The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_fork.c 335504 2018-06-21 21:12:49Z kib $");
   41 
   42 #include "opt_ktrace.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/sysproto.h>
   48 #include <sys/eventhandler.h>
   49 #include <sys/fcntl.h>
   50 #include <sys/filedesc.h>
   51 #include <sys/jail.h>
   52 #include <sys/kernel.h>
   53 #include <sys/kthread.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/lock.h>
   56 #include <sys/malloc.h>
   57 #include <sys/mutex.h>
   58 #include <sys/priv.h>
   59 #include <sys/proc.h>
   60 #include <sys/procdesc.h>
   61 #include <sys/pioctl.h>
   62 #include <sys/ptrace.h>
   63 #include <sys/racct.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/sched.h>
   66 #include <sys/syscall.h>
   67 #include <sys/vmmeter.h>
   68 #include <sys/vnode.h>
   69 #include <sys/acct.h>
   70 #include <sys/ktr.h>
   71 #include <sys/ktrace.h>
   72 #include <sys/unistd.h>
   73 #include <sys/sdt.h>
   74 #include <sys/sx.h>
   75 #include <sys/sysent.h>
   76 #include <sys/signalvar.h>
   77 
   78 #include <security/audit/audit.h>
   79 #include <security/mac/mac_framework.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #ifdef KDTRACE_HOOKS
   88 #include <sys/dtrace_bsd.h>
   89 dtrace_fork_func_t      dtrace_fasttrap_fork;
   90 #endif
   91 
   92 SDT_PROVIDER_DECLARE(proc);
   93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
   94 
   95 #ifndef _SYS_SYSPROTO_H_
   96 struct fork_args {
   97         int     dummy;
   98 };
   99 #endif
  100 
  101 EVENTHANDLER_LIST_DECLARE(process_fork);
  102 
  103 /* ARGSUSED */
  104 int
  105 sys_fork(struct thread *td, struct fork_args *uap)
  106 {
  107         struct fork_req fr;
  108         int error, pid;
  109 
  110         bzero(&fr, sizeof(fr));
  111         fr.fr_flags = RFFDG | RFPROC;
  112         fr.fr_pidp = &pid;
  113         error = fork1(td, &fr);
  114         if (error == 0) {
  115                 td->td_retval[0] = pid;
  116                 td->td_retval[1] = 0;
  117         }
  118         return (error);
  119 }
  120 
  121 /* ARGUSED */
  122 int
  123 sys_pdfork(struct thread *td, struct pdfork_args *uap)
  124 {
  125         struct fork_req fr;
  126         int error, fd, pid;
  127 
  128         bzero(&fr, sizeof(fr));
  129         fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
  130         fr.fr_pidp = &pid;
  131         fr.fr_pd_fd = &fd;
  132         fr.fr_pd_flags = uap->flags;
  133         /*
  134          * It is necessary to return fd by reference because 0 is a valid file
  135          * descriptor number, and the child needs to be able to distinguish
  136          * itself from the parent using the return value.
  137          */
  138         error = fork1(td, &fr);
  139         if (error == 0) {
  140                 td->td_retval[0] = pid;
  141                 td->td_retval[1] = 0;
  142                 error = copyout(&fd, uap->fdp, sizeof(fd));
  143         }
  144         return (error);
  145 }
  146 
  147 /* ARGSUSED */
  148 int
  149 sys_vfork(struct thread *td, struct vfork_args *uap)
  150 {
  151         struct fork_req fr;
  152         int error, pid;
  153 
  154         bzero(&fr, sizeof(fr));
  155         fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  156         fr.fr_pidp = &pid;
  157         error = fork1(td, &fr);
  158         if (error == 0) {
  159                 td->td_retval[0] = pid;
  160                 td->td_retval[1] = 0;
  161         }
  162         return (error);
  163 }
  164 
  165 int
  166 sys_rfork(struct thread *td, struct rfork_args *uap)
  167 {
  168         struct fork_req fr;
  169         int error, pid;
  170 
  171         /* Don't allow kernel-only flags. */
  172         if ((uap->flags & RFKERNELONLY) != 0)
  173                 return (EINVAL);
  174 
  175         AUDIT_ARG_FFLAGS(uap->flags);
  176         bzero(&fr, sizeof(fr));
  177         fr.fr_flags = uap->flags;
  178         fr.fr_pidp = &pid;
  179         error = fork1(td, &fr);
  180         if (error == 0) {
  181                 td->td_retval[0] = pid;
  182                 td->td_retval[1] = 0;
  183         }
  184         return (error);
  185 }
  186 
  187 int     nprocs = 1;             /* process 0 */
  188 int     lastpid = 0;
  189 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
  190     "Last used PID");
  191 
  192 /*
  193  * Random component to lastpid generation.  We mix in a random factor to make
  194  * it a little harder to predict.  We sanity check the modulus value to avoid
  195  * doing it in critical paths.  Don't let it be too small or we pointlessly
  196  * waste randomness entropy, and don't let it be impossibly large.  Using a
  197  * modulus that is too big causes a LOT more process table scans and slows
  198  * down fork processing as the pidchecked caching is defeated.
