The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include "opt_ktrace.h"
   41 #include "opt_kstack_pages.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/fcntl.h>
   48 #include <sys/filedesc.h>
   49 #include <sys/jail.h>
   50 #include <sys/kernel.h>
   51 #include <sys/kthread.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mutex.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/procdesc.h>
   59 #include <sys/pioctl.h>
   60 #include <sys/ptrace.h>
   61 #include <sys/racct.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/sched.h>
   64 #include <sys/syscall.h>
   65 #include <sys/vmmeter.h>
   66 #include <sys/vnode.h>
   67 #include <sys/acct.h>
   68 #include <sys/ktr.h>
   69 #include <sys/ktrace.h>
   70 #include <sys/unistd.h> 
   71 #include <sys/sdt.h>
   72 #include <sys/sx.h>
   73 #include <sys/sysent.h>
   74 #include <sys/signalvar.h>
   75 
   76 #include <security/audit/audit.h>
   77 #include <security/mac/mac_framework.h>
   78 
   79 #include <vm/vm.h>
   80 #include <vm/pmap.h>
   81 #include <vm/vm_map.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/uma.h>
   84 #include <vm/vm_domain.h>
   85 
   86 #ifdef KDTRACE_HOOKS
   87 #include <sys/dtrace_bsd.h>
   88 dtrace_fork_func_t      dtrace_fasttrap_fork;
   89 #endif
   90 
   91 SDT_PROVIDER_DECLARE(proc);
   92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
   93 
   94 #ifndef _SYS_SYSPROTO_H_
   95 struct fork_args {
   96         int     dummy;
   97 };
   98 #endif
   99 
  100 EVENTHANDLER_LIST_DECLARE(process_fork);
  101 
  102 /* ARGSUSED */
  103 int
  104 sys_fork(struct thread *td, struct fork_args *uap)
  105 {
  106         struct fork_req fr;
  107         int error, pid;
  108 
  109         bzero(&fr, sizeof(fr));
  110         fr.fr_flags = RFFDG | RFPROC;
  111         fr.fr_pidp = &pid;
  112         error = fork1(td, &fr);
  113         if (error == 0) {
  114                 td->td_retval[0] = pid;
  115                 td->td_retval[1] = 0;
  116         }
  117         return (error);
  118 }
  119 
  120 /* ARGUSED */
  121 int
  122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
  123 {
  124         struct fork_req fr;
  125         int error, fd, pid;
  126 
  127         bzero(&fr, sizeof(fr));
  128         fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
  129         fr.fr_pidp = &pid;
  130         fr.fr_pd_fd = &fd;
  131         fr.fr_pd_flags = uap->flags;
  132         /*
  133          * It is necessary to return fd by reference because 0 is a valid file
  134          * descriptor number, and the child needs to be able to distinguish
  135          * itself from the parent using the return value.
  136          */
  137         error = fork1(td, &fr);
  138         if (error == 0) {
  139                 td->td_retval[0] = pid;
  140                 td->td_retval[1] = 0;
  141                 error = copyout(&fd, uap->fdp, sizeof(fd));
  142         }
  143         return (error);
  144 }
  145 
  146 /* ARGSUSED */
  147 int
  148 sys_vfork(struct thread *td, struct vfork_args *uap)
  149 {
  150         struct fork_req fr;
  151         int error, pid;
  152 
  153         bzero(&fr, sizeof(fr));
  154         fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  155         fr.fr_pidp = &pid;
  156         error = fork1(td, &fr);
  157         if (error == 0) {
  158                 td->td_retval[0] = pid;
  159                 td->td_retval[1] = 0;
  160         }
  161         return (error);
  162 }
  163 
  164 int
  165 sys_rfork(struct thread *td, struct rfork_args *uap)
  166 {
  167         struct fork_req fr;
  168         int error, pid;
  169 
  170         /* Don't allow kernel-only flags. */
  171         if ((uap->flags & RFKERNELONLY) != 0)
  172                 return (EINVAL);
  173         /* RFSPAWN must not appear with others */
  174         if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
  175                 return (EINVAL);
  176 
  177         AUDIT_ARG_FFLAGS(uap->flags);
  178         bzero(&fr, sizeof(fr));
  179         if ((uap->flags & RFSPAWN) != 0) {
  180                 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  181                 fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
  182         } else {
  183                 fr.fr_flags = uap->flags;
  184         }
  185         fr.fr_pidp = &pid;
  186         error = fork1(td, &fr);
  187         if (error == 0) {
  188                 td->td_retval[0] = pid;
  189                 td->td_retval[1] = 0;
  190         }
  191         return (error);
  192 }
  193 
  194 int     nprocs = 1;             /* process 0 */
  195 int     lastpid = 0;
  196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  197     "Last used PID");
  198 
  199 /*
  200  * Random component to lastpid generation.  We mix in a random factor to make
  201  * it a little harder to predict.  We sanity check the modulus value to avoid
  202  * doing it in critical paths.  Don't let it be too small or we pointlessly
  203  * waste randomness entropy, and don't let it be impossibly large.  Using a
  204  * modulus that is too big causes a LOT more process table scans and slows
  205  * down fork processing as the pidchecked caching is defeated.
