168         if ((uap->flags & RFKERNELONLY) != 0)
  169                 return (EINVAL);
  170 
  171         AUDIT_ARG_FFLAGS(uap->flags);
  172         error = fork1(td, uap->flags, 0, &p2, NULL, 0);
  173         if (error == 0) {
  174                 td->td_retval[0] = p2 ? p2->p_pid : 0;
  175                 td->td_retval[1] = 0;
  176         }
  177         return (error);
  178 }
  179 
  180 int     nprocs = 1;             /* process 0 */
  181 int     lastpid = 0;
  182 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  183     "Last used PID");
  184 
  185 /*
  186  * Random component to lastpid generation.  We mix in a random factor to make
  187  * it a little harder to predict.  We sanity check the modulus value to avoid
  188  * doing it in critical paths.  Don't let it be too small or we pointlessly
  189  * waste randomness entropy, and don't let it be impossibly large.  Using a
  190  * modulus that is too big causes a LOT more process table scans and slows
  191  * down fork processing as the pidchecked caching is defeated.
  192  */
  193 static int randompid = 0;
  194 
  195 static int
  196 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  197 {
  198         int error, pid;
  199 
  200         error = sysctl_wire_old_buffer(req, sizeof(int));
  201         if (error != 0)
  202                 return(error);
  203         sx_xlock(&allproc_lock);
  204         pid = randompid;
  205         error = sysctl_handle_int(oidp, &pid, 0, req);
  206         if (error == 0 && req->newptr != NULL) {
  207                 if (pid < 0 || pid > pid_max - 100)     /* out of range */
  208                         pid = pid_max - 100;
  209                 else if (pid < 2)                       /* NOP */
  210                         pid = 0;
  211                 else if (pid < 100)                     /* Make it reasonable */
  212                         pid = 100;
  213                 randompid = pid;
  214         }
  215         sx_xunlock(&allproc_lock);
  216         return (error);
  217 }
  218 
  219 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  220     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  221 
  222 static int
  223 fork_findpid(int flags)
  224 {
  225         struct proc *p;
  226         int trypid;
  227         static int pidchecked = 0;
  228 
  229         /*
  230          * Requires allproc_lock in order to iterate over the list
  231          * of processes, and proctree_lock to access p_pgrp.
  232          */
  233         sx_assert(&allproc_lock, SX_LOCKED);
  234         sx_assert(&proctree_lock, SX_LOCKED);
  235 
  236         /*
  237          * Find an unused process ID.  We remember a range of unused IDs
  238          * ready to use (from lastpid+1 through pidchecked-1).
  239          *
  240          * If RFHIGHPID is set (used during system boot), do not allocate
  241          * low-numbered pids.
  242          */
  243         trypid = lastpid + 1;
  244         if (flags & RFHIGHPID) {
  245                 if (trypid < 10)
  246                         trypid = 10;
  247         } else {
  248                 if (randompid)
  249                         trypid += arc4random() % randompid;
  250         }
  251 retry:
  252         /*
  253          * If the process ID prototype has wrapped around,
  254          * restart somewhat above 0, as the low-numbered procs
  255          * tend to include daemons that don't exit.
  256          */
  257         if (trypid >= pid_max) {
  258                 trypid = trypid % pid_max;
  259                 if (trypid < 100)
  260                         trypid += 100;
  261                 pidchecked = 0;
  262         }
  263         if (trypid >= pidchecked) {
  264                 int doingzomb = 0;
  265 
  266                 pidchecked = PID_MAX;
  267                 /*
  268                  * Scan the active and zombie procs to check whether this pid
  269                  * is in use.  Remember the lowest pid that's greater
  270                  * than trypid, so we can avoid checking for a while.
  271                  *
  272                  * Avoid reuse of the process group id, session id or
  273                  * the reaper subtree id.  Note that for process group
  274                  * and sessions, the amount of reserved pids is
  275                  * limited by process limit.  For the subtree ids, the
  276                  * id is kept reserved only while there is a
  277                  * non-reaped process in the subtree, so amount of
  278                  * reserved pids is limited by process limit times
  279                  * two.