  199  */
  200 static int randompid = 0;
  201 
  202 static int
  203 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  204 {
  205         int error, pid;
  206 
  207         error = sysctl_wire_old_buffer(req, sizeof(int));
  208         if (error != 0)
  209                 return(error);
  210         sx_xlock(&allproc_lock);
  211         pid = randompid;
  212         error = sysctl_handle_int(oidp, &pid, 0, req);
  213         if (error == 0 && req->newptr != NULL) {
  214                 if (pid == 0)
  215                         randompid = 0;
  216                 else if (pid == 1)
  217                         /* generate a random PID modulus between 100 and 1123 */
  218                         randompid = 100 + arc4random() % 1024;
  219                 else if (pid < 0 || pid > pid_max - 100)
  220                         /* out of range */
  221                         randompid = pid_max - 100;
  222                 else if (pid < 100)
  223                         /* Make it reasonable */
  224                         randompid = 100;
  225                 else
  226                         randompid = pid;
  227         }
  228         sx_xunlock(&allproc_lock);
  229         return (error);
  230 }
  231 
  232 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  233     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
  234 
  235 static int
  236 fork_findpid(int flags)
  237 {
  238         struct proc *p;
  239         int trypid;
  240         static int pidchecked = 0;
  241 
  242         /*
  243          * Requires allproc_lock in order to iterate over the list
  244          * of processes, and proctree_lock to access p_pgrp.
  245          */
  246         sx_assert(&allproc_lock, SX_LOCKED);
  247         sx_assert(&proctree_lock, SX_LOCKED);
  248 
  249         /*
  250          * Find an unused process ID.  We remember a range of unused IDs
  251          * ready to use (from lastpid+1 through pidchecked-1).
  252          *
  253          * If RFHIGHPID is set (used during system boot), do not allocate
  254          * low-numbered pids.
  255          */
  256         trypid = lastpid + 1;
  257         if (flags & RFHIGHPID) {
  258                 if (trypid < 10)
  259                         trypid = 10;
  260         } else {
  261                 if (randompid)
  262                         trypid += arc4random() % randompid;
  263         }
  264 retry:
  265         /*
  266          * If the process ID prototype has wrapped around,
  267          * restart somewhat above 0, as the low-numbered procs
  268          * tend to include daemons that don't exit.
  269          */
  270         if (trypid >= pid_max) {
  271                 trypid = trypid % pid_max;
  272                 if (trypid < 100)
  273                         trypid += 100;
  274                 pidchecked = 0;
  275         }
  276         if (trypid >= pidchecked) {
  277                 int doingzomb = 0;
  278 
  279                 pidchecked = PID_MAX;
  280                 /*
  281                  * Scan the active and zombie procs to check whether this pid
  282                  * is in use.  Remember the lowest pid that's greater
  283                  * than trypid, so we can avoid checking for a while.
  284                  *
  285                  * Avoid reuse of the process group id, session id or
  286                  * the reaper subtree id.  Note that for process group
  287                  * and sessions, the amount of reserved pids is
  288                  * limited by process limit.  For the subtree ids, the
  289                  * id is kept reserved only while there is a
  290                  * non-reaped process in the subtree, so amount of
  291                  * reserved pids is limited by process limit times
  292                  * two.
  293                  */
  294                 p = LIST_FIRST(&allproc);
  295 again:
  296                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
  297                         while (p->p_pid == trypid ||
  298                             p->p_reapsubtree == trypid ||
  299                             (p->p_pgrp != NULL &&
  300                             (p->p_pgrp->pg_id == trypid ||
  301                             (p->p_session != NULL &&
  302                             p->p_session->s_sid == trypid)))) {
  303                                 trypid++;
  304                                 if (trypid >= pidchecked)
  305                                         goto retry;
  306                         }
  307                         if (p->p_pid > trypid && pidchecked > p->p_pid)
  308                                 pidchecked = p->p_pid;
  309                         if (p->p_pgrp != NULL) {
  310                                 if (p->p_pgrp->pg_id > trypid &&
  311                                     pidchecked > p->p_pgrp->pg_id)
  312                                         pidchecked = p->p_pgrp->pg_id;
  313                                 if (p->p_session != NULL &&
  314                                     p->p_session->s_sid > trypid &&
  315                                     pidchecked > p->p_session->s_sid)
  316                                         pidchecked = p->p_session->s_sid;
  317                         }
  318                 }
  319                 if (!doingzomb) {
  320                         doingzomb = 1;
  321                         p = LIST_FIRST(&zombproc);
  322                         goto again;
  323                 }
  324         }
  325 
  326         /*
  327          * RFHIGHPID does not mess with the lastpid counter during boot.
