The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/5.3/sys/kern/kern_fork.c 136588 2004-10-16 08:43:07Z cvs2svn $");
   39 
   40 #include "opt_ktrace.h"
   41 #include "opt_mac.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/filedesc.h>
   48 #include <sys/kernel.h>
   49 #include <sys/kthread.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/lock.h>
   52 #include <sys/malloc.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/pioctl.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/syscall.h>
   59 #include <sys/vmmeter.h>
   60 #include <sys/vnode.h>
   61 #include <sys/acct.h>
   62 #include <sys/mac.h>
   63 #include <sys/ktr.h>
   64 #include <sys/ktrace.h>
   65 #include <sys/unistd.h> 
   66 #include <sys/sx.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/pmap.h>
   70 #include <vm/vm_map.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/uma.h>
   73 
   74 #include <sys/user.h>
   75 #include <machine/critical.h>
   76 
   77 #ifndef _SYS_SYSPROTO_H_
   78 struct fork_args {
   79         int     dummy;
   80 };
   81 #endif
   82 
   83 static int forksleep; /* Place for fork1() to sleep on. */
   84 
   85 /*
   86  * MPSAFE
   87  */
   88 /* ARGSUSED */
   89 int
   90 fork(td, uap)
   91         struct thread *td;
   92         struct fork_args *uap;
   93 {
   94         int error;
   95         struct proc *p2;
   96 
   97         error = fork1(td, RFFDG | RFPROC, 0, &p2);
   98         if (error == 0) {
   99                 td->td_retval[0] = p2->p_pid;
  100                 td->td_retval[1] = 0;
  101         }
  102         return (error);
  103 }
  104 
  105 /*
  106  * MPSAFE
  107  */
  108 /* ARGSUSED */
  109 int
  110 vfork(td, uap)
  111         struct thread *td;
  112         struct vfork_args *uap;
  113 {
  114         int error;
  115         struct proc *p2;
  116 
  117         error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
  118         if (error == 0) {
  119                 td->td_retval[0] = p2->p_pid;
  120                 td->td_retval[1] = 0;
  121         }
  122         return (error);
  123 }
  124 
  125 /*
  126  * MPSAFE
  127  */
  128 int
  129 rfork(td, uap)
  130         struct thread *td;
  131         struct rfork_args *uap;
  132 {
  133         struct proc *p2;
  134         int error;
  135 
  136         /* Don't allow kernel-only flags. */
  137         if ((uap->flags & RFKERNELONLY) != 0)
  138                 return (EINVAL);
  139 
  140         error = fork1(td, uap->flags, 0, &p2);
  141         if (error == 0) {
  142                 td->td_retval[0] = p2 ? p2->p_pid : 0;
  143                 td->td_retval[1] = 0;
  144         }
  145         return (error);
  146 }
  147 
  148 int     nprocs = 1;             /* process 0 */
  149 int     lastpid = 0;
  150 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  151     "Last used PID");
  152 
  153 /*
  154  * Random component to lastpid generation.  We mix in a random factor to make
  155  * it a little harder to predict.  We sanity check the modulus value to avoid
  156  * doing it in critical paths.  Don't let it be too small or we pointlessly
  157  * waste randomness entropy, and don't let it be impossibly large.  Using a
  158  * modulus that is too big causes a LOT more process table scans and slows
  159  * down fork processing as the pidchecked caching is defeated.