  280                  */
  281                 p = LIST_FIRST(&allproc);
  282 again:
  283                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
  284                         while (p->p_pid == trypid ||
  285                             p->p_reapsubtree == trypid ||
  286                             (p->p_pgrp != NULL &&
  287                             (p->p_pgrp->pg_id == trypid ||
  288                             (p->p_session != NULL &&
  289                             p->p_session->s_sid == trypid)))) {
  290                                 trypid++;
  291                                 if (trypid >= pidchecked)
  292                                         goto retry;
  293                         }
  294                         if (p->p_pid > trypid && pidchecked > p->p_pid)
  295                                 pidchecked = p->p_pid;
  296                         if (p->p_pgrp != NULL) {
  297                                 if (p->p_pgrp->pg_id > trypid &&
  298                                     pidchecked > p->p_pgrp->pg_id)
  299                                         pidchecked = p->p_pgrp->pg_id;
  300                                 if (p->p_session != NULL &&
  301                                     p->p_session->s_sid > trypid &&
  302                                     pidchecked > p->p_session->s_sid)
  303                                         pidchecked = p->p_session->s_sid;
  304                         }
  305                 }
  306                 if (!doingzomb) {
  307                         doingzomb = 1;
  308                         p = LIST_FIRST(&zombproc);
  309                         goto again;
  310                 }
  311         }
  312 
  313         /*
  314          * RFHIGHPID does not mess with the lastpid counter during boot.
  315          */
  316         if (flags & RFHIGHPID)
  317                 pidchecked = 0;
  318         else
  319                 lastpid = trypid;
  320 
  321         return (trypid);
  322 }
  323 
  324 static int
  325 fork_norfproc(struct thread *td, int flags)
  326 {
  327         int error;
  328         struct proc *p1;
  329 
  330         KASSERT((flags & RFPROC) == 0,
  331             ("fork_norfproc called with RFPROC set"));
  332         p1 = td->td_proc;
  333 
  334         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  335             (flags & (RFCFDG | RFFDG))) {
  336                 PROC_LOCK(p1);
  337                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  338                         PROC_UNLOCK(p1);
  339                         return (ERESTART);
  340                 }
  341                 PROC_UNLOCK(p1);
  342         }
  343 
  344         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  345         if (error)
  346                 goto fail;
  347 
  348         /*
  349          * Close all file descriptors.
  350          */
  351         if (flags & RFCFDG) {
  352                 struct filedesc *fdtmp;
  353                 fdtmp = fdinit(td->td_proc->p_fd);
  354                 fdescfree(td);
  355                 p1->p_fd = fdtmp;
  356         }
  357 
  358         /*
  359          * Unshare file descriptors (from parent).
  360          */
  361         if (flags & RFFDG)
  362                 fdunshare(td);
  363 
  364 fail:
  365         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  366             (flags & (RFCFDG | RFFDG))) {
  367                 PROC_LOCK(p1);
  368                 thread_single_end(p1, SINGLE_BOUNDARY);
  369                 PROC_UNLOCK(p1);
  370         }
  371         return (error);
  372 }
  373 
  374 static void
  375 do_fork(struct thread *td, int flags, struct proc *p2, struct thread *td2,
  376     struct vmspace *vm2, int pdflags)
  377 {
  378         struct proc *p1, *pptr;
  379         int p2_held, trypid;
  380         struct filedesc *fd;
  381         struct filedesc_to_leader *fdtol;
  382         struct sigacts *newsigacts;
  383 
  384         sx_assert(&proctree_lock, SX_SLOCKED);
  385         sx_assert(&allproc_lock, SX_XLOCKED);
  386 
  387         p2_held = 0;
  388         p1 = td->td_proc;
  389 
  390         trypid = fork_findpid(flags);
  391 
  392         sx_sunlock(&proctree_lock);
  393 
  394         p2->p_state = PRS_NEW;          /* protect against others */
  395         p2->p_pid = trypid;
  396         AUDIT_ARG_PID(p2->p_pid);
  397         LIST_INSERT_HEAD(&allproc, p2, p_list);
  398         allproc_gen++;
  399         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  400         tidhash_add(td2);
  401         PROC_LOCK(p2);
  402         PROC_LOCK(p1);
  403 
  404         sx_xunlock(&allproc_lock);
  405 
  406         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  407             __rangeof(struct proc, p_startcopy, p_endcopy));
  408         pargs_hold(p2->p_args);
  409         PROC_UNLOCK(p1);
  410 
  411         bzero(&p2->p_startzero,
  412             __rangeof(struct proc, p_startzero, p_endzero));
  413         p2->p_treeflag = 0;
  414 
  415         p2->p_ucred = crhold(td->td_ucred);
  416 
  417         /* Tell the prison that we exist. */
  418         prison_proc_hold(p2->p_ucred->cr_prison);
  419 
  420         PROC_UNLOCK(p2);
  421 
  422         /*
  423          * Malloc things while we don't hold any locks.
