The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_ktrace.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/bitstring.h>
   48 #include <sys/sysproto.h>
   49 #include <sys/eventhandler.h>
   50 #include <sys/fcntl.h>
   51 #include <sys/filedesc.h>
   52 #include <sys/jail.h>
   53 #include <sys/kernel.h>
   54 #include <sys/kthread.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mutex.h>
   59 #include <sys/priv.h>
   60 #include <sys/proc.h>
   61 #include <sys/procdesc.h>
   62 #include <sys/ptrace.h>
   63 #include <sys/racct.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/sched.h>
   66 #include <sys/syscall.h>
   67 #include <sys/vmmeter.h>
   68 #include <sys/vnode.h>
   69 #include <sys/acct.h>
   70 #include <sys/ktr.h>
   71 #include <sys/ktrace.h>
   72 #include <sys/unistd.h>
   73 #include <sys/sdt.h>
   74 #include <sys/sx.h>
   75 #include <sys/sysent.h>
   76 #include <sys/signalvar.h>
   77 
   78 #include <security/audit/audit.h>
   79 #include <security/mac/mac_framework.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #ifdef KDTRACE_HOOKS
   88 #include <sys/dtrace_bsd.h>
   89 dtrace_fork_func_t      dtrace_fasttrap_fork;
   90 #endif
   91 
   92 SDT_PROVIDER_DECLARE(proc);
   93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
   94 
   95 #ifndef _SYS_SYSPROTO_H_
   96 struct fork_args {
   97         int     dummy;
   98 };
   99 #endif
  100 
  101 /* ARGSUSED */
  102 int
  103 sys_fork(struct thread *td, struct fork_args *uap)
  104 {
  105         struct fork_req fr;
  106         int error, pid;
  107 
  108         bzero(&fr, sizeof(fr));
  109         fr.fr_flags = RFFDG | RFPROC;
  110         fr.fr_pidp = &pid;
  111         error = fork1(td, &fr);
  112         if (error == 0) {
  113                 td->td_retval[0] = pid;
  114                 td->td_retval[1] = 0;
  115         }
  116         return (error);
  117 }
  118 
  119 /* ARGUSED */
  120 int
  121 sys_pdfork(struct thread *td, struct pdfork_args *uap)
  122 {
  123         struct fork_req fr;
  124         int error, fd, pid;
  125 
  126         bzero(&fr, sizeof(fr));
  127         fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
  128         fr.fr_pidp = &pid;
  129         fr.fr_pd_fd = &fd;
  130         fr.fr_pd_flags = uap->flags;
  131         AUDIT_ARG_FFLAGS(uap->flags);
  132         /*
  133          * It is necessary to return fd by reference because 0 is a valid file
  134          * descriptor number, and the child needs to be able to distinguish
  135          * itself from the parent using the return value.
  136          */
  137         error = fork1(td, &fr);
  138         if (error == 0) {
  139                 td->td_retval[0] = pid;
  140                 td->td_retval[1] = 0;
  141                 error = copyout(&fd, uap->fdp, sizeof(fd));
  142         }
  143         return (error);
  144 }
  145 
  146 /* ARGSUSED */
  147 int
  148 sys_vfork(struct thread *td, struct vfork_args *uap)
  149 {
  150         struct fork_req fr;
  151         int error, pid;
  152 
  153         bzero(&fr, sizeof(fr));
  154         fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  155         fr.fr_pidp = &pid;
  156         error = fork1(td, &fr);
  157         if (error == 0) {
  158                 td->td_retval[0] = pid;
  159                 td->td_retval[1] = 0;
  160         }
  161         return (error);
  162 }
  163 
  164 int
  165 sys_rfork(struct thread *td, struct rfork_args *uap)
  166 {
  167         struct fork_req fr;
  168         int error, pid;
  169 
  170         /* Don't allow kernel-only flags. */
  171         if ((uap->flags & RFKERNELONLY) != 0)
  172                 return (EINVAL);
  173         /* RFSPAWN must not appear with others */
  174         if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
  175                 return (EINVAL);
  176 
  177         AUDIT_ARG_FFLAGS(uap->flags);
  178         bzero(&fr, sizeof(fr));
  179         if ((uap->flags & RFSPAWN) != 0) {
  180                 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  181                 fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
  182         } else {
  183                 fr.fr_flags = uap->flags;
  184         }
  185         fr.fr_pidp = &pid;
  186         error = fork1(td, &fr);
  187         if (error == 0) {
  188                 td->td_retval[0] = pid;
  189                 td->td_retval[1] = 0;
  190         }
  191         return (error);
  192 }
  193 
  194 int __exclusive_cache_line      nprocs = 1;             /* process 0 */
  195 int     lastpid = 0;
  196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
  197     "Last used PID");
  198 
  199 /*
  200  * Random component to lastpid generation.  We mix in a random factor to make
  201  * it a little harder to predict.  We sanity check the modulus value to avoid
  202  * doing it in critical paths.  Don't let it be too small or we pointlessly
  203  * waste randomness entropy, and don't let it be impossibly large.  Using a
  204  * modulus that is too big causes a LOT more process table scans and slows
  205  * down fork processing as the pidchecked caching is defeated.