  206  */
  207 static int randompid = 0;
  208 
  209 static int
  210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  211 {
  212         int error, pid;
  213 
  214         error = sysctl_wire_old_buffer(req, sizeof(int));
  215         if (error != 0)
  216                 return(error);
  217         sx_xlock(&allproc_lock);
  218         pid = randompid;
  219         error = sysctl_handle_int(oidp, &pid, 0, req);
  220         if (error == 0 && req->newptr != NULL) {
  221                 if (pid == 0)
  222                         randompid = 0;
  223                 else if (pid == 1)
  224                         /* generate a random PID modulus between 100 and 1123 */
  225                         randompid = 100 + arc4random() % 1024;
  226                 else if (pid < 0 || pid > pid_max - 100)
  227                         /* out of range */
  228                         randompid = pid_max - 100;
  229                 else if (pid < 100)      
  230                         /* Make it reasonable */
  231                         randompid = 100;
  232                 else
  233                         randompid = pid;
  234         }
  235         sx_xunlock(&allproc_lock);
  236         return (error);
  237 }
  238 
  239 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  240     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
  241 
  242 static int
  243 fork_findpid(int flags)
  244 {
  245         struct proc *p;
  246         int trypid;
  247         static int pidchecked = 0;
  248 
  249         /*
  250          * Requires allproc_lock in order to iterate over the list
  251          * of processes, and proctree_lock to access p_pgrp.
  252          */
  253         sx_assert(&allproc_lock, SX_LOCKED);
  254         sx_assert(&proctree_lock, SX_LOCKED);
  255 
  256         /*
  257          * Find an unused process ID.  We remember a range of unused IDs
  258          * ready to use (from lastpid+1 through pidchecked-1).
  259          *
  260          * If RFHIGHPID is set (used during system boot), do not allocate
  261          * low-numbered pids.
  262          */
  263         trypid = lastpid + 1;
  264         if (flags & RFHIGHPID) {
  265                 if (trypid < 10)
  266                         trypid = 10;
  267         } else {
  268                 if (randompid)
  269                         trypid += arc4random() % randompid;
  270         }
  271 retry:
  272         /*
  273          * If the process ID prototype has wrapped around,
  274          * restart somewhat above 0, as the low-numbered procs
  275          * tend to include daemons that don't exit.
  276          */
  277         if (trypid >= pid_max) {
  278                 trypid = trypid % pid_max;
  279                 if (trypid < 100)
  280                         trypid += 100;
  281                 pidchecked = 0;
  282         }
  283         if (trypid >= pidchecked) {
  284                 int doingzomb = 0;
  285 
  286                 pidchecked = PID_MAX;
  287                 /*
  288                  * Scan the active and zombie procs to check whether this pid
  289                  * is in use.  Remember the lowest pid that's greater
  290                  * than trypid, so we can avoid checking for a while.
  291                  *
  292                  * Avoid reuse of the process group id, session id or
  293                  * the reaper subtree id.  Note that for process group
  294                  * and sessions, the amount of reserved pids is
  295                  * limited by process limit.  For the subtree ids, the
  296                  * id is kept reserved only while there is a
  297                  * non-reaped process in the subtree, so amount of
  298                  * reserved pids is limited by process limit times
  299                  * two.
  300                  */
  301                 p = LIST_FIRST(&allproc);
  302 again:
  303                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
  304                         while (p->p_pid == trypid ||
  305                             p->p_reapsubtree == trypid ||
  306                             (p->p_pgrp != NULL &&
  307                             (p->p_pgrp->pg_id == trypid ||
  308                             (p->p_session != NULL &&
  309                             p->p_session->s_sid == trypid)))) {
  310                                 trypid++;
  311                                 if (trypid >= pidchecked)
  312                                         goto retry;
  313                         }
  314                         if (p->p_pid > trypid && pidchecked > p->p_pid)
  315                                 pidchecked = p->p_pid;
  316                         if (p->p_pgrp != NULL) {
  317                                 if (p->p_pgrp->pg_id > trypid &&
  318                                     pidchecked > p->p_pgrp->pg_id)
  319                                         pidchecked = p->p_pgrp->pg_id;
  320                                 if (p->p_session != NULL &&
  321                                     p->p_session->s_sid > trypid &&
  322                                     pidchecked > p->p_session->s_sid)
  323                                         pidchecked = p->p_session->s_sid;
  324                         }
  325                 }
  326                 if (!doingzomb) {
  327                         doingzomb = 1;
  328                         p = LIST_FIRST(&zombproc);
  329                         goto again;
  330                 }
  331         }
  332 
  333         /*
  334          * RFHIGHPID does not mess with the lastpid counter during boot.