  424          */
  425         if (flags & RFSIGSHARE)
  426                 newsigacts = NULL;
  427         else
  428                 newsigacts = sigacts_alloc();
  429 
  430         /*
  431          * Copy filedesc.
  432          */
  433         if (flags & RFCFDG) {
  434                 fd = fdinit(p1->p_fd);
  435                 fdtol = NULL;
  436         } else if (flags & RFFDG) {
  437                 fd = fdcopy(p1->p_fd);
  438                 fdtol = NULL;
  439         } else {
  440                 fd = fdshare(p1->p_fd);
  441                 if (p1->p_fdtol == NULL)
  442                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  443                             p1->p_leader);
  444                 if ((flags & RFTHREAD) != 0) {
  445                         /*
  446                          * Shared file descriptor table, and shared
  447                          * process leaders.
  448                          */
  449                         fdtol = p1->p_fdtol;
  450                         FILEDESC_XLOCK(p1->p_fd);
  451                         fdtol->fdl_refcount++;
  452                         FILEDESC_XUNLOCK(p1->p_fd);
  453                 } else {
  454                         /* 
  455                          * Shared file descriptor table, and different
  456                          * process leaders.
  457                          */
  458                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  459                             p1->p_fd, p2);
  460                 }
  461         }
  462         /*
  463          * Make a proc table entry for the new process.
  464          * Start by zeroing the section of proc that is zero-initialized,
  465          * then copy the section that is copied directly from the parent.
  466          */
  467 
  468         PROC_LOCK(p2);
  469         PROC_LOCK(p1);
  470 
  471         bzero(&td2->td_startzero,
  472             __rangeof(struct thread, td_startzero, td_endzero));
  473         td2->td_su = NULL;
  474 
  475         bcopy(&td->td_startcopy, &td2->td_startcopy,
  476             __rangeof(struct thread, td_startcopy, td_endcopy));
  477 
  478         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  479         td2->td_sigstk = td->td_sigstk;
  480         td2->td_flags = TDF_INMEM;
  481         td2->td_lend_user_pri = PRI_MAX;
  482         td2->td_dbg_sc_code = td->td_dbg_sc_code;
  483         td2->td_dbg_sc_narg = td->td_dbg_sc_narg;
  484 
  485 #ifdef VIMAGE
  486         td2->td_vnet = NULL;
  487         td2->td_vnet_lpush = NULL;
  488 #endif
  489 
  490         /*
  491          * Allow the scheduler to initialize the child.
  492          */
  493         thread_lock(td);
  494         sched_fork(td, td2);
  495         thread_unlock(td);
  496 
  497         /*
  498          * Duplicate sub-structures as needed.
  499          * Increase reference counts on shared objects.
  500          */
  501         p2->p_flag = P_INMEM;
  502         p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC);
  503         p2->p_swtick = ticks;
  504         if (p1->p_flag & P_PROFIL)
  505                 startprofclock(p2);
  506         td2->td_ucred = crhold(p2->p_ucred);
  507 
  508         if (flags & RFSIGSHARE) {
  509                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  510         } else {
  511                 sigacts_copy(newsigacts, p1->p_sigacts);
  512                 p2->p_sigacts = newsigacts;
  513         }
  514 
  515         if (flags & RFTSIGZMB)
  516                 p2->p_sigparent = RFTSIGNUM(flags);
  517         else if (flags & RFLINUXTHPN)
  518                 p2->p_sigparent = SIGUSR1;
  519         else
  520                 p2->p_sigparent = SIGCHLD;
  521 
  522         p2->p_textvp = p1->p_textvp;
  523         p2->p_fd = fd;
  524         p2->p_fdtol = fdtol;
  525 
  526         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  527                 p2->p_flag |= P_PROTECTED;
  528                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  529         }
  530 
  531         /*
  532          * p_limit is copy-on-write.  Bump its refcount.
