The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   39  * $FreeBSD$
   40  */
   41 
   42 #include "opt_ktrace.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/sysproto.h>
   47 #include <sys/filedesc.h>
   48 #include <sys/kernel.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/malloc.h>
   51 #include <sys/proc.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/vnode.h>
   54 #include <sys/acct.h>
   55 #include <sys/ktrace.h>
   56 #include <sys/unistd.h> 
   57 #include <sys/jail.h>   
   58 
   59 #include <vm/vm.h>
   60 #include <sys/lock.h>
   61 #include <vm/pmap.h>
   62 #include <vm/vm_map.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/vm_zone.h>
   65 
   66 #include <sys/vmmeter.h>
   67 #include <sys/user.h>
   68 
   69 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
   70 
   71 /*
   72  * These are the stuctures used to create a callout list for things to do
   73  * when forking a process
   74  */
   75 struct forklist {
   76         forklist_fn function;
   77         TAILQ_ENTRY(forklist) next;
   78 };
   79 
   80 TAILQ_HEAD(forklist_head, forklist);
   81 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
   82 
   83 #ifndef _SYS_SYSPROTO_H_
   84 struct fork_args {
   85         int     dummy;
   86 };
   87 #endif
   88 
   89 int forksleep; /* Place for fork1() to sleep on. */
   90 
   91 /* ARGSUSED */
   92 int
   93 fork(p, uap)
   94         struct proc *p;
   95         struct fork_args *uap;
   96 {
   97         int error;
   98         struct proc *p2;
   99 
  100         error = fork1(p, RFFDG | RFPROC, &p2);
  101         if (error == 0) {
  102                 p->p_retval[0] = p2->p_pid;
  103                 p->p_retval[1] = 0;
  104         }
  105         return error;
  106 }
  107 
  108 /* ARGSUSED */
  109 int
  110 vfork(p, uap)
  111         struct proc *p;
  112         struct vfork_args *uap;
  113 {
  114         int error;
  115         struct proc *p2;
  116 
  117         error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
  118         if (error == 0) {
  119                 p->p_retval[0] = p2->p_pid;
  120                 p->p_retval[1] = 0;
  121         }
  122         return error;
  123 }
  124 
  125 int
  126 rfork(p, uap)
  127         struct proc *p;
  128         struct rfork_args *uap;
  129 {
  130         int error;
  131         struct proc *p2;
  132 
  133         /* Don't allow kernel only flags. */
  134         if ((uap->flags & RFKERNELONLY) != 0)
  135                 return (EINVAL);
  136 
  137         error = fork1(p, uap->flags, &p2);
  138         if (error == 0) {
  139                 p->p_retval[0] = p2 ? p2->p_pid : 0;
  140                 p->p_retval[1] = 0;
  141         }
  142         return error;
  143 }
  144 
  145 
  146 int     nprocs = 1;             /* process 0 */
  147 static int nextpid = 0;
  148 
  149 /*
  150  * Random component to nextpid generation.  We mix in a random factor to make
  151  * it a little harder to predict.  We sanity check the modulus value to avoid
  152  * doing it in critical paths.  Don't let it be too small or we pointlessly
  153  * waste randomness entropy, and don't let it be impossibly large.  Using a
  154  * modulus that is too big causes a LOT more process table scans and slows
  155  * down fork processing as the pidchecked caching is defeated.