  160  */
  161 static int randompid = 0;
  162 
  163 static int
  164 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  165 {
  166         int error, pid;
  167 
  168         error = sysctl_wire_old_buffer(req, sizeof(int));
  169         if (error != 0)
  170                 return(error);
  171         sx_xlock(&allproc_lock);
  172         pid = randompid;
  173         error = sysctl_handle_int(oidp, &pid, 0, req);
  174         if (error == 0 && req->newptr != NULL) {
  175                 if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
  176                         pid = PID_MAX - 100;
  177                 else if (pid < 2)                       /* NOP */
  178                         pid = 0;
  179                 else if (pid < 100)                     /* Make it reasonable */
  180                         pid = 100;
  181                 randompid = pid;
  182         }
  183         sx_xunlock(&allproc_lock);
  184         return (error);
  185 }
  186 
  187 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  188     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  189 
  190 int
  191 fork1(td, flags, pages, procp)
  192         struct thread *td;
  193         int flags;
  194         int pages;
  195         struct proc **procp;
  196 {
  197         struct proc *p1, *p2, *pptr;
  198         uid_t uid;
  199         struct proc *newproc;
  200         int ok, trypid;
  201         static int curfail, pidchecked = 0;
  202         static struct timeval lastfail;
  203         struct filedesc *fd;
  204         struct filedesc_to_leader *fdtol;
  205         struct thread *td2;
  206         struct ksegrp *kg2;
  207         struct sigacts *newsigacts;
  208         int error;
  209 
  210         /* Can't copy and clear. */
  211         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  212                 return (EINVAL);
  213 
  214         p1 = td->td_proc;
  215 
  216         /*
  217          * Here we don't create a new process, but we divorce
  218          * certain parts of a process from itself.
  219          */
  220         if ((flags & RFPROC) == 0) {
  221                 mtx_lock(&Giant);
  222                 vm_forkproc(td, NULL, NULL, flags);
  223                 mtx_unlock(&Giant);
  224 
  225                 /*
  226                  * Close all file descriptors.
  227                  */
  228                 if (flags & RFCFDG) {
  229                         struct filedesc *fdtmp;
  230                         FILEDESC_LOCK(td->td_proc->p_fd);
  231                         fdtmp = fdinit(td->td_proc->p_fd);
  232                         FILEDESC_UNLOCK(td->td_proc->p_fd);
  233                         fdfree(td);
  234                         p1->p_fd = fdtmp;
  235                 }
  236 
  237                 /*
  238                  * Unshare file descriptors (from parent).
  239                  */
  240                 if (flags & RFFDG) {
  241                         FILEDESC_LOCK(p1->p_fd);
  242                         if (p1->p_fd->fd_refcnt > 1) {
  243                                 struct filedesc *newfd;
  244 
  245                                 newfd = fdcopy(td->td_proc->p_fd);
  246                                 FILEDESC_UNLOCK(p1->p_fd);
  247                                 fdfree(td);
  248                                 p1->p_fd = newfd;
  249                         } else
  250                                 FILEDESC_UNLOCK(p1->p_fd);
  251                 }
  252                 *procp = NULL;
  253                 return (0);
  254         }
  255 
  256         /*
  257          * Note 1:1 allows for forking with one thread coming out on the
  258          * other side with the expectation that the process is about to
  259          * exec.
  260          */
  261         if (p1->p_flag & P_HADTHREADS) {
  262                 /*
  263                  * Idle the other threads for a second.
  264                  * Since the user space is copied, it must remain stable.
  265                  * In addition, all threads (from the user perspective)
  266                  * need to either be suspended or in the kernel,
  267                  * where they will try restart in the parent and will
  268                  * be aborted in the child.
  269                  */
  270                 PROC_LOCK(p1);
  271                 if (thread_single(SINGLE_NO_EXIT)) {
  272                         /* Abort. Someone else is single threading before us. */
  273                         PROC_UNLOCK(p1);
  274                         return (ERESTART);
  275                 }
  276                 PROC_UNLOCK(p1);
  277                 /*
  278                  * All other activity in this process
  279                  * is now suspended at the user boundary,
  280                  * (or other safe places if we think of any).
  281                  */
  282         }
  283 
  284         /* Allocate new proc. */
  285         newproc = uma_zalloc(proc_zone, M_WAITOK);
  286 #ifdef MAC
  287         mac_init_proc(newproc);
  288 #endif
  289         knlist_init(&newproc->p_klist, &newproc->p_mtx);
  290 
  291         /* We have to lock the process tree while we look for a pid. */
  292         sx_slock(&proctree_lock);
  293 
  294         /*
  295          * Although process entries are dynamically created, we still keep
  296          * a global limit on the maximum number we will create.  Don't allow
  297          * a nonprivileged user to use the last ten processes; don't let root
  298          * exceed the limit. The variable nprocs is the current number of
  299          * processes, maxproc is the limit.