  533          */
  534         lim_fork(p1, p2);
  535 
  536         pstats_fork(p1->p_stats, p2->p_stats);
  537 
  538         PROC_UNLOCK(p1);
  539         PROC_UNLOCK(p2);
  540 
  541         /* Bump references to the text vnode (for procfs). */
  542         if (p2->p_textvp)
  543                 vref(p2->p_textvp);
  544 
  545         /*
  546          * Set up linkage for kernel based threading.
  547          */
  548         if ((flags & RFTHREAD) != 0) {
  549                 mtx_lock(&ppeers_lock);
  550                 p2->p_peers = p1->p_peers;
  551                 p1->p_peers = p2;
  552                 p2->p_leader = p1->p_leader;
  553                 mtx_unlock(&ppeers_lock);
  554                 PROC_LOCK(p1->p_leader);
  555                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  556                         PROC_UNLOCK(p1->p_leader);
  557                         /*
  558                          * The task leader is exiting, so process p1 is
  559                          * going to be killed shortly.  Since p1 obviously
  560                          * isn't dead yet, we know that the leader is either
  561                          * sending SIGKILL's to all the processes in this
  562                          * task or is sleeping waiting for all the peers to
  563                          * exit.  We let p1 complete the fork, but we need
  564                          * to go ahead and kill the new process p2 since
  565                          * the task leader may not get a chance to send
  566                          * SIGKILL to it.  We leave it on the list so that
  567                          * the task leader will wait for this new process
  568                          * to commit suicide.
  569                          */
  570                         PROC_LOCK(p2);
  571                         kern_psignal(p2, SIGKILL);
  572                         PROC_UNLOCK(p2);
  573                 } else
  574                         PROC_UNLOCK(p1->p_leader);
  575         } else {
  576                 p2->p_peers = NULL;
  577                 p2->p_leader = p2;
  578         }
  579 
  580         sx_xlock(&proctree_lock);
  581         PGRP_LOCK(p1->p_pgrp);
  582         PROC_LOCK(p2);
  583         PROC_LOCK(p1);
  584 
  585         /*
  586          * Preserve some more flags in subprocess.  P_PROFIL has already
  587          * been preserved.
  588          */
  589         p2->p_flag |= p1->p_flag & P_SUGID;
  590         td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
  591         SESS_LOCK(p1->p_session);
  592         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  593                 p2->p_flag |= P_CONTROLT;
  594         SESS_UNLOCK(p1->p_session);
  595         if (flags & RFPPWAIT)
  596                 p2->p_flag |= P_PPWAIT;
  597 
  598         p2->p_pgrp = p1->p_pgrp;
  599         LIST_INSERT_AFTER(p1, p2, p_pglist);
  600         PGRP_UNLOCK(p1->p_pgrp);
  601         LIST_INIT(&p2->p_children);
  602         LIST_INIT(&p2->p_orphans);
  603 
  604         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  605 
  606         /*
  607          * If PF_FORK is set, the child process inherits the
  608          * procfs ioctl flags from its parent.
  609          */
  610         if (p1->p_pfsflags & PF_FORK) {
  611                 p2->p_stops = p1->p_stops;
  612                 p2->p_pfsflags = p1->p_pfsflags;
  613         }
  614 
  615         /*
  616          * This begins the section where we must prevent the parent
  617          * from being swapped.
  618          */
  619         _PHOLD(p1);
  620         PROC_UNLOCK(p1);
  621 
  622         /*
  623          * Attach the new process to its parent.
  624          *
  625          * If RFNOWAIT is set, the newly created process becomes a child
  626          * of init.  This effectively disassociates the child from the
  627          * parent.