  156  */
  157 static int randompid = 0;
  158 
  159 static int
  160 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  161 {
  162                 int error, pid;
  163 
  164                 pid = randompid;
  165                 error = sysctl_handle_int(oidp, &pid, 0, req);
  166                 if (error || !req->newptr)
  167                         return (error);
  168                 if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
  169                         pid = PID_MAX - 100;
  170                 else if (pid < 2)                       /* NOP */
  171                         pid = 0;
  172                 else if (pid < 100)                     /* Make it reasonable */
  173                         pid = 100;
  174                 randompid = pid;
  175                 return (error);
  176 }
  177 
  178 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  179     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  180 
  181 int
  182 fork1(p1, flags, procp)
  183         struct proc *p1;
  184         int flags;
  185         struct proc **procp;
  186 {
  187         struct proc *p2, *pptr;
  188         uid_t uid;
  189         struct proc *newproc;
  190         int ok, s;
  191         static int curfail = 0, pidchecked = 0;
  192         static struct timeval lastfail;
  193         struct forklist *ep;
  194         struct filedesc_to_leader *fdtol;
  195 
  196         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  197                 return (EINVAL);
  198 
  199         /*
  200          * Here we don't create a new process, but we divorce
  201          * certain parts of a process from itself.
  202          */
  203         if ((flags & RFPROC) == 0) {
  204 
  205                 vm_fork(p1, 0, flags);
  206 
  207                 /*
  208                  * Close all file descriptors.
  209                  */
  210                 if (flags & RFCFDG) {
  211                         struct filedesc *fdtmp;
  212                         fdtmp = fdinit(p1);
  213                         fdfree(p1);
  214                         p1->p_fd = fdtmp;
  215                 }
  216 
  217                 /*
  218                  * Unshare file descriptors (from parent.)
  219                  */
  220                 if (flags & RFFDG) {
  221                         if (p1->p_fd->fd_refcnt > 1) {
  222                                 struct filedesc *newfd;
  223                                 newfd = fdcopy(p1);
  224                                 fdfree(p1);
  225                                 p1->p_fd = newfd;
  226                         }
  227                 }
  228                 *procp = NULL;
  229                 return (0);
  230         }
  231 
  232         /*
  233          * Although process entries are dynamically created, we still keep
  234          * a global limit on the maximum number we will create.  Don't allow
  235          * a nonprivileged user to use the last ten processes; don't let root
  236          * exceed the limit. The variable nprocs is the current number of
  237          * processes, maxproc is the limit.
  238          */
  239         uid = p1->p_cred->p_ruid;
  240         if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
  241                 if (ppsratecheck(&lastfail, &curfail, 1))
  242                         printf("maxproc limit exceeded by uid %d, please see tuning(7) and login.conf(5).\n", uid);
  243                 tsleep(&forksleep, PUSER, "fork", hz / 2);
  244                 return (EAGAIN);
  245         }
  246         /*
  247          * Increment the nprocs resource before blocking can occur.  There
  248          * are hard-limits as to the number of processes that can run.
  249          */
  250         nprocs++;
  251 
  252         /*
  253          * Increment the count of procs running with this uid. Don't allow
  254          * a nonprivileged user to exceed their current limit.
  255          */
  256         ok = chgproccnt(p1->p_cred->p_uidinfo, 1,
  257                 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
  258         if (!ok) {
  259                 /*
  260                  * Back out the process count
  261                  */
  262                 nprocs--;
  263                 if (ppsratecheck(&lastfail, &curfail, 1))
  264                         printf("maxproc limit exceeded by uid %d, please see tuning(7) and login.conf(5).\n", uid);
  265                 tsleep(&forksleep, PUSER, "fork", hz / 2);
  266                 return (EAGAIN);
  267         }
  268 
  269         /* Allocate new proc. */
  270         newproc = zalloc(proc_zone);
  271 
  272         /*
  273          * Setup linkage for kernel based threading
  274          */
  275         if((flags & RFTHREAD) != 0) {
  276                 newproc->p_peers = p1->p_peers;
  277                 p1->p_peers = newproc;
  278                 newproc->p_leader = p1->p_leader;
  279         } else {
  280                 newproc->p_peers = 0;
  281                 newproc->p_leader = newproc;
  282         }
  283 
  284         newproc->p_wakeup = 0;
  285 
  286         newproc->p_vmspace = NULL;
  287 
  288         /*
  289          * Find an unused process ID.  We remember a range of unused IDs
  290          * ready to use (from nextpid+1 through pidchecked-1).