  300          */
  301         sx_xlock(&allproc_lock);
  302         uid = td->td_ucred->cr_ruid;
  303         if ((nprocs >= maxproc - 10 &&
  304             suser_cred(td->td_ucred, SUSER_RUID) != 0) ||
  305             nprocs >= maxproc) {
  306                 error = EAGAIN;
  307                 goto fail;
  308         }
  309 
  310         /*
  311          * Increment the count of procs running with this uid. Don't allow
  312          * a nonprivileged user to exceed their current limit.
  313          */
  314         PROC_LOCK(p1);
  315         ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  316                 (uid != 0) ? lim_cur(p1, RLIMIT_NPROC) : 0);
  317         PROC_UNLOCK(p1);
  318         if (!ok) {
  319                 error = EAGAIN;
  320                 goto fail;
  321         }
  322 
  323         /*
  324          * Increment the nprocs resource before blocking can occur.  There
  325          * are hard-limits as to the number of processes that can run.
  326          */
  327         nprocs++;
  328 
  329         /*
  330          * Find an unused process ID.  We remember a range of unused IDs
  331          * ready to use (from lastpid+1 through pidchecked-1).
  332          *
  333          * If RFHIGHPID is set (used during system boot), do not allocate
  334          * low-numbered pids.
  335          */
  336         trypid = lastpid + 1;
  337         if (flags & RFHIGHPID) {
  338                 if (trypid < 10)
  339                         trypid = 10;
  340         } else {
  341                 if (randompid)
  342                         trypid += arc4random() % randompid;
  343         }
  344 retry:
  345         /*
  346          * If the process ID prototype has wrapped around,
  347          * restart somewhat above 0, as the low-numbered procs
  348          * tend to include daemons that don't exit.
  349          */
  350         if (trypid >= PID_MAX) {
  351                 trypid = trypid % PID_MAX;
  352                 if (trypid < 100)
  353                         trypid += 100;
  354                 pidchecked = 0;
  355         }
  356         if (trypid >= pidchecked) {
  357                 int doingzomb = 0;
  358 
  359                 pidchecked = PID_MAX;
  360                 /*
  361                  * Scan the active and zombie procs to check whether this pid
  362                  * is in use.  Remember the lowest pid that's greater
  363                  * than trypid, so we can avoid checking for a while.
  364                  */
  365                 p2 = LIST_FIRST(&allproc);
  366 again:
  367                 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
  368                         PROC_LOCK(p2);
  369                         while (p2->p_pid == trypid ||
  370                             (p2->p_pgrp != NULL &&
  371                             (p2->p_pgrp->pg_id == trypid ||
  372                             (p2->p_session != NULL &&
  373                             p2->p_session->s_sid == trypid)))) {
  374                                 trypid++;
  375                                 if (trypid >= pidchecked) {
  376                                         PROC_UNLOCK(p2);
  377                                         goto retry;
  378                                 }
  379                         }
  380                         if (p2->p_pid > trypid && pidchecked > p2->p_pid)
  381                                 pidchecked = p2->p_pid;
  382                         if (p2->p_pgrp != NULL) {
  383                                 if (p2->p_pgrp->pg_id > trypid &&
  384                                     pidchecked > p2->p_pgrp->pg_id)
  385                                         pidchecked = p2->p_pgrp->pg_id;
  386                                 if (p2->p_session != NULL &&
  387                                     p2->p_session->s_sid > trypid &&
  388                                     pidchecked > p2->p_session->s_sid)
  389                                         pidchecked = p2->p_session->s_sid;
  390                         }
  391                         PROC_UNLOCK(p2);
  392                 }
  393                 if (!doingzomb) {
  394                         doingzomb = 1;
  395                         p2 = LIST_FIRST(&zombproc);
  396                         goto again;
  397                 }
  398         }
  399         sx_sunlock(&proctree_lock);
  400 
  401         /*
  402          * RFHIGHPID does not mess with the lastpid counter during boot.