  206  */
  207 static int randompid = 0;
  208 
  209 static int
  210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  211 {
  212         int error, pid;
  213 
  214         error = sysctl_wire_old_buffer(req, sizeof(int));
  215         if (error != 0)
  216                 return(error);
  217         sx_xlock(&allproc_lock);
  218         pid = randompid;
  219         error = sysctl_handle_int(oidp, &pid, 0, req);
  220         if (error == 0 && req->newptr != NULL) {
  221                 if (pid == 0)
  222                         randompid = 0;
  223                 else if (pid == 1)
  224                         /* generate a random PID modulus between 100 and 1123 */
  225                         randompid = 100 + arc4random() % 1024;
  226                 else if (pid < 0 || pid > pid_max - 100)
  227                         /* out of range */
  228                         randompid = pid_max - 100;
  229                 else if (pid < 100)
  230                         /* Make it reasonable */
  231                         randompid = 100;
  232                 else
  233                         randompid = pid;
  234         }
  235         sx_xunlock(&allproc_lock);
  236         return (error);
  237 }
  238 
  239 SYSCTL_PROC(_kern, OID_AUTO, randompid,
  240     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  241     sysctl_kern_randompid, "I",
  242     "Random PID modulus. Special values: 0: disable, 1: choose random value");
  243 
  244 extern bitstr_t proc_id_pidmap;
  245 extern bitstr_t proc_id_grpidmap;
  246 extern bitstr_t proc_id_sessidmap;
  247 extern bitstr_t proc_id_reapmap;
  248 
  249 /*
  250  * Find an unused process ID
  251  *
  252  * If RFHIGHPID is set (used during system boot), do not allocate
  253  * low-numbered pids.
  254  */
  255 static int
  256 fork_findpid(int flags)
  257 {
  258         pid_t result;
  259         int trypid, random;
  260 
  261         /*
  262          * Avoid calling arc4random with procid_lock held.
  263          */
  264         random = 0;
  265         if (__predict_false(randompid))
  266                 random = arc4random() % randompid;
  267 
  268         mtx_lock(&procid_lock);
  269 
  270         trypid = lastpid + 1;
  271         if (flags & RFHIGHPID) {
  272                 if (trypid < 10)
  273                         trypid = 10;
  274         } else {
  275                 trypid += random;
  276         }
  277 retry:
  278         if (trypid >= pid_max)
  279                 trypid = 2;
  280 
  281         bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
  282         if (result == -1) {
  283                 KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
  284                 trypid = 2;
  285                 goto retry;
  286         }
  287         if (bit_test(&proc_id_grpidmap, result) ||
  288             bit_test(&proc_id_sessidmap, result) ||
  289             bit_test(&proc_id_reapmap, result)) {
  290                 trypid = result + 1;
  291                 goto retry;
  292         }
  293 
  294         /*
  295          * RFHIGHPID does not mess with the lastpid counter during boot.
  296          */
  297         if ((flags & RFHIGHPID) == 0)
  298                 lastpid = result;
  299 
  300         bit_set(&proc_id_pidmap, result);
  301         mtx_unlock(&procid_lock);
  302 
  303         return (result);
  304 }
  305 
  306 static int
  307 fork_norfproc(struct thread *td, int flags)
  308 {
  309         int error;
  310         struct proc *p1;
  311 
  312         KASSERT((flags & RFPROC) == 0,
  313             ("fork_norfproc called with RFPROC set"));
  314         p1 = td->td_proc;
  315 
  316         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  317             (flags & (RFCFDG | RFFDG))) {
  318                 PROC_LOCK(p1);
  319                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  320                         PROC_UNLOCK(p1);
  321                         return (ERESTART);
  322                 }
  323                 PROC_UNLOCK(p1);
  324         }
  325 
  326         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  327         if (error)
  328                 goto fail;
  329 
  330         /*
  331          * Close all file descriptors.
  332          */
  333         if (flags & RFCFDG) {
  334                 struct filedesc *fdtmp;
  335                 struct pwddesc *pdtmp;
  336                 pdtmp = pdinit(td->td_proc->p_pd, false);
  337                 fdtmp = fdinit(td->td_proc->p_fd, false, NULL);
  338                 pdescfree(td);
  339                 fdescfree(td);
  340                 p1->p_fd = fdtmp;
  341                 p1->p_pd = pdtmp;
  342         }
  343 
  344         /*
  345          * Unshare file descriptors (from parent).
