The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/6.2/sys/kern/kern_fork.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   39 
   40 #include "opt_ktrace.h"
   41 #include "opt_mac.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/filedesc.h>
   48 #include <sys/kernel.h>
   49 #include <sys/kthread.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/lock.h>
   52 #include <sys/malloc.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/pioctl.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/syscall.h>
   59 #include <sys/vmmeter.h>
   60 #include <sys/vnode.h>
   61 #include <sys/acct.h>
   62 #include <sys/mac.h>
   63 #include <sys/ktr.h>
   64 #include <sys/ktrace.h>
   65 #include <sys/unistd.h> 
   66 #include <sys/sx.h>
   67 #include <sys/signalvar.h>
   68 
   69 #include <security/audit/audit.h>
   70 
   71 #include <vm/vm.h>
   72 #include <vm/pmap.h>
   73 #include <vm/vm_map.h>
   74 #include <vm/vm_extern.h>
   75 #include <vm/uma.h>
   76 
   77 
   78 #ifndef _SYS_SYSPROTO_H_
   79 struct fork_args {
   80         int     dummy;
   81 };
   82 #endif
   83 
   84 static int forksleep; /* Place for fork1() to sleep on. */
   85 
   86 /*
   87  * MPSAFE
   88  */
   89 /* ARGSUSED */
   90 int
   91 fork(td, uap)
   92         struct thread *td;
   93         struct fork_args *uap;
   94 {
   95         int error;
   96         struct proc *p2;
   97 
   98         error = fork1(td, RFFDG | RFPROC, 0, &p2);
   99         if (error == 0) {
  100                 td->td_retval[0] = p2->p_pid;
  101                 td->td_retval[1] = 0;
  102         }
  103         return (error);
  104 }
  105 
  106 /*
  107  * MPSAFE
  108  */
  109 /* ARGSUSED */
  110 int
  111 vfork(td, uap)
  112         struct thread *td;
  113         struct vfork_args *uap;
  114 {
  115         int error;
  116         struct proc *p2;
  117 
  118         error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
  119         if (error == 0) {
  120                 td->td_retval[0] = p2->p_pid;
  121                 td->td_retval[1] = 0;
  122         }
  123         return (error);
  124 }
  125 
  126 /*
  127  * MPSAFE
  128  */
  129 int
  130 rfork(td, uap)
  131         struct thread *td;
  132         struct rfork_args *uap;
  133 {
  134         struct proc *p2;
  135         int error;
  136 
  137         /* Don't allow kernel-only flags. */
  138         if ((uap->flags & RFKERNELONLY) != 0)
  139                 return (EINVAL);
  140 
  141         AUDIT_ARG(fflags, uap->flags);
  142         error = fork1(td, uap->flags, 0, &p2);
  143         if (error == 0) {
  144                 td->td_retval[0] = p2 ? p2->p_pid : 0;
  145                 td->td_retval[1] = 0;
  146         }
  147         return (error);
  148 }
  149 
  150 int     nprocs = 1;             /* process 0 */
  151 int     lastpid = 0;
  152 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  153     "Last used PID");
  154 
  155 /*
  156  * Random component to lastpid generation.  We mix in a random factor to make
  157  * it a little harder to predict.  We sanity check the modulus value to avoid
  158  * doing it in critical paths.  Don't let it be too small or we pointlessly
  159  * waste randomness entropy, and don't let it be impossibly large.  Using a
  160  * modulus that is too big causes a LOT more process table scans and slows
  161  * down fork processing as the pidchecked caching is defeated.
  162  */
  163 static int randompid = 0;
  164 
  165 static int
  166 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  167 {
  168         int error, pid;
  169 
  170         error = sysctl_wire_old_buffer(req, sizeof(int));
  171         if (error != 0)
  172                 return(error);
  173         sx_xlock(&allproc_lock);
  174         pid = randompid;
  175         error = sysctl_handle_int(oidp, &pid, 0, req);
  176         if (error == 0 && req->newptr != NULL) {
  177                 if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
  178                         pid = PID_MAX - 100;
  179                 else if (pid < 2)                       /* NOP */
  180                         pid = 0;
  181                 else if (pid < 100)                     /* Make it reasonable */
  182                         pid = 100;
  183                 randompid = pid;
  184         }
  185         sx_xunlock(&allproc_lock);
  186         return (error);
  187 }
  188 
  189 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  190     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  191 
  192 int
  193 fork1(td, flags, pages, procp)
  194         struct thread *td;
  195         int flags;
  196         int pages;
  197         struct proc **procp;
  198 {
  199         struct proc *p1, *p2, *pptr;
  200         struct proc *newproc;
  201         int ok, trypid;
  202         static int curfail, pidchecked = 0;
  203         static struct timeval lastfail;
  204         struct filedesc *fd;
  205         struct filedesc_to_leader *fdtol;
  206         struct thread *td2;
  207         struct ksegrp *kg2;
  208         struct sigacts *newsigacts;
  209         int error;
  210 
  211         /* Can't copy and clear. */
  212         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  213                 return (EINVAL);
  214 
  215         p1 = td->td_proc;
  216 
  217         /*
  218          * Here we don't create a new process, but we divorce
  219          * certain parts of a process from itself.
