The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_ktrace.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/bitstring.h>
   48 #include <sys/sysproto.h>
   49 #include <sys/eventhandler.h>
   50 #include <sys/fcntl.h>
   51 #include <sys/filedesc.h>
   52 #include <sys/jail.h>
   53 #include <sys/kernel.h>
   54 #include <sys/kthread.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mutex.h>
   59 #include <sys/priv.h>
   60 #include <sys/proc.h>
   61 #include <sys/procdesc.h>
   62 #include <sys/ptrace.h>
   63 #include <sys/racct.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/sched.h>
   66 #include <sys/syscall.h>
   67 #include <sys/vmmeter.h>
   68 #include <sys/vnode.h>
   69 #include <sys/acct.h>
   70 #include <sys/ktr.h>
   71 #include <sys/ktrace.h>
   72 #include <sys/unistd.h>
   73 #include <sys/sdt.h>
   74 #include <sys/sx.h>
   75 #include <sys/sysent.h>
   76 #include <sys/signalvar.h>
   77 
   78 #include <security/audit/audit.h>
   79 #include <security/mac/mac_framework.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #ifdef KDTRACE_HOOKS
   88 #include <sys/dtrace_bsd.h>
   89 dtrace_fork_func_t      dtrace_fasttrap_fork;
   90 #endif
   91 
   92 SDT_PROVIDER_DECLARE(proc);
   93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
   94 
   95 #ifndef _SYS_SYSPROTO_H_
   96 struct fork_args {
   97         int     dummy;
   98 };
   99 #endif
  100 
  101 /* ARGSUSED */
  102 int
  103 sys_fork(struct thread *td, struct fork_args *uap)
  104 {
  105         struct fork_req fr;
  106         int error, pid;
  107 
  108         bzero(&fr, sizeof(fr));
  109         fr.fr_flags = RFFDG | RFPROC;
  110         fr.fr_pidp = &pid;
  111         error = fork1(td, &fr);
  112         if (error == 0) {
  113                 td->td_retval[0] = pid;
  114                 td->td_retval[1] = 0;
  115         }
  116         return (error);
  117 }
  118 
  119 /* ARGUSED */
  120 int
  121 sys_pdfork(struct thread *td, struct pdfork_args *uap)
  122 {
  123         struct fork_req fr;
  124         int error, fd, pid;
  125 
  126         bzero(&fr, sizeof(fr));
  127         fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
  128         fr.fr_pidp = &pid;
  129         fr.fr_pd_fd = &fd;
  130         fr.fr_pd_flags = uap->flags;
  131         AUDIT_ARG_FFLAGS(uap->flags);
  132         /*
  133          * It is necessary to return fd by reference because 0 is a valid file
  134          * descriptor number, and the child needs to be able to distinguish
  135          * itself from the parent using the return value.
  136          */
  137         error = fork1(td, &fr);
  138         if (error == 0) {
  139                 td->td_retval[0] = pid;
  140                 td->td_retval[1] = 0;
  141                 error = copyout(&fd, uap->fdp, sizeof(fd));
  142         }
  143         return (error);
  144 }
  145 
  146 /* ARGSUSED */
  147 int
  148 sys_vfork(struct thread *td, struct vfork_args *uap)
  149 {
  150         struct fork_req fr;
  151         int error, pid;
  152 
  153         bzero(&fr, sizeof(fr));
  154         fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  155         fr.fr_pidp = &pid;
  156         error = fork1(td, &fr);
  157         if (error == 0) {
  158                 td->td_retval[0] = pid;
  159                 td->td_retval[1] = 0;
  160         }
  161         return (error);
  162 }
  163 
  164 int
  165 sys_rfork(struct thread *td, struct rfork_args *uap)
  166 {
  167         struct fork_req fr;
  168         int error, pid;
  169 
  170         /* Don't allow kernel-only flags. */
  171         if ((uap->flags & RFKERNELONLY) != 0)
  172                 return (EINVAL);
  173         /* RFSPAWN must not appear with others */
  174         if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
  175                 return (EINVAL);
  176 
  177         AUDIT_ARG_FFLAGS(uap->flags);
  178         bzero(&fr, sizeof(fr));
  179         if ((uap->flags & RFSPAWN) != 0) {
  180                 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  181                 fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
  182         } else {
  183                 fr.fr_flags = uap->flags;
  184         }
  185         fr.fr_pidp = &pid;
  186         error = fork1(td, &fr);
  187         if (error == 0) {
  188                 td->td_retval[0] = pid;
  189                 td->td_retval[1] = 0;
  190         }
  191         return (error);
  192 }
  193 
  194 int __exclusive_cache_line      nprocs = 1;             /* process 0 */
  195 int     lastpid = 0;
  196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
  197     "Last used PID");
  198 
  199 /*
  200  * Random component to lastpid generation.  We mix in a random factor to make
  201  * it a little harder to predict.  We sanity check the modulus value to avoid
  202  * doing it in critical paths.  Don't let it be too small or we pointlessly
  203  * waste randomness entropy, and don't let it be impossibly large.  Using a
  204  * modulus that is too big causes a LOT more process table scans and slows
  205  * down fork processing as the pidchecked caching is defeated.