  403          */
  404         if (flags & RFHIGHPID)
  405                 pidchecked = 0;
  406         else
  407                 lastpid = trypid;
  408 
  409         p2 = newproc;
  410         p2->p_state = PRS_NEW;          /* protect against others */
  411         p2->p_pid = trypid;
  412         LIST_INSERT_HEAD(&allproc, p2, p_list);
  413         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  414         sx_xunlock(&allproc_lock);
  415 
  416         /*
  417          * Malloc things while we don't hold any locks.
  418          */
  419         if (flags & RFSIGSHARE)
  420                 newsigacts = NULL;
  421         else
  422                 newsigacts = sigacts_alloc();
  423 
  424         /*
  425          * Copy filedesc.
  426          */
  427         if (flags & RFCFDG) {
  428                 FILEDESC_LOCK(td->td_proc->p_fd);
  429                 fd = fdinit(td->td_proc->p_fd);
  430                 FILEDESC_UNLOCK(td->td_proc->p_fd);
  431                 fdtol = NULL;
  432         } else if (flags & RFFDG) {
  433                 FILEDESC_LOCK(p1->p_fd);
  434                 fd = fdcopy(td->td_proc->p_fd);
  435                 FILEDESC_UNLOCK(p1->p_fd);
  436                 fdtol = NULL;
  437         } else {
  438                 fd = fdshare(p1->p_fd);
  439                 if (p1->p_fdtol == NULL)
  440                         p1->p_fdtol =
  441                                 filedesc_to_leader_alloc(NULL,
  442                                                          NULL,
  443                                                          p1->p_leader);
  444                 if ((flags & RFTHREAD) != 0) {
  445                         /*
  446                          * Shared file descriptor table and
  447                          * shared process leaders.
  448                          */
  449                         fdtol = p1->p_fdtol;
  450                         FILEDESC_LOCK(p1->p_fd);
  451                         fdtol->fdl_refcount++;
  452                         FILEDESC_UNLOCK(p1->p_fd);
  453                 } else {
  454                         /* 
  455                          * Shared file descriptor table, and
  456                          * different process leaders 
  457                          */
  458                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  459                                                          p1->p_fd,
  460                                                          p2);
  461                 }
  462         }
  463         /*
  464          * Make a proc table entry for the new process.
  465          * Start by zeroing the section of proc that is zero-initialized,
  466          * then copy the section that is copied directly from the parent.
  467          */
  468         td2 = FIRST_THREAD_IN_PROC(p2);
  469         kg2 = FIRST_KSEGRP_IN_PROC(p2);
  470 
  471         /* Allocate and switch to an alternate kstack if specified. */
  472         if (pages != 0)
  473                 vm_thread_new_altkstack(td2, pages);
  474 
  475         PROC_LOCK(p2);
  476         PROC_LOCK(p1);
  477 
  478 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
  479 
  480         bzero(&p2->p_startzero,
  481             (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
  482         bzero(&td2->td_startzero,
  483             (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
  484         bzero(&kg2->kg_startzero,
  485             (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
  486 
  487         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  488             (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
  489         bcopy(&td->td_startcopy, &td2->td_startcopy,
  490             (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
  491         bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
  492             (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
  493 #undef RANGEOF
  494 
  495         td2->td_sigstk = td->td_sigstk;
  496 
  497         /*
  498          * Duplicate sub-structures as needed.
  499          * Increase reference counts on shared objects.
  500          * The p_stats substruct is set in vm_forkproc.
  501          */
  502         p2->p_flag = 0;
  503         if (p1->p_flag & P_PROFIL)
  504                 startprofclock(p2);
  505         mtx_lock_spin(&sched_lock);
  506         p2->p_sflag = PS_INMEM;
  507         /*
  508          * Allow the scheduler to adjust the priority of the child and
  509          * parent while we hold the sched_lock.
