FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/ptrace.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sched.h>
66 #include <sys/syscall.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <sys/acct.h>
70 #include <sys/ktr.h>
71 #include <sys/ktrace.h>
72 #include <sys/unistd.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/sysent.h>
76 #include <sys/signalvar.h>
77
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80
81 #include <vm/vm.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86
87 #ifdef KDTRACE_HOOKS
88 #include <sys/dtrace_bsd.h>
89 dtrace_fork_func_t dtrace_fasttrap_fork;
90 #endif
91
92 SDT_PROVIDER_DECLARE(proc);
93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
94
95 #ifndef _SYS_SYSPROTO_H_
96 struct fork_args {
97 int dummy;
98 };
99 #endif
100
101 /* ARGSUSED */
102 int
103 sys_fork(struct thread *td, struct fork_args *uap)
104 {
105 struct fork_req fr;
106 int error, pid;
107
108 bzero(&fr, sizeof(fr));
109 fr.fr_flags = RFFDG | RFPROC;
110 fr.fr_pidp = &pid;
111 error = fork1(td, &fr);
112 if (error == 0) {
113 td->td_retval[0] = pid;
114 td->td_retval[1] = 0;
115 }
116 return (error);
117 }
118
119 /* ARGUSED */
120 int
121 sys_pdfork(struct thread *td, struct pdfork_args *uap)
122 {
123 struct fork_req fr;
124 int error, fd, pid;
125
126 bzero(&fr, sizeof(fr));
127 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
128 fr.fr_pidp = &pid;
129 fr.fr_pd_fd = &fd;
130 fr.fr_pd_flags = uap->flags;
131 AUDIT_ARG_FFLAGS(uap->flags);
132 /*
133 * It is necessary to return fd by reference because 0 is a valid file
134 * descriptor number, and the child needs to be able to distinguish
135 * itself from the parent using the return value.
136 */
137 error = fork1(td, &fr);
138 if (error == 0) {
139 td->td_retval[0] = pid;
140 td->td_retval[1] = 0;
141 error = copyout(&fd, uap->fdp, sizeof(fd));
142 }
143 return (error);
144 }
145
146 /* ARGSUSED */
147 int
148 sys_vfork(struct thread *td, struct vfork_args *uap)
149 {
150 struct fork_req fr;
151 int error, pid;
152
153 bzero(&fr, sizeof(fr));
154 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155 fr.fr_pidp = &pid;
156 error = fork1(td, &fr);
157 if (error == 0) {
158 td->td_retval[0] = pid;
159 td->td_retval[1] = 0;
160 }
161 return (error);
162 }
163
164 int
165 sys_rfork(struct thread *td, struct rfork_args *uap)
166 {
167 struct fork_req fr;
168 int error, pid;
169
170 /* Don't allow kernel-only flags. */
171 if ((uap->flags & RFKERNELONLY) != 0)
172 return (EINVAL);
173 /* RFSPAWN must not appear with others */
174 if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
175 return (EINVAL);
176
177 AUDIT_ARG_FFLAGS(uap->flags);
178 bzero(&fr, sizeof(fr));
179 if ((uap->flags & RFSPAWN) != 0) {
180 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
181 fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
182 } else {
183 fr.fr_flags = uap->flags;
184 }
185 fr.fr_pidp = &pid;
186 error = fork1(td, &fr);
187 if (error == 0) {
188 td->td_retval[0] = pid;
189 td->td_retval[1] = 0;
190 }
191 return (error);
192 }
193
194 int __exclusive_cache_line nprocs = 1; /* process 0 */
195 int lastpid = 0;
196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
197 "Last used PID");
198
199 /*
200 * Random component to lastpid generation. We mix in a random factor to make
201 * it a little harder to predict. We sanity check the modulus value to avoid
202 * doing it in critical paths. Don't let it be too small or we pointlessly
203 * waste randomness entropy, and don't let it be impossibly large. Using a
204 * modulus that is too big causes a LOT more process table scans and slows
205 * down fork processing as the pidchecked caching is defeated.