  206  */
  207 static int randompid = 0;
  208 
  209 static int
  210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  211 {
  212         int error, pid;
  213 
  214         error = sysctl_wire_old_buffer(req, sizeof(int));
  215         if (error != 0)
  216                 return(error);
  217         sx_xlock(&allproc_lock);
  218         pid = randompid;
  219         error = sysctl_handle_int(oidp, &pid, 0, req);
  220         if (error == 0 && req->newptr != NULL) {
  221                 if (pid == 0)
  222                         randompid = 0;
  223                 else if (pid == 1)
  224                         /* generate a random PID modulus between 100 and 1123 */
  225                         randompid = 100 + arc4random() % 1024;
  226                 else if (pid < 0 || pid > pid_max - 100)
  227                         /* out of range */
  228                         randompid = pid_max - 100;
  229                 else if (pid < 100)
  230                         /* Make it reasonable */
  231                         randompid = 100;
  232                 else
  233                         randompid = pid;
  234         }
  235         sx_xunlock(&allproc_lock);
  236         return (error);
  237 }
  238 
  239 SYSCTL_PROC(_kern, OID_AUTO, randompid,
  240     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  241     sysctl_kern_randompid, "I",
  242     "Random PID modulus. Special values: 0: disable, 1: choose random value");
  243 
  244 extern bitstr_t proc_id_pidmap;
  245 extern bitstr_t proc_id_grpidmap;
  246 extern bitstr_t proc_id_sessidmap;
  247 extern bitstr_t proc_id_reapmap;
  248 
  249 /*
  250  * Find an unused process ID
  251  *
  252  * If RFHIGHPID is set (used during system boot), do not allocate
  253  * low-numbered pids.
  254  */
  255 static int
  256 fork_findpid(int flags)
  257 {
  258         pid_t result;
  259         int trypid, random;
  260 
  261         /*
  262          * Avoid calling arc4random with procid_lock held.
  263          */
  264         random = 0;
  265         if (__predict_false(randompid))
  266                 random = arc4random() % randompid;
  267 
  268         mtx_lock(&procid_lock);
  269 
  270         trypid = lastpid + 1;
  271         if (flags & RFHIGHPID) {
  272                 if (trypid < 10)
  273                         trypid = 10;
  274         } else {
  275                 trypid += random;
  276         }
  277 retry:
  278         if (trypid >= pid_max)
  279                 trypid = 2;
  280 
  281         bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
  282         if (result == -1) {
  283                 KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
  284                 trypid = 2;
  285                 goto retry;
  286         }
  287         if (bit_test(&proc_id_grpidmap, result) ||
  288             bit_test(&proc_id_sessidmap, result) ||
  289             bit_test(&proc_id_reapmap, result)) {
  290                 trypid = result + 1;
  291                 goto retry;
  292         }
  293 
  294         /*
  295          * RFHIGHPID does not mess with the lastpid counter during boot.
  296          */
  297         if ((flags & RFHIGHPID) == 0)
  298                 lastpid = result;
  299 
  300         bit_set(&proc_id_pidmap, result);
  301         mtx_unlock(&procid_lock);
  302 
  303         return (result);
  304 }
  305 
  306 static int
  307 fork_norfproc(struct thread *td, int flags)
  308 {
  309         struct proc *p1;
  310         int error;
  311 
  312         KASSERT((flags & RFPROC) == 0,
  313             ("fork_norfproc called with RFPROC set"));
  314         p1 = td->td_proc;
  315 
  316         /*
  317          * Quiesce other threads if necessary.  If RFMEM is not specified we
  318          * must ensure that other threads do not concurrently create a second
  319          * process sharing the vmspace, see vmspace_unshare().
  320          */
  321         if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
  322             ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
  323                 PROC_LOCK(p1);
  324                 if (thread_single(p1, SINGLE_BOUNDARY)) {
  325                         PROC_UNLOCK(p1);
  326                         return (ERESTART);
  327                 }
  328                 PROC_UNLOCK(p1);
  329         }
  330 
  331         error = vm_forkproc(td, NULL, NULL, NULL, flags);
  332         if (error != 0)
  333                 goto fail;
  334 
  335         /*
  336          * Close all file descriptors.
  337          */
  338         if ((flags & RFCFDG) != 0) {
  339                 struct filedesc *fdtmp;
  340                 struct pwddesc *pdtmp;
  341 
  342                 pdtmp = pdinit(td->td_proc->p_pd, false);
  343                 fdtmp = fdinit(td->td_proc->p_fd, false, NULL);
  344                 pdescfree(td);
  345                 fdescfree(td);
  346                 p1->p_fd = fdtmp;
  347                 p1->p_pd = pdtmp;
  348         }
  349 
  350         /*
  351          * Unshare file descriptors (from parent).