  328          */
  329         if (flags & RFHIGHPID)
  330                 pidchecked = 0;
  331         else
  332                 lastpid = trypid;
  333 
  334         return (trypid);
  335 }
  336 
  337 static int
  338 fork_norfproc(struct thread *td, int flags)
  339 {
  340         int error;
  341         struct proc *p1;
  342 
  343         KASSERT((flags & RFPROC) == 0,
  344             ("fork_norfproc called with RFPROC set"));
  345         p1 = td->td_proc;
  346 
  347         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  348             (flags & (RFCFDG | RFFDG))) {
  349                 PROC_LOCK(p1);
  350                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  351                         PROC_UNLOCK(p1);
  352                         return (ERESTART);
  353                 }
  354                 PROC_UNLOCK(p1);
  355         }
  356 
  357         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  358         if (error)
  359                 goto fail;
  360 
  361         /*
  362          * Close all file descriptors.
  363          */
  364         if (flags & RFCFDG) {
  365                 struct filedesc *fdtmp;
  366                 fdtmp = fdinit(td->td_proc->p_fd, false);
  367                 fdescfree(td);
  368                 p1->p_fd = fdtmp;
  369         }
  370 
  371         /*
  372          * Unshare file descriptors (from parent).
  373          */
  374         if (flags & RFFDG)
  375                 fdunshare(td);
  376 
  377 fail:
  378         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  379             (flags & (RFCFDG | RFFDG))) {
  380                 PROC_LOCK(p1);
  381                 thread_single_end(p1, SINGLE_BOUNDARY);
  382                 PROC_UNLOCK(p1);
  383         }
  384         return (error);
  385 }
  386 
  387 static void
  388 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
  389     struct vmspace *vm2, struct file *fp_procdesc)
  390 {
  391         struct proc *p1, *pptr;
  392         int trypid;
  393         struct filedesc *fd;
  394         struct filedesc_to_leader *fdtol;
  395         struct sigacts *newsigacts;
  396 
  397         sx_assert(&proctree_lock, SX_LOCKED);
  398         sx_assert(&allproc_lock, SX_XLOCKED);
  399 
  400         p1 = td->td_proc;
  401 
  402         trypid = fork_findpid(fr->fr_flags);
  403 
  404         p2->p_state = PRS_NEW;          /* protect against others */
  405         p2->p_pid = trypid;
  406         AUDIT_ARG_PID(p2->p_pid);
  407         LIST_INSERT_HEAD(&allproc, p2, p_list);
  408         allproc_gen++;
  409         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  410         PROC_LOCK(p2);
  411         PROC_LOCK(p1);
  412 
  413         sx_xunlock(&allproc_lock);
  414         sx_xunlock(&proctree_lock);
  415 
  416         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  417             __rangeof(struct proc, p_startcopy, p_endcopy));
  418         pargs_hold(p2->p_args);
  419 
  420         PROC_UNLOCK(p1);
  421 
  422         bzero(&p2->p_startzero,
  423             __rangeof(struct proc, p_startzero, p_endzero));
  424 
  425         /* Tell the prison that we exist. */
  426         prison_proc_hold(p2->p_ucred->cr_prison);
  427 
  428         PROC_UNLOCK(p2);
  429 
  430         tidhash_add(td2);
  431 
  432         /*
  433          * Malloc things while we don't hold any locks.
  434          */
  435         if (fr->fr_flags & RFSIGSHARE)
  436                 newsigacts = NULL;
  437         else
  438                 newsigacts = sigacts_alloc();
  439 
  440         /*
  441          * Copy filedesc.
  442          */
  443         if (fr->fr_flags & RFCFDG) {
  444                 fd = fdinit(p1->p_fd, false);
  445                 fdtol = NULL;
  446         } else if (fr->fr_flags & RFFDG) {
  447                 fd = fdcopy(p1->p_fd);
  448                 fdtol = NULL;
  449         } else {
  450                 fd = fdshare(p1->p_fd);
  451                 if (p1->p_fdtol == NULL)
  452                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  453                             p1->p_leader);
  454                 if ((fr->fr_flags & RFTHREAD) != 0) {
  455                         /*
  456                          * Shared file descriptor table, and shared
  457                          * process leaders.
