The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/11.1/sys/kern/kern_fork.c 318192 2017-05-11 17:26:34Z jhb $");
   39 
   40 #include "opt_ktrace.h"
   41 #include "opt_kstack_pages.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/fcntl.h>
   48 #include <sys/filedesc.h>
   49 #include <sys/jail.h>
   50 #include <sys/kernel.h>
   51 #include <sys/kthread.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mutex.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/procdesc.h>
   59 #include <sys/pioctl.h>
   60 #include <sys/ptrace.h>
   61 #include <sys/racct.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/sched.h>
   64 #include <sys/syscall.h>
   65 #include <sys/vmmeter.h>
   66 #include <sys/vnode.h>
   67 #include <sys/acct.h>
   68 #include <sys/ktr.h>
   69 #include <sys/ktrace.h>
   70 #include <sys/unistd.h> 
   71 #include <sys/sdt.h>
   72 #include <sys/sx.h>
   73 #include <sys/sysent.h>
   74 #include <sys/signalvar.h>
   75 
   76 #include <security/audit/audit.h>
   77 #include <security/mac/mac_framework.h>
   78 
   79 #include <vm/vm.h>
   80 #include <vm/pmap.h>
   81 #include <vm/vm_map.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/uma.h>
   84 #include <vm/vm_domain.h>
   85 
   86 #ifdef KDTRACE_HOOKS
   87 #include <sys/dtrace_bsd.h>
   88 dtrace_fork_func_t      dtrace_fasttrap_fork;
   89 #endif
   90 
   91 SDT_PROVIDER_DECLARE(proc);
   92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
   93 
   94 #ifndef _SYS_SYSPROTO_H_
   95 struct fork_args {
   96         int     dummy;
   97 };
   98 #endif
   99 
  100 /* ARGSUSED */
  101 int
  102 sys_fork(struct thread *td, struct fork_args *uap)
  103 {
  104         struct fork_req fr;
  105         int error, pid;
  106 
  107         bzero(&fr, sizeof(fr));
  108         fr.fr_flags = RFFDG | RFPROC;
  109         fr.fr_pidp = &pid;
  110         error = fork1(td, &fr);
  111         if (error == 0) {
  112                 td->td_retval[0] = pid;
  113                 td->td_retval[1] = 0;
  114         }
  115         return (error);
  116 }
  117 
  118 /* ARGUSED */
  119 int
  120 sys_pdfork(struct thread *td, struct pdfork_args *uap)
  121 {
  122         struct fork_req fr;
  123         int error, fd, pid;
  124 
  125         bzero(&fr, sizeof(fr));
  126         fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
  127         fr.fr_pidp = &pid;
  128         fr.fr_pd_fd = &fd;
  129         fr.fr_pd_flags = uap->flags;
  130         /*
  131          * It is necessary to return fd by reference because 0 is a valid file
  132          * descriptor number, and the child needs to be able to distinguish
  133          * itself from the parent using the return value.
  134          */
  135         error = fork1(td, &fr);
  136         if (error == 0) {
  137                 td->td_retval[0] = pid;
  138                 td->td_retval[1] = 0;
  139                 error = copyout(&fd, uap->fdp, sizeof(fd));
  140         }
  141         return (error);
  142 }
  143 
  144 /* ARGSUSED */
  145 int
  146 sys_vfork(struct thread *td, struct vfork_args *uap)
  147 {
  148         struct fork_req fr;
  149         int error, pid;
  150 
  151         bzero(&fr, sizeof(fr));
  152         fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  153         fr.fr_pidp = &pid;
  154         error = fork1(td, &fr);
  155         if (error == 0) {
  156                 td->td_retval[0] = pid;
  157                 td->td_retval[1] = 0;
  158         }
  159         return (error);
  160 }
  161 
  162 int
  163 sys_rfork(struct thread *td, struct rfork_args *uap)
  164 {
  165         struct fork_req fr;
  166         int error, pid;
  167 
  168         /* Don't allow kernel-only flags. */
  169         if ((uap->flags & RFKERNELONLY) != 0)
  170                 return (EINVAL);
  171 
  172         AUDIT_ARG_FFLAGS(uap->flags);
  173         bzero(&fr, sizeof(fr));
  174         fr.fr_flags = uap->flags;
  175         fr.fr_pidp = &pid;
  176         error = fork1(td, &fr);
  177         if (error == 0) {
  178                 td->td_retval[0] = pid;
  179                 td->td_retval[1] = 0;
  180         }
  181         return (error);
  182 }
  183 
  184 int     nprocs = 1;             /* process 0 */
  185 int     lastpid = 0;
  186 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  187     "Last used PID");
  188 
  189 /*
  190  * Random component to lastpid generation.  We mix in a random factor to make
  191  * it a little harder to predict.  We sanity check the modulus value to avoid
  192  * doing it in critical paths.  Don't let it be too small or we pointlessly
  193  * waste randomness entropy, and don't let it be impossibly large.  Using a
  194  * modulus that is too big causes a LOT more process table scans and slows
  195  * down fork processing as the pidchecked caching is defeated.