  352          */
  353         if ((flags & RFFDG) != 0) {
  354                 fdunshare(td);
  355                 pdunshare(td);
  356         }
  357 
  358 fail:
  359         if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
  360             ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
  361                 PROC_LOCK(p1);
  362                 thread_single_end(p1, SINGLE_BOUNDARY);
  363                 PROC_UNLOCK(p1);
  364         }
  365         return (error);
  366 }
  367 
  368 static void
  369 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
  370     struct vmspace *vm2, struct file *fp_procdesc)
  371 {
  372         struct proc *p1, *pptr;
  373         struct filedesc *fd;
  374         struct filedesc_to_leader *fdtol;
  375         struct pwddesc *pd;
  376         struct sigacts *newsigacts;
  377 
  378         p1 = td->td_proc;
  379 
  380         PROC_LOCK(p1);
  381         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  382             __rangeof(struct proc, p_startcopy, p_endcopy));
  383         pargs_hold(p2->p_args);
  384         PROC_UNLOCK(p1);
  385 
  386         bzero(&p2->p_startzero,
  387             __rangeof(struct proc, p_startzero, p_endzero));
  388 
  389         /* Tell the prison that we exist. */
  390         prison_proc_hold(p2->p_ucred->cr_prison);
  391 
  392         p2->p_state = PRS_NEW;          /* protect against others */
  393         p2->p_pid = fork_findpid(fr->fr_flags);
  394         AUDIT_ARG_PID(p2->p_pid);
  395         TSFORK(p2->p_pid, p1->p_pid);
  396 
  397         sx_xlock(&allproc_lock);
  398         LIST_INSERT_HEAD(&allproc, p2, p_list);
  399         allproc_gen++;
  400         sx_xunlock(&allproc_lock);
  401 
  402         sx_xlock(PIDHASHLOCK(p2->p_pid));
  403         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  404         sx_xunlock(PIDHASHLOCK(p2->p_pid));
  405 
  406         tidhash_add(td2);
  407 
  408         /*
  409          * Malloc things while we don't hold any locks.
  410          */
  411         if (fr->fr_flags & RFSIGSHARE)
  412                 newsigacts = NULL;
  413         else
  414                 newsigacts = sigacts_alloc();
  415 
  416         /*
  417          * Copy filedesc.
  418          */
  419         if (fr->fr_flags & RFCFDG) {
  420                 pd = pdinit(p1->p_pd, false);
  421                 fd = fdinit(p1->p_fd, false, NULL);
  422                 fdtol = NULL;
  423         } else if (fr->fr_flags & RFFDG) {
  424                 if (fr->fr_flags2 & FR2_SHARE_PATHS)
  425                         pd = pdshare(p1->p_pd);
  426                 else
  427                         pd = pdcopy(p1->p_pd);
  428                 fd = fdcopy(p1->p_fd);
  429                 fdtol = NULL;
  430         } else {
  431                 if (fr->fr_flags2 & FR2_SHARE_PATHS)
  432                         pd = pdcopy(p1->p_pd);
  433                 else
  434                         pd = pdshare(p1->p_pd);
  435                 fd = fdshare(p1->p_fd);
  436                 if (p1->p_fdtol == NULL)
  437                         p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
  438                             p1->p_leader);
  439                 if ((fr->fr_flags & RFTHREAD) != 0) {
  440                         /*
  441                          * Shared file descriptor table, and shared
  442                          * process leaders.
  443                          */
  444                         fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
  445                 } else {
  446                         /*
  447                          * Shared file descriptor table, and different
  448                          * process leaders.
  449                          */
  450                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  451                             p1->p_fd, p2);
  452                 }
  453         }
  454         /*
  455          * Make a proc table entry for the new process.
  456          * Start by zeroing the section of proc that is zero-initialized,
  457          * then copy the section that is copied directly from the parent.
  458          */
  459 
  460         PROC_LOCK(p2);
  461         PROC_LOCK(p1);
  462 
  463         bzero(&td2->td_startzero,
  464             __rangeof(struct thread, td_startzero, td_endzero));
  465 
  466         bcopy(&td->td_startcopy, &td2->td_startcopy,
  467             __rangeof(struct thread, td_startcopy, td_endcopy));
  468 
  469         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  470         td2->td_sigstk = td->td_sigstk;
  471         td2->td_flags = TDF_INMEM;
  472         td2->td_lend_user_pri = PRI_MAX;
  473 
  474 #ifdef VIMAGE
  475         td2->td_vnet = NULL;
  476         td2->td_vnet_lpush = NULL;
  477 #endif
  478 
  479         /*
  480          * Allow the scheduler to initialize the child.
  481          */
  482         thread_lock(td);
  483         sched_fork(td, td2);
  484         thread_unlock(td);
  485 
  486         /*
  487          * Duplicate sub-structures as needed.
  488          * Increase reference counts on shared objects.