  458                          */
  459                         fdtol = p1->p_fdtol;
  460                         FILEDESC_XLOCK(p1->p_fd);
  461                         fdtol->fdl_refcount++;
  462                         FILEDESC_XUNLOCK(p1->p_fd);
  463                 } else {
  464                         /*
  465                          * Shared file descriptor table, and different
  466                          * process leaders.
  467                          */
  468                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  469                             p1->p_fd, p2);
  470                 }
  471         }
  472         /*
  473          * Make a proc table entry for the new process.
  474          * Start by zeroing the section of proc that is zero-initialized,
  475          * then copy the section that is copied directly from the parent.
  476          */
  477 
  478         PROC_LOCK(p2);
  479         PROC_LOCK(p1);
  480 
  481         bzero(&td2->td_startzero,
  482             __rangeof(struct thread, td_startzero, td_endzero));
  483 
  484         bcopy(&td->td_startcopy, &td2->td_startcopy,
  485             __rangeof(struct thread, td_startcopy, td_endcopy));
  486 
  487         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  488         td2->td_sigstk = td->td_sigstk;
  489         td2->td_flags = TDF_INMEM;
  490         td2->td_lend_user_pri = PRI_MAX;
  491 
  492 #ifdef VIMAGE
  493         td2->td_vnet = NULL;
  494         td2->td_vnet_lpush = NULL;
  495 #endif
  496 
  497         /*
  498          * Allow the scheduler to initialize the child.
  499          */
  500         thread_lock(td);
  501         sched_fork(td, td2);
  502         thread_unlock(td);
  503 
  504         /*
  505          * Duplicate sub-structures as needed.
  506          * Increase reference counts on shared objects.
  507          */
  508         p2->p_flag = P_INMEM;
  509         p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
  510         p2->p_swtick = ticks;
  511         if (p1->p_flag & P_PROFIL)
  512                 startprofclock(p2);
  513 
  514         if (fr->fr_flags & RFSIGSHARE) {
  515                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  516         } else {
  517                 sigacts_copy(newsigacts, p1->p_sigacts);
  518                 p2->p_sigacts = newsigacts;
  519         }
  520 
  521         if (fr->fr_flags & RFTSIGZMB)
  522                 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
  523         else if (fr->fr_flags & RFLINUXTHPN)
  524                 p2->p_sigparent = SIGUSR1;
  525         else
  526                 p2->p_sigparent = SIGCHLD;
  527 
  528         p2->p_textvp = p1->p_textvp;
  529         p2->p_fd = fd;
  530         p2->p_fdtol = fdtol;
  531 
  532         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  533                 p2->p_flag |= P_PROTECTED;
  534                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  535         }
  536 
  537         /*
  538          * p_limit is copy-on-write.  Bump its refcount.
  539          */
  540         lim_fork(p1, p2);
  541 
  542         thread_cow_get_proc(td2, p2);
  543 
  544         pstats_fork(p1->p_stats, p2->p_stats);
  545 
  546         PROC_UNLOCK(p1);
  547         PROC_UNLOCK(p2);
  548 
  549         /* Bump references to the text vnode (for procfs). */
  550         if (p2->p_textvp)
  551                 vrefact(p2->p_textvp);
  552 
  553         /*
  554          * Set up linkage for kernel based threading.
  555          */
  556         if ((fr->fr_flags & RFTHREAD) != 0) {
  557                 mtx_lock(&ppeers_lock);
  558                 p2->p_peers = p1->p_peers;
  559                 p1->p_peers = p2;
  560                 p2->p_leader = p1->p_leader;
  561                 mtx_unlock(&ppeers_lock);
  562                 PROC_LOCK(p1->p_leader);
  563                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  564                         PROC_UNLOCK(p1->p_leader);
  565                         /*
  566                          * The task leader is exiting, so process p1 is
  567                          * going to be killed shortly.  Since p1 obviously
  568                          * isn't dead yet, we know that the leader is either
  569                          * sending SIGKILL's to all the processes in this
  570                          * task or is sleeping waiting for all the peers to
  571                          * exit.  We let p1 complete the fork, but we need
  572                          * to go ahead and kill the new process p2 since
  573                          * the task leader may not get a chance to send
  574                          * SIGKILL to it.  We leave it on the list so that
  575                          * the task leader will wait for this new process
  576                          * to commit suicide.
  577                          */
  578                         PROC_LOCK(p2);
  579                         kern_psignal(p2, SIGKILL);
  580                         PROC_UNLOCK(p2);
  581                 } else
  582                         PROC_UNLOCK(p1->p_leader);
  583         } else {
  584                 p2->p_peers = NULL;
  585                 p2->p_leader = p2;
  586         }
  587 
  588         sx_xlock(&proctree_lock);
  589         PGRP_LOCK(p1->p_pgrp);
  590         PROC_LOCK(p2);
  591         PROC_LOCK(p1);
  592 
  593         /*
  594          * Preserve some more flags in subprocess.  P_PROFIL has already
  595          * been preserved.