  196  */
  197 static int randompid = 0;
  198 
  199 static int
  200 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  201 {
  202         int error, pid;
  203 
  204         error = sysctl_wire_old_buffer(req, sizeof(int));
  205         if (error != 0)
  206                 return(error);
  207         sx_xlock(&allproc_lock);
  208         pid = randompid;
  209         error = sysctl_handle_int(oidp, &pid, 0, req);
  210         if (error == 0 && req->newptr != NULL) {
  211                 if (pid < 0 || pid > pid_max - 100)     /* out of range */
  212                         pid = pid_max - 100;
  213                 else if (pid < 2)                       /* NOP */
  214                         pid = 0;
  215                 else if (pid < 100)                     /* Make it reasonable */
  216                         pid = 100;
  217                 randompid = pid;
  218         }
  219         sx_xunlock(&allproc_lock);
  220         return (error);
  221 }
  222 
  223 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  224     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  225 
  226 static int
  227 fork_findpid(int flags)
  228 {
  229         struct proc *p;
  230         int trypid;
  231         static int pidchecked = 0;
  232 
  233         /*
  234          * Requires allproc_lock in order to iterate over the list
  235          * of processes, and proctree_lock to access p_pgrp.
  236          */
  237         sx_assert(&allproc_lock, SX_LOCKED);
  238         sx_assert(&proctree_lock, SX_LOCKED);
  239 
  240         /*
  241          * Find an unused process ID.  We remember a range of unused IDs
  242          * ready to use (from lastpid+1 through pidchecked-1).
  243          *
  244          * If RFHIGHPID is set (used during system boot), do not allocate
  245          * low-numbered pids.
  246          */
  247         trypid = lastpid + 1;
  248         if (flags & RFHIGHPID) {
  249                 if (trypid < 10)
  250                         trypid = 10;
  251         } else {
  252                 if (randompid)
  253                         trypid += arc4random() % randompid;
  254         }
  255 retry:
  256         /*
  257          * If the process ID prototype has wrapped around,
  258          * restart somewhat above 0, as the low-numbered procs
  259          * tend to include daemons that don't exit.
  260          */
  261         if (trypid >= pid_max) {
  262                 trypid = trypid % pid_max;
  263                 if (trypid < 100)
  264                         trypid += 100;
  265                 pidchecked = 0;
  266         }
  267         if (trypid >= pidchecked) {
  268                 int doingzomb = 0;
  269 
  270                 pidchecked = PID_MAX;
  271                 /*
  272                  * Scan the active and zombie procs to check whether this pid
  273                  * is in use.  Remember the lowest pid that's greater
  274                  * than trypid, so we can avoid checking for a while.
  275                  *
  276                  * Avoid reuse of the process group id, session id or
  277                  * the reaper subtree id.  Note that for process group
  278                  * and sessions, the amount of reserved pids is
  279                  * limited by process limit.  For the subtree ids, the
  280                  * id is kept reserved only while there is a
  281                  * non-reaped process in the subtree, so amount of
  282                  * reserved pids is limited by process limit times
  283                  * two.
  284                  */
  285                 p = LIST_FIRST(&allproc);
  286 again:
  287                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
  288                         while (p->p_pid == trypid ||
  289                             p->p_reapsubtree == trypid ||
  290                             (p->p_pgrp != NULL &&
  291                             (p->p_pgrp->pg_id == trypid ||
  292                             (p->p_session != NULL &&
  293                             p->p_session->s_sid == trypid)))) {
  294                                 trypid++;
  295                                 if (trypid >= pidchecked)
  296                                         goto retry;
  297                         }
  298                         if (p->p_pid > trypid && pidchecked > p->p_pid)
  299                                 pidchecked = p->p_pid;
  300                         if (p->p_pgrp != NULL) {
  301                                 if (p->p_pgrp->pg_id > trypid &&
  302                                     pidchecked > p->p_pgrp->pg_id)
  303                                         pidchecked = p->p_pgrp->pg_id;
  304                                 if (p->p_session != NULL &&
  305                                     p->p_session->s_sid > trypid &&
  306                                     pidchecked > p->p_session->s_sid)
  307                                         pidchecked = p->p_session->s_sid;
  308                         }
  309                 }
  310                 if (!doingzomb) {
  311                         doingzomb = 1;
  312                         p = LIST_FIRST(&zombproc);
  313                         goto again;
  314                 }
  315         }
  316 
  317         /*
  318          * RFHIGHPID does not mess with the lastpid counter during boot.