  335          */
  336         if (flags & RFHIGHPID)
  337                 pidchecked = 0;
  338         else
  339                 lastpid = trypid;
  340 
  341         return (trypid);
  342 }
  343 
  344 static int
  345 fork_norfproc(struct thread *td, int flags)
  346 {
  347         int error;
  348         struct proc *p1;
  349 
  350         KASSERT((flags & RFPROC) == 0,
  351             ("fork_norfproc called with RFPROC set"));
  352         p1 = td->td_proc;
  353 
  354         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  355             (flags & (RFCFDG | RFFDG))) {
  356                 PROC_LOCK(p1);
  357                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  358                         PROC_UNLOCK(p1);
  359                         return (ERESTART);
  360                 }
  361                 PROC_UNLOCK(p1);
  362         }
  363 
  364         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  365         if (error)
  366                 goto fail;
  367 
  368         /*
  369          * Close all file descriptors.
  370          */
  371         if (flags & RFCFDG) {
  372                 struct filedesc *fdtmp;
  373                 fdtmp = fdinit(td->td_proc->p_fd, false);
  374                 fdescfree(td);
  375                 p1->p_fd = fdtmp;
  376         }
  377 
  378         /*
  379          * Unshare file descriptors (from parent).
  380          */
  381         if (flags & RFFDG)
  382                 fdunshare(td);
  383 
  384 fail:
  385         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  386             (flags & (RFCFDG | RFFDG))) {
  387                 PROC_LOCK(p1);
  388                 thread_single_end(p1, SINGLE_BOUNDARY);
  389                 PROC_UNLOCK(p1);
  390         }
  391         return (error);
  392 }
  393 
  394 static void
  395 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
  396     struct vmspace *vm2, struct file *fp_procdesc)
  397 {
  398         struct proc *p1, *pptr;
  399         int trypid;
  400         struct filedesc *fd;
  401         struct filedesc_to_leader *fdtol;
  402         struct sigacts *newsigacts;
  403 
  404         sx_assert(&proctree_lock, SX_SLOCKED);
  405         sx_assert(&allproc_lock, SX_XLOCKED);
  406 
  407         p1 = td->td_proc;
  408 
  409         trypid = fork_findpid(fr->fr_flags);
  410 
  411         sx_sunlock(&proctree_lock);
  412 
  413         p2->p_state = PRS_NEW;          /* protect against others */
  414         p2->p_pid = trypid;
  415         AUDIT_ARG_PID(p2->p_pid);
  416         LIST_INSERT_HEAD(&allproc, p2, p_list);
  417         allproc_gen++;
  418         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  419         tidhash_add(td2);
  420         PROC_LOCK(p2);
  421         PROC_LOCK(p1);
  422 
  423         sx_xunlock(&allproc_lock);
  424 
  425         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  426             __rangeof(struct proc, p_startcopy, p_endcopy));
  427         p2->p_elf_machine = p1->p_elf_machine;
  428         p2->p_elf_flags = p1->p_elf_flags;
  429         pargs_hold(p2->p_args);
  430 
  431         PROC_UNLOCK(p1);
  432 
  433         bzero(&p2->p_startzero,
  434             __rangeof(struct proc, p_startzero, p_endzero));
  435         p2->p_ptevents = 0;
  436         p2->p_pdeathsig = 0;
  437 
  438         /* Tell the prison that we exist. */
  439         prison_proc_hold(p2->p_ucred->cr_prison);
  440 
  441         PROC_UNLOCK(p2);
  442 
  443         /*
  444          * Malloc things while we don't hold any locks.
  445          */
  446         if (fr->fr_flags & RFSIGSHARE)
  447                 newsigacts = NULL;
  448         else
  449                 newsigacts = sigacts_alloc();
  450 
  451         /*
  452          * Copy filedesc.
  453          */
  454         if (fr->fr_flags & RFCFDG) {
  455                 fd = fdinit(p1->p_fd, false);
  456                 fdtol = NULL;
  457         } else if (fr->fr_flags & RFFDG) {
  458                 fd = fdcopy(p1->p_fd);
  459                 fdtol = NULL;
  460         } else {
  461                 fd = fdshare(p1->p_fd);
  462                 if (p1->p_fdtol == NULL)
  463                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  464                             p1->p_leader);
  465                 if ((fr->fr_flags & RFTHREAD) != 0) {
  466                         /*
  467                          * Shared file descriptor table, and shared
  468                          * process leaders.
  469                          */
  470                         fdtol = p1->p_fdtol;
  471                         FILEDESC_XLOCK(p1->p_fd);
  472                         fdtol->fdl_refcount++;
  473                         FILEDESC_XUNLOCK(p1->p_fd);
  474                 } else {
  475                         /* 
  476                          * Shared file descriptor table, and different
  477                          * process leaders.