206 */
207 static int randompid = 0;
208
209 static int
210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
211 {
212 int error, pid;
213
214 error = sysctl_wire_old_buffer(req, sizeof(int));
215 if (error != 0)
216 return(error);
217 sx_xlock(&allproc_lock);
218 pid = randompid;
219 error = sysctl_handle_int(oidp, &pid, 0, req);
220 if (error == 0 && req->newptr != NULL) {
221 if (pid == 0)
222 randompid = 0;
223 else if (pid == 1)
224 /* generate a random PID modulus between 100 and 1123 */
225 randompid = 100 + arc4random() % 1024;
226 else if (pid < 0 || pid > pid_max - 100)
227 /* out of range */
228 randompid = pid_max - 100;
229 else if (pid < 100)
230 /* Make it reasonable */
231 randompid = 100;
232 else
233 randompid = pid;
234 }
235 sx_xunlock(&allproc_lock);
236 return (error);
237 }
238
239 SYSCTL_PROC(_kern, OID_AUTO, randompid,
240 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
241 sysctl_kern_randompid, "I",
242 "Random PID modulus. Special values: 0: disable, 1: choose random value");
243
244 extern bitstr_t proc_id_pidmap;
245 extern bitstr_t proc_id_grpidmap;
246 extern bitstr_t proc_id_sessidmap;
247 extern bitstr_t proc_id_reapmap;
248
249 /*
250 * Find an unused process ID
251 *
252 * If RFHIGHPID is set (used during system boot), do not allocate
253 * low-numbered pids.
254 */
255 static int
256 fork_findpid(int flags)
257 {
258 pid_t result;
259 int trypid, random;
260
261 /*
262 * Avoid calling arc4random with procid_lock held.
263 */
264 random = 0;
265 if (__predict_false(randompid))
266 random = arc4random() % randompid;
267
268 mtx_lock(&procid_lock);
269
270 trypid = lastpid + 1;
271 if (flags & RFHIGHPID) {
272 if (trypid < 10)
273 trypid = 10;
274 } else {
275 trypid += random;
276 }
277 retry:
278 if (trypid >= pid_max)
279 trypid = 2;
280
281 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
282 if (result == -1) {
283 KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
284 trypid = 2;
285 goto retry;
286 }
287 if (bit_test(&proc_id_grpidmap, result) ||
288 bit_test(&proc_id_sessidmap, result) ||
289 bit_test(&proc_id_reapmap, result)) {
290 trypid = result + 1;
291 goto retry;
292 }
293
294 /*
295 * RFHIGHPID does not mess with the lastpid counter during boot.
296 */
297 if ((flags & RFHIGHPID) == 0)
298 lastpid = result;
299
300 bit_set(&proc_id_pidmap, result);
301 mtx_unlock(&procid_lock);
302
303 return (result);
304 }
305
306 static int
307 fork_norfproc(struct thread *td, int flags)
308 {
309 int error;
310 struct proc *p1;
311
312 KASSERT((flags & RFPROC) == 0,
313 ("fork_norfproc called with RFPROC set"));
314 p1 = td->td_proc;
315
316 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
317 (flags & (RFCFDG | RFFDG))) {
318 PROC_LOCK(p1);
319 if (thread_single(p1, SINGLE_BOUNDARY)) {
320 PROC_UNLOCK(p1);
321 return (ERESTART);
322 }
323 PROC_UNLOCK(p1);
324 }
325
326 error = vm_forkproc(td, NULL, NULL, NULL, flags);
327 if (error)
328 goto fail;
329
330 /*
331 * Close all file descriptors.
332 */
333 if (flags & RFCFDG) {
334 struct filedesc *fdtmp;
335 struct pwddesc *pdtmp;
336 pdtmp = pdinit(td->td_proc->p_pd, false);
337 fdtmp = fdinit(td->td_proc->p_fd, false, NULL);
338 pdescfree(td);
339 fdescfree(td);
340 p1->p_fd = fdtmp;
341 p1->p_pd = pdtmp;
342 }
343
344 /*
345 * Unshare file descriptors (from parent).