  220          */
  221         if ((flags & RFPROC) == 0) {
  222                 if ((p1->p_flag & P_HADTHREADS) &&
  223                     (flags & (RFCFDG | RFFDG))) {
  224                         PROC_LOCK(p1);
  225                         if (thread_single(SINGLE_BOUNDARY)) {
  226                                 PROC_UNLOCK(p1);
  227                                 return (ERESTART);
  228                         }
  229                         PROC_UNLOCK(p1);
  230                 }
  231 
  232                 vm_forkproc(td, NULL, NULL, flags);
  233                 /*
  234                  * Close all file descriptors.
  235                  */
  236                 if (flags & RFCFDG) {
  237                         struct filedesc *fdtmp;
  238                         fdtmp = fdinit(td->td_proc->p_fd);
  239                         fdfree(td);
  240                         p1->p_fd = fdtmp;
  241                 }
  242 
  243                 /*
  244                  * Unshare file descriptors (from parent).
  245                  */
  246                 if (flags & RFFDG) 
  247                         fdunshare(p1, td);
  248 
  249                 if ((p1->p_flag & P_HADTHREADS) &&
  250                     (flags & (RFCFDG | RFFDG))) {
  251                         PROC_LOCK(p1);
  252                         thread_single_end();
  253                         PROC_UNLOCK(p1);
  254                 }
  255                 *procp = NULL;
  256                 return (0);
  257         }
  258 
  259         /*
  260          * Note 1:1 allows for forking with one thread coming out on the
  261          * other side with the expectation that the process is about to
  262          * exec.
  263          */
  264         if (p1->p_flag & P_HADTHREADS) {
  265                 /*
  266                  * Idle the other threads for a second.
  267                  * Since the user space is copied, it must remain stable.
  268                  * In addition, all threads (from the user perspective)
  269                  * need to either be suspended or in the kernel,
  270                  * where they will try restart in the parent and will
  271                  * be aborted in the child.
  272                  */
  273                 PROC_LOCK(p1);
  274                 if (thread_single(SINGLE_NO_EXIT)) {
  275                         /* Abort. Someone else is single threading before us. */
  276                         PROC_UNLOCK(p1);
  277                         return (ERESTART);
  278                 }
  279                 PROC_UNLOCK(p1);
  280                 /*
  281                  * All other activity in this process
  282                  * is now suspended at the user boundary,
  283                  * (or other safe places if we think of any).
  284                  */
  285         }
  286 
  287         /* Allocate new proc. */
  288         newproc = uma_zalloc(proc_zone, M_WAITOK);
  289 #ifdef MAC
  290         mac_init_proc(newproc);
  291 #endif
  292 #ifdef AUDIT
  293         audit_proc_alloc(newproc);
  294 #endif
  295         knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
  296         STAILQ_INIT(&newproc->p_ktr);
  297 
  298         /* We have to lock the process tree while we look for a pid. */
  299         sx_slock(&proctree_lock);
  300 
  301         /*
  302          * Although process entries are dynamically created, we still keep
  303          * a global limit on the maximum number we will create.  Don't allow
  304          * a nonprivileged user to use the last ten processes; don't let root
  305          * exceed the limit. The variable nprocs is the current number of
  306          * processes, maxproc is the limit.
  307          */
  308         sx_xlock(&allproc_lock);
  309         if ((nprocs >= maxproc - 10 &&
  310             suser_cred(td->td_ucred, SUSER_RUID) != 0) ||
  311             nprocs >= maxproc) {
  312                 error = EAGAIN;
  313                 goto fail;
  314         }
  315 
  316         /*
  317          * Increment the count of procs running with this uid. Don't allow
  318          * a nonprivileged user to exceed their current limit.