  628          */
  629         if ((flags & RFNOWAIT) != 0) {
  630                 pptr = p1->p_reaper;
  631                 p2->p_reaper = pptr;
  632         } else {
  633                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  634                     p1 : p1->p_reaper;
  635                 pptr = p1;
  636         }
  637         p2->p_pptr = pptr;
  638         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  639         LIST_INIT(&p2->p_reaplist);
  640         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  641         if (p2->p_reaper == p1)
  642                 p2->p_reapsubtree = p2->p_pid;
  643         else
  644                 p2->p_reapsubtree = p1->p_reapsubtree;          
  645         sx_xunlock(&proctree_lock);
  646 
  647         /* Inform accounting that we have forked. */
  648         p2->p_acflag = AFORK;
  649         PROC_UNLOCK(p2);
  650 
  651 #ifdef KTRACE
  652         ktrprocfork(p1, p2);
  653 #endif
  654 
  655         /*
  656          * Finish creating the child process.  It will return via a different
  657          * execution path later.  (ie: directly into user mode)
  658          */
  659         vm_forkproc(td, p2, td2, vm2, flags);
  660 
  661         if (flags == (RFFDG | RFPROC)) {
  662                 PCPU_INC(cnt.v_forks);
  663                 PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
  664                     p2->p_vmspace->vm_ssize);
  665         } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  666                 PCPU_INC(cnt.v_vforks);
  667                 PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
  668                     p2->p_vmspace->vm_ssize);
  669         } else if (p1 == &proc0) {
  670                 PCPU_INC(cnt.v_kthreads);
  671                 PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
  672                     p2->p_vmspace->vm_ssize);
  673         } else {
  674                 PCPU_INC(cnt.v_rforks);
  675                 PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
  676                     p2->p_vmspace->vm_ssize);
  677         }
  678 
  679 #ifdef PROCDESC
  680         /*
  681          * Associate the process descriptor with the process before anything
  682          * can happen that might cause that process to need the descriptor.
  683          * However, don't do this until after fork(2) can no longer fail.
  684          */
  685         if (flags & RFPROCDESC)
  686                 procdesc_new(p2, pdflags);
  687 #endif
  688 
  689         /*
  690          * Both processes are set up, now check if any loadable modules want
  691          * to adjust anything.
  692          */
  693         EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
  694 
  695         /*
  696          * Set the child start time and mark the process as being complete.
  697          */
  698         PROC_LOCK(p2);
  699         PROC_LOCK(p1);
  700         microuptime(&p2->p_stats->p_start);
  701         PROC_SLOCK(p2);
  702         p2->p_state = PRS_NORMAL;
  703         PROC_SUNLOCK(p2);
  704 
  705 #ifdef KDTRACE_HOOKS
  706         /*
  707          * Tell the DTrace fasttrap provider about the new process so that any
  708          * tracepoints inherited from the parent can be removed. We have to do
  709          * this only after p_state is PRS_NORMAL since the fasttrap module will
  710          * use pfind() later on.
  711          */
  712         if ((flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  713                 dtrace_fasttrap_fork(p1, p2);
  714 #endif
  715         if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED |
  716             P_FOLLOWFORK)) {
  717                 /*
  718                  * Arrange for debugger to receive the fork event.
  719                  *
  720                  * We can report PL_FLAG_FORKED regardless of
  721                  * P_FOLLOWFORK settings, but it does not make a sense
  722                  * for runaway child.
  723                  */
  724                 td->td_dbgflags |= TDB_FORK;
  725                 td->td_dbg_forked = p2->p_pid;
  726                 td2->td_dbgflags |= TDB_STOPATFORK;
  727                 _PHOLD(p2);
  728                 p2_held = 1;
  729         }
  730         if (flags & RFPPWAIT) {
  731                 td->td_pflags |= TDP_RFPPWAIT;
  732                 td->td_rfppwait_p = p2;
  733         }
  734         PROC_UNLOCK(p2);
  735         if ((flags & RFSTOPPED) == 0) {
  736                 /*
  737                  * If RFSTOPPED not requested, make child runnable and
  738                  * add to run queue.
  739                  */
  740                 thread_lock(td2);
  741                 TD_SET_CAN_RUN(td2);
  742                 sched_add(td2, SRQ_BORING);
  743                 thread_unlock(td2);
  744         }
  745 
  746         /*
  747          * Now can be swapped.