  319          */
  320         if (flags & RFHIGHPID)
  321                 pidchecked = 0;
  322         else
  323                 lastpid = trypid;
  324 
  325         return (trypid);
  326 }
  327 
  328 static int
  329 fork_norfproc(struct thread *td, int flags)
  330 {
  331         int error;
  332         struct proc *p1;
  333 
  334         KASSERT((flags & RFPROC) == 0,
  335             ("fork_norfproc called with RFPROC set"));
  336         p1 = td->td_proc;
  337 
  338         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  339             (flags & (RFCFDG | RFFDG))) {
  340                 PROC_LOCK(p1);
  341                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  342                         PROC_UNLOCK(p1);
  343                         return (ERESTART);
  344                 }
  345                 PROC_UNLOCK(p1);
  346         }
  347 
  348         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  349         if (error)
  350                 goto fail;
  351 
  352         /*
  353          * Close all file descriptors.
  354          */
  355         if (flags & RFCFDG) {
  356                 struct filedesc *fdtmp;
  357                 fdtmp = fdinit(td->td_proc->p_fd, false);
  358                 fdescfree(td);
  359                 p1->p_fd = fdtmp;
  360         }
  361 
  362         /*
  363          * Unshare file descriptors (from parent).
  364          */
  365         if (flags & RFFDG)
  366                 fdunshare(td);
  367 
  368 fail:
  369         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  370             (flags & (RFCFDG | RFFDG))) {
  371                 PROC_LOCK(p1);
  372                 thread_single_end(p1, SINGLE_BOUNDARY);
  373                 PROC_UNLOCK(p1);
  374         }
  375         return (error);
  376 }
  377 
  378 static void
  379 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
  380     struct vmspace *vm2, struct file *fp_procdesc)
  381 {
  382         struct proc *p1, *pptr;
  383         int trypid;
  384         struct filedesc *fd;
  385         struct filedesc_to_leader *fdtol;
  386         struct sigacts *newsigacts;
  387 
  388         sx_assert(&proctree_lock, SX_SLOCKED);
  389         sx_assert(&allproc_lock, SX_XLOCKED);
  390 
  391         p1 = td->td_proc;
  392 
  393         trypid = fork_findpid(fr->fr_flags);
  394 
  395         sx_sunlock(&proctree_lock);
  396 
  397         p2->p_state = PRS_NEW;          /* protect against others */
  398         p2->p_pid = trypid;
  399         AUDIT_ARG_PID(p2->p_pid);
  400         LIST_INSERT_HEAD(&allproc, p2, p_list);
  401         allproc_gen++;
  402         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  403         tidhash_add(td2);
  404         PROC_LOCK(p2);
  405         PROC_LOCK(p1);
  406 
  407         sx_xunlock(&allproc_lock);
  408 
  409         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  410             __rangeof(struct proc, p_startcopy, p_endcopy));
  411         p2->p_elf_machine = p1->p_elf_machine;
  412         p2->p_elf_flags = p1->p_elf_flags;
  413         pargs_hold(p2->p_args);
  414 
  415         PROC_UNLOCK(p1);
  416 
  417         bzero(&p2->p_startzero,
  418             __rangeof(struct proc, p_startzero, p_endzero));
  419         p2->p_ptevents = 0;
  420 
  421         /* Tell the prison that we exist. */
  422         prison_proc_hold(p2->p_ucred->cr_prison);
  423 
  424         PROC_UNLOCK(p2);
  425 
  426         /*
  427          * Malloc things while we don't hold any locks.
  428          */
  429         if (fr->fr_flags & RFSIGSHARE)
  430                 newsigacts = NULL;
  431         else
  432                 newsigacts = sigacts_alloc();
  433 
  434         /*
  435          * Copy filedesc.
  436          */
  437         if (fr->fr_flags & RFCFDG) {
  438                 fd = fdinit(p1->p_fd, false);
  439                 fdtol = NULL;
  440         } else if (fr->fr_flags & RFFDG) {
  441                 fd = fdcopy(p1->p_fd);
  442                 fdtol = NULL;
  443         } else {
  444                 fd = fdshare(p1->p_fd);
  445                 if (p1->p_fdtol == NULL)
  446                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  447                             p1->p_leader);
  448                 if ((fr->fr_flags & RFTHREAD) != 0) {
  449                         /*
  450                          * Shared file descriptor table, and shared
  451                          * process leaders.
  452                          */
  453                         fdtol = p1->p_fdtol;
  454                         FILEDESC_XLOCK(p1->p_fd);
  455                         fdtol->fdl_refcount++;
  456                         FILEDESC_XUNLOCK(p1->p_fd);
  457                 } else {
  458                         /* 
  459                          * Shared file descriptor table, and different
  460                          * process leaders.