  489          */
  490         p2->p_flag = P_INMEM;
  491         p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
  492             P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
  493             P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
  494             P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
  495             P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
  496         p2->p_swtick = ticks;
  497         if (p1->p_flag & P_PROFIL)
  498                 startprofclock(p2);
  499 
  500         if (fr->fr_flags & RFSIGSHARE) {
  501                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  502         } else {
  503                 sigacts_copy(newsigacts, p1->p_sigacts);
  504                 p2->p_sigacts = newsigacts;
  505                 if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
  506                         mtx_lock(&p2->p_sigacts->ps_mtx);
  507                         if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
  508                                 sig_drop_caught(p2);
  509                         if ((fr->fr_flags2 & FR2_KPROC) != 0)
  510                                 p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
  511                         mtx_unlock(&p2->p_sigacts->ps_mtx);
  512                 }
  513         }
  514 
  515         if (fr->fr_flags & RFTSIGZMB)
  516                 p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
  517         else if (fr->fr_flags & RFLINUXTHPN)
  518                 p2->p_sigparent = SIGUSR1;
  519         else
  520                 p2->p_sigparent = SIGCHLD;
  521 
  522         if ((fr->fr_flags2 & FR2_KPROC) != 0) {
  523                 p2->p_flag |= P_SYSTEM | P_KPROC;
  524                 td2->td_pflags |= TDP_KTHREAD;
  525         }
  526 
  527         p2->p_textvp = p1->p_textvp;
  528         p2->p_textdvp = p1->p_textdvp;
  529         p2->p_fd = fd;
  530         p2->p_fdtol = fdtol;
  531         p2->p_pd = pd;
  532         p2->p_elf_brandinfo = p1->p_elf_brandinfo;
  533 
  534         if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
  535                 p2->p_flag |= P_PROTECTED;
  536                 p2->p_flag2 |= P2_INHERIT_PROTECTED;
  537         }
  538 
  539         /*
  540          * p_limit is copy-on-write.  Bump its refcount.
  541          */
  542         lim_fork(p1, p2);
  543 
  544         thread_cow_get_proc(td2, p2);
  545 
  546         pstats_fork(p1->p_stats, p2->p_stats);
  547 
  548         PROC_UNLOCK(p1);
  549         PROC_UNLOCK(p2);
  550 
  551         /*
  552          * Bump references to the text vnode and directory, and copy
  553          * the hardlink name.
  554          */
  555         if (p2->p_textvp != NULL)
  556                 vrefact(p2->p_textvp);
  557         if (p2->p_textdvp != NULL)
  558                 vrefact(p2->p_textdvp);
  559         p2->p_binname = p1->p_binname == NULL ? NULL :
  560             strdup(p1->p_binname, M_PARGS);
  561 
  562         /*
  563          * Set up linkage for kernel based threading.
  564          */
  565         if ((fr->fr_flags & RFTHREAD) != 0) {
  566                 mtx_lock(&ppeers_lock);
  567                 p2->p_peers = p1->p_peers;
  568                 p1->p_peers = p2;
  569                 p2->p_leader = p1->p_leader;
  570                 mtx_unlock(&ppeers_lock);
  571                 PROC_LOCK(p1->p_leader);
  572                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  573                         PROC_UNLOCK(p1->p_leader);
  574                         /*
  575                          * The task leader is exiting, so process p1 is
  576                          * going to be killed shortly.  Since p1 obviously
  577                          * isn't dead yet, we know that the leader is either
  578                          * sending SIGKILL's to all the processes in this
  579                          * task or is sleeping waiting for all the peers to
  580                          * exit.  We let p1 complete the fork, but we need
  581                          * to go ahead and kill the new process p2 since
  582                          * the task leader may not get a chance to send
  583                          * SIGKILL to it.  We leave it on the list so that
  584                          * the task leader will wait for this new process
  585                          * to commit suicide.
  586                          */
  587                         PROC_LOCK(p2);
  588                         kern_psignal(p2, SIGKILL);
  589                         PROC_UNLOCK(p2);
  590                 } else
  591                         PROC_UNLOCK(p1->p_leader);
  592         } else {
  593                 p2->p_peers = NULL;
  594                 p2->p_leader = p2;
  595         }
  596 
  597         sx_xlock(&proctree_lock);
  598         PGRP_LOCK(p1->p_pgrp);
  599         PROC_LOCK(p2);
  600         PROC_LOCK(p1);
  601 
  602         /*
  603          * Preserve some more flags in subprocess.  P_PROFIL has already
  604          * been preserved.