346 */
347 if (flags & RFFDG) {
348 fdunshare(td);
349 pdunshare(td);
350 }
351
352 fail:
353 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
354 (flags & (RFCFDG | RFFDG))) {
355 PROC_LOCK(p1);
356 thread_single_end(p1, SINGLE_BOUNDARY);
357 PROC_UNLOCK(p1);
358 }
359 return (error);
360 }
361
362 static void
363 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
364 struct vmspace *vm2, struct file *fp_procdesc)
365 {
366 struct proc *p1, *pptr;
367 struct filedesc *fd;
368 struct filedesc_to_leader *fdtol;
369 struct pwddesc *pd;
370 struct sigacts *newsigacts;
371
372 p1 = td->td_proc;
373
374 PROC_LOCK(p1);
375 bcopy(&p1->p_startcopy, &p2->p_startcopy,
376 __rangeof(struct proc, p_startcopy, p_endcopy));
377 pargs_hold(p2->p_args);
378 PROC_UNLOCK(p1);
379
380 bzero(&p2->p_startzero,
381 __rangeof(struct proc, p_startzero, p_endzero));
382
383 /* Tell the prison that we exist. */
384 prison_proc_hold(p2->p_ucred->cr_prison);
385
386 p2->p_state = PRS_NEW; /* protect against others */
387 p2->p_pid = fork_findpid(fr->fr_flags);
388 AUDIT_ARG_PID(p2->p_pid);
389
390 sx_xlock(&allproc_lock);
391 LIST_INSERT_HEAD(&allproc, p2, p_list);
392 allproc_gen++;
393 sx_xunlock(&allproc_lock);
394
395 sx_xlock(PIDHASHLOCK(p2->p_pid));
396 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
397 sx_xunlock(PIDHASHLOCK(p2->p_pid));
398
399 tidhash_add(td2);
400
401 /*
402 * Malloc things while we don't hold any locks.
403 */
404 if (fr->fr_flags & RFSIGSHARE)
405 newsigacts = NULL;
406 else
407 newsigacts = sigacts_alloc();
408
409 /*
410 * Copy filedesc.
411 */
412 if (fr->fr_flags & RFCFDG) {
413 pd = pdinit(p1->p_pd, false);
414 fd = fdinit(p1->p_fd, false, NULL);
415 fdtol = NULL;
416 } else if (fr->fr_flags & RFFDG) {
417 if (fr->fr_flags2 & FR2_SHARE_PATHS)
418 pd = pdshare(p1->p_pd);
419 else
420 pd = pdcopy(p1->p_pd);
421 fd = fdcopy(p1->p_fd);
422 fdtol = NULL;
423 } else {
424 if (fr->fr_flags2 & FR2_SHARE_PATHS)
425 pd = pdcopy(p1->p_pd);
426 else
427 pd = pdshare(p1->p_pd);
428 fd = fdshare(p1->p_fd);
429 if (p1->p_fdtol == NULL)
430 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
431 p1->p_leader);
432 if ((fr->fr_flags & RFTHREAD) != 0) {
433 /*
434 * Shared file descriptor table, and shared
435 * process leaders.
436 */
437 fdtol = p1->p_fdtol;
438 FILEDESC_XLOCK(p1->p_fd);
439 fdtol->fdl_refcount++;
440 FILEDESC_XUNLOCK(p1->p_fd);
441 } else {
442 /*
443 * Shared file descriptor table, and different
444 * process leaders.
445 */
446 fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
447 p1->p_fd, p2);
448 }
449 }
450 /*
451 * Make a proc table entry for the new process.
452 * Start by zeroing the section of proc that is zero-initialized,
453 * then copy the section that is copied directly from the parent.
454 */
455
456 PROC_LOCK(p2);
457 PROC_LOCK(p1);
458
459 bzero(&td2->td_startzero,
460 __rangeof(struct thread, td_startzero, td_endzero));
461
462 bcopy(&td->td_startcopy, &td2->td_startcopy,
463 __rangeof(struct thread, td_startcopy, td_endcopy));
464
465 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
466 td2->td_sigstk = td->td_sigstk;
467 td2->td_flags = TDF_INMEM;
468 td2->td_lend_user_pri = PRI_MAX;
469
470 #ifdef VIMAGE
471 td2->td_vnet = NULL;
472 td2->td_vnet_lpush = NULL;
473 #endif
474
475 /*
476 * Allow the scheduler to initialize the child.
477 */
478 thread_lock(td);
479 sched_fork(td, td2);
480 thread_unlock(td);
481
482 /*
483 * Duplicate sub-structures as needed.