  461                          */
  462                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  463                             p1->p_fd, p2);
  464                 }
  465         }
  466         /*
  467          * Make a proc table entry for the new process.
  468          * Start by zeroing the section of proc that is zero-initialized,
  469          * then copy the section that is copied directly from the parent.
  470          */
  471 
  472         PROC_LOCK(p2);
  473         PROC_LOCK(p1);
  474 
  475         bzero(&td2->td_startzero,
  476             __rangeof(struct thread, td_startzero, td_endzero));
  477         td2->td_sleeptimo = 0;
  478 
  479         bcopy(&td->td_startcopy, &td2->td_startcopy,
  480             __rangeof(struct thread, td_startcopy, td_endcopy));
  481 
  482         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  483         td2->td_sigstk = td->td_sigstk;
  484         td2->td_flags = TDF_INMEM;
  485         td2->td_lend_user_pri = PRI_MAX;
  486 
  487 #ifdef VIMAGE
  488         td2->td_vnet = NULL;
  489         td2->td_vnet_lpush = NULL;
  490 #endif
  491 
  492         /*
  493          * Allow the scheduler to initialize the child.
  494          */
  495         thread_lock(td);
  496         sched_fork(td, td2);
  497         thread_unlock(td);
  498 
  499         /*
  500          * Duplicate sub-structures as needed.
  501          * Increase reference counts on shared objects.
  502          */
  503         p2->p_flag = P_INMEM;
  504         p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
  505         p2->p_swtick = ticks;
  506         if (p1->p_flag & P_PROFIL)
  507                 startprofclock(p2);
  508 
  509         /*
  510          * Whilst the proc lock is held, copy the VM domain data out
  511          * using the VM domain method.
  512          */
  513         vm_domain_policy_init(&p2->p_vm_dom_policy);
  514         vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
  515             &p1->p_vm_dom_policy);
  516 
  517         if (fr->fr_flags & RFSIGSHARE) {
  518                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  519         } else {
  520                 sigacts_copy(newsigacts, p1->p_sigacts);
  521                 p2->p_sigacts = newsigacts;
  522         }
  523 
  524         if (fr->fr_flags & RFTSIGZMB)
  525                 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
  526         else if (fr->fr_flags & RFLINUXTHPN)
  527                 p2->p_sigparent = SIGUSR1;
  528         else
  529                 p2->p_sigparent = SIGCHLD;
  530 
  531         p2->p_textvp = p1->p_textvp;
  532         p2->p_fd = fd;
  533         p2->p_fdtol = fdtol;
  534 
  535         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  536                 p2->p_flag |= P_PROTECTED;
  537                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  538         }
  539 
  540         /*
  541          * p_limit is copy-on-write.  Bump its refcount.
  542          */
  543         lim_fork(p1, p2);
  544 
  545         thread_cow_get_proc(td2, p2);
  546 
  547         pstats_fork(p1->p_stats, p2->p_stats);
  548 
  549         PROC_UNLOCK(p1);
  550         PROC_UNLOCK(p2);
  551 
  552         /* Bump references to the text vnode (for procfs). */
  553         if (p2->p_textvp)
  554                 vrefact(p2->p_textvp);
  555 
  556         /*
  557          * Set up linkage for kernel based threading.
  558          */
  559         if ((fr->fr_flags & RFTHREAD) != 0) {
  560                 mtx_lock(&ppeers_lock);
  561                 p2->p_peers = p1->p_peers;
  562                 p1->p_peers = p2;
  563                 p2->p_leader = p1->p_leader;
  564                 mtx_unlock(&ppeers_lock);
  565                 PROC_LOCK(p1->p_leader);
  566                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  567                         PROC_UNLOCK(p1->p_leader);
  568                         /*
  569                          * The task leader is exiting, so process p1 is
  570                          * going to be killed shortly.  Since p1 obviously
  571                          * isn't dead yet, we know that the leader is either
  572                          * sending SIGKILL's to all the processes in this
  573                          * task or is sleeping waiting for all the peers to
  574                          * exit.  We let p1 complete the fork, but we need
  575                          * to go ahead and kill the new process p2 since
  576                          * the task leader may not get a chance to send
  577                          * SIGKILL to it.  We leave it on the list so that
  578                          * the task leader will wait for this new process
  579                          * to commit suicide.