  291          */
  292         nextpid++;
  293         if (randompid)
  294                 nextpid += arc4random() % randompid;
  295 retry:
  296         /*
  297          * If the process ID prototype has wrapped around,
  298          * restart somewhat above 0, as the low-numbered procs
  299          * tend to include daemons that don't exit.
  300          */
  301         if (nextpid >= PID_MAX) {
  302                 nextpid = nextpid % PID_MAX;
  303                 if (nextpid < 100)
  304                         nextpid += 100;
  305                 pidchecked = 0;
  306         }
  307         if (nextpid >= pidchecked) {
  308                 int doingzomb = 0;
  309 
  310                 pidchecked = PID_MAX;
  311                 /*
  312                  * Scan the active and zombie procs to check whether this pid
  313                  * is in use.  Remember the lowest pid that's greater
  314                  * than nextpid, so we can avoid checking for a while.
  315                  */
  316                 p2 = LIST_FIRST(&allproc);
  317 again:
  318                 for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
  319                         while (p2->p_pid == nextpid ||
  320                             p2->p_pgrp->pg_id == nextpid ||
  321                             p2->p_session->s_sid == nextpid) {
  322                                 nextpid++;
  323                                 if (nextpid >= pidchecked)
  324                                         goto retry;
  325                         }
  326                         if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
  327                                 pidchecked = p2->p_pid;
  328                         if (p2->p_pgrp->pg_id > nextpid &&
  329                             pidchecked > p2->p_pgrp->pg_id)
  330                                 pidchecked = p2->p_pgrp->pg_id;
  331                         if (p2->p_session->s_sid > nextpid &&
  332                             pidchecked > p2->p_session->s_sid)
  333                                 pidchecked = p2->p_session->s_sid;
  334                 }
  335                 if (!doingzomb) {
  336                         doingzomb = 1;
  337                         p2 = LIST_FIRST(&zombproc);
  338                         goto again;
  339                 }
  340         }
  341 
  342         p2 = newproc;
  343         p2->p_stat = SIDL;                      /* protect against others */
  344         p2->p_pid = nextpid;
  345         LIST_INSERT_HEAD(&allproc, p2, p_list);
  346         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  347 
  348         /*
  349          * Make a proc table entry for the new process.
  350          * Start by zeroing the section of proc that is zero-initialized,
  351          * then copy the section that is copied directly from the parent.
  352          */
  353         bzero(&p2->p_startzero,
  354             (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
  355         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  356             (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
  357 
  358         p2->p_aioinfo = NULL;
  359 
  360         /*
  361          * Duplicate sub-structures as needed.
  362          * Increase reference counts on shared objects.
  363          * The p_stats and p_sigacts substructs are set in vm_fork.
  364          */
  365         p2->p_flag = P_INMEM;
  366         if (p1->p_flag & P_PROFIL)
  367                 startprofclock(p2);
  368         MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
  369             M_SUBPROC, M_WAITOK);
  370         bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
  371         p2->p_cred->p_refcnt = 1;
  372         crhold(p1->p_ucred);
  373         uihold(p1->p_cred->p_uidinfo);
  374 
  375         if (p2->p_prison) {
  376                 p2->p_prison->pr_ref++;
  377                 p2->p_flag |= P_JAILED;
  378         }
  379 
  380         if (p2->p_args)
  381                 p2->p_args->ar_ref++;
  382 
  383         if (flags & RFSIGSHARE) {
  384                 p2->p_procsig = p1->p_procsig;
  385                 p2->p_procsig->ps_refcnt++;
  386                 if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
  387                         struct sigacts *newsigacts;
  388                         int s;
  389 
  390                         /* Create the shared sigacts structure */
  391                         MALLOC(newsigacts, struct sigacts *,
  392                             sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
  393                         s = splhigh();
  394                         /*
  395                          * Set p_sigacts to the new shared structure.