484 * Increase reference counts on shared objects.
485 */
486 p2->p_flag = P_INMEM;
487 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
488 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
489 P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
490 P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
491 p2->p_swtick = ticks;
492 if (p1->p_flag & P_PROFIL)
493 startprofclock(p2);
494
495 if (fr->fr_flags & RFSIGSHARE) {
496 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
497 } else {
498 sigacts_copy(newsigacts, p1->p_sigacts);
499 p2->p_sigacts = newsigacts;
500 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) {
501 mtx_lock(&p2->p_sigacts->ps_mtx);
502 sig_drop_caught(p2);
503 mtx_unlock(&p2->p_sigacts->ps_mtx);
504 }
505 }
506
507 if (fr->fr_flags & RFTSIGZMB)
508 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
509 else if (fr->fr_flags & RFLINUXTHPN)
510 p2->p_sigparent = SIGUSR1;
511 else
512 p2->p_sigparent = SIGCHLD;
513
514 p2->p_textvp = p1->p_textvp;
515 p2->p_fd = fd;
516 p2->p_fdtol = fdtol;
517 p2->p_pd = pd;
518
519 if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
520 p2->p_flag |= P_PROTECTED;
521 p2->p_flag2 |= P2_INHERIT_PROTECTED;
522 }
523
524 /*
525 * p_limit is copy-on-write. Bump its refcount.
526 */
527 lim_fork(p1, p2);
528
529 thread_cow_get_proc(td2, p2);
530
531 pstats_fork(p1->p_stats, p2->p_stats);
532
533 PROC_UNLOCK(p1);
534 PROC_UNLOCK(p2);
535
536 /* Bump references to the text vnode (for procfs). */
537 if (p2->p_textvp)
538 vrefact(p2->p_textvp);
539
540 /*
541 * Set up linkage for kernel based threading.
542 */
543 if ((fr->fr_flags & RFTHREAD) != 0) {
544 mtx_lock(&ppeers_lock);
545 p2->p_peers = p1->p_peers;
546 p1->p_peers = p2;
547 p2->p_leader = p1->p_leader;
548 mtx_unlock(&ppeers_lock);
549 PROC_LOCK(p1->p_leader);
550 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
551 PROC_UNLOCK(p1->p_leader);
552 /*
553 * The task leader is exiting, so process p1 is
554 * going to be killed shortly. Since p1 obviously
555 * isn't dead yet, we know that the leader is either
556 * sending SIGKILL's to all the processes in this
557 * task or is sleeping waiting for all the peers to
558 * exit. We let p1 complete the fork, but we need
559 * to go ahead and kill the new process p2 since
560 * the task leader may not get a chance to send
561 * SIGKILL to it. We leave it on the list so that
562 * the task leader will wait for this new process
563 * to commit suicide.
564 */
565 PROC_LOCK(p2);
566 kern_psignal(p2, SIGKILL);
567 PROC_UNLOCK(p2);
568 } else
569 PROC_UNLOCK(p1->p_leader);
570 } else {
571 p2->p_peers = NULL;
572 p2->p_leader = p2;
573 }
574
575 sx_xlock(&proctree_lock);
576 PGRP_LOCK(p1->p_pgrp);
577 PROC_LOCK(p2);
578 PROC_LOCK(p1);
579
580 /*
581 * Preserve some more flags in subprocess. P_PROFIL has already
582 * been preserved.
583 */
584 p2->p_flag |= p1->p_flag & P_SUGID;
585 td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK |
586 TDP_SIGFASTBLOCK)) | TDP_FORKING;
587 SESS_LOCK(p1->p_session);
588 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
589 p2->p_flag |= P_CONTROLT;
590 SESS_UNLOCK(p1->p_session);
591 if (fr->fr_flags & RFPPWAIT)
592 p2->p_flag |= P_PPWAIT;
593
594 p2->p_pgrp = p1->p_pgrp;
595 LIST_INSERT_AFTER(p1, p2, p_pglist);
596 PGRP_UNLOCK(p1->p_pgrp);
597 LIST_INIT(&p2->p_children);
598 LIST_INIT(&p2->p_orphans);
599
600 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
601
602 /*
603 * This begins the section where we must prevent the parent
604 * from being swapped.