  580                          */
  581                         PROC_LOCK(p2);
  582                         kern_psignal(p2, SIGKILL);
  583                         PROC_UNLOCK(p2);
  584                 } else
  585                         PROC_UNLOCK(p1->p_leader);
  586         } else {
  587                 p2->p_peers = NULL;
  588                 p2->p_leader = p2;
  589         }
  590 
  591         sx_xlock(&proctree_lock);
  592         PGRP_LOCK(p1->p_pgrp);
  593         PROC_LOCK(p2);
  594         PROC_LOCK(p1);
  595 
  596         /*
  597          * Preserve some more flags in subprocess.  P_PROFIL has already
  598          * been preserved.
  599          */
  600         p2->p_flag |= p1->p_flag & P_SUGID;
  601         td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
  602         SESS_LOCK(p1->p_session);
  603         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  604                 p2->p_flag |= P_CONTROLT;
  605         SESS_UNLOCK(p1->p_session);
  606         if (fr->fr_flags & RFPPWAIT)
  607                 p2->p_flag |= P_PPWAIT;
  608 
  609         p2->p_pgrp = p1->p_pgrp;
  610         LIST_INSERT_AFTER(p1, p2, p_pglist);
  611         PGRP_UNLOCK(p1->p_pgrp);
  612         LIST_INIT(&p2->p_children);
  613         LIST_INIT(&p2->p_orphans);
  614 
  615         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  616 
  617         /*
  618          * If PF_FORK is set, the child process inherits the
  619          * procfs ioctl flags from its parent.
  620          */
  621         if (p1->p_pfsflags & PF_FORK) {
  622                 p2->p_stops = p1->p_stops;
  623                 p2->p_pfsflags = p1->p_pfsflags;
  624         }
  625 
  626         /*
  627          * This begins the section where we must prevent the parent
  628          * from being swapped.
  629          */
  630         _PHOLD(p1);
  631         PROC_UNLOCK(p1);
  632 
  633         /*
  634          * Attach the new process to its parent.
  635          *
  636          * If RFNOWAIT is set, the newly created process becomes a child
  637          * of init.  This effectively disassociates the child from the
  638          * parent.
  639          */
  640         if ((fr->fr_flags & RFNOWAIT) != 0) {
  641                 pptr = p1->p_reaper;
  642                 p2->p_reaper = pptr;
  643         } else {
  644                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  645                     p1 : p1->p_reaper;
  646                 pptr = p1;
  647         }
  648         p2->p_pptr = pptr;
  649         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  650         LIST_INIT(&p2->p_reaplist);
  651         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  652         if (p2->p_reaper == p1)
  653                 p2->p_reapsubtree = p2->p_pid;
  654         sx_xunlock(&proctree_lock);
  655 
  656         /* Inform accounting that we have forked. */
  657         p2->p_acflag = AFORK;
  658         PROC_UNLOCK(p2);
  659 
  660 #ifdef KTRACE
  661         ktrprocfork(p1, p2);
  662 #endif
  663 
  664         /*
  665          * Finish creating the child process.  It will return via a different
  666          * execution path later.  (ie: directly into user mode)
  667          */
  668         vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
  669 
  670         if (fr->fr_flags == (RFFDG | RFPROC)) {
  671                 PCPU_INC(cnt.v_forks);
  672                 PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
  673                     p2->p_vmspace->vm_ssize);
  674         } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  675                 PCPU_INC(cnt.v_vforks);
  676                 PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
  677                     p2->p_vmspace->vm_ssize);
  678         } else if (p1 == &proc0) {
  679                 PCPU_INC(cnt.v_kthreads);
  680                 PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
  681                     p2->p_vmspace->vm_ssize);
  682         } else {
  683                 PCPU_INC(cnt.v_rforks);
  684                 PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
  685                     p2->p_vmspace->vm_ssize);
  686         }
  687 
  688         /*
  689          * Associate the process descriptor with the process before anything
  690          * can happen that might cause that process to need the descriptor.
  691          * However, don't do this until after fork(2) can no longer fail.
  692          */
  693         if (fr->fr_flags & RFPROCDESC)
  694                 procdesc_new(p2, fr->fr_pd_flags);
  695 
  696         /*
  697          * Both processes are set up, now check if any loadable modules want
  698          * to adjust anything.
  699          */
  700         EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags);
  701 
  702         /*
  703          * Set the child start time and mark the process as being complete.
  704          */
  705         PROC_LOCK(p2);
  706         PROC_LOCK(p1);
  707         microuptime(&p2->p_stats->p_start);
  708         PROC_SLOCK(p2);
  709         p2->p_state = PRS_NORMAL;
  710         PROC_SUNLOCK(p2);
  711 
  712 #ifdef KDTRACE_HOOKS
  713         /*
  714          * Tell the DTrace fasttrap provider about the new process so that any
  715          * tracepoints inherited from the parent can be removed. We have to do
  716          * this only after p_state is PRS_NORMAL since the fasttrap module will
  717          * use pfind() later on.