  605          */
  606         p2->p_flag |= p1->p_flag & P_SUGID;
  607         td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK |
  608             TDP_SIGFASTBLOCK)) | TDP_FORKING;
  609         SESS_LOCK(p1->p_session);
  610         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  611                 p2->p_flag |= P_CONTROLT;
  612         SESS_UNLOCK(p1->p_session);
  613         if (fr->fr_flags & RFPPWAIT)
  614                 p2->p_flag |= P_PPWAIT;
  615 
  616         p2->p_pgrp = p1->p_pgrp;
  617         LIST_INSERT_AFTER(p1, p2, p_pglist);
  618         PGRP_UNLOCK(p1->p_pgrp);
  619         LIST_INIT(&p2->p_children);
  620         LIST_INIT(&p2->p_orphans);
  621 
  622         callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
  623         TAILQ_INIT(&p2->p_kqtim_stop);
  624 
  625         /*
  626          * This begins the section where we must prevent the parent
  627          * from being swapped.
  628          */
  629         _PHOLD(p1);
  630         PROC_UNLOCK(p1);
  631 
  632         /*
  633          * Attach the new process to its parent.
  634          *
  635          * If RFNOWAIT is set, the newly created process becomes a child
  636          * of init.  This effectively disassociates the child from the
  637          * parent.
  638          */
  639         if ((fr->fr_flags & RFNOWAIT) != 0) {
  640                 pptr = p1->p_reaper;
  641                 p2->p_reaper = pptr;
  642         } else {
  643                 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
  644                     p1 : p1->p_reaper;
  645                 pptr = p1;
  646         }
  647         p2->p_pptr = pptr;
  648         p2->p_oppid = pptr->p_pid;
  649         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  650         LIST_INIT(&p2->p_reaplist);
  651         LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
  652         if (p2->p_reaper == p1 && p1 != initproc) {
  653                 p2->p_reapsubtree = p2->p_pid;
  654                 proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
  655         }
  656         sx_xunlock(&proctree_lock);
  657 
  658         /* Inform accounting that we have forked. */
  659         p2->p_acflag = AFORK;
  660         PROC_UNLOCK(p2);
  661 
  662 #ifdef KTRACE
  663         ktrprocfork(p1, p2);
  664 #endif
  665 
  666         /*
  667          * Finish creating the child process.  It will return via a different
  668          * execution path later.  (ie: directly into user mode)
  669          */
  670         vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
  671 
  672         if (fr->fr_flags == (RFFDG | RFPROC)) {
  673                 VM_CNT_INC(v_forks);
  674                 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
  675                     p2->p_vmspace->vm_ssize);
  676         } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  677                 VM_CNT_INC(v_vforks);
  678                 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
  679                     p2->p_vmspace->vm_ssize);
  680         } else if (p1 == &proc0) {
  681                 VM_CNT_INC(v_kthreads);
  682                 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
  683                     p2->p_vmspace->vm_ssize);
  684         } else {
  685                 VM_CNT_INC(v_rforks);
  686                 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
  687                     p2->p_vmspace->vm_ssize);
  688         }
  689 
  690         /*
  691          * Associate the process descriptor with the process before anything
  692          * can happen that might cause that process to need the descriptor.
  693          * However, don't do this until after fork(2) can no longer fail.
  694          */
  695         if (fr->fr_flags & RFPROCDESC)
  696                 procdesc_new(p2, fr->fr_pd_flags);
  697 
  698         /*
  699          * Both processes are set up, now check if any loadable modules want
  700          * to adjust anything.
  701          */
  702         EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
  703 
  704         /*
  705          * Set the child start time and mark the process as being complete.
  706          */
  707         PROC_LOCK(p2);
  708         PROC_LOCK(p1);
  709         microuptime(&p2->p_stats->p_start);
  710         PROC_SLOCK(p2);
  711         p2->p_state = PRS_NORMAL;
  712         PROC_SUNLOCK(p2);
  713 
  714 #ifdef KDTRACE_HOOKS
  715         /*
  716          * Tell the DTrace fasttrap provider about the new process so that any
  717          * tracepoints inherited from the parent can be removed. We have to do
  718          * this only after p_state is PRS_NORMAL since the fasttrap module will
  719          * use pfind() later on.
  720          */
  721         if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
  722                 dtrace_fasttrap_fork(p1, p2);
  723 #endif
  724         if (fr->fr_flags & RFPPWAIT) {
  725                 td->td_pflags |= TDP_RFPPWAIT;
  726                 td->td_rfppwait_p = p2;
  727                 td->td_dbgflags |= TDB_VFORK;
  728         }
  729         PROC_UNLOCK(p2);
  730 
  731         /*
  732          * Tell any interested parties about the new process.
  733          */
  734         knote_fork(p1->p_klist, p2->p_pid);
  735 
  736         /*
  737          * Now can be swapped.
  738          */
  739         _PRELE(p1);
  740         PROC_UNLOCK(p1);
  741         SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
  742 
  743         if (fr->fr_flags & RFPROCDESC) {
  744                 procdesc_finit(p2->p_procdesc, fp_procdesc);
  745                 fdrop(fp_procdesc, td);
  746         }
  747 
  748         /*
  749          * Speculative check for PTRACE_FORK. PTRACE_FORK is not
  750          * synced with forks in progress so it is OK if we miss it
  751          * if being set atm.