  346          */
  347         if (flags & RFFDG) {
  348                 fdunshare(td);
  349                 pdunshare(td);
  350         }
  351 
  352 fail:
  353         if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  354             (flags & (RFCFDG | RFFDG))) {
  355                 PROC_LOCK(p1);
  356                 thread_single_end(p1, SINGLE_BOUNDARY);
  357                 PROC_UNLOCK(p1);
  358         }
  359         return (error);
  360 }
  361 
  362 static void
  363 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
  364     struct vmspace *vm2, struct file *fp_procdesc)
  365 {
  366         struct proc *p1, *pptr;
  367         struct filedesc *fd;
  368         struct filedesc_to_leader *fdtol;
  369         struct pwddesc *pd;
  370         struct sigacts *newsigacts;
  371 
  372         p1 = td->td_proc;
  373 
  374         PROC_LOCK(p1);
  375         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  376             __rangeof(struct proc, p_startcopy, p_endcopy));
  377         pargs_hold(p2->p_args);
  378         PROC_UNLOCK(p1);
  379 
  380         bzero(&p2->p_startzero,
  381             __rangeof(struct proc, p_startzero, p_endzero));
  382 
  383         /* Tell the prison that we exist. */
  384         prison_proc_hold(p2->p_ucred->cr_prison);
  385 
  386         p2->p_state = PRS_NEW;          /* protect against others */
  387         p2->p_pid = fork_findpid(fr->fr_flags);
  388         AUDIT_ARG_PID(p2->p_pid);
  389 
  390         sx_xlock(&allproc_lock);
  391         LIST_INSERT_HEAD(&allproc, p2, p_list);
  392         allproc_gen++;
  393         sx_xunlock(&allproc_lock);
  394 
  395         sx_xlock(PIDHASHLOCK(p2->p_pid));
  396         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  397         sx_xunlock(PIDHASHLOCK(p2->p_pid));
  398 
  399         tidhash_add(td2);
  400 
  401         /*
  402          * Malloc things while we don't hold any locks.
  403          */
  404         if (fr->fr_flags & RFSIGSHARE)
  405                 newsigacts = NULL;
  406         else
  407                 newsigacts = sigacts_alloc();
  408 
  409         /*
  410          * Copy filedesc.
  411          */
  412         if (fr->fr_flags & RFCFDG) {
  413                 pd = pdinit(p1->p_pd, false);
  414                 fd = fdinit(p1->p_fd, false, NULL);
  415                 fdtol = NULL;
  416         } else if (fr->fr_flags & RFFDG) {
  417                 if (fr->fr_flags2 & FR2_SHARE_PATHS)
  418                         pd = pdshare(p1->p_pd);
  419                 else
  420                         pd = pdcopy(p1->p_pd);
  421                 fd = fdcopy(p1->p_fd);
  422                 fdtol = NULL;
  423         } else {
  424                 if (fr->fr_flags2 & FR2_SHARE_PATHS)
  425                         pd = pdcopy(p1->p_pd);
  426                 else
  427                         pd = pdshare(p1->p_pd);
  428                 fd = fdshare(p1->p_fd);
  429                 if (p1->p_fdtol == NULL)
  430                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  431                             p1->p_leader);
  432                 if ((fr->fr_flags & RFTHREAD) != 0) {
  433                         /*
  434                          * Shared file descriptor table, and shared
  435                          * process leaders.
  436                          */
  437                         fdtol = p1->p_fdtol;
  438                         FILEDESC_XLOCK(p1->p_fd);
  439                         fdtol->fdl_refcount++;
  440                         FILEDESC_XUNLOCK(p1->p_fd);
  441                 } else {
  442                         /*
  443                          * Shared file descriptor table, and different
  444                          * process leaders.
  445                          */
  446                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  447                             p1->p_fd, p2);
  448                 }
  449         }
  450         /*
  451          * Make a proc table entry for the new process.
  452          * Start by zeroing the section of proc that is zero-initialized,
  453          * then copy the section that is copied directly from the parent.
  454          */
  455 
  456         PROC_LOCK(p2);
  457         PROC_LOCK(p1);
  458 
  459         bzero(&td2->td_startzero,
  460             __rangeof(struct thread, td_startzero, td_endzero));
  461 
  462         bcopy(&td->td_startcopy, &td2->td_startcopy,
  463             __rangeof(struct thread, td_startcopy, td_endcopy));
  464 
  465         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  466         td2->td_sigstk = td->td_sigstk;
  467         td2->td_flags = TDF_INMEM;
  468         td2->td_lend_user_pri = PRI_MAX;
  469 
  470 #ifdef VIMAGE
  471         td2->td_vnet = NULL;
  472         td2->td_vnet_lpush = NULL;
  473 #endif
  474 
  475         /*
  476          * Allow the scheduler to initialize the child.