605 */
606 _PHOLD(p1);
607 PROC_UNLOCK(p1);
608
609 /*
610 * Attach the new process to its parent.
611 *
612 * If RFNOWAIT is set, the newly created process becomes a child
613 * of init. This effectively disassociates the child from the
614 * parent.
615 */
616 if ((fr->fr_flags & RFNOWAIT) != 0) {
617 pptr = p1->p_reaper;
618 p2->p_reaper = pptr;
619 } else {
620 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
621 p1 : p1->p_reaper;
622 pptr = p1;
623 }
624 p2->p_pptr = pptr;
625 p2->p_oppid = pptr->p_pid;
626 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
627 LIST_INIT(&p2->p_reaplist);
628 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
629 if (p2->p_reaper == p1 && p1 != initproc) {
630 p2->p_reapsubtree = p2->p_pid;
631 proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
632 }
633 sx_xunlock(&proctree_lock);
634
635 /* Inform accounting that we have forked. */
636 p2->p_acflag = AFORK;
637 PROC_UNLOCK(p2);
638
639 #ifdef KTRACE
640 ktrprocfork(p1, p2);
641 #endif
642
643 /*
644 * Finish creating the child process. It will return via a different
645 * execution path later. (ie: directly into user mode)
646 */
647 vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
648
649 if (fr->fr_flags == (RFFDG | RFPROC)) {
650 VM_CNT_INC(v_forks);
651 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
652 p2->p_vmspace->vm_ssize);
653 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
654 VM_CNT_INC(v_vforks);
655 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
656 p2->p_vmspace->vm_ssize);
657 } else if (p1 == &proc0) {
658 VM_CNT_INC(v_kthreads);
659 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
660 p2->p_vmspace->vm_ssize);
661 } else {
662 VM_CNT_INC(v_rforks);
663 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
664 p2->p_vmspace->vm_ssize);
665 }
666
667 /*
668 * Associate the process descriptor with the process before anything
669 * can happen that might cause that process to need the descriptor.
670 * However, don't do this until after fork(2) can no longer fail.
671 */
672 if (fr->fr_flags & RFPROCDESC)
673 procdesc_new(p2, fr->fr_pd_flags);
674
675 /*
676 * Both processes are set up, now check if any loadable modules want
677 * to adjust anything.
678 */
679 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
680
681 /*
682 * Set the child start time and mark the process as being complete.
683 */
684 PROC_LOCK(p2);
685 PROC_LOCK(p1);
686 microuptime(&p2->p_stats->p_start);
687 PROC_SLOCK(p2);
688 p2->p_state = PRS_NORMAL;
689 PROC_SUNLOCK(p2);
690
691 #ifdef KDTRACE_HOOKS
692 /*
693 * Tell the DTrace fasttrap provider about the new process so that any
694 * tracepoints inherited from the parent can be removed. We have to do
695 * this only after p_state is PRS_NORMAL since the fasttrap module will
696 * use pfind() later on.
697 */
698 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
699 dtrace_fasttrap_fork(p1, p2);
700 #endif
701 if (fr->fr_flags & RFPPWAIT) {
702 td->td_pflags |= TDP_RFPPWAIT;
703 td->td_rfppwait_p = p2;
704 td->td_dbgflags |= TDB_VFORK;
705 }
706 PROC_UNLOCK(p2);
707
708 /*
709 * Tell any interested parties about the new process.
710 */
711 knote_fork(p1->p_klist, p2->p_pid);
712
713 /*
714 * Now can be swapped.
715 */
716 _PRELE(p1);
717 PROC_UNLOCK(p1);
718 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
719
720 if (fr->fr_flags & RFPROCDESC) {
721 procdesc_finit(p2->p_procdesc, fp_procdesc);
722 fdrop(fp_procdesc, td);
723 }
724
725 /*
726 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
727 * synced with forks in progress so it is OK if we miss it
728 * if being set atm.
729 */
730 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
731 sx_xlock(&proctree_lock);
732 PROC_LOCK(p2);
733
734 /*
735 * p1->p_ptevents & p1->p_pptr are protected by both
736 * process and proctree locks for modifications,
737 * so owning proctree_lock allows the race-free read.