  319          */
  320         error = suser_cred(td->td_ucred, SUSER_RUID | SUSER_ALLOWJAIL);
  321         if (error == 0)
  322                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
  323         else {
  324                 PROC_LOCK(p1);
  325                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  326                     lim_cur(p1, RLIMIT_NPROC));
  327                 PROC_UNLOCK(p1);
  328         }
  329         if (!ok) {
  330                 error = EAGAIN;
  331                 goto fail;
  332         }
  333 
  334         /*
  335          * Increment the nprocs resource before blocking can occur.  There
  336          * are hard-limits as to the number of processes that can run.
  337          */
  338         nprocs++;
  339 
  340         /*
  341          * Find an unused process ID.  We remember a range of unused IDs
  342          * ready to use (from lastpid+1 through pidchecked-1).
  343          *
  344          * If RFHIGHPID is set (used during system boot), do not allocate
  345          * low-numbered pids.
  346          */
  347         trypid = lastpid + 1;
  348         if (flags & RFHIGHPID) {
  349                 if (trypid < 10)
  350                         trypid = 10;
  351         } else {
  352                 if (randompid)
  353                         trypid += arc4random() % randompid;
  354         }
  355 retry:
  356         /*
  357          * If the process ID prototype has wrapped around,
  358          * restart somewhat above 0, as the low-numbered procs
  359          * tend to include daemons that don't exit.
  360          */
  361         if (trypid >= PID_MAX) {
  362                 trypid = trypid % PID_MAX;
  363                 if (trypid < 100)
  364                         trypid += 100;
  365                 pidchecked = 0;
  366         }
  367         if (trypid >= pidchecked) {
  368                 int doingzomb = 0;
  369 
  370                 pidchecked = PID_MAX;
  371                 /*
  372                  * Scan the active and zombie procs to check whether this pid
  373                  * is in use.  Remember the lowest pid that's greater
  374                  * than trypid, so we can avoid checking for a while.
  375                  */
  376                 p2 = LIST_FIRST(&allproc);
  377 again:
  378                 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
  379                         PROC_LOCK(p2);
  380                         while (p2->p_pid == trypid ||
  381                             (p2->p_pgrp != NULL &&
  382                             (p2->p_pgrp->pg_id == trypid ||
  383                             (p2->p_session != NULL &&
  384                             p2->p_session->s_sid == trypid)))) {
  385                                 trypid++;
  386                                 if (trypid >= pidchecked) {
  387                                         PROC_UNLOCK(p2);
  388                                         goto retry;
  389                                 }
  390                         }
  391                         if (p2->p_pid > trypid && pidchecked > p2->p_pid)
  392                                 pidchecked = p2->p_pid;
  393                         if (p2->p_pgrp != NULL) {
  394                                 if (p2->p_pgrp->pg_id > trypid &&
  395                                     pidchecked > p2->p_pgrp->pg_id)
  396                                         pidchecked = p2->p_pgrp->pg_id;
  397                                 if (p2->p_session != NULL &&
  398                                     p2->p_session->s_sid > trypid &&
  399                                     pidchecked > p2->p_session->s_sid)
  400                                         pidchecked = p2->p_session->s_sid;
  401                         }
  402                         PROC_UNLOCK(p2);
  403                 }
  404                 if (!doingzomb) {
  405                         doingzomb = 1;
  406                         p2 = LIST_FIRST(&zombproc);
  407                         goto again;
  408                 }
  409         }
  410         sx_sunlock(&proctree_lock);
  411 
  412         /*
  413          * RFHIGHPID does not mess with the lastpid counter during boot.
  414          */
  415         if (flags & RFHIGHPID)
  416                 pidchecked = 0;
  417         else
  418                 lastpid = trypid;
  419 
  420         p2 = newproc;
  421         p2->p_state = PRS_NEW;          /* protect against others */
  422         p2->p_pid = trypid;
  423         AUDIT_ARG(pid, p2->p_pid);
  424         LIST_INSERT_HEAD(&allproc, p2, p_list);
  425         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  426         sx_xunlock(&allproc_lock);
  427 
  428         /*
  429          * Malloc things while we don't hold any locks.
  430          */
  431         if (flags & RFSIGSHARE)
  432                 newsigacts = NULL;
  433         else
  434                 newsigacts = sigacts_alloc();
  435 
  436         /*
  437          * Copy filedesc.
  438          */
  439         if (flags & RFCFDG) {
  440                 fd = fdinit(p1->p_fd);
  441                 fdtol = NULL;
  442         } else if (flags & RFFDG) {
  443                 fd = fdcopy(p1->p_fd);
  444                 fdtol = NULL;
  445         } else {
  446                 fd = fdshare(p1->p_fd);
  447                 if (p1->p_fdtol == NULL)
  448                         p1->p_fdtol =
  449                                 filedesc_to_leader_alloc(NULL,
  450                                                          NULL,
  451                                                          p1->p_leader);
  452                 if ((flags & RFTHREAD) != 0) {
  453                         /*
  454                          * Shared file descriptor table and
  455                          * shared process leaders.