  752          */
  753         if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  754                 sx_xlock(&proctree_lock);
  755                 PROC_LOCK(p2);
  756 
  757                 /*
  758                  * p1->p_ptevents & p1->p_pptr are protected by both
  759                  * process and proctree locks for modifications,
  760                  * so owning proctree_lock allows the race-free read.
  761                  */
  762                 if ((p1->p_ptevents & PTRACE_FORK) != 0) {
  763                         /*
  764                          * Arrange for debugger to receive the fork event.
  765                          *
  766                          * We can report PL_FLAG_FORKED regardless of
  767                          * P_FOLLOWFORK settings, but it does not make a sense
  768                          * for runaway child.
  769                          */
  770                         td->td_dbgflags |= TDB_FORK;
  771                         td->td_dbg_forked = p2->p_pid;
  772                         td2->td_dbgflags |= TDB_STOPATFORK;
  773                         proc_set_traced(p2, true);
  774                         CTR2(KTR_PTRACE,
  775                             "do_fork: attaching to new child pid %d: oppid %d",
  776                             p2->p_pid, p2->p_oppid);
  777                         proc_reparent(p2, p1->p_pptr, false);
  778                 }
  779                 PROC_UNLOCK(p2);
  780                 sx_xunlock(&proctree_lock);
  781         }
  782 
  783         racct_proc_fork_done(p2);
  784 
  785         if ((fr->fr_flags & RFSTOPPED) == 0) {
  786                 if (fr->fr_pidp != NULL)
  787                         *fr->fr_pidp = p2->p_pid;
  788                 /*
  789                  * If RFSTOPPED not requested, make child runnable and
  790                  * add to run queue.
  791                  */
  792                 thread_lock(td2);
  793                 TD_SET_CAN_RUN(td2);
  794                 sched_add(td2, SRQ_BORING);
  795         } else {
  796                 *fr->fr_procp = p2;
  797         }
  798 }
  799 
  800 void
  801 fork_rfppwait(struct thread *td)
  802 {
  803         struct proc *p, *p2;
  804 
  805         MPASS(td->td_pflags & TDP_RFPPWAIT);
  806 
  807         p = td->td_proc;
  808         /*
  809          * Preserve synchronization semantics of vfork.  If
  810          * waiting for child to exec or exit, fork set
  811          * P_PPWAIT on child, and there we sleep on our proc
  812          * (in case of exit).
  813          *
  814          * Do it after the ptracestop() above is finished, to
  815          * not block our debugger until child execs or exits
  816          * to finish vfork wait.
  817          */
  818         td->td_pflags &= ~TDP_RFPPWAIT;
  819         p2 = td->td_rfppwait_p;
  820 again:
  821         PROC_LOCK(p2);
  822         while (p2->p_flag & P_PPWAIT) {
  823                 PROC_LOCK(p);
  824                 if (thread_suspend_check_needed()) {
  825                         PROC_UNLOCK(p2);
  826                         thread_suspend_check(0);
  827                         PROC_UNLOCK(p);
  828                         goto again;
  829                 } else {
  830                         PROC_UNLOCK(p);
  831                 }
  832                 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
  833         }
  834         PROC_UNLOCK(p2);
  835 
  836         if (td->td_dbgflags & TDB_VFORK) {
  837                 PROC_LOCK(p);
  838                 if (p->p_ptevents & PTRACE_VFORK)
  839                         ptracestop(td, SIGTRAP, NULL);
  840                 td->td_dbgflags &= ~TDB_VFORK;
  841                 PROC_UNLOCK(p);
  842         }
  843 }
  844 
  845 int
  846 fork1(struct thread *td, struct fork_req *fr)
  847 {
  848         struct proc *p1, *newproc;
  849         struct thread *td2;
  850         struct vmspace *vm2;
  851         struct ucred *cred;
  852         struct file *fp_procdesc;
  853         vm_ooffset_t mem_charged;
  854         int error, nprocs_new;
  855         static int curfail;
  856         static struct timeval lastfail;
  857         int flags, pages;
  858 
  859         flags = fr->fr_flags;
  860         pages = fr->fr_pages;
  861 
  862         if ((flags & RFSTOPPED) != 0)
  863                 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
  864         else
  865                 MPASS(fr->fr_procp == NULL);
  866 
  867         /* Check for the undefined or unimplemented flags. */
  868         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  869                 return (EINVAL);
  870 
  871         /* Signal value requires RFTSIGZMB. */
  872         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  873                 return (EINVAL);
  874 
  875         /* Can't copy and clear. */
  876         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  877                 return (EINVAL);
  878 
  879         /* Check the validity of the signal number. */
  880         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  881                 return (EINVAL);
  882 
  883         if ((flags & RFPROCDESC) != 0) {
  884                 /* Can't not create a process yet get a process descriptor. */
  885                 if ((flags & RFPROC) == 0)
  886                         return (EINVAL);
  887 
  888                 /* Must provide a place to put a procdesc if creating one. */
  889                 if (fr->fr_pd_fd == NULL)
  890                         return (EINVAL);
  891 
  892                 /* Check if we are using supported flags. */
  893                 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
  894                         return (EINVAL);
  895         }
  896 
  897         p1 = td->td_proc;
  898 
  899         /*
  900          * Here we don't create a new process, but we divorce
  901          * certain parts of a process from itself.