  477          */
  478         thread_lock(td);
  479         sched_fork(td, td2);
  480         thread_unlock(td);
  481 
  482         /*
  483          * Duplicate sub-structures as needed.
  484          * Increase reference counts on shared objects.
  485          */
  486         p2->p_flag = P_INMEM;
  487         p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
  488             P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
  489             P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
  490             P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
  491         p2->p_swtick = ticks;
  492         if (p1->p_flag & P_PROFIL)
  493                 startprofclock(p2);
  494 
  495         if (fr->fr_flags & RFSIGSHARE) {
  496                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  497         } else {
  498                 sigacts_copy(newsigacts, p1->p_sigacts);
  499                 p2->p_sigacts = newsigacts;
  500                 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) {
  501                         mtx_lock(&p2->p_sigacts->ps_mtx);
  502                         sig_drop_caught(p2);
  503                         mtx_unlock(&p2->p_sigacts->ps_mtx);
  504                 }
  505         }
  506 
  507         if (fr->fr_flags & RFTSIGZMB)
  508                 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
  509         else if (fr->fr_flags & RFLINUXTHPN)
  510                 p2->p_sigparent = SIGUSR1;
  511         else
  512                 p2->p_sigparent = SIGCHLD;
  513 
  514         p2->p_textvp = p1->p_textvp;
  515         p2->p_fd = fd;
  516         p2->p_fdtol = fdtol;
  517         p2->p_pd = pd;
  518 
  519         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  520                 p2->p_flag |= P_PROTECTED;
  521                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  522         }
  523 
  524         /*
  525          * p_limit is copy-on-write.  Bump its refcount.
  526          */
  527         lim_fork(p1, p2);
  528 
  529         thread_cow_get_proc(td2, p2);
  530 
  531         pstats_fork(p1->p_stats, p2->p_stats);
  532 
  533         PROC_UNLOCK(p1);
  534         PROC_UNLOCK(p2);
  535 
  536         /* Bump references to the text vnode (for procfs). */
  537         if (p2->p_textvp)
  538                 vrefact(p2->p_textvp);
  539 
  540         /*
  541          * Set up linkage for kernel based threading.
  542          */
  543         if ((fr->fr_flags & RFTHREAD) != 0) {
  544                 mtx_lock(&ppeers_lock);
  545                 p2->p_peers = p1->p_peers;
  546                 p1->p_peers = p2;
  547                 p2->p_leader = p1->p_leader;
  548                 mtx_unlock(&ppeers_lock);
  549                 PROC_LOCK(p1->p_leader);
  550                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  551                         PROC_UNLOCK(p1->p_leader);
  552                         /*
  553                          * The task leader is exiting, so process p1 is
  554                          * going to be killed shortly.  Since p1 obviously
  555                          * isn't dead yet, we know that the leader is either
  556                          * sending SIGKILL's to all the processes in this
  557                          * task or is sleeping waiting for all the peers to
  558                          * exit.  We let p1 complete the fork, but we need
  559                          * to go ahead and kill the new process p2 since
  560                          * the task leader may not get a chance to send
  561                          * SIGKILL to it.  We leave it on the list so that
  562                          * the task leader will wait for this new process
  563                          * to commit suicide.
  564                          */
  565                         PROC_LOCK(p2);
  566                         kern_psignal(p2, SIGKILL);
  567                         PROC_UNLOCK(p2);
  568                 } else
  569                         PROC_UNLOCK(p1->p_leader);
  570         } else {
  571                 p2->p_peers = NULL;
  572                 p2->p_leader = p2;
  573         }
  574 
  575         sx_xlock(&proctree_lock);
  576         PGRP_LOCK(p1->p_pgrp);
  577         PROC_LOCK(p2);
  578         PROC_LOCK(p1);
  579 
  580         /*
  581          * Preserve some more flags in subprocess.  P_PROFIL has already
  582          * been preserved.
  583          */
  584         p2->p_flag |= p1->p_flag & P_SUGID;
  585         td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK |
  586             TDP_SIGFASTBLOCK)) | TDP_FORKING;
  587         SESS_LOCK(p1->p_session);
  588         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  589                 p2->p_flag |= P_CONTROLT;
  590         SESS_UNLOCK(p1->p_session);
  591         if (fr->fr_flags & RFPPWAIT)
  592                 p2->p_flag |= P_PPWAIT;
  593 
  594         p2->p_pgrp = p1->p_pgrp;
  595         LIST_INSERT_AFTER(p1, p2, p_pglist);
  596         PGRP_UNLOCK(p1->p_pgrp);
  597         LIST_INIT(&p2->p_children);
  598         LIST_INIT(&p2->p_orphans);
  599 
  600         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  601 
  602         /*
  603          * This begins the section where we must prevent the parent
  604          * from being swapped.