  478                          */
  479                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  480                             p1->p_fd, p2);
  481                 }
  482         }
  483         /*
  484          * Make a proc table entry for the new process.
  485          * Start by zeroing the section of proc that is zero-initialized,
  486          * then copy the section that is copied directly from the parent.
  487          */
  488 
  489         PROC_LOCK(p2);
  490         PROC_LOCK(p1);
  491 
  492         bzero(&td2->td_startzero,
  493             __rangeof(struct thread, td_startzero, td_endzero));
  494         td2->td_sleeptimo = 0;
  495         td2->td_vslock_sz = 0;
  496         bzero(&td2->td_si, sizeof(td2->td_si));
  497 
  498         bcopy(&td->td_startcopy, &td2->td_startcopy,
  499             __rangeof(struct thread, td_startcopy, td_endcopy));
  500         td2->td_sa = td->td_sa;
  501 
  502         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  503         td2->td_sigstk = td->td_sigstk;
  504         td2->td_flags = TDF_INMEM;
  505         td2->td_lend_user_pri = PRI_MAX;
  506 
  507 #ifdef VIMAGE
  508         td2->td_vnet = NULL;
  509         td2->td_vnet_lpush = NULL;
  510 #endif
  511 
  512         /*
  513          * Allow the scheduler to initialize the child.
  514          */
  515         thread_lock(td);
  516         sched_fork(td, td2);
  517         thread_unlock(td);
  518 
  519         /*
  520          * Duplicate sub-structures as needed.
  521          * Increase reference counts on shared objects.
  522          */
  523         p2->p_flag = P_INMEM;
  524         p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP |
  525             P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
  526         p2->p_swtick = ticks;
  527         if (p1->p_flag & P_PROFIL)
  528                 startprofclock(p2);
  529 
  530         /*
  531          * Whilst the proc lock is held, copy the VM domain data out
  532          * using the VM domain method.
  533          */
  534         vm_domain_policy_init(&p2->p_vm_dom_policy);
  535         vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
  536             &p1->p_vm_dom_policy);
  537 
  538         if (fr->fr_flags & RFSIGSHARE) {
  539                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  540         } else {
  541                 sigacts_copy(newsigacts, p1->p_sigacts);
  542                 p2->p_sigacts = newsigacts;
  543                 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) {
  544                         mtx_lock(&p2->p_sigacts->ps_mtx);
  545                         sig_drop_caught(p2);
  546                         mtx_unlock(&p2->p_sigacts->ps_mtx);
  547                 }
  548         }
  549 
  550         if (fr->fr_flags & RFTSIGZMB)
  551                 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
  552         else if (fr->fr_flags & RFLINUXTHPN)
  553                 p2->p_sigparent = SIGUSR1;
  554         else
  555                 p2->p_sigparent = SIGCHLD;
  556 
  557         p2->p_textvp = p1->p_textvp;
  558         p2->p_fd = fd;
  559         p2->p_fdtol = fdtol;
  560 
  561         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  562                 p2->p_flag |= P_PROTECTED;
  563                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  564         }
  565 
  566         /*
  567          * p_limit is copy-on-write.  Bump its refcount.
  568          */
  569         lim_fork(p1, p2);
  570 
  571         thread_cow_get_proc(td2, p2);
  572 
  573         pstats_fork(p1->p_stats, p2->p_stats);
  574 
  575         PROC_UNLOCK(p1);
  576         PROC_UNLOCK(p2);
  577 
  578         /* Bump references to the text vnode (for procfs). */
  579         if (p2->p_textvp)
  580                 vrefact(p2->p_textvp);
  581 
  582         /*
  583          * Set up linkage for kernel based threading.
  584          */
  585         if ((fr->fr_flags & RFTHREAD) != 0) {
  586                 mtx_lock(&ppeers_lock);
  587                 p2->p_peers = p1->p_peers;
  588                 p1->p_peers = p2;
  589                 p2->p_leader = p1->p_leader;
  590                 mtx_unlock(&ppeers_lock);
  591                 PROC_LOCK(p1->p_leader);
  592                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  593                         PROC_UNLOCK(p1->p_leader);
  594                         /*
  595                          * The task leader is exiting, so process p1 is
  596                          * going to be killed shortly.  Since p1 obviously
  597                          * isn't dead yet, we know that the leader is either
  598                          * sending SIGKILL's to all the processes in this
  599                          * task or is sleeping waiting for all the peers to
  600                          * exit.  We let p1 complete the fork, but we need
  601                          * to go ahead and kill the new process p2 since
  602                          * the task leader may not get a chance to send
  603                          * SIGKILL to it.  We leave it on the list so that
  604                          * the task leader will wait for this new process
  605                          * to commit suicide.