  510          */
  511         sched_fork(td, td2);
  512 
  513         mtx_unlock_spin(&sched_lock);
  514         p2->p_ucred = crhold(td->td_ucred);
  515         td2->td_ucred = crhold(p2->p_ucred);    /* XXXKSE */
  516 
  517         pargs_hold(p2->p_args);
  518 
  519         if (flags & RFSIGSHARE) {
  520                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  521         } else {
  522                 sigacts_copy(newsigacts, p1->p_sigacts);
  523                 p2->p_sigacts = newsigacts;
  524         }
  525         if (flags & RFLINUXTHPN) 
  526                 p2->p_sigparent = SIGUSR1;
  527         else
  528                 p2->p_sigparent = SIGCHLD;
  529 
  530         p2->p_textvp = p1->p_textvp;
  531         p2->p_fd = fd;
  532         p2->p_fdtol = fdtol;
  533 
  534         /*
  535          * p_limit is copy-on-write.  Bump its refcount.
  536          */
  537         p2->p_limit = lim_hold(p1->p_limit);
  538         PROC_UNLOCK(p1);
  539         PROC_UNLOCK(p2);
  540 
  541         /* Bump references to the text vnode (for procfs) */
  542         if (p2->p_textvp)
  543                 vref(p2->p_textvp);
  544 
  545         /*
  546          * Set up linkage for kernel based threading.
  547          */
  548         if ((flags & RFTHREAD) != 0) {
  549                 mtx_lock(&ppeers_lock);
  550                 p2->p_peers = p1->p_peers;
  551                 p1->p_peers = p2;
  552                 p2->p_leader = p1->p_leader;
  553                 mtx_unlock(&ppeers_lock);
  554                 PROC_LOCK(p1->p_leader);
  555                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  556                         PROC_UNLOCK(p1->p_leader);
  557                         /*
  558                          * The task leader is exiting, so process p1 is
  559                          * going to be killed shortly.  Since p1 obviously
  560                          * isn't dead yet, we know that the leader is either
  561                          * sending SIGKILL's to all the processes in this
  562                          * task or is sleeping waiting for all the peers to
  563                          * exit.  We let p1 complete the fork, but we need
  564                          * to go ahead and kill the new process p2 since
  565                          * the task leader may not get a chance to send
  566                          * SIGKILL to it.  We leave it on the list so that
  567                          * the task leader will wait for this new process
  568                          * to commit suicide.
  569                          */
  570                         PROC_LOCK(p2);
  571                         psignal(p2, SIGKILL);
  572                         PROC_UNLOCK(p2);
  573                 } else
  574                         PROC_UNLOCK(p1->p_leader);
  575         } else {
  576                 p2->p_peers = NULL;
  577                 p2->p_leader = p2;
  578         }
  579 
  580         sx_xlock(&proctree_lock);
  581         PGRP_LOCK(p1->p_pgrp);
  582         PROC_LOCK(p2);
  583         PROC_LOCK(p1);
  584 
  585         /*
  586          * Preserve some more flags in subprocess.  P_PROFIL has already
  587          * been preserved.
  588          */
  589         p2->p_flag |= p1->p_flag & P_SUGID;
  590         td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
  591         SESS_LOCK(p1->p_session);
  592         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  593                 p2->p_flag |= P_CONTROLT;
  594         SESS_UNLOCK(p1->p_session);
  595         if (flags & RFPPWAIT)
  596                 p2->p_flag |= P_PPWAIT;
  597 
  598         p2->p_pgrp = p1->p_pgrp;
  599         LIST_INSERT_AFTER(p1, p2, p_pglist);
  600         PGRP_UNLOCK(p1->p_pgrp);
  601         LIST_INIT(&p2->p_children);
  602 
  603         callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
  604 
  605 #ifdef KTRACE
  606         /*
  607          * Copy traceflag and tracefile if enabled.