738 */
739 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
740 /*
741 * Arrange for debugger to receive the fork event.
742 *
743 * We can report PL_FLAG_FORKED regardless of
744 * P_FOLLOWFORK settings, but it does not make a sense
745 * for runaway child.
746 */
747 td->td_dbgflags |= TDB_FORK;
748 td->td_dbg_forked = p2->p_pid;
749 td2->td_dbgflags |= TDB_STOPATFORK;
750 proc_set_traced(p2, true);
751 CTR2(KTR_PTRACE,
752 "do_fork: attaching to new child pid %d: oppid %d",
753 p2->p_pid, p2->p_oppid);
754 proc_reparent(p2, p1->p_pptr, false);
755 }
756 PROC_UNLOCK(p2);
757 sx_xunlock(&proctree_lock);
758 }
759
760 racct_proc_fork_done(p2);
761
762 if ((fr->fr_flags & RFSTOPPED) == 0) {
763 if (fr->fr_pidp != NULL)
764 *fr->fr_pidp = p2->p_pid;
765 /*
766 * If RFSTOPPED not requested, make child runnable and
767 * add to run queue.
768 */
769 thread_lock(td2);
770 TD_SET_CAN_RUN(td2);
771 sched_add(td2, SRQ_BORING);
772 } else {
773 *fr->fr_procp = p2;
774 }
775 }
776
777 void
778 fork_rfppwait(struct thread *td)
779 {
780 struct proc *p, *p2;
781
782 MPASS(td->td_pflags & TDP_RFPPWAIT);
783
784 p = td->td_proc;
785 /*
786 * Preserve synchronization semantics of vfork. If
787 * waiting for child to exec or exit, fork set
788 * P_PPWAIT on child, and there we sleep on our proc
789 * (in case of exit).
790 *
791 * Do it after the ptracestop() above is finished, to
792 * not block our debugger until child execs or exits
793 * to finish vfork wait.
794 */
795 td->td_pflags &= ~TDP_RFPPWAIT;
796 p2 = td->td_rfppwait_p;
797 again:
798 PROC_LOCK(p2);
799 while (p2->p_flag & P_PPWAIT) {
800 PROC_LOCK(p);
801 if (thread_suspend_check_needed()) {
802 PROC_UNLOCK(p2);
803 thread_suspend_check(0);
804 PROC_UNLOCK(p);
805 goto again;
806 } else {
807 PROC_UNLOCK(p);
808 }
809 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
810 }
811 PROC_UNLOCK(p2);
812
813 if (td->td_dbgflags & TDB_VFORK) {
814 PROC_LOCK(p);
815 if (p->p_ptevents & PTRACE_VFORK)
816 ptracestop(td, SIGTRAP, NULL);
817 td->td_dbgflags &= ~TDB_VFORK;
818 PROC_UNLOCK(p);
819 }
820 }
821
822 int
823 fork1(struct thread *td, struct fork_req *fr)
824 {
825 struct proc *p1, *newproc;
826 struct thread *td2;
827 struct vmspace *vm2;
828 struct ucred *cred;
829 struct file *fp_procdesc;
830 vm_ooffset_t mem_charged;
831 int error, nprocs_new;
832 static int curfail;
833 static struct timeval lastfail;
834 int flags, pages;
835
836 flags = fr->fr_flags;
837 pages = fr->fr_pages;
838
839 if ((flags & RFSTOPPED) != 0)
840 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
841 else
842 MPASS(fr->fr_procp == NULL);
843
844 /* Check for the undefined or unimplemented flags. */
845 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
846 return (EINVAL);
847
848 /* Signal value requires RFTSIGZMB. */
849 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
850 return (EINVAL);
851
852 /* Can't copy and clear. */
853 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
854 return (EINVAL);
855
856 /* Check the validity of the signal number. */
857 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
858 return (EINVAL);
859
860 if ((flags & RFPROCDESC) != 0) {
861 /* Can't not create a process yet get a process descriptor. */
862 if ((flags & RFPROC) == 0)
863 return (EINVAL);
864
865 /* Must provide a place to put a procdesc if creating one. */
866 if (fr->fr_pd_fd == NULL)
867 return (EINVAL);
868
869 /* Check if we are using supported flags. */
870 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
871 return (EINVAL);
872 }
873
874 p1 = td->td_proc;
875
876 /*
877 * Here we don't create a new process, but we divorce
878 * certain parts of a process from itself.