  396                          * Note that this is updating p1->p_sigacts at the
  397                          * same time, since p_sigacts is just a pointer to
  398                          * the shared p_procsig->ps_sigacts.
  399                          */
  400                         p2->p_sigacts  = newsigacts;
  401                         bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
  402                             sizeof(*p2->p_sigacts));
  403                         *p2->p_sigacts = p1->p_addr->u_sigacts;
  404                         splx(s);
  405                 }
  406         } else {
  407                 MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
  408                     M_SUBPROC, M_WAITOK);
  409                 bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
  410                 p2->p_procsig->ps_refcnt = 1;
  411                 p2->p_sigacts = NULL;   /* finished in vm_fork() */
  412         }
  413         if (flags & RFLINUXTHPN) 
  414                 p2->p_sigparent = SIGUSR1;
  415         else
  416                 p2->p_sigparent = SIGCHLD;
  417 
  418         /* bump references to the text vnode (for procfs) */
  419         p2->p_textvp = p1->p_textvp;
  420         if (p2->p_textvp)
  421                 VREF(p2->p_textvp);
  422 
  423         if (flags & RFCFDG) {
  424                 p2->p_fd = fdinit(p1);
  425                 fdtol = NULL;
  426         } else if (flags & RFFDG) {
  427                 p2->p_fd = fdcopy(p1);
  428                 fdtol = NULL;
  429         } else {
  430                 p2->p_fd = fdshare(p1);
  431                 if (p1->p_fdtol == NULL)
  432                         p1->p_fdtol =
  433                                 filedesc_to_leader_alloc(NULL,
  434                                                          p1->p_leader);
  435                 if ((flags & RFTHREAD) != 0) {
  436                         /*
  437                          * Shared file descriptor table and
  438                          * shared process leaders.
  439                          */
  440                         fdtol = p1->p_fdtol;
  441                         fdtol->fdl_refcount++;
  442                 } else {
  443                         /* 
  444                          * Shared file descriptor table, and
  445                          * different process leaders 
  446                          */
  447                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  448                                                          p2);
  449                 }
  450         }
  451         p2->p_fdtol = fdtol;
  452 
  453         /*
  454          * If p_limit is still copy-on-write, bump refcnt,
  455          * otherwise get a copy that won't be modified.
  456          * (If PL_SHAREMOD is clear, the structure is shared
  457          * copy-on-write.)
  458          */
  459         if (p1->p_limit->p_lflags & PL_SHAREMOD)
  460                 p2->p_limit = limcopy(p1->p_limit);
  461         else {
  462                 p2->p_limit = p1->p_limit;
  463                 p2->p_limit->p_refcnt++;
  464         }
  465 
  466         /*
  467          * Preserve some more flags in subprocess.  P_PROFIL has already
  468          * been preserved.
  469          */
  470         p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
  471         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  472                 p2->p_flag |= P_CONTROLT;
  473         if (flags & RFPPWAIT)
  474                 p2->p_flag |= P_PPWAIT;
  475 
  476         LIST_INSERT_AFTER(p1, p2, p_pglist);
  477 
  478         /*
  479          * Attach the new process to its parent.
  480          *
  481          * If RFNOWAIT is set, the newly created process becomes a child
  482          * of init.  This effectively disassociates the child from the
  483          * parent.
  484          */
  485         if (flags & RFNOWAIT)
  486                 pptr = initproc;
  487         else
  488                 pptr = p1;
  489         p2->p_pptr = pptr;
  490         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  491         LIST_INIT(&p2->p_children);
  492 
  493 #ifdef KTRACE
  494         /*
  495          * Copy traceflag and tracefile if enabled.  If not inherited,
  496          * these were zeroed above but we still could have a trace race
  497          * so make sure p2's p_tracep is NULL.