  456                          */
  457                         fdtol = p1->p_fdtol;
  458                         FILEDESC_LOCK_FAST(p1->p_fd);
  459                         fdtol->fdl_refcount++;
  460                         FILEDESC_UNLOCK_FAST(p1->p_fd);
  461                 } else {
  462                         /* 
  463                          * Shared file descriptor table, and
  464                          * different process leaders 
  465                          */
  466                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  467                                                          p1->p_fd,
  468                                                          p2);
  469                 }
  470         }
  471         /*
  472          * Make a proc table entry for the new process.
  473          * Start by zeroing the section of proc that is zero-initialized,
  474          * then copy the section that is copied directly from the parent.
  475          */
  476         td2 = FIRST_THREAD_IN_PROC(p2);
  477         kg2 = FIRST_KSEGRP_IN_PROC(p2);
  478 
  479         /* Allocate and switch to an alternate kstack if specified. */
  480         if (pages != 0)
  481                 vm_thread_new_altkstack(td2, pages);
  482 
  483         PROC_LOCK(p2);
  484         PROC_LOCK(p1);
  485 
  486         bzero(&p2->p_startzero,
  487             __rangeof(struct proc, p_startzero, p_endzero));
  488         bzero(&td2->td_startzero,
  489             __rangeof(struct thread, td_startzero, td_endzero));
  490         bzero(&kg2->kg_startzero,
  491             __rangeof(struct ksegrp, kg_startzero, kg_endzero));
  492 
  493         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  494             __rangeof(struct proc, p_startcopy, p_endcopy));
  495         bcopy(&td->td_startcopy, &td2->td_startcopy,
  496             __rangeof(struct thread, td_startcopy, td_endcopy));
  497         bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
  498             __rangeof(struct ksegrp, kg_startcopy, kg_endcopy));
  499 
  500         td2->td_sigstk = td->td_sigstk;
  501         td2->td_sigmask = td->td_sigmask;
  502 
  503         /*
  504          * Duplicate sub-structures as needed.
  505          * Increase reference counts on shared objects.
  506          */
  507         p2->p_flag = 0;
  508         if (p1->p_flag & P_PROFIL)
  509                 startprofclock(p2);
  510         mtx_lock_spin(&sched_lock);
  511         p2->p_sflag = PS_INMEM;
  512         /*
  513          * Allow the scheduler to adjust the priority of the child and
  514          * parent while we hold the sched_lock.
  515          */
  516         sched_fork(td, td2);
  517 
  518         mtx_unlock_spin(&sched_lock);
  519         p2->p_ucred = crhold(td->td_ucred);
  520         td2->td_ucred = crhold(p2->p_ucred);    /* XXXKSE */
  521 #ifdef AUDIT
  522         audit_proc_fork(p1, p2);
  523 #endif
  524         pargs_hold(p2->p_args);
  525 
  526         if (flags & RFSIGSHARE) {
  527                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  528         } else {
  529                 sigacts_copy(newsigacts, p1->p_sigacts);
  530                 p2->p_sigacts = newsigacts;
  531         }
  532         if (flags & RFLINUXTHPN) 
  533                 p2->p_sigparent = SIGUSR1;
  534         else
  535                 p2->p_sigparent = SIGCHLD;
  536 
  537         p2->p_textvp = p1->p_textvp;
  538         p2->p_fd = fd;
  539         p2->p_fdtol = fdtol;
  540 
  541         /*
  542          * p_limit is copy-on-write.  Bump its refcount.
  543          */
  544         p2->p_limit = lim_hold(p1->p_limit);
  545 
  546         pstats_fork(p1->p_stats, p2->p_stats);
  547 
  548         PROC_UNLOCK(p1);
  549         PROC_UNLOCK(p2);
  550 
  551         /* Bump references to the text vnode (for procfs) */
  552         if (p2->p_textvp)
  553                 vref(p2->p_textvp);
  554 
  555         /*
  556          * Set up linkage for kernel based threading.