  605          */
  606         _PHOLD(p1);
  607         PROC_UNLOCK(p1);
  608 
  609         /*
  610          * Attach the new process to its parent.
  611          *
  612          * If RFNOWAIT is set, the newly created process becomes a child
  613          * of init.  This effectively disassociates the child from the
  614          * parent.
  615          */
  616         if ((fr->fr_flags & RFNOWAIT) != 0) {
  617                 pptr = p1->p_reaper;
  618                 p2->p_reaper = pptr;
  619         } else {
  620                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  621                     p1 : p1->p_reaper;
  622                 pptr = p1;
  623         }
  624         p2->p_pptr = pptr;
  625         p2->p_oppid = pptr->p_pid;
  626         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  627         LIST_INIT(&p2->p_reaplist);
  628         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  629         if (p2->p_reaper == p1 && p1 != initproc) {
  630                 p2->p_reapsubtree = p2->p_pid;
  631                 proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
  632         }
  633         sx_xunlock(&proctree_lock);
  634 
  635         /* Inform accounting that we have forked. */
  636         p2->p_acflag = AFORK;
  637         PROC_UNLOCK(p2);
  638 
  639 #ifdef KTRACE
  640         ktrprocfork(p1, p2);
  641 #endif
  642 
  643         /*
  644          * Finish creating the child process.  It will return via a different
  645          * execution path later.  (ie: directly into user mode)
  646          */
  647         vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
  648 
  649         if (fr->fr_flags == (RFFDG | RFPROC)) {
  650                 VM_CNT_INC(v_forks);
  651                 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
  652                     p2->p_vmspace->vm_ssize);
  653         } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  654                 VM_CNT_INC(v_vforks);
  655                 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
  656                     p2->p_vmspace->vm_ssize);
  657         } else if (p1 == &proc0) {
  658                 VM_CNT_INC(v_kthreads);
  659                 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
  660                     p2->p_vmspace->vm_ssize);
  661         } else {
  662                 VM_CNT_INC(v_rforks);
  663                 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
  664                     p2->p_vmspace->vm_ssize);
  665         }
  666 
  667         /*
  668          * Associate the process descriptor with the process before anything
  669          * can happen that might cause that process to need the descriptor.
  670          * However, don't do this until after fork(2) can no longer fail.
  671          */
  672         if (fr->fr_flags & RFPROCDESC)
  673                 procdesc_new(p2, fr->fr_pd_flags);
  674 
  675         /*
  676          * Both processes are set up, now check if any loadable modules want
  677          * to adjust anything.
  678          */
  679         EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
  680 
  681         /*
  682          * Set the child start time and mark the process as being complete.
  683          */
  684         PROC_LOCK(p2);
  685         PROC_LOCK(p1);
  686         microuptime(&p2->p_stats->p_start);
  687         PROC_SLOCK(p2);
  688         p2->p_state = PRS_NORMAL;
  689         PROC_SUNLOCK(p2);
  690 
  691 #ifdef KDTRACE_HOOKS
  692         /*
  693          * Tell the DTrace fasttrap provider about the new process so that any
  694          * tracepoints inherited from the parent can be removed. We have to do
  695          * this only after p_state is PRS_NORMAL since the fasttrap module will
  696          * use pfind() later on.
  697          */
  698         if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  699                 dtrace_fasttrap_fork(p1, p2);
  700 #endif
  701         if (fr->fr_flags & RFPPWAIT) {
  702                 td->td_pflags |= TDP_RFPPWAIT;
  703                 td->td_rfppwait_p = p2;
  704                 td->td_dbgflags |= TDB_VFORK;
  705         }
  706         PROC_UNLOCK(p2);
  707 
  708         /*
  709          * Tell any interested parties about the new process.
  710          */
  711         knote_fork(p1->p_klist, p2->p_pid);
  712 
  713         /*
  714          * Now can be swapped.
  715          */
  716         _PRELE(p1);
  717         PROC_UNLOCK(p1);
  718         SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
  719 
  720         if (fr->fr_flags & RFPROCDESC) {
  721                 procdesc_finit(p2->p_procdesc, fp_procdesc);
  722                 fdrop(fp_procdesc, td);
  723         }
  724 
  725         /*
  726          * Speculative check for PTRACE_FORK. PTRACE_FORK is not
  727          * synced with forks in progress so it is OK if we miss it
  728          * if being set atm.
  729          */
  730         if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  731                 sx_xlock(&proctree_lock);
  732                 PROC_LOCK(p2);
  733                 
  734                 /*
  735                  * p1->p_ptevents & p1->p_pptr are protected by both
  736                  * process and proctree locks for modifications,
  737                  * so owning proctree_lock allows the race-free read.