  606                          */
  607                         PROC_LOCK(p2);
  608                         kern_psignal(p2, SIGKILL);
  609                         PROC_UNLOCK(p2);
  610                 } else
  611                         PROC_UNLOCK(p1->p_leader);
  612         } else {
  613                 p2->p_peers = NULL;
  614                 p2->p_leader = p2;
  615         }
  616 
  617         sx_xlock(&proctree_lock);
  618         PGRP_LOCK(p1->p_pgrp);
  619         PROC_LOCK(p2);
  620         PROC_LOCK(p1);
  621 
  622         /*
  623          * Preserve some more flags in subprocess.  P_PROFIL has already
  624          * been preserved.
  625          */
  626         p2->p_flag |= p1->p_flag & P_SUGID;
  627         td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
  628         SESS_LOCK(p1->p_session);
  629         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  630                 p2->p_flag |= P_CONTROLT;
  631         SESS_UNLOCK(p1->p_session);
  632         if (fr->fr_flags & RFPPWAIT)
  633                 p2->p_flag |= P_PPWAIT;
  634 
  635         p2->p_pgrp = p1->p_pgrp;
  636         LIST_INSERT_AFTER(p1, p2, p_pglist);
  637         PGRP_UNLOCK(p1->p_pgrp);
  638         LIST_INIT(&p2->p_children);
  639         LIST_INIT(&p2->p_orphans);
  640 
  641         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  642 
  643         /*
  644          * If PF_FORK is set, the child process inherits the
  645          * procfs ioctl flags from its parent.
  646          */
  647         if (p1->p_pfsflags & PF_FORK) {
  648                 p2->p_stops = p1->p_stops;
  649                 p2->p_pfsflags = p1->p_pfsflags;
  650         }
  651 
  652         /*
  653          * This begins the section where we must prevent the parent
  654          * from being swapped.
  655          */
  656         _PHOLD(p1);
  657         PROC_UNLOCK(p1);
  658 
  659         /*
  660          * Attach the new process to its parent.
  661          *
  662          * If RFNOWAIT is set, the newly created process becomes a child
  663          * of init.  This effectively disassociates the child from the
  664          * parent.
  665          */
  666         if ((fr->fr_flags & RFNOWAIT) != 0) {
  667                 pptr = p1->p_reaper;
  668                 p2->p_reaper = pptr;
  669         } else {
  670                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  671                     p1 : p1->p_reaper;
  672                 pptr = p1;
  673         }
  674         p2->p_pptr = pptr;
  675         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  676         LIST_INIT(&p2->p_reaplist);
  677         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  678         if (p2->p_reaper == p1)
  679                 p2->p_reapsubtree = p2->p_pid;
  680         sx_xunlock(&proctree_lock);
  681 
  682         /* Inform accounting that we have forked. */
  683         p2->p_acflag = AFORK;
  684         PROC_UNLOCK(p2);
  685 
  686 #ifdef KTRACE
  687         ktrprocfork(p1, p2);
  688 #endif
  689 
  690         /*
  691          * Finish creating the child process.  It will return via a different
  692          * execution path later.  (ie: directly into user mode)
  693          */
  694         vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
  695 
  696         if (fr->fr_flags == (RFFDG | RFPROC)) {
  697                 PCPU_INC(cnt.v_forks);
  698                 PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
  699                     p2->p_vmspace->vm_ssize);
  700         } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  701                 PCPU_INC(cnt.v_vforks);
  702                 PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
  703                     p2->p_vmspace->vm_ssize);
  704         } else if (p1 == &proc0) {
  705                 PCPU_INC(cnt.v_kthreads);
  706                 PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
  707                     p2->p_vmspace->vm_ssize);
  708         } else {
  709                 PCPU_INC(cnt.v_rforks);
  710                 PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
  711                     p2->p_vmspace->vm_ssize);
  712         }
  713 
  714         /*
  715          * Associate the process descriptor with the process before anything
  716          * can happen that might cause that process to need the descriptor.
  717          * However, don't do this until after fork(2) can no longer fail.
  718          */
  719         if (fr->fr_flags & RFPROCDESC)
  720                 procdesc_new(p2, fr->fr_pd_flags);
  721 
  722         /*
  723          * Both processes are set up, now check if any loadable modules want
  724          * to adjust anything.
  725          */
  726         EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
  727 
  728         /*
  729          * Set the child start time and mark the process as being complete.
  730          */
  731         PROC_LOCK(p2);
  732         PROC_LOCK(p1);
  733         microuptime(&p2->p_stats->p_start);
  734         PROC_SLOCK(p2);
  735         p2->p_state = PRS_NORMAL;
  736         PROC_SUNLOCK(p2);
  737 
  738 #ifdef KDTRACE_HOOKS
  739         /*
  740          * Tell the DTrace fasttrap provider about the new process so that any
  741          * tracepoints inherited from the parent can be removed. We have to do
  742          * this only after p_state is PRS_NORMAL since the fasttrap module will
  743          * use pfind() later on.