  748          */
  749         _PRELE(p1);
  750         PROC_UNLOCK(p1);
  751 
  752         /*
  753          * Tell any interested parties about the new process.
  754          */
  755         knote_fork(&p1->p_klist, p2->p_pid);
  756         SDT_PROBE3(proc, kernel, , create, p2, p1, flags);
  757 
  758         /*
  759          * Wait until debugger is attached to child.
  760          */
  761         PROC_LOCK(p2);
  762         while ((td2->td_dbgflags & TDB_STOPATFORK) != 0)
  763                 cv_wait(&p2->p_dbgwait, &p2->p_mtx);
  764         if (p2_held)
  765                 _PRELE(p2);
  766         PROC_UNLOCK(p2);
  767 }
  768 
  769 int
  770 fork1(struct thread *td, int flags, int pages, struct proc **procp,
  771     int *procdescp, int pdflags)
  772 {
  773         struct proc *p1, *newproc;
  774         struct thread *td2;
  775         struct vmspace *vm2;
  776 #ifdef PROCDESC
  777         struct file *fp_procdesc;
  778 #endif
  779         vm_ooffset_t mem_charged;
  780         int error, nprocs_new, ok;
  781         static int curfail;
  782         static struct timeval lastfail;
  783 
  784         /* Check for the undefined or unimplemented flags. */
  785         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  786                 return (EINVAL);
  787 
  788         /* Signal value requires RFTSIGZMB. */
  789         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  790                 return (EINVAL);
  791 
  792         /* Can't copy and clear. */
  793         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  794                 return (EINVAL);
  795 
  796         /* Check the validity of the signal number. */
  797         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  798                 return (EINVAL);
  799 
  800 #ifdef PROCDESC
  801         if ((flags & RFPROCDESC) != 0) {
  802                 /* Can't not create a process yet get a process descriptor. */
  803                 if ((flags & RFPROC) == 0)
  804                         return (EINVAL);
  805 
  806                 /* Must provide a place to put a procdesc if creating one. */
  807                 if (procdescp == NULL)
  808                         return (EINVAL);
  809         }
  810 #endif
  811 
  812         p1 = td->td_proc;
  813 
  814         /*
  815          * Here we don't create a new process, but we divorce
  816          * certain parts of a process from itself.
  817          */
  818         if ((flags & RFPROC) == 0) {
  819                 *procp = NULL;
  820                 return (fork_norfproc(td, flags));
  821         }
  822 
  823 #ifdef PROCDESC
  824         fp_procdesc = NULL;
  825 #endif
  826         newproc = NULL;
  827         vm2 = NULL;
  828 
  829         /*
  830          * Increment the nprocs resource before allocations occur.
  831          * Although process entries are dynamically created, we still
  832          * keep a global limit on the maximum number we will
  833          * create. There are hard-limits as to the number of processes
  834          * that can run, established by the KVA and memory usage for
  835          * the process data.
  836          *
  837          * Don't allow a nonprivileged user to use the last ten
  838          * processes; don't let root exceed the limit.
  839          */
  840         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  841         if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
  842             PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
  843                 sx_xlock(&allproc_lock);
  844                 if (ppsratecheck(&lastfail, &curfail, 1)) {
  845                         printf("maxproc limit exceeded by uid %u (pid %d); "
  846                             "see tuning(7) and login.conf(5)\n",
  847                             td->td_ucred->cr_ruid, p1->p_pid);
  848                 }
  849                 sx_xunlock(&allproc_lock);
  850                 error = EAGAIN;
  851                 goto fail1;
  852         }
  853 
  854 #ifdef PROCDESC
  855         /*
  856          * If required, create a process descriptor in the parent first; we
  857          * will abandon it if something goes wrong. We don't finit() until
  858          * later.