  596          */
  597         p2->p_flag |= p1->p_flag & P_SUGID;
  598         td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
  599         SESS_LOCK(p1->p_session);
  600         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  601                 p2->p_flag |= P_CONTROLT;
  602         SESS_UNLOCK(p1->p_session);
  603         if (fr->fr_flags & RFPPWAIT)
  604                 p2->p_flag |= P_PPWAIT;
  605 
  606         p2->p_pgrp = p1->p_pgrp;
  607         LIST_INSERT_AFTER(p1, p2, p_pglist);
  608         PGRP_UNLOCK(p1->p_pgrp);
  609         LIST_INIT(&p2->p_children);
  610         LIST_INIT(&p2->p_orphans);
  611 
  612         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  613 
  614         /*
  615          * If PF_FORK is set, the child process inherits the
  616          * procfs ioctl flags from its parent.
  617          */
  618         if (p1->p_pfsflags & PF_FORK) {
  619                 p2->p_stops = p1->p_stops;
  620                 p2->p_pfsflags = p1->p_pfsflags;
  621         }
  622 
  623         /*
  624          * This begins the section where we must prevent the parent
  625          * from being swapped.
  626          */
  627         _PHOLD(p1);
  628         PROC_UNLOCK(p1);
  629 
  630         /*
  631          * Attach the new process to its parent.
  632          *
  633          * If RFNOWAIT is set, the newly created process becomes a child
  634          * of init.  This effectively disassociates the child from the
  635          * parent.
  636          */
  637         if ((fr->fr_flags & RFNOWAIT) != 0) {
  638                 pptr = p1->p_reaper;
  639                 p2->p_reaper = pptr;
  640         } else {
  641                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  642                     p1 : p1->p_reaper;
  643                 pptr = p1;
  644         }
  645         p2->p_pptr = pptr;
  646         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  647         LIST_INIT(&p2->p_reaplist);
  648         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  649         if (p2->p_reaper == p1)
  650                 p2->p_reapsubtree = p2->p_pid;
  651         sx_xunlock(&proctree_lock);
  652 
  653         /* Inform accounting that we have forked. */
  654         p2->p_acflag = AFORK;
  655         PROC_UNLOCK(p2);
  656 
  657 #ifdef KTRACE
  658         ktrprocfork(p1, p2);
  659 #endif
  660 
  661         /*
  662          * Finish creating the child process.  It will return via a different
  663          * execution path later.  (ie: directly into user mode)
  664          */
  665         vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
  666 
  667         if (fr->fr_flags == (RFFDG | RFPROC)) {
  668                 VM_CNT_INC(v_forks);
  669                 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
  670                     p2->p_vmspace->vm_ssize);
  671         } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  672                 VM_CNT_INC(v_vforks);
  673                 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
  674                     p2->p_vmspace->vm_ssize);
  675         } else if (p1 == &proc0) {
  676                 VM_CNT_INC(v_kthreads);
  677                 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
  678                     p2->p_vmspace->vm_ssize);
  679         } else {
  680                 VM_CNT_INC(v_rforks);
  681                 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
  682                     p2->p_vmspace->vm_ssize);
  683         }
  684 
  685         /*
  686          * Associate the process descriptor with the process before anything
  687          * can happen that might cause that process to need the descriptor.
  688          * However, don't do this until after fork(2) can no longer fail.
  689          */
  690         if (fr->fr_flags & RFPROCDESC)
  691                 procdesc_new(p2, fr->fr_pd_flags);
  692 
  693         /*
  694          * Both processes are set up, now check if any loadable modules want
  695          * to adjust anything.
  696          */
  697         EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
  698 
  699         /*
  700          * Set the child start time and mark the process as being complete.
  701          */
  702         PROC_LOCK(p2);
  703         PROC_LOCK(p1);
  704         microuptime(&p2->p_stats->p_start);
  705         PROC_SLOCK(p2);
  706         p2->p_state = PRS_NORMAL;
  707         PROC_SUNLOCK(p2);
  708 
  709 #ifdef KDTRACE_HOOKS
  710         /*
  711          * Tell the DTrace fasttrap provider about the new process so that any
  712          * tracepoints inherited from the parent can be removed. We have to do
  713          * this only after p_state is PRS_NORMAL since the fasttrap module will
  714          * use pfind() later on.
  715          */
  716         if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  717                 dtrace_fasttrap_fork(p1, p2);
  718 #endif
  719         /*
  720          * Hold the process so that it cannot exit after we make it runnable,
  721          * but before we wait for the debugger.