  718          */
  719         if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  720                 dtrace_fasttrap_fork(p1, p2);
  721 #endif
  722         /*
  723          * Hold the process so that it cannot exit after we make it runnable,
  724          * but before we wait for the debugger.
  725          */
  726         _PHOLD(p2);
  727         if (p1->p_ptevents & PTRACE_FORK) {
  728                 /*
  729                  * Arrange for debugger to receive the fork event.
  730                  *
  731                  * We can report PL_FLAG_FORKED regardless of
  732                  * P_FOLLOWFORK settings, but it does not make a sense
  733                  * for runaway child.
  734                  */
  735                 td->td_dbgflags |= TDB_FORK;
  736                 td->td_dbg_forked = p2->p_pid;
  737                 td2->td_dbgflags |= TDB_STOPATFORK;
  738         }
  739         if (fr->fr_flags & RFPPWAIT) {
  740                 td->td_pflags |= TDP_RFPPWAIT;
  741                 td->td_rfppwait_p = p2;
  742                 td->td_dbgflags |= TDB_VFORK;
  743         }
  744         PROC_UNLOCK(p2);
  745 
  746         /*
  747          * Now can be swapped.
  748          */
  749         _PRELE(p1);
  750         PROC_UNLOCK(p1);
  751 
  752         /*
  753          * Tell any interested parties about the new process.
  754          */
  755         knote_fork(p1->p_klist, p2->p_pid);
  756         SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
  757 
  758         if (fr->fr_flags & RFPROCDESC) {
  759                 procdesc_finit(p2->p_procdesc, fp_procdesc);
  760                 fdrop(fp_procdesc, td);
  761         }
  762 
  763         if ((fr->fr_flags & RFSTOPPED) == 0) {
  764                 /*
  765                  * If RFSTOPPED not requested, make child runnable and
  766                  * add to run queue.
  767                  */
  768                 thread_lock(td2);
  769                 TD_SET_CAN_RUN(td2);
  770                 sched_add(td2, SRQ_BORING);
  771                 thread_unlock(td2);
  772                 if (fr->fr_pidp != NULL)
  773                         *fr->fr_pidp = p2->p_pid;
  774         } else {
  775                 *fr->fr_procp = p2;
  776         }
  777 
  778         PROC_LOCK(p2);
  779         /*
  780          * Wait until debugger is attached to child.
  781          */
  782         while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
  783                 cv_wait(&p2->p_dbgwait, &p2->p_mtx);
  784         _PRELE(p2);
  785         racct_proc_fork_done(p2);
  786         PROC_UNLOCK(p2);
  787 }
  788 
  789 int
  790 fork1(struct thread *td, struct fork_req *fr)
  791 {
  792         struct proc *p1, *newproc;
  793         struct thread *td2;
  794         struct vmspace *vm2;
  795         struct file *fp_procdesc;
  796         vm_ooffset_t mem_charged;
  797         int error, nprocs_new, ok;
  798         static int curfail;
  799         static struct timeval lastfail;
  800         int flags, pages;
  801 
  802         flags = fr->fr_flags;
  803         pages = fr->fr_pages;
  804 
  805         if ((flags & RFSTOPPED) != 0)
  806                 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
  807         else
  808                 MPASS(fr->fr_procp == NULL);
  809 
  810         /* Check for the undefined or unimplemented flags. */
  811         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  812                 return (EINVAL);
  813 
  814         /* Signal value requires RFTSIGZMB. */
  815         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  816                 return (EINVAL);
  817 
  818         /* Can't copy and clear. */
  819         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  820                 return (EINVAL);
  821 
  822         /* Check the validity of the signal number. */
  823         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  824                 return (EINVAL);
  825 
  826         if ((flags & RFPROCDESC) != 0) {
  827                 /* Can't not create a process yet get a process descriptor. */
  828                 if ((flags & RFPROC) == 0)
  829                         return (EINVAL);
  830 
  831                 /* Must provide a place to put a procdesc if creating one. */
  832                 if (fr->fr_pd_fd == NULL)
  833                         return (EINVAL);
  834 
  835                 /* Check if we are using supported flags. */
  836                 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
  837                         return (EINVAL);
  838         }
  839 
  840         p1 = td->td_proc;
  841 
  842         /*
  843          * Here we don't create a new process, but we divorce
  844          * certain parts of a process from itself.
  845          */
  846         if ((flags & RFPROC) == 0) {
  847                 if (fr->fr_procp != NULL)
  848                         *fr->fr_procp = NULL;
  849                 else if (fr->fr_pidp != NULL)
  850                         *fr->fr_pidp = 0;
  851                 return (fork_norfproc(td, flags));
  852         }
  853 
  854         fp_procdesc = NULL;
  855         newproc = NULL;
  856         vm2 = NULL;
  857 
  858         /*
  859          * Increment the nprocs resource before allocations occur.