879 */
880 if ((flags & RFPROC) == 0) {
881 if (fr->fr_procp != NULL)
882 *fr->fr_procp = NULL;
883 else if (fr->fr_pidp != NULL)
884 *fr->fr_pidp = 0;
885 return (fork_norfproc(td, flags));
886 }
887
888 fp_procdesc = NULL;
889 newproc = NULL;
890 vm2 = NULL;
891
892 /*
893 * Increment the nprocs resource before allocations occur.
894 * Although process entries are dynamically created, we still
895 * keep a global limit on the maximum number we will
896 * create. There are hard-limits as to the number of processes
897 * that can run, established by the KVA and memory usage for
898 * the process data.
899 *
900 * Don't allow a nonprivileged user to use the last ten
901 * processes; don't let root exceed the limit.
902 */
903 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
904 if (nprocs_new >= maxproc - 10) {
905 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
906 nprocs_new >= maxproc) {
907 error = EAGAIN;
908 sx_xlock(&allproc_lock);
909 if (ppsratecheck(&lastfail, &curfail, 1)) {
910 printf("maxproc limit exceeded by uid %u "
911 "(pid %d); see tuning(7) and "
912 "login.conf(5)\n",
913 td->td_ucred->cr_ruid, p1->p_pid);
914 }
915 sx_xunlock(&allproc_lock);
916 goto fail2;
917 }
918 }
919
920 /*
921 * If required, create a process descriptor in the parent first; we
922 * will abandon it if something goes wrong. We don't finit() until
923 * later.
924 */
925 if (flags & RFPROCDESC) {
926 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
927 fr->fr_pd_flags, fr->fr_pd_fcaps);
928 if (error != 0)
929 goto fail2;
930 AUDIT_ARG_FD(*fr->fr_pd_fd);
931 }
932
933 mem_charged = 0;
934 if (pages == 0)
935 pages = kstack_pages;
936 /* Allocate new proc. */
937 newproc = uma_zalloc(proc_zone, M_WAITOK);
938 td2 = FIRST_THREAD_IN_PROC(newproc);
939 if (td2 == NULL) {
940 td2 = thread_alloc(pages);
941 if (td2 == NULL) {
942 error = ENOMEM;
943 goto fail2;
944 }
945 proc_linkup(newproc, td2);
946 } else {
947 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
948 if (td2->td_kstack != 0)
949 vm_thread_dispose(td2);
950 if (!thread_alloc_stack(td2, pages)) {
951 error = ENOMEM;
952 goto fail2;
953 }
954 }
955 }
956
957 if ((flags & RFMEM) == 0) {
958 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
959 if (vm2 == NULL) {
960 error = ENOMEM;
961 goto fail2;
962 }
963 if (!swap_reserve(mem_charged)) {
964 /*
965 * The swap reservation failed. The accounting
966 * from the entries of the copied vm2 will be
967 * subtracted in vmspace_free(), so force the
968 * reservation there.
969 */
970 swap_reserve_force(mem_charged);
971 error = ENOMEM;
972 goto fail2;
973 }
974 } else
975 vm2 = NULL;
976
977 /*
978 * XXX: This is ugly; when we copy resource usage, we need to bump
979 * per-cred resource counters.
980 */
981 proc_set_cred_init(newproc, td->td_ucred);
982
983 /*
984 * Initialize resource accounting for the child process.
985 */
986 error = racct_proc_fork(p1, newproc);
987 if (error != 0) {
988 error = EAGAIN;
989 goto fail1;
990 }
991
992 #ifdef MAC
993 mac_proc_init(newproc);
994 #endif
995 newproc->p_klist = knlist_alloc(&newproc->p_mtx);
996 STAILQ_INIT(&newproc->p_ktr);
997
998 /*
999 * Increment the count of procs running with this uid. Don't allow
1000 * a nonprivileged user to exceed their current limit.