  608          */
  609         mtx_lock(&ktrace_mtx);
  610         KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
  611         if (p1->p_traceflag & KTRFAC_INHERIT) {
  612                 p2->p_traceflag = p1->p_traceflag;
  613                 if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
  614                         VREF(p2->p_tracevp);
  615                         KASSERT(p1->p_tracecred != NULL,
  616                             ("ktrace vnode with no cred"));
  617                         p2->p_tracecred = crhold(p1->p_tracecred);
  618                 }
  619         }
  620         mtx_unlock(&ktrace_mtx);
  621 #endif
  622 
  623         /*
  624          * If PF_FORK is set, the child process inherits the
  625          * procfs ioctl flags from its parent.
  626          */
  627         if (p1->p_pfsflags & PF_FORK) {
  628                 p2->p_stops = p1->p_stops;
  629                 p2->p_pfsflags = p1->p_pfsflags;
  630         }
  631 
  632         /*
  633          * This begins the section where we must prevent the parent
  634          * from being swapped.
  635          */
  636         _PHOLD(p1);
  637         PROC_UNLOCK(p1);
  638 
  639         /*
  640          * Attach the new process to its parent.
  641          *
  642          * If RFNOWAIT is set, the newly created process becomes a child
  643          * of init.  This effectively disassociates the child from the
  644          * parent.
  645          */
  646         if (flags & RFNOWAIT)
  647                 pptr = initproc;
  648         else
  649                 pptr = p1;
  650         p2->p_pptr = pptr;
  651         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  652         sx_xunlock(&proctree_lock);
  653 
  654         /* Inform accounting that we have forked. */
  655         p2->p_acflag = AFORK;
  656         PROC_UNLOCK(p2);
  657 
  658         /*
  659          * Finish creating the child process.  It will return via a different
  660          * execution path later.  (ie: directly into user mode)
  661          */
  662         mtx_lock(&Giant);
  663         vm_forkproc(td, p2, td2, flags);
  664 
  665         if (flags == (RFFDG | RFPROC)) {
  666                 cnt.v_forks++;
  667                 cnt.v_forkpages += p2->p_vmspace->vm_dsize +
  668                     p2->p_vmspace->vm_ssize;
  669         } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  670                 cnt.v_vforks++;
  671                 cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
  672                     p2->p_vmspace->vm_ssize;
  673         } else if (p1 == &proc0) {
  674                 cnt.v_kthreads++;
  675                 cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
  676                     p2->p_vmspace->vm_ssize;
  677         } else {
  678                 cnt.v_rforks++;
  679                 cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
  680                     p2->p_vmspace->vm_ssize;
  681         }
  682         mtx_unlock(&Giant);
  683 
  684         /*
  685          * Both processes are set up, now check if any loadable modules want
  686          * to adjust anything.
  687          *   What if they have an error? XXX
  688          */
  689         EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
  690 
  691         /*
  692          * Set the child start time and mark the process as being complete.
  693          */
  694         microuptime(&p2->p_stats->p_start);
  695         mtx_lock_spin(&sched_lock);
  696         p2->p_state = PRS_NORMAL;
  697 
  698         /*
  699          * If RFSTOPPED not requested, make child runnable and add to
  700          * run queue.
  701          */
  702         if ((flags & RFSTOPPED) == 0) {
  703                 TD_SET_CAN_RUN(td2);
  704                 setrunqueue(td2, SRQ_BORING);
  705         }
  706         mtx_unlock_spin(&sched_lock);
  707 
  708         /*
  709          * Now can be swapped.
  710          */
  711         PROC_LOCK(p1);
  712         _PRELE(p1);
  713 
  714         /*
  715          * Tell any interested parties about the new process.
  716          */
  717         KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
  718 
  719         PROC_UNLOCK(p1);
  720 
  721         /*
  722          * Preserve synchronization semantics of vfork.  If waiting for
  723          * child to exec or exit, set P_PPWAIT on child, and sleep on our
  724          * proc (in case of exit).
  725          */
  726         PROC_LOCK(p2);
  727         while (p2->p_flag & P_PPWAIT)
  728                 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
  729         PROC_UNLOCK(p2);
  730 
  731         /*
  732          * If other threads are waiting, let them continue now.