  498          */
  499         if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
  500                 p2->p_traceflag = p1->p_traceflag;
  501                 if ((p2->p_tracep = p1->p_tracep) != NULL)
  502                         VREF(p2->p_tracep);
  503         }
  504 #endif
  505 
  506         /*
  507          * set priority of child to be that of parent
  508          */
  509         p2->p_estcpu = p1->p_estcpu;
  510 
  511         /*
  512          * This begins the section where we must prevent the parent
  513          * from being swapped.
  514          */
  515         PHOLD(p1);
  516 
  517         /*
  518          * Finish creating the child process.  It will return via a different
  519          * execution path later.  (ie: directly into user mode)
  520          */
  521         vm_fork(p1, p2, flags);
  522 
  523         if (flags == (RFFDG | RFPROC)) {
  524                 cnt.v_forks++;
  525                 cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
  526         } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  527                 cnt.v_vforks++;
  528                 cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
  529         } else if (p1 == &proc0) {
  530                 cnt.v_kthreads++;
  531                 cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
  532         } else {
  533                 cnt.v_rforks++;
  534                 cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
  535         }
  536 
  537         /*
  538          * Both processes are set up, now check if any loadable modules want
  539          * to adjust anything.
  540          *   What if they have an error? XXX
  541          */
  542         TAILQ_FOREACH(ep, &fork_list, next) {
  543                 (*ep->function)(p1, p2, flags);
  544         }
  545 
  546         /*
  547          * Make child runnable and add to run queue.
  548          */
  549         microtime(&(p2->p_stats->p_start));
  550         p2->p_acflag = AFORK;
  551         s = splhigh();
  552         p2->p_stat = SRUN;
  553         setrunqueue(p2);
  554         splx(s);
  555 
  556         /*
  557          * Now can be swapped.
  558          */
  559         PRELE(p1);
  560 
  561         /*
  562          * tell any interested parties about the new process
  563          */
  564         KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
  565 
  566         /*
  567          * Preserve synchronization semantics of vfork.  If waiting for
  568          * child to exec or exit, set P_PPWAIT on child, and sleep on our
  569          * proc (in case of exit).
  570          */
  571         while (p2->p_flag & P_PPWAIT)
  572                 tsleep(p1, PWAIT, "ppwait", 0);
  573 
  574         /*
  575          * Return child proc pointer to parent.
  576          */
  577         *procp = p2;
  578         return (0);
  579 }
  580 
  581 /*
  582  * The next two functionms are general routines to handle adding/deleting
  583  * items on the fork callout list.
  584  *
  585  * at_fork():
  586  * Take the arguments given and put them onto the fork callout list,
  587  * However first make sure that it's not already there.
  588  * Returns 0 on success or a standard error number.
  589  */
  590 
  591 int
  592 at_fork(function)
  593         forklist_fn function;
  594 {
  595         struct forklist *ep;
  596 
  597 #ifdef INVARIANTS
  598         /* let the programmer know if he's been stupid */
  599         if (rm_at_fork(function)) 
  600                 printf("WARNING: fork callout entry (%p) already present\n",
  601                     function);
  602 #endif
  603         ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
  604         if (ep == NULL)
  605                 return (ENOMEM);
  606         ep->function = function;
  607         TAILQ_INSERT_TAIL(&fork_list, ep, next);
  608         return (0);
  609 }
  610 
  611 /*
  612  * Scan the exit callout list for the given item and remove it..
  613  * Returns the number of items removed (0 or 1)
  614  */
  615 
  616 int
  617 rm_at_fork(function)
  618         forklist_fn function;
  619 {
  620         struct forklist *ep;
  621 
  622         TAILQ_FOREACH(ep, &fork_list, next) {
  623                 if (ep->function == function) {
  624                         TAILQ_REMOVE(&fork_list, ep, next);
  625                         free(ep, M_ATFORK);
  626                         return(1);
  627                 }
  628         }       
  629         return (0);
  630 }

Cache object: 60c193e7c313101e56bc1fdb0d62949a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.