  738                  */
  739                 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  740                         /*
  741                          * Arrange for debugger to receive the fork event.
  742                          *
  743                          * We can report PL_FLAG_FORKED regardless of
  744                          * P_FOLLOWFORK settings, but it does not make a sense
  745                          * for runaway child.
  746                          */
  747                         td->td_dbgflags |= TDB_FORK;
  748                         td->td_dbg_forked = p2->p_pid;
  749                         td2->td_dbgflags |= TDB_STOPATFORK;
  750                         proc_set_traced(p2, true);
  751                         CTR2(KTR_PTRACE,
  752                             "do_fork: attaching to new child pid %d: oppid %d",
  753                             p2->p_pid, p2->p_oppid);
  754                         proc_reparent(p2, p1->p_pptr, false);
  755                 }
  756                 PROC_UNLOCK(p2);
  757                 sx_xunlock(&proctree_lock);
  758         }
  759 
  760         racct_proc_fork_done(p2);
  761 
  762         if ((fr->fr_flags & RFSTOPPED) == 0) {
  763                 if (fr->fr_pidp != NULL)
  764                         *fr->fr_pidp = p2->p_pid;
  765                 /*
  766                  * If RFSTOPPED not requested, make child runnable and
  767                  * add to run queue.
  768                  */
  769                 thread_lock(td2);
  770                 TD_SET_CAN_RUN(td2);
  771                 sched_add(td2, SRQ_BORING);
  772         } else {
  773                 *fr->fr_procp = p2;
  774         }
  775 }
  776 
  777 void
  778 fork_rfppwait(struct thread *td)
  779 {
  780         struct proc *p, *p2;
  781 
  782         MPASS(td->td_pflags & TDP_RFPPWAIT);
  783 
  784         p = td->td_proc;
  785         /*
  786          * Preserve synchronization semantics of vfork.  If
  787          * waiting for child to exec or exit, fork set
  788          * P_PPWAIT on child, and there we sleep on our proc
  789          * (in case of exit).
  790          *
  791          * Do it after the ptracestop() above is finished, to
  792          * not block our debugger until child execs or exits
  793          * to finish vfork wait.
  794          */
  795         td->td_pflags &= ~TDP_RFPPWAIT;
  796         p2 = td->td_rfppwait_p;
  797 again:
  798         PROC_LOCK(p2);
  799         while (p2->p_flag & P_PPWAIT) {
  800                 PROC_LOCK(p);
  801                 if (thread_suspend_check_needed()) {
  802                         PROC_UNLOCK(p2);
  803                         thread_suspend_check(0);
  804                         PROC_UNLOCK(p);
  805                         goto again;
  806                 } else {
  807                         PROC_UNLOCK(p);
  808                 }
  809                 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
  810         }
  811         PROC_UNLOCK(p2);
  812 
  813         if (td->td_dbgflags & TDB_VFORK) {
  814                 PROC_LOCK(p);
  815                 if (p->p_ptevents & PTRACE_VFORK)
  816                         ptracestop(td, SIGTRAP, NULL);
  817                 td->td_dbgflags &= ~TDB_VFORK;
  818                 PROC_UNLOCK(p);
  819         }
  820 }
  821 
  822 int
  823 fork1(struct thread *td, struct fork_req *fr)
  824 {
  825         struct proc *p1, *newproc;
  826         struct thread *td2;
  827         struct vmspace *vm2;
  828         struct ucred *cred;
  829         struct file *fp_procdesc;
  830         vm_ooffset_t mem_charged;
  831         int error, nprocs_new;
  832         static int curfail;
  833         static struct timeval lastfail;
  834         int flags, pages;
  835 
  836         flags = fr->fr_flags;
  837         pages = fr->fr_pages;
  838 
  839         if ((flags & RFSTOPPED) != 0)
  840                 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
  841         else
  842                 MPASS(fr->fr_procp == NULL);
  843 
  844         /* Check for the undefined or unimplemented flags. */
  845         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  846                 return (EINVAL);
  847 
  848         /* Signal value requires RFTSIGZMB. */
  849         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  850                 return (EINVAL);
  851 
  852         /* Can't copy and clear. */
  853         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  854                 return (EINVAL);
  855 
  856         /* Check the validity of the signal number. */
  857         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  858                 return (EINVAL);
  859 
  860         if ((flags & RFPROCDESC) != 0) {
  861                 /* Can't not create a process yet get a process descriptor. */
  862                 if ((flags & RFPROC) == 0)
  863                         return (EINVAL);
  864 
  865                 /* Must provide a place to put a procdesc if creating one. */
  866                 if (fr->fr_pd_fd == NULL)
  867                         return (EINVAL);
  868 
  869                 /* Check if we are using supported flags. */
  870                 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
  871                         return (EINVAL);
  872         }
  873 
  874         p1 = td->td_proc;
  875 
  876         /*
  877          * Here we don't create a new process, but we divorce
  878          * certain parts of a process from itself.