  722          */
  723         _PHOLD(p2);
  724         if (fr->fr_flags & RFPPWAIT) {
  725                 td->td_pflags |= TDP_RFPPWAIT;
  726                 td->td_rfppwait_p = p2;
  727                 td->td_dbgflags |= TDB_VFORK;
  728         }
  729         PROC_UNLOCK(p2);
  730 
  731         /*
  732          * Now can be swapped.
  733          */
  734         _PRELE(p1);
  735         PROC_UNLOCK(p1);
  736 
  737         /*
  738          * Tell any interested parties about the new process.
  739          */
  740         knote_fork(p1->p_klist, p2->p_pid);
  741         SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
  742 
  743         if (fr->fr_flags & RFPROCDESC) {
  744                 procdesc_finit(p2->p_procdesc, fp_procdesc);
  745                 fdrop(fp_procdesc, td);
  746         }
  747         
  748         /*
  749          * Speculative check for PTRACE_FORK. PTRACE_FORK is not
  750          * synced with forks in progress so it is OK if we miss it
  751          * if being set atm.
  752          */
  753         if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  754                 sx_xlock(&proctree_lock);
  755                 PROC_LOCK(p2);
  756                 
  757                 /*
  758                  * p1->p_ptevents & p1->p_pptr are protected by both
  759                  * process and proctree locks for modifications,
  760                  * so owning proctree_lock allows the race-free read.
  761                  */
  762                 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  763                         /*
  764                          * Arrange for debugger to receive the fork event.
  765                          *
  766                          * We can report PL_FLAG_FORKED regardless of
  767                          * P_FOLLOWFORK settings, but it does not make a sense
  768                          * for runaway child.
  769                          */
  770                         td->td_dbgflags |= TDB_FORK;
  771                         td->td_dbg_forked = p2->p_pid;
  772                         td2->td_dbgflags |= TDB_STOPATFORK;
  773                         proc_set_traced(p2, true);
  774                         CTR2(KTR_PTRACE,
  775                             "do_fork: attaching to new child pid %d: oppid %d",
  776                             p2->p_pid, p2->p_oppid);
  777                         proc_reparent(p2, p1->p_pptr);
  778                 }
  779                 PROC_UNLOCK(p2);
  780                 sx_xunlock(&proctree_lock);
  781         }
  782         
  783         if ((fr->fr_flags & RFSTOPPED) == 0) {
  784                 /*
  785                  * If RFSTOPPED not requested, make child runnable and
  786                  * add to run queue.
  787                  */
  788                 thread_lock(td2);
  789                 TD_SET_CAN_RUN(td2);
  790                 sched_add(td2, SRQ_BORING);
  791                 thread_unlock(td2);
  792                 if (fr->fr_pidp != NULL)
  793                         *fr->fr_pidp = p2->p_pid;
  794         } else {
  795                 *fr->fr_procp = p2;
  796         }
  797 
  798         PROC_LOCK(p2);
  799         _PRELE(p2);
  800         racct_proc_fork_done(p2);
  801         PROC_UNLOCK(p2);
  802 }
  803 
  804 int
  805 fork1(struct thread *td, struct fork_req *fr)
  806 {
  807         struct proc *p1, *newproc;
  808         struct thread *td2;
  809         struct vmspace *vm2;
  810         struct file *fp_procdesc;
  811         vm_ooffset_t mem_charged;
  812         int error, nprocs_new, ok;
  813         static int curfail;
  814         static struct timeval lastfail;
  815         int flags, pages;
  816 
  817         flags = fr->fr_flags;
  818         pages = fr->fr_pages;
  819 
  820         if ((flags & RFSTOPPED) != 0)
  821                 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
  822         else
  823                 MPASS(fr->fr_procp == NULL);
  824 
  825         /* Check for the undefined or unimplemented flags. */
  826         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  827                 return (EINVAL);
  828 
  829         /* Signal value requires RFTSIGZMB. */
  830         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  831                 return (EINVAL);
  832 
  833         /* Can't copy and clear. */
  834         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  835                 return (EINVAL);
  836 
  837         /* Check the validity of the signal number. */
  838         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  839                 return (EINVAL);
  840 
  841         if ((flags & RFPROCDESC) != 0) {
  842                 /* Can't not create a process yet get a process descriptor. */
  843                 if ((flags & RFPROC) == 0)
  844                         return (EINVAL);
  845 
  846                 /* Must provide a place to put a procdesc if creating one. */
  847                 if (fr->fr_pd_fd == NULL)
  848                         return (EINVAL);
  849 
  850                 /* Check if we are using supported flags. */
  851                 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
  852                         return (EINVAL);
  853         }
  854 
  855         p1 = td->td_proc;
  856 
  857         /*
  858          * Here we don't create a new process, but we divorce
  859          * certain parts of a process from itself.