  744          */
  745         if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  746                 dtrace_fasttrap_fork(p1, p2);
  747 #endif
  748         /*
  749          * Hold the process so that it cannot exit after we make it runnable,
  750          * but before we wait for the debugger.
  751          */
  752         _PHOLD(p2);
  753         if (fr->fr_flags & RFPPWAIT) {
  754                 td->td_pflags |= TDP_RFPPWAIT;
  755                 td->td_rfppwait_p = p2;
  756                 td->td_dbgflags |= TDB_VFORK;
  757         }
  758         PROC_UNLOCK(p2);
  759 
  760         /*
  761          * Now can be swapped.
  762          */
  763         _PRELE(p1);
  764         PROC_UNLOCK(p1);
  765 
  766         /*
  767          * Tell any interested parties about the new process.
  768          */
  769         knote_fork(p1->p_klist, p2->p_pid);
  770         SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
  771 
  772         if (fr->fr_flags & RFPROCDESC) {
  773                 procdesc_finit(p2->p_procdesc, fp_procdesc);
  774                 fdrop(fp_procdesc, td);
  775         }
  776         
  777         /*
  778          * Speculative check for PTRACE_FORK. PTRACE_FORK is not
  779          * synced with forks in progress so it is OK if we miss it
  780          * if being set atm.
  781          */
  782         if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  783                 sx_xlock(&proctree_lock);
  784                 PROC_LOCK(p2);
  785                 
  786                 /*
  787                  * p1->p_ptevents & p1->p_pptr are protected by both
  788                  * process and proctree locks for modifications,
  789                  * so owning proctree_lock allows the race-free read.
  790                  */
  791                 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  792                         /*
  793                          * Arrange for debugger to receive the fork event.
  794                          *
  795                          * We can report PL_FLAG_FORKED regardless of
  796                          * P_FOLLOWFORK settings, but it does not make a sense
  797                          * for runaway child.
  798                          */
  799                         td->td_dbgflags |= TDB_FORK;
  800                         td->td_dbg_forked = p2->p_pid;
  801                         td2->td_dbgflags |= TDB_STOPATFORK;
  802                         proc_set_traced(p2, true);
  803                         CTR2(KTR_PTRACE,
  804                             "do_fork: attaching to new child pid %d: oppid %d",
  805                             p2->p_pid, p2->p_oppid);
  806                         proc_reparent(p2, p1->p_pptr);
  807                 }
  808                 PROC_UNLOCK(p2);
  809                 sx_xunlock(&proctree_lock);
  810         }
  811         
  812         if ((fr->fr_flags & RFSTOPPED) == 0) {
  813                 /*
  814                  * If RFSTOPPED not requested, make child runnable and
  815                  * add to run queue.
  816                  */
  817                 thread_lock(td2);
  818                 TD_SET_CAN_RUN(td2);
  819                 sched_add(td2, SRQ_BORING);
  820                 thread_unlock(td2);
  821                 if (fr->fr_pidp != NULL)
  822                         *fr->fr_pidp = p2->p_pid;
  823         } else {
  824                 *fr->fr_procp = p2;
  825         }
  826 
  827         PROC_LOCK(p2);
  828         _PRELE(p2);
  829         racct_proc_fork_done(p2);
  830         PROC_UNLOCK(p2);
  831 }
  832 
  833 int
  834 fork1(struct thread *td, struct fork_req *fr)
  835 {
  836         struct proc *p1, *newproc;
  837         struct thread *td2;
  838         struct vmspace *vm2;
  839         struct file *fp_procdesc;
  840         vm_ooffset_t mem_charged;
  841         int error, nprocs_new, ok;
  842         static int curfail;
  843         static struct timeval lastfail;
  844         int flags, pages;
  845 
  846         flags = fr->fr_flags;
  847         pages = fr->fr_pages;
  848 
  849         if ((flags & RFSTOPPED) != 0)
  850                 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
  851         else
  852                 MPASS(fr->fr_procp == NULL);
  853 
  854         /* Check for the undefined or unimplemented flags. */
  855         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  856                 return (EINVAL);
  857 
  858         /* Signal value requires RFTSIGZMB. */
  859         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  860                 return (EINVAL);
  861 
  862         /* Can't copy and clear. */
  863         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  864                 return (EINVAL);
  865 
  866         /* Check the validity of the signal number. */
  867         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  868                 return (EINVAL);
  869 
  870         if ((flags & RFPROCDESC) != 0) {
  871                 /* Can't not create a process yet get a process descriptor. */
  872                 if ((flags & RFPROC) == 0)
  873                         return (EINVAL);
  874 
  875                 /* Must provide a place to put a procdesc if creating one. */
  876                 if (fr->fr_pd_fd == NULL)
  877                         return (EINVAL);
  878 
  879                 /* Check if we are using supported flags. */
  880                 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
  881                         return (EINVAL);
  882         }
  883 
  884         p1 = td->td_proc;
  885 
  886         /*
  887          * Here we don't create a new process, but we divorce
  888          * certain parts of a process from itself.