  879          */
  880         if ((flags & RFPROC) == 0) {
  881                 if (fr->fr_procp != NULL)
  882                         *fr->fr_procp = NULL;
  883                 else if (fr->fr_pidp != NULL)
  884                         *fr->fr_pidp = 0;
  885                 return (fork_norfproc(td, flags));
  886         }
  887 
  888         fp_procdesc = NULL;
  889         newproc = NULL;
  890         vm2 = NULL;
  891 
  892         /*
  893          * Increment the nprocs resource before allocations occur.
  894          * Although process entries are dynamically created, we still
  895          * keep a global limit on the maximum number we will
  896          * create. There are hard-limits as to the number of processes
  897          * that can run, established by the KVA and memory usage for
  898          * the process data.
  899          *
  900          * Don't allow a nonprivileged user to use the last ten
  901          * processes; don't let root exceed the limit.
  902          */
  903         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  904         if (nprocs_new >= maxproc - 10) {
  905                 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
  906                     nprocs_new >= maxproc) {
  907                         error = EAGAIN;
  908                         sx_xlock(&allproc_lock);
  909                         if (ppsratecheck(&lastfail, &curfail, 1)) {
  910                                 printf("maxproc limit exceeded by uid %u "
  911                                     "(pid %d); see tuning(7) and "
  912                                     "login.conf(5)\n",
  913                                     td->td_ucred->cr_ruid, p1->p_pid);
  914                         }
  915                         sx_xunlock(&allproc_lock);
  916                         goto fail2;
  917                 }
  918         }
  919 
  920         /*
  921          * If required, create a process descriptor in the parent first; we
  922          * will abandon it if something goes wrong. We don't finit() until
  923          * later.
  924          */
  925         if (flags & RFPROCDESC) {
  926                 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
  927                     fr->fr_pd_flags, fr->fr_pd_fcaps);
  928                 if (error != 0)
  929                         goto fail2;
  930                 AUDIT_ARG_FD(*fr->fr_pd_fd);
  931         }
  932 
  933         mem_charged = 0;
  934         if (pages == 0)
  935                 pages = kstack_pages;
  936         /* Allocate new proc. */
  937         newproc = uma_zalloc(proc_zone, M_WAITOK);
  938         td2 = FIRST_THREAD_IN_PROC(newproc);
  939         if (td2 == NULL) {
  940                 td2 = thread_alloc(pages);
  941                 if (td2 == NULL) {
  942                         error = ENOMEM;
  943                         goto fail2;
  944                 }
  945                 proc_linkup(newproc, td2);
  946         } else {
  947                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  948                         if (td2->td_kstack != 0)
  949                                 vm_thread_dispose(td2);
  950                         if (!thread_alloc_stack(td2, pages)) {
  951                                 error = ENOMEM;
  952                                 goto fail2;
  953                         }
  954                 }
  955         }
  956 
  957         if ((flags & RFMEM) == 0) {
  958                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  959                 if (vm2 == NULL) {
  960                         error = ENOMEM;
  961                         goto fail2;
  962                 }
  963                 if (!swap_reserve(mem_charged)) {
  964                         /*
  965                          * The swap reservation failed. The accounting
  966                          * from the entries of the copied vm2 will be
  967                          * subtracted in vmspace_free(), so force the
  968                          * reservation there.
  969                          */
  970                         swap_reserve_force(mem_charged);
  971                         error = ENOMEM;
  972                         goto fail2;
  973                 }
  974         } else
  975                 vm2 = NULL;
  976 
  977         /*
  978          * XXX: This is ugly; when we copy resource usage, we need to bump
  979          *      per-cred resource counters.
  980          */
  981         proc_set_cred_init(newproc, td->td_ucred);
  982 
  983         /*
  984          * Initialize resource accounting for the child process.
  985          */
  986         error = racct_proc_fork(p1, newproc);
  987         if (error != 0) {
  988                 error = EAGAIN;
  989                 goto fail1;
  990         }
  991 
  992 #ifdef MAC
  993         mac_proc_init(newproc);
  994 #endif
  995         newproc->p_klist = knlist_alloc(&newproc->p_mtx);
  996         STAILQ_INIT(&newproc->p_ktr);
  997 
  998         /*
  999          * Increment the count of procs running with this uid. Don't allow
 1000          * a nonprivileged user to exceed their current limit.