  860          */
  861         if ((flags & RFPROC) == 0) {
  862                 if (fr->fr_procp != NULL)
  863                         *fr->fr_procp = NULL;
  864                 else if (fr->fr_pidp != NULL)
  865                         *fr->fr_pidp = 0;
  866                 return (fork_norfproc(td, flags));
  867         }
  868 
  869         fp_procdesc = NULL;
  870         newproc = NULL;
  871         vm2 = NULL;
  872 
  873         /*
  874          * Increment the nprocs resource before allocations occur.
  875          * Although process entries are dynamically created, we still
  876          * keep a global limit on the maximum number we will
  877          * create. There are hard-limits as to the number of processes
  878          * that can run, established by the KVA and memory usage for
  879          * the process data.
  880          *
  881          * Don't allow a nonprivileged user to use the last ten
  882          * processes; don't let root exceed the limit.
  883          */
  884         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  885         if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
  886             PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
  887                 error = EAGAIN;
  888                 sx_xlock(&allproc_lock);
  889                 if (ppsratecheck(&lastfail, &curfail, 1)) {
  890                         printf("maxproc limit exceeded by uid %u (pid %d); "
  891                             "see tuning(7) and login.conf(5)\n",
  892                             td->td_ucred->cr_ruid, p1->p_pid);
  893                 }
  894                 sx_xunlock(&allproc_lock);
  895                 goto fail2;
  896         }
  897 
  898         /*
  899          * If required, create a process descriptor in the parent first; we
  900          * will abandon it if something goes wrong. We don't finit() until
  901          * later.
  902          */
  903         if (flags & RFPROCDESC) {
  904                 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
  905                     fr->fr_pd_flags, fr->fr_pd_fcaps);
  906                 if (error != 0)
  907                         goto fail2;
  908         }
  909 
  910         mem_charged = 0;
  911         if (pages == 0)
  912                 pages = kstack_pages;
  913         /* Allocate new proc. */
  914         newproc = uma_zalloc(proc_zone, M_WAITOK);
  915         td2 = FIRST_THREAD_IN_PROC(newproc);
  916         if (td2 == NULL) {
  917                 td2 = thread_alloc(pages);
  918                 if (td2 == NULL) {
  919                         error = ENOMEM;
  920                         goto fail2;
  921                 }
  922                 proc_linkup(newproc, td2);
  923         } else {
  924                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  925                         if (td2->td_kstack != 0)
  926                                 vm_thread_dispose(td2);
  927                         if (!thread_alloc_stack(td2, pages)) {
  928                                 error = ENOMEM;
  929                                 goto fail2;
  930                         }
  931                 }
  932         }
  933 
  934         if ((flags & RFMEM) == 0) {
  935                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  936                 if (vm2 == NULL) {
  937                         error = ENOMEM;
  938                         goto fail2;
  939                 }
  940                 if (!swap_reserve(mem_charged)) {
  941                         /*
  942                          * The swap reservation failed. The accounting
  943                          * from the entries of the copied vm2 will be
  944                          * subtracted in vmspace_free(), so force the
  945                          * reservation there.
  946                          */
  947                         swap_reserve_force(mem_charged);
  948                         error = ENOMEM;
  949                         goto fail2;
  950                 }
  951         } else
  952                 vm2 = NULL;
  953 
  954         /*
  955          * XXX: This is ugly; when we copy resource usage, we need to bump
  956          *      per-cred resource counters.
  957          */
  958         proc_set_cred_init(newproc, crhold(td->td_ucred));
  959 
  960         /*
  961          * Initialize resource accounting for the child process.
  962          */
  963         error = racct_proc_fork(p1, newproc);
  964         if (error != 0) {
  965                 error = EAGAIN;
  966                 goto fail1;
  967         }
  968 
  969 #ifdef MAC
  970         mac_proc_init(newproc);
  971 #endif
  972         newproc->p_klist = knlist_alloc(&newproc->p_mtx);
  973         STAILQ_INIT(&newproc->p_ktr);
  974 
  975         /* We have to lock the process tree while we look for a pid. */
  976         sx_xlock(&proctree_lock);
  977         sx_xlock(&allproc_lock);
  978 
  979         /*
  980          * Increment the count of procs running with this uid. Don't allow
  981          * a nonprivileged user to exceed their current limit.
  982          *
  983          * XXXRW: Can we avoid privilege here if it's not needed?