  902          */
  903         if ((flags & RFPROC) == 0) {
  904                 if (fr->fr_procp != NULL)
  905                         *fr->fr_procp = NULL;
  906                 else if (fr->fr_pidp != NULL)
  907                         *fr->fr_pidp = 0;
  908                 return (fork_norfproc(td, flags));
  909         }
  910 
  911         fp_procdesc = NULL;
  912         newproc = NULL;
  913         vm2 = NULL;
  914 
  915         /*
  916          * Increment the nprocs resource before allocations occur.
  917          * Although process entries are dynamically created, we still
  918          * keep a global limit on the maximum number we will
  919          * create. There are hard-limits as to the number of processes
  920          * that can run, established by the KVA and memory usage for
  921          * the process data.
  922          *
  923          * Don't allow a nonprivileged user to use the last ten
  924          * processes; don't let root exceed the limit.
  925          */
  926         nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
  927         if (nprocs_new >= maxproc - 10) {
  928                 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
  929                     nprocs_new >= maxproc) {
  930                         error = EAGAIN;
  931                         sx_xlock(&allproc_lock);
  932                         if (ppsratecheck(&lastfail, &curfail, 1)) {
  933                                 printf("maxproc limit exceeded by uid %u "
  934                                     "(pid %d); see tuning(7) and "
  935                                     "login.conf(5)\n",
  936                                     td->td_ucred->cr_ruid, p1->p_pid);
  937                         }
  938                         sx_xunlock(&allproc_lock);
  939                         goto fail2;
  940                 }
  941         }
  942 
  943         /*
  944          * If required, create a process descriptor in the parent first; we
  945          * will abandon it if something goes wrong. We don't finit() until
  946          * later.
  947          */
  948         if (flags & RFPROCDESC) {
  949                 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
  950                     fr->fr_pd_flags, fr->fr_pd_fcaps);
  951                 if (error != 0)
  952                         goto fail2;
  953                 AUDIT_ARG_FD(*fr->fr_pd_fd);
  954         }
  955 
  956         mem_charged = 0;
  957         if (pages == 0)
  958                 pages = kstack_pages;
  959         /* Allocate new proc. */
  960         newproc = uma_zalloc(proc_zone, M_WAITOK);
  961         td2 = FIRST_THREAD_IN_PROC(newproc);
  962         if (td2 == NULL) {
  963                 td2 = thread_alloc(pages);
  964                 if (td2 == NULL) {
  965                         error = ENOMEM;
  966                         goto fail2;
  967                 }
  968                 proc_linkup(newproc, td2);
  969         } else {
  970                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  971                         if (td2->td_kstack != 0)
  972                                 vm_thread_dispose(td2);
  973                         if (!thread_alloc_stack(td2, pages)) {
  974                                 error = ENOMEM;
  975                                 goto fail2;
  976                         }
  977                 }
  978         }
  979 
  980         if ((flags & RFMEM) == 0) {
  981                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  982                 if (vm2 == NULL) {
  983                         error = ENOMEM;
  984                         goto fail2;
  985                 }
  986                 if (!swap_reserve(mem_charged)) {
  987                         /*
  988                          * The swap reservation failed. The accounting
  989                          * from the entries of the copied vm2 will be
  990                          * subtracted in vmspace_free(), so force the
  991                          * reservation there.
  992                          */
  993                         swap_reserve_force(mem_charged);
  994                         error = ENOMEM;
  995                         goto fail2;
  996                 }
  997         } else
  998                 vm2 = NULL;
  999 
 1000         /*
 1001          * XXX: This is ugly; when we copy resource usage, we need to bump
 1002          *      per-cred resource counters.
 1003          */
 1004         proc_set_cred_init(newproc, td->td_ucred);
 1005 
 1006         /*
 1007          * Initialize resource accounting for the child process.
 1008          */
 1009         error = racct_proc_fork(p1, newproc);
 1010         if (error != 0) {
 1011                 error = EAGAIN;
 1012                 goto fail1;
 1013         }
 1014 
 1015 #ifdef MAC
 1016         mac_proc_init(newproc);
 1017 #endif
 1018         newproc->p_klist = knlist_alloc(&newproc->p_mtx);
 1019         STAILQ_INIT(&newproc->p_ktr);
 1020 
 1021         /*
 1022          * Increment the count of procs running with this uid. Don't allow
 1023          * a nonprivileged user to exceed their current limit.