  860          * Although process entries are dynamically created, we still
  861          * keep a global limit on the maximum number we will
  862          * create. There are hard-limits as to the number of processes
  863          * that can run, established by the KVA and memory usage for
  864          * the process data.
  865          *
  866          * Don't allow a nonprivileged user to use the last ten
  867          * processes; don't let root exceed the limit.
  868          */
  869         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  870         if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
  871             PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
  872                 error = EAGAIN;
  873                 sx_xlock(&allproc_lock);
  874                 if (ppsratecheck(&lastfail, &curfail, 1)) {
  875                         printf("maxproc limit exceeded by uid %u (pid %d); "
  876                             "see tuning(7) and login.conf(5)\n",
  877                             td->td_ucred->cr_ruid, p1->p_pid);
  878                 }
  879                 sx_xunlock(&allproc_lock);
  880                 goto fail2;
  881         }
  882 
  883         /*
  884          * If required, create a process descriptor in the parent first; we
  885          * will abandon it if something goes wrong. We don't finit() until
  886          * later.
  887          */
  888         if (flags & RFPROCDESC) {
  889                 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
  890                     fr->fr_pd_flags, fr->fr_pd_fcaps);
  891                 if (error != 0)
  892                         goto fail2;
  893         }
  894 
  895         mem_charged = 0;
  896         if (pages == 0)
  897                 pages = kstack_pages;
  898         /* Allocate new proc. */
  899         newproc = uma_zalloc(proc_zone, M_WAITOK);
  900         td2 = FIRST_THREAD_IN_PROC(newproc);
  901         if (td2 == NULL) {
  902                 td2 = thread_alloc(pages);
  903                 if (td2 == NULL) {
  904                         error = ENOMEM;
  905                         goto fail2;
  906                 }
  907                 proc_linkup(newproc, td2);
  908         } else {
  909                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  910                         if (td2->td_kstack != 0)
  911                                 vm_thread_dispose(td2);
  912                         if (!thread_alloc_stack(td2, pages)) {
  913                                 error = ENOMEM;
  914                                 goto fail2;
  915                         }
  916                 }
  917         }
  918 
  919         if ((flags & RFMEM) == 0) {
  920                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  921                 if (vm2 == NULL) {
  922                         error = ENOMEM;
  923                         goto fail2;
  924                 }
  925                 if (!swap_reserve(mem_charged)) {
  926                         /*
  927                          * The swap reservation failed. The accounting
  928                          * from the entries of the copied vm2 will be
  929                          * subtracted in vmspace_free(), so force the
  930                          * reservation there.
  931                          */
  932                         swap_reserve_force(mem_charged);
  933                         error = ENOMEM;
  934                         goto fail2;
  935                 }
  936         } else
  937                 vm2 = NULL;
  938 
  939         /*
  940          * XXX: This is ugly; when we copy resource usage, we need to bump
  941          *      per-cred resource counters.
  942          */
  943         proc_set_cred_init(newproc, crhold(td->td_ucred));
  944 
  945         /*
  946          * Initialize resource accounting for the child process.
  947          */
  948         error = racct_proc_fork(p1, newproc);
  949         if (error != 0) {
  950                 error = EAGAIN;
  951                 goto fail1;
  952         }
  953 
  954 #ifdef MAC
  955         mac_proc_init(newproc);
  956 #endif
  957         newproc->p_klist = knlist_alloc(&newproc->p_mtx);
  958         STAILQ_INIT(&newproc->p_ktr);
  959 
  960         /* We have to lock the process tree while we look for a pid. */
  961         sx_slock(&proctree_lock);
  962         sx_xlock(&allproc_lock);
  963 
  964         /*
  965          * Increment the count of procs running with this uid. Don't allow
  966          * a nonprivileged user to exceed their current limit.
  967          *
  968          * XXXRW: Can we avoid privilege here if it's not needed?
  969          */
  970         error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
  971         if (error == 0)
  972                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
  973         else {
  974                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  975                     lim_cur(td, RLIMIT_NPROC));
  976         }
  977         if (ok) {
  978                 do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
  979                 return (0);
  980         }
  981 
  982         error = EAGAIN;
  983         sx_sunlock(&proctree_lock);
  984         sx_xunlock(&allproc_lock);
  985 #ifdef MAC
  986         mac_proc_destroy(newproc);
  987 #endif
  988         racct_proc_exit(newproc);
  989 fail1:
  990         crfree(newproc->p_ucred);
  991         newproc->p_ucred = NULL;
  992 fail2:
  993         if (vm2 != NULL)
  994                 vmspace_free(vm2);
  995         uma_zfree(proc_zone, newproc);
  996         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
  997                 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
  998                 fdrop(fp_procdesc, td);
  999         }
 1000         atomic_add_int(&nprocs, -1);
 1001         pause("fork", hz / 2);
 1002         return (error);
 1003 }
 1004 
 1005 /*
 1006  * Handle the return of a child process from fork1().  This function
 1007  * is called from the MD fork_trampoline() entry point.