  889          */
  890         if ((flags & RFPROC) == 0) {
  891                 if (fr->fr_procp != NULL)
  892                         *fr->fr_procp = NULL;
  893                 else if (fr->fr_pidp != NULL)
  894                         *fr->fr_pidp = 0;
  895                 return (fork_norfproc(td, flags));
  896         }
  897 
  898         fp_procdesc = NULL;
  899         newproc = NULL;
  900         vm2 = NULL;
  901 
  902         /*
  903          * Increment the nprocs resource before allocations occur.
  904          * Although process entries are dynamically created, we still
  905          * keep a global limit on the maximum number we will
  906          * create. There are hard-limits as to the number of processes
  907          * that can run, established by the KVA and memory usage for
  908          * the process data.
  909          *
  910          * Don't allow a nonprivileged user to use the last ten
  911          * processes; don't let root exceed the limit.
  912          */
  913         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  914         if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
  915             PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
  916                 error = EAGAIN;
  917                 sx_xlock(&allproc_lock);
  918                 if (ppsratecheck(&lastfail, &curfail, 1)) {
  919                         printf("maxproc limit exceeded by uid %u (pid %d); "
  920                             "see tuning(7) and login.conf(5)\n",
  921                             td->td_ucred->cr_ruid, p1->p_pid);
  922                 }
  923                 sx_xunlock(&allproc_lock);
  924                 goto fail2;
  925         }
  926 
  927         /*
  928          * If required, create a process descriptor in the parent first; we
  929          * will abandon it if something goes wrong. We don't finit() until
  930          * later.
  931          */
  932         if (flags & RFPROCDESC) {
  933                 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
  934                     fr->fr_pd_flags, fr->fr_pd_fcaps);
  935                 if (error != 0)
  936                         goto fail2;
  937         }
  938 
  939         mem_charged = 0;
  940         if (pages == 0)
  941                 pages = kstack_pages;
  942         /* Allocate new proc. */
  943         newproc = uma_zalloc(proc_zone, M_WAITOK);
  944         td2 = FIRST_THREAD_IN_PROC(newproc);
  945         if (td2 == NULL) {
  946                 td2 = thread_alloc(pages);
  947                 if (td2 == NULL) {
  948                         error = ENOMEM;
  949                         goto fail2;
  950                 }
  951                 proc_linkup(newproc, td2);
  952         } else {
  953                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  954                         if (td2->td_kstack != 0)
  955                                 vm_thread_dispose(td2);
  956                         if (!thread_alloc_stack(td2, pages)) {
  957                                 error = ENOMEM;
  958                                 goto fail2;
  959                         }
  960                 }
  961         }
  962 
  963         if ((flags & RFMEM) == 0) {
  964                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  965                 if (vm2 == NULL) {
  966                         error = ENOMEM;
  967                         goto fail2;
  968                 }
  969                 if (!swap_reserve(mem_charged)) {
  970                         /*
  971                          * The swap reservation failed. The accounting
  972                          * from the entries of the copied vm2 will be
  973                          * subtracted in vmspace_free(), so force the
  974                          * reservation there.
  975                          */
  976                         swap_reserve_force(mem_charged);
  977                         error = ENOMEM;
  978                         goto fail2;
  979                 }
  980         } else
  981                 vm2 = NULL;
  982 
  983         /*
  984          * XXX: This is ugly; when we copy resource usage, we need to bump
  985          *      per-cred resource counters.
  986          */
  987         proc_set_cred_init(newproc, crhold(td->td_ucred));
  988 
  989         /*
  990          * Initialize resource accounting for the child process.
  991          */
  992         error = racct_proc_fork(p1, newproc);
  993         if (error != 0) {
  994                 error = EAGAIN;
  995                 goto fail1;
  996         }
  997 
  998 #ifdef MAC
  999         mac_proc_init(newproc);
 1000 #endif
 1001         newproc->p_klist = knlist_alloc(&newproc->p_mtx);
 1002         STAILQ_INIT(&newproc->p_ktr);
 1003 
 1004         /* We have to lock the process tree while we look for a pid. */
 1005         sx_slock(&proctree_lock);
 1006         sx_xlock(&allproc_lock);
 1007 
 1008         /*
 1009          * Increment the count of procs running with this uid. Don't allow
 1010          * a nonprivileged user to exceed their current limit.
 1011          *
 1012          * XXXRW: Can we avoid privilege here if it's not needed?