  984          */
  985         error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
  986         if (error == 0)
  987                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
  988         else {
  989                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  990                     lim_cur(td, RLIMIT_NPROC));
  991         }
  992         if (ok) {
  993                 do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
  994                 return (0);
  995         }
  996 
  997         error = EAGAIN;
  998         sx_xunlock(&allproc_lock);
  999         sx_xunlock(&proctree_lock);
 1000 #ifdef MAC
 1001         mac_proc_destroy(newproc);
 1002 #endif
 1003         racct_proc_exit(newproc);
 1004 fail1:
 1005         crfree(newproc->p_ucred);
 1006         newproc->p_ucred = NULL;
 1007 fail2:
 1008         if (vm2 != NULL)
 1009                 vmspace_free(vm2);
 1010         uma_zfree(proc_zone, newproc);
 1011         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
 1012                 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
 1013                 fdrop(fp_procdesc, td);
 1014         }
 1015         atomic_add_int(&nprocs, -1);
 1016         pause("fork", hz / 2);
 1017         return (error);
 1018 }
 1019 
 1020 /*
 1021  * Handle the return of a child process from fork1().  This function
 1022  * is called from the MD fork_trampoline() entry point.
 1023  */
 1024 void
 1025 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
 1026     struct trapframe *frame)
 1027 {
 1028         struct proc *p;
 1029         struct thread *td;
 1030         struct thread *dtd;
 1031 
 1032         td = curthread;
 1033         p = td->td_proc;
 1034         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1035 
 1036         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1037             td, td_get_sched(td), p->p_pid, td->td_name);
 1038 
 1039         sched_fork_exit(td);
 1040         /*
 1041         * Processes normally resume in mi_switch() after being
 1042         * cpu_switch()'ed to, but when children start up they arrive here
 1043         * instead, so we must do much the same things as mi_switch() would.
 1044         */
 1045         if ((dtd = PCPU_GET(deadthread))) {
 1046                 PCPU_SET(deadthread, NULL);
 1047                 thread_stash(dtd);
 1048         }
 1049         thread_unlock(td);
 1050 
 1051         /*
 1052          * cpu_fork_kthread_handler intercepts this function call to
 1053          * have this call a non-return function to stay in kernel mode.
 1054          * initproc has its own fork handler, but it does return.
 1055          */
 1056         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1057         callout(arg, frame);
 1058 
 1059         /*
 1060          * Check if a kernel thread misbehaved and returned from its main
 1061          * function.
 1062          */
 1063         if (p->p_flag & P_KPROC) {
 1064                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1065                     td->td_name, p->p_pid);
 1066                 kthread_exit();
 1067         }
 1068         mtx_assert(&Giant, MA_NOTOWNED);
 1069 
 1070         if (p->p_sysent->sv_schedtail != NULL)
 1071                 (p->p_sysent->sv_schedtail)(td);
 1072         td->td_pflags &= ~TDP_FORKING;
 1073 }
 1074 
 1075 /*
 1076  * Simplified back end of syscall(), used when returning from fork()
 1077  * directly into user mode.  This function is passed in to fork_exit()
 1078  * as the first parameter and is called when returning to a new
 1079  * userland process.
 1080  */
 1081 void
 1082 fork_return(struct thread *td, struct trapframe *frame)
 1083 {
 1084         struct proc *p;
 1085 
 1086         p = td->td_proc;
 1087         if (td->td_dbgflags & TDB_STOPATFORK) {
 1088                 PROC_LOCK(p);
 1089                 if ((p->p_flag & P_TRACED) != 0) {
 1090                         /*
 1091                          * Inform the debugger if one is still present.
 1092                          */
 1093                         td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
 1094                         ptracestop(td, SIGSTOP, NULL);
 1095                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1096                 } else {
 1097                         /*
 1098                          * ... otherwise clear the request.
 1099                          */
 1100                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1101                 }
 1102                 PROC_UNLOCK(p);
 1103         } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
 1104                 /*
 1105                  * This is the start of a new thread in a traced
 1106                  * process.  Report a system call exit event.
 1107                  */
 1108                 PROC_LOCK(p);
 1109                 td->td_dbgflags |= TDB_SCX;
 1110                 _STOPEVENT(p, S_SCX, td->td_sa.code);
 1111                 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
 1112                     (td->td_dbgflags & TDB_BORN) != 0)
 1113                         ptracestop(td, SIGTRAP, NULL);
 1114                 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
 1115                 PROC_UNLOCK(p);
 1116         }
 1117 
 1118         userret(td, frame);
 1119 
 1120 #ifdef KTRACE
 1121         if (KTRPOINT(td, KTR_SYSRET))
 1122                 ktrsysret(SYS_fork, 0, 0);
 1123 #endif
 1124 }

Cache object: 7ab95262dba275bdc5c763970fa50c1d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.