 1001          */
 1002         cred = td->td_ucred;
 1003         if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
 1004                 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
 1005                         goto fail0;
 1006                 chgproccnt(cred->cr_ruidinfo, 1, 0);
 1007         }
 1008 
 1009         do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
 1010         return (0);
 1011 fail0:
 1012         error = EAGAIN;
 1013 #ifdef MAC
 1014         mac_proc_destroy(newproc);
 1015 #endif
 1016         racct_proc_exit(newproc);
 1017 fail1:
 1018         proc_unset_cred(newproc);
 1019 fail2:
 1020         if (vm2 != NULL)
 1021                 vmspace_free(vm2);
 1022         uma_zfree(proc_zone, newproc);
 1023         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
 1024                 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
 1025                 fdrop(fp_procdesc, td);
 1026         }
 1027         atomic_add_int(&nprocs, -1);
 1028         pause("fork", hz / 2);
 1029         return (error);
 1030 }
 1031 
 1032 /*
 1033  * Handle the return of a child process from fork1().  This function
 1034  * is called from the MD fork_trampoline() entry point.
 1035  */
 1036 void
 1037 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
 1038     struct trapframe *frame)
 1039 {
 1040         struct proc *p;
 1041         struct thread *td;
 1042         struct thread *dtd;
 1043 
 1044         td = curthread;
 1045         p = td->td_proc;
 1046         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1047 
 1048         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1049             td, td_get_sched(td), p->p_pid, td->td_name);
 1050 
 1051         sched_fork_exit(td);
 1052         /*
 1053         * Processes normally resume in mi_switch() after being
 1054         * cpu_switch()'ed to, but when children start up they arrive here
 1055         * instead, so we must do much the same things as mi_switch() would.
 1056         */
 1057         if ((dtd = PCPU_GET(deadthread))) {
 1058                 PCPU_SET(deadthread, NULL);
 1059                 thread_stash(dtd);
 1060         }
 1061         thread_unlock(td);
 1062 
 1063         /*
 1064          * cpu_fork_kthread_handler intercepts this function call to
 1065          * have this call a non-return function to stay in kernel mode.
 1066          * initproc has its own fork handler, but it does return.
 1067          */
 1068         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1069         callout(arg, frame);
 1070 
 1071         /*
 1072          * Check if a kernel thread misbehaved and returned from its main
 1073          * function.
 1074          */
 1075         if (p->p_flag & P_KPROC) {
 1076                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1077                     td->td_name, p->p_pid);
 1078                 kthread_exit();
 1079         }
 1080         mtx_assert(&Giant, MA_NOTOWNED);
 1081 
 1082         if (p->p_sysent->sv_schedtail != NULL)
 1083                 (p->p_sysent->sv_schedtail)(td);
 1084         td->td_pflags &= ~TDP_FORKING;
 1085 }
 1086 
 1087 /*
 1088  * Simplified back end of syscall(), used when returning from fork()
 1089  * directly into user mode.  This function is passed in to fork_exit()
 1090  * as the first parameter and is called when returning to a new
 1091  * userland process.
 1092  */
 1093 void
 1094 fork_return(struct thread *td, struct trapframe *frame)
 1095 {
 1096         struct proc *p;
 1097 
 1098         p = td->td_proc;
 1099         if (td->td_dbgflags & TDB_STOPATFORK) {
 1100                 PROC_LOCK(p);
 1101                 if ((p->p_flag & P_TRACED) != 0) {
 1102                         /*
 1103                          * Inform the debugger if one is still present.
 1104                          */
 1105                         td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
 1106                         ptracestop(td, SIGSTOP, NULL);
 1107                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1108                 } else {
 1109                         /*
 1110                          * ... otherwise clear the request.
 1111                          */
 1112                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1113                 }
 1114                 PROC_UNLOCK(p);
 1115         } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
 1116                 /*
 1117                  * This is the start of a new thread in a traced
 1118                  * process.  Report a system call exit event.
 1119                  */
 1120                 PROC_LOCK(p);
 1121                 td->td_dbgflags |= TDB_SCX;
 1122                 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
 1123                     (td->td_dbgflags & TDB_BORN) != 0)
 1124                         ptracestop(td, SIGTRAP, NULL);
 1125                 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
 1126                 PROC_UNLOCK(p);
 1127         }
 1128 
 1129         /*
 1130          * If the prison was killed mid-fork, die along with it.
 1131          */
 1132         if (!prison_isalive(td->td_ucred->cr_prison))
 1133                 exit1(td, 0, SIGKILL);
 1134 
 1135         userret(td, frame);
 1136 
 1137 #ifdef KTRACE
 1138         if (KTRPOINT(td, KTR_SYSRET))
 1139                 ktrsysret(SYS_fork, 0, 0);
 1140 #endif
 1141 }

Cache object: f1efc48cc3b616829974d0843dfc8b4a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.