 1013          */
 1014         error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
 1015         if (error == 0)
 1016                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
 1017         else {
 1018                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
 1019                     lim_cur(td, RLIMIT_NPROC));
 1020         }
 1021         if (ok) {
 1022                 do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
 1023                 return (0);
 1024         }
 1025 
 1026         error = EAGAIN;
 1027         sx_sunlock(&proctree_lock);
 1028         sx_xunlock(&allproc_lock);
 1029 #ifdef MAC
 1030         mac_proc_destroy(newproc);
 1031 #endif
 1032         racct_proc_exit(newproc);
 1033 fail1:
 1034         crfree(newproc->p_ucred);
 1035         newproc->p_ucred = NULL;
 1036 fail2:
 1037         if (vm2 != NULL)
 1038                 vmspace_free(vm2);
 1039         uma_zfree(proc_zone, newproc);
 1040         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
 1041                 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
 1042                 fdrop(fp_procdesc, td);
 1043         }
 1044         atomic_add_int(&nprocs, -1);
 1045         pause("fork", hz / 2);
 1046         return (error);
 1047 }
 1048 
 1049 /*
 1050  * Handle the return of a child process from fork1().  This function
 1051  * is called from the MD fork_trampoline() entry point.
 1052  */
 1053 void
 1054 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
 1055     struct trapframe *frame)
 1056 {
 1057         struct proc *p;
 1058         struct thread *td;
 1059         struct thread *dtd;
 1060 
 1061         td = curthread;
 1062         p = td->td_proc;
 1063         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1064 
 1065         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1066             td, td_get_sched(td), p->p_pid, td->td_name);
 1067 
 1068         sched_fork_exit(td);
 1069         /*
 1070         * Processes normally resume in mi_switch() after being
 1071         * cpu_switch()'ed to, but when children start up they arrive here
 1072         * instead, so we must do much the same things as mi_switch() would.
 1073         */
 1074         if ((dtd = PCPU_GET(deadthread))) {
 1075                 PCPU_SET(deadthread, NULL);
 1076                 thread_stash(dtd);
 1077         }
 1078         thread_unlock(td);
 1079 
 1080         /*
 1081          * cpu_fork_kthread_handler intercepts this function call to
 1082          * have this call a non-return function to stay in kernel mode.
 1083          * initproc has its own fork handler, but it does return.
 1084          */
 1085         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1086         callout(arg, frame);
 1087 
 1088         /*
 1089          * Check if a kernel thread misbehaved and returned from its main
 1090          * function.
 1091          */
 1092         if (p->p_flag & P_KPROC) {
 1093                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1094                     td->td_name, p->p_pid);
 1095                 kthread_exit();
 1096         }
 1097         mtx_assert(&Giant, MA_NOTOWNED);
 1098 
 1099         if (p->p_sysent->sv_schedtail != NULL)
 1100                 (p->p_sysent->sv_schedtail)(td);
 1101         td->td_pflags &= ~TDP_FORKING;
 1102 }
 1103 
 1104 /*
 1105  * Simplified back end of syscall(), used when returning from fork()
 1106  * directly into user mode.  This function is passed in to fork_exit()
 1107  * as the first parameter and is called when returning to a new
 1108  * userland process.
 1109  */
 1110 void
 1111 fork_return(struct thread *td, struct trapframe *frame)
 1112 {
 1113         struct proc *p;
 1114 
 1115         p = td->td_proc;
 1116         if (td->td_dbgflags & TDB_STOPATFORK) {
 1117                 PROC_LOCK(p);
 1118                 if ((p->p_flag & P_TRACED) != 0) {
 1119                         /*
 1120                          * Inform the debugger if one is still present.
 1121                          */
 1122                         td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
 1123                         ptracestop(td, SIGSTOP, NULL);
 1124                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1125                 } else {
 1126                         /*
 1127                          * ... otherwise clear the request.
 1128                          */
 1129                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1130                 }
 1131                 PROC_UNLOCK(p);
 1132         } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
 1133                 /*
 1134                  * This is the start of a new thread in a traced
 1135                  * process.  Report a system call exit event.
 1136                  */
 1137                 PROC_LOCK(p);
 1138                 td->td_dbgflags |= TDB_SCX;
 1139                 _STOPEVENT(p, S_SCX, td->td_sa.code);
 1140                 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
 1141                     (td->td_dbgflags & TDB_BORN) != 0)
 1142                         ptracestop(td, SIGTRAP, NULL);
 1143                 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
 1144                 PROC_UNLOCK(p);
 1145         }
 1146 
 1147         /*
 1148          * If the prison was killed mid-fork, die along with it.
 1149          */
 1150         if (td->td_ucred->cr_prison->pr_flags & PR_REMOVE)
 1151                 exit1(td, 0, SIGKILL);
 1152 
 1153         userret(td, frame);
 1154 
 1155 #ifdef KTRACE
 1156         if (KTRPOINT(td, KTR_SYSRET))
 1157                 ktrsysret(SYS_fork, 0, 0);
 1158 #endif
 1159 }

Cache object: cb00c2614e99abfbc914efcc6b9c5b8a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.