 1024          */
 1025         cred = td->td_ucred;
 1026         if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
 1027                 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
 1028                         goto fail0;
 1029                 chgproccnt(cred->cr_ruidinfo, 1, 0);
 1030         }
 1031 
 1032         do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
 1033         return (0);
 1034 fail0:
 1035         error = EAGAIN;
 1036 #ifdef MAC
 1037         mac_proc_destroy(newproc);
 1038 #endif
 1039         racct_proc_exit(newproc);
 1040 fail1:
 1041         proc_unset_cred(newproc);
 1042 fail2:
 1043         if (vm2 != NULL)
 1044                 vmspace_free(vm2);
 1045         uma_zfree(proc_zone, newproc);
 1046         if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
 1047                 fdclose(td, fp_procdesc, *fr->fr_pd_fd);
 1048                 fdrop(fp_procdesc, td);
 1049         }
 1050         atomic_add_int(&nprocs, -1);
 1051         pause("fork", hz / 2);
 1052         return (error);
 1053 }
 1054 
 1055 /*
 1056  * Handle the return of a child process from fork1().  This function
 1057  * is called from the MD fork_trampoline() entry point.
 1058  */
 1059 void
 1060 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
 1061     struct trapframe *frame)
 1062 {
 1063         struct proc *p;
 1064         struct thread *td;
 1065         struct thread *dtd;
 1066 
 1067         td = curthread;
 1068         p = td->td_proc;
 1069         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
 1070 
 1071         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
 1072             td, td_get_sched(td), p->p_pid, td->td_name);
 1073 
 1074         sched_fork_exit(td);
 1075 
 1076         /*
 1077          * Processes normally resume in mi_switch() after being
 1078          * cpu_switch()'ed to, but when children start up they arrive here
 1079          * instead, so we must do much the same things as mi_switch() would.
 1080          */
 1081         if ((dtd = PCPU_GET(deadthread))) {
 1082                 PCPU_SET(deadthread, NULL);
 1083                 thread_stash(dtd);
 1084         }
 1085         thread_unlock(td);
 1086 
 1087         /*
 1088          * cpu_fork_kthread_handler intercepts this function call to
 1089          * have this call a non-return function to stay in kernel mode.
 1090          * initproc has its own fork handler, but it does return.
 1091          */
 1092         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
 1093         callout(arg, frame);
 1094 
 1095         /*
 1096          * Check if a kernel thread misbehaved and returned from its main
 1097          * function.
 1098          */
 1099         if (p->p_flag & P_KPROC) {
 1100                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
 1101                     td->td_name, p->p_pid);
 1102                 kthread_exit();
 1103         }
 1104         mtx_assert(&Giant, MA_NOTOWNED);
 1105 
 1106         if (p->p_sysent->sv_schedtail != NULL)
 1107                 (p->p_sysent->sv_schedtail)(td);
 1108         td->td_pflags &= ~TDP_FORKING;
 1109 }
 1110 
 1111 /*
 1112  * Simplified back end of syscall(), used when returning from fork()
 1113  * directly into user mode.  This function is passed in to fork_exit()
 1114  * as the first parameter and is called when returning to a new
 1115  * userland process.
 1116  */
 1117 void
 1118 fork_return(struct thread *td, struct trapframe *frame)
 1119 {
 1120         struct proc *p;
 1121 
 1122         p = td->td_proc;
 1123         if (td->td_dbgflags & TDB_STOPATFORK) {
 1124                 PROC_LOCK(p);
 1125                 if ((p->p_flag & P_TRACED) != 0) {
 1126                         /*
 1127                          * Inform the debugger if one is still present.
 1128                          */
 1129                         td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
 1130                         ptracestop(td, SIGSTOP, NULL);
 1131                         td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
 1132                 } else {
 1133                         /*
 1134                          * ... otherwise clear the request.
 1135                          */
 1136                         td->td_dbgflags &= ~TDB_STOPATFORK;
 1137                 }
 1138                 PROC_UNLOCK(p);
 1139         } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
 1140                 /*
 1141                  * This is the start of a new thread in a traced
 1142                  * process.  Report a system call exit event.
 1143                  */
 1144                 PROC_LOCK(p);
 1145                 td->td_dbgflags |= TDB_SCX;
 1146                 if ((p->p_ptevents & PTRACE_SCX) != 0 ||
 1147                     (td->td_dbgflags & TDB_BORN) != 0)
 1148                         ptracestop(td, SIGTRAP, NULL);
 1149                 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
 1150                 PROC_UNLOCK(p);
 1151         }
 1152 
 1153         /*
 1154          * If the prison was killed mid-fork, die along with it.
 1155          */
 1156         if (!prison_isalive(td->td_ucred->cr_prison))
 1157                 exit1(td, 0, SIGKILL);
 1158 
 1159         userret(td, frame);
 1160 
 1161 #ifdef KTRACE
 1162         if (KTRPOINT(td, KTR_SYSRET))
 1163                 ktrsysret(SYS_fork, 0, 0);
 1164 #endif
 1165 }

Cache object: 9a3b1d2f3a8f728fc2f2fe349c797dae


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.