 1008  */
 1009 void
 1010 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
 1011     struct trapframe *frame)
 1012 {
 1013         struct proc *p;
 1014         struct thread *td;
 1015         struct thread *dtd;
 1016 
 1017         td = curthread;
 1018         p = td->td_proc;
 1019         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1020 
 1021         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1022             td, td_get_sched(td), p->p_pid, td->td_name);
 1023 
 1024         sched_fork_exit(td);
 1025         /*
 1026         * Processes normally resume in mi_switch() after being
 1027         * cpu_switch()'ed to, but when children start up they arrive here
 1028         * instead, so we must do much the same things as mi_switch() would.
 1029         */
 1030         if ((dtd = PCPU_GET(deadthread))) {
 1031                 PCPU_SET(deadthread, NULL);
 1032                 thread_stash(dtd);
 1033         }
 1034         thread_unlock(td);
 1035 
 1036         /*
 1037          * cpu_fork_kthread_handler intercepts this function call to
 1038          * have this call a non-return function to stay in kernel mode.
 1039          * initproc has its own fork handler, but it does return.
 1040          */
 1041         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1042         callout(arg, frame);
 1043 
 1044         /*
 1045          * Check if a kernel thread misbehaved and returned from its main
 1046          * function.
 1047          */
 1048         if (p->p_flag & P_KPROC) {
 1049                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1050                     td->td_name, p->p_pid);
 1051                 kthread_exit();
 1052         }
 1053         mtx_assert(&Giant, MA_NOTOWNED);
 1054 
 1055         if (p->p_sysent->sv_schedtail != NULL)
 1056                 (p->p_sysent->sv_schedtail)(td);
 1057         td->td_pflags &= ~TDP_FORKING;
 1058 }
 1059 
 1060 /*
 1061  * Simplified back end of syscall(), used when returning from fork()
 1062  * directly into user mode.  This function is passed in to fork_exit()
 1063  * as the first parameter and is called when returning to a new
 1064  * userland process.
 1065  */
 1066 void
 1067 fork_return(struct thread *td, struct trapframe *frame)
 1068 {
 1069         struct proc *p, *dbg;
 1070 
 1071         p = td->td_proc;
 1072         if (td->td_dbgflags & TDB_STOPATFORK) {
 1073                 sx_xlock(&proctree_lock);
 1074                 PROC_LOCK(p);
 1075                 if (p->p_pptr->p_ptevents & PTRACE_FORK) {
 1076                         /*
 1077                          * If debugger still wants auto-attach for the
 1078                          * parent's children, do it now.
 1079                          */
 1080                         dbg = p->p_pptr->p_pptr;
 1081                         proc_set_traced(p, true);
 1082                         CTR2(KTR_PTRACE,
 1083                     "fork_return: attaching to new child pid %d: oppid %d",
 1084                             p->p_pid, p->p_oppid);
 1085                         proc_reparent(p, dbg);
 1086                         sx_xunlock(&proctree_lock);
 1087                         td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
 1088                         ptracestop(td, SIGSTOP, NULL);
 1089                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1090                 } else {
 1091                         /*
 1092                          * ... otherwise clear the request.
 1093                          */
 1094                         sx_xunlock(&proctree_lock);
 1095                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1096                         cv_broadcast(&p->p_dbgwait);
 1097                 }
 1098                 PROC_UNLOCK(p);
 1099         } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
 1100                 /*
 1101                  * This is the start of a new thread in a traced
 1102                  * process.  Report a system call exit event.
 1103                  */
 1104                 PROC_LOCK(p);
 1105                 td->td_dbgflags |= TDB_SCX;
 1106                 _STOPEVENT(p, S_SCX, td->td_dbg_sc_code);
 1107                 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
 1108                     (td->td_dbgflags & TDB_BORN) != 0)
 1109                         ptracestop(td, SIGTRAP, NULL);
 1110                 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
 1111                 PROC_UNLOCK(p);
 1112         }
 1113 
 1114         userret(td, frame);
 1115 
 1116 #ifdef KTRACE
 1117         if (KTRPOINT(td, KTR_SYSRET))
 1118                 ktrsysret(SYS_fork, 0, 0);
 1119 #endif
 1120 }

Cache object: bf7e747e0afe0fca9f7ef8e47ff949f2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.