  859          */
  860         if (flags & RFPROCDESC) {
  861                 error = falloc(td, &fp_procdesc, procdescp, 0);
  862                 if (error != 0)
  863                         goto fail1;
  864         }
  865 #endif
  866 
  867         mem_charged = 0;
  868         if (pages == 0)
  869                 pages = KSTACK_PAGES;
  870         /* Allocate new proc. */
  871         newproc = uma_zalloc(proc_zone, M_WAITOK);
  872         td2 = FIRST_THREAD_IN_PROC(newproc);
  873         if (td2 == NULL) {
  874                 td2 = thread_alloc(pages);
  875                 if (td2 == NULL) {
  876                         error = ENOMEM;
  877                         goto fail1;
  878                 }
  879                 proc_linkup(newproc, td2);
  880         } else {
  881                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  882                         if (td2->td_kstack != 0)
  883                                 vm_thread_dispose(td2);
  884                         if (!thread_alloc_stack(td2, pages)) {
  885                                 error = ENOMEM;
  886                                 goto fail1;
  887                         }
  888                 }
  889         }
  890 
  891         if ((flags & RFMEM) == 0) {
  892                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  893                 if (vm2 == NULL) {
  894                         error = ENOMEM;
  895                         goto fail1;
  896                 }
  897                 if (!swap_reserve(mem_charged)) {
  898                         /*
  899                          * The swap reservation failed. The accounting
  900                          * from the entries of the copied vm2 will be
  901                          * substracted in vmspace_free(), so force the
  902                          * reservation there.
  903                          */
  904                         swap_reserve_force(mem_charged);
  905                         error = ENOMEM;
  906                         goto fail1;
  907                 }
  908         } else
  909                 vm2 = NULL;
  910 
  911         /*
  912          * XXX: This is ugly; when we copy resource usage, we need to bump
  913          *      per-cred resource counters.
  914          */
  915         newproc->p_ucred = p1->p_ucred;
  916 
  917         /*
  918          * Initialize resource accounting for the child process.
  919          */
  920         error = racct_proc_fork(p1, newproc);
  921         if (error != 0) {
  922                 error = EAGAIN;
  923                 goto fail1;
  924         }
  925 
  926 #ifdef MAC
  927         mac_proc_init(newproc);
  928 #endif
  929         knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
  930         STAILQ_INIT(&newproc->p_ktr);
  931 
  932         /* We have to lock the process tree while we look for a pid. */
  933         sx_slock(&proctree_lock);
  934         sx_xlock(&allproc_lock);
  935 
  936         /*
  937          * Increment the count of procs running with this uid. Don't allow
  938          * a nonprivileged user to exceed their current limit.
  939          *
  940          * XXXRW: Can we avoid privilege here if it's not needed?
  941          */
  942         error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
  943         if (error == 0)
  944                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
  945         else {
  946                 PROC_LOCK(p1);
  947                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  948                     lim_cur(p1, RLIMIT_NPROC));
  949                 PROC_UNLOCK(p1);
  950         }
  951         if (ok) {
  952                 do_fork(td, flags, newproc, td2, vm2, pdflags);
  953 
  954                 /*
  955                  * Return child proc pointer to parent.
  956                  */
  957                 *procp = newproc;
  958 #ifdef PROCDESC
  959                 if (flags & RFPROCDESC) {
  960                         procdesc_finit(newproc->p_procdesc, fp_procdesc);
  961                         fdrop(fp_procdesc, td);
  962                 }
  963 #endif
  964                 racct_proc_fork_done(newproc);
  965                 return (0);
  966         }
  967 
  968         error = EAGAIN;
  969         sx_sunlock(&proctree_lock);
  970         sx_xunlock(&allproc_lock);
  971 #ifdef MAC
  972         mac_proc_destroy(newproc);
  973 #endif
  974         racct_proc_exit(newproc);
  975 fail1:
  976         if (vm2 != NULL)
  977                 vmspace_free(vm2);
  978         uma_zfree(proc_zone, newproc);
  979 #ifdef PROCDESC
  980         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
  981                 fdclose(td->td_proc->p_fd, fp_procdesc, *procdescp, td);
  982                 fdrop(fp_procdesc, td);
  983         }
  984 #endif
  985         atomic_add_int(&nprocs, -1);
  986         pause("fork", hz / 2);
  987         return (error);
  988 }
  989 
  990 /*
  991  * Handle the return of a child process from fork1().  This function
  992  * is called from the MD fork_trampoline() entry point.