1001 */
1002 cred = td->td_ucred;
1003 if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1004 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1005 goto fail0;
1006 chgproccnt(cred->cr_ruidinfo, 1, 0);
1007 }
1008
1009 do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1010 return (0);
1011 fail0:
1012 error = EAGAIN;
1013 #ifdef MAC
1014 mac_proc_destroy(newproc);
1015 #endif
1016 racct_proc_exit(newproc);
1017 fail1:
1018 proc_unset_cred(newproc);
1019 fail2:
1020 if (vm2 != NULL)
1021 vmspace_free(vm2);
1022 uma_zfree(proc_zone, newproc);
1023 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1024 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1025 fdrop(fp_procdesc, td);
1026 }
1027 atomic_add_int(&nprocs, -1);
1028 pause("fork", hz / 2);
1029 return (error);
1030 }
1031
1032 /*
1033 * Handle the return of a child process from fork1(). This function
1034 * is called from the MD fork_trampoline() entry point.
1035 */
1036 void
1037 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1038 struct trapframe *frame)
1039 {
1040 struct proc *p;
1041 struct thread *td;
1042 struct thread *dtd;
1043
1044 td = curthread;
1045 p = td->td_proc;
1046 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1047
1048 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1049 td, td_get_sched(td), p->p_pid, td->td_name);
1050
1051 sched_fork_exit(td);
1052 /*
1053 * Processes normally resume in mi_switch() after being
1054 * cpu_switch()'ed to, but when children start up they arrive here
1055 * instead, so we must do much the same things as mi_switch() would.
1056 */
1057 if ((dtd = PCPU_GET(deadthread))) {
1058 PCPU_SET(deadthread, NULL);
1059 thread_stash(dtd);
1060 }
1061 thread_unlock(td);
1062
1063 /*
1064 * cpu_fork_kthread_handler intercepts this function call to
1065 * have this call a non-return function to stay in kernel mode.
1066 * initproc has its own fork handler, but it does return.
1067 */
1068 KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1069 callout(arg, frame);
1070
1071 /*
1072 * Check if a kernel thread misbehaved and returned from its main
1073 * function.
1074 */
1075 if (p->p_flag & P_KPROC) {
1076 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1077 td->td_name, p->p_pid);
1078 kthread_exit();
1079 }
1080 mtx_assert(&Giant, MA_NOTOWNED);
1081
1082 if (p->p_sysent->sv_schedtail != NULL)
1083 (p->p_sysent->sv_schedtail)(td);
1084 td->td_pflags &= ~TDP_FORKING;
1085 }
1086
1087 /*
1088 * Simplified back end of syscall(), used when returning from fork()
1089 * directly into user mode. This function is passed in to fork_exit()
1090 * as the first parameter and is called when returning to a new
1091 * userland process.
1092 */
1093 void
1094 fork_return(struct thread *td, struct trapframe *frame)
1095 {
1096 struct proc *p;
1097
1098 p = td->td_proc;
1099 if (td->td_dbgflags & TDB_STOPATFORK) {
1100 PROC_LOCK(p);
1101 if ((p->p_flag & P_TRACED) != 0) {
1102 /*
1103 * Inform the debugger if one is still present.
1104 */
1105 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1106 ptracestop(td, SIGSTOP, NULL);
1107 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1108 } else {
1109 /*
1110 * ... otherwise clear the request.
1111 */
1112 td->td_dbgflags &= ~TDB_STOPATFORK;
1113 }
1114 PROC_UNLOCK(p);
1115 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1116 /*
1117 * This is the start of a new thread in a traced
1118 * process. Report a system call exit event.
1119 */
1120 PROC_LOCK(p);
1121 td->td_dbgflags |= TDB_SCX;
1122 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1123 (td->td_dbgflags & TDB_BORN) != 0)
1124 ptracestop(td, SIGTRAP, NULL);
1125 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1126 PROC_UNLOCK(p);
1127 }
1128
1129 /*
1130 * If the prison was killed mid-fork, die along with it.
1131 */
1132 if (!prison_isalive(td->td_ucred->cr_prison))
1133 exit1(td, 0, SIGKILL);
1134
1135 userret(td, frame);
1136
1137 #ifdef KTRACE
1138 if (KTRPOINT(td, KTR_SYSRET))
1139 ktrsysret(SYS_fork, 0, 0);
1140 #endif
1141 }
Cache object: f1efc48cc3b616829974d0843dfc8b4a
|