  733          */
  734         if (p1->p_flag & P_HADTHREADS) {
  735                 PROC_LOCK(p1);
  736                 thread_single_end();
  737                 PROC_UNLOCK(p1);
  738         }
  739 
  740         /*
  741          * Return child proc pointer to parent.
  742          */
  743         *procp = p2;
  744         return (0);
  745 fail:
  746         sx_sunlock(&proctree_lock);
  747         if (ppsratecheck(&lastfail, &curfail, 1))
  748                 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
  749                         uid);
  750         sx_xunlock(&allproc_lock);
  751 #ifdef MAC
  752         mac_destroy_proc(newproc);
  753 #endif
  754         uma_zfree(proc_zone, newproc);
  755         if (p1->p_flag & P_HADTHREADS) {
  756                 PROC_LOCK(p1);
  757                 thread_single_end();
  758                 PROC_UNLOCK(p1);
  759         }
  760         tsleep(&forksleep, PUSER, "fork", hz / 2);
  761         return (error);
  762 }
  763 
  764 /*
  765  * Handle the return of a child process from fork1().  This function
  766  * is called from the MD fork_trampoline() entry point.
  767  */
  768 void
  769 fork_exit(callout, arg, frame)
  770         void (*callout)(void *, struct trapframe *);
  771         void *arg;
  772         struct trapframe *frame;
  773 {
  774         struct proc *p;
  775         struct thread *td;
  776 
  777         /*
  778          * Finish setting up thread glue so that it begins execution in a
  779          * non-nested critical section with sched_lock held but not recursed.
  780          */
  781         td = curthread;
  782         p = td->td_proc;
  783         td->td_oncpu = PCPU_GET(cpuid);
  784         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
  785 
  786         sched_lock.mtx_lock = (uintptr_t)td;
  787         mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
  788         cpu_critical_fork_exit();
  789         CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
  790                 td, td->td_sched, p->p_pid, p->p_comm);
  791 
  792         /*
  793          * Processes normally resume in mi_switch() after being
  794          * cpu_switch()'ed to, but when children start up they arrive here
  795          * instead, so we must do much the same things as mi_switch() would.
  796          */
  797 
  798         if ((td = PCPU_GET(deadthread))) {
  799                 PCPU_SET(deadthread, NULL);
  800                 thread_stash(td);
  801         }
  802         td = curthread;
  803         mtx_unlock_spin(&sched_lock);
  804 
  805         /*
  806          * cpu_set_fork_handler intercepts this function call to
  807          * have this call a non-return function to stay in kernel mode.
  808          * initproc has its own fork handler, but it does return.
  809          */
  810         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
  811         callout(arg, frame);
  812 
  813         /*
  814          * Check if a kernel thread misbehaved and returned from its main
  815          * function.
  816          */
  817         PROC_LOCK(p);
  818         if (p->p_flag & P_KTHREAD) {
  819                 PROC_UNLOCK(p);
  820                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
  821                     p->p_comm, p->p_pid);
  822                 kthread_exit(0);
  823         }
  824         PROC_UNLOCK(p);
  825         mtx_assert(&Giant, MA_NOTOWNED);
  826 }
  827 
  828 /*
  829  * Simplified back end of syscall(), used when returning from fork()
  830  * directly into user mode.  Giant is not held on entry, and must not
  831  * be held on return.  This function is passed in to fork_exit() as the
  832  * first parameter and is called when returning to a new userland process.
  833  */
  834 void
  835 fork_return(td, frame)
  836         struct thread *td;
  837         struct trapframe *frame;
  838 {
  839 
  840         userret(td, frame, 0);
  841 #ifdef KTRACE
  842         if (KTRPOINT(td, KTR_SYSRET))
  843                 ktrsysret(SYS_fork, 0, 0);
  844 #endif
  845         mtx_assert(&Giant, MA_NOTOWNED);
  846 }

Cache object: 06d7f0ff87759f5fbe32bfb498d0d124


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.