  993  */
  994 void
  995 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
  996     struct trapframe *frame)
  997 {
  998         struct proc *p;
  999         struct thread *td;
 1000         struct thread *dtd;
 1001 
 1002         td = curthread;
 1003         p = td->td_proc;
 1004         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1005 
 1006         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1007                 td, td->td_sched, p->p_pid, td->td_name);
 1008 
 1009         sched_fork_exit(td);
 1010         /*
 1011         * Processes normally resume in mi_switch() after being
 1012         * cpu_switch()'ed to, but when children start up they arrive here
 1013         * instead, so we must do much the same things as mi_switch() would.
 1014         */
 1015         if ((dtd = PCPU_GET(deadthread))) {
 1016                 PCPU_SET(deadthread, NULL);
 1017                 thread_stash(dtd);
 1018         }
 1019         thread_unlock(td);
 1020 
 1021         /*
 1022          * cpu_set_fork_handler intercepts this function call to
 1023          * have this call a non-return function to stay in kernel mode.
 1024          * initproc has its own fork handler, but it does return.
 1025          */
 1026         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1027         callout(arg, frame);
 1028 
 1029         /*
 1030          * Check if a kernel thread misbehaved and returned from its main
 1031          * function.
 1032          */
 1033         if (p->p_flag & P_KTHREAD) {
 1034                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1035                     td->td_name, p->p_pid);
 1036                 kthread_exit();
 1037         }
 1038         mtx_assert(&Giant, MA_NOTOWNED);
 1039 
 1040         if (p->p_sysent->sv_schedtail != NULL)
 1041                 (p->p_sysent->sv_schedtail)(td);
 1042 }
 1043 
 1044 /*
 1045  * Simplified back end of syscall(), used when returning from fork()
 1046  * directly into user mode.  Giant is not held on entry, and must not
 1047  * be held on return.  This function is passed in to fork_exit() as the
 1048  * first parameter and is called when returning to a new userland process.
 1049  */
 1050 void
 1051 fork_return(struct thread *td, struct trapframe *frame)
 1052 {
 1053         struct proc *p, *dbg;
 1054 
 1055         p = td->td_proc;
 1056         if (td->td_dbgflags & TDB_STOPATFORK) {
 1057                 sx_xlock(&proctree_lock);
 1058                 PROC_LOCK(p);
 1059                 if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) ==
 1060                     (P_TRACED | P_FOLLOWFORK)) {
 1061                         /*
 1062                          * If debugger still wants auto-attach for the
 1063                          * parent's children, do it now.
 1064                          */
 1065                         dbg = p->p_pptr->p_pptr;
 1066                         p->p_flag |= P_TRACED;
 1067                         p->p_oppid = p->p_pptr->p_pid;
 1068                         CTR2(KTR_PTRACE,
 1069                     "fork_return: attaching to new child pid %d: oppid %d",
 1070                             p->p_pid, p->p_oppid);
 1071                         proc_reparent(p, dbg);
 1072                         sx_xunlock(&proctree_lock);
 1073                         td->td_dbgflags |= TDB_CHILD | TDB_SCX;
 1074                         ptracestop(td, SIGSTOP);
 1075                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1076                 } else {
 1077                         /*
 1078                          * ... otherwise clear the request.
 1079                          */
 1080                         sx_xunlock(&proctree_lock);
 1081                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1082                         cv_broadcast(&p->p_dbgwait);
 1083                 }
 1084                 PROC_UNLOCK(p);
 1085         } else if (p->p_flag & P_TRACED) {
 1086                 /*
 1087                  * This is the start of a new thread in a traced
 1088                  * process.  Report a system call exit event.
 1089                  */
 1090                 PROC_LOCK(p);
 1091                 td->td_dbgflags |= TDB_SCX;
 1092                 _STOPEVENT(p, S_SCX, td->td_dbg_sc_code);
 1093                 if ((p->p_stops & S_PT_SCX) != 0)
 1094                         ptracestop(td, SIGTRAP);
 1095                 td->td_dbgflags &= ~TDB_SCX;
 1096                 PROC_UNLOCK(p);
 1097         }
 1098 
 1099         userret(td, frame);
 1100 
 1101 #ifdef KTRACE
 1102         if (KTRPOINT(td, KTR_SYSRET))
 1103                 ktrsysret(SYS_fork, 0, 0);
 1104 #endif
 1105 }

Cache object: b15e4d6b0f59eae32977467210cda7f9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.