  557          */
  558         if ((flags & RFTHREAD) != 0) {
  559                 mtx_lock(&ppeers_lock);
  560                 p2->p_peers = p1->p_peers;
  561                 p1->p_peers = p2;
  562                 p2->p_leader = p1->p_leader;
  563                 mtx_unlock(&ppeers_lock);
  564                 PROC_LOCK(p1->p_leader);
  565                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  566                         PROC_UNLOCK(p1->p_leader);
  567                         /*
  568                          * The task leader is exiting, so process p1 is
  569                          * going to be killed shortly.  Since p1 obviously
  570                          * isn't dead yet, we know that the leader is either
  571                          * sending SIGKILL's to all the processes in this
  572                          * task or is sleeping waiting for all the peers to
  573                          * exit.  We let p1 complete the fork, but we need
  574                          * to go ahead and kill the new process p2 since
  575                          * the task leader may not get a chance to send
  576                          * SIGKILL to it.  We leave it on the list so that
  577                          * the task leader will wait for this new process
  578                          * to commit suicide.
  579                          */
  580                         PROC_LOCK(p2);
  581                         psignal(p2, SIGKILL);
  582                         PROC_UNLOCK(p2);
  583                 } else
  584                         PROC_UNLOCK(p1->p_leader);
  585         } else {
  586                 p2->p_peers = NULL;
  587                 p2->p_leader = p2;
  588         }
  589 
  590         sx_xlock(&proctree_lock);
  591         PGRP_LOCK(p1->p_pgrp);
  592         PROC_LOCK(p2);
  593         PROC_LOCK(p1);
  594 
  595         /*
  596          * Preserve some more flags in subprocess.  P_PROFIL has already
  597          * been preserved.
  598          */
  599         p2->p_flag |= p1->p_flag & P_SUGID;
  600         td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
  601         SESS_LOCK(p1->p_session);
  602         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  603                 p2->p_flag |= P_CONTROLT;
  604         SESS_UNLOCK(p1->p_session);
  605         if (flags & RFPPWAIT)
  606                 p2->p_flag |= P_PPWAIT;
  607 
  608         p2->p_pgrp = p1->p_pgrp;
  609         LIST_INSERT_AFTER(p1, p2, p_pglist);
  610         PGRP_UNLOCK(p1->p_pgrp);
  611         LIST_INIT(&p2->p_children);
  612 
  613         callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
  614 
  615 #ifdef KTRACE
  616         /*
  617          * Copy traceflag and tracefile if enabled.
  618          */
  619         mtx_lock(&ktrace_mtx);
  620         KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
  621         if (p1->p_traceflag & KTRFAC_INHERIT) {
  622                 p2->p_traceflag = p1->p_traceflag;
  623                 if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
  624                         VREF(p2->p_tracevp);
  625                         KASSERT(p1->p_tracecred != NULL,
  626                             ("ktrace vnode with no cred"));
  627                         p2->p_tracecred = crhold(p1->p_tracecred);
  628                 }
  629         }
  630         mtx_unlock(&ktrace_mtx);
  631 #endif
  632 
  633         /*
  634          * If PF_FORK is set, the child process inherits the
  635          * procfs ioctl flags from its parent.
  636          */
  637         if (p1->p_pfsflags & PF_FORK) {
  638                 p2->p_stops = p1->p_stops;
  639                 p2->p_pfsflags = p1->p_pfsflags;
  640         }
  641 
  642         /*
  643          * This begins the section where we must prevent the parent
  644          * from being swapped.
  645          */
  646         _PHOLD(p1);
  647         PROC_UNLOCK(p1);
  648 
  649         /*
  650          * Attach the new process to its parent.
  651          *
  652          * If RFNOWAIT is set, the newly created process becomes a child
  653          * of init.  This effectively disassociates the child from the
  654          * parent.
  655          */
  656         if (flags & RFNOWAIT)
  657                 pptr = initproc;
  658         else
  659                 pptr = p1;
  660         p2->p_pptr = pptr;
  661         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  662         sx_xunlock(&proctree_lock);
  663 
  664         /* Inform accounting that we have forked. */
  665         p2->p_acflag = AFORK;
  666         PROC_UNLOCK(p2);
  667 
  668         /*
  669          * Finish creating the child process.  It will return via a different
  670          * execution path later.  (ie: directly into user mode)
  671          */
  672         vm_forkproc(td, p2, td2, flags);
  673 
  674         if (flags == (RFFDG | RFPROC)) {
  675                 atomic_add_int(&cnt.v_forks, 1);
  676                 atomic_add_int(&cnt.v_forkpages, p2->p_vmspace->vm_dsize +
  677                     p2->p_vmspace->vm_ssize);
  678         } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  679                 atomic_add_int(&cnt.v_vforks, 1);
  680                 atomic_add_int(&cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
  681                     p2->p_vmspace->vm_ssize);
  682         } else if (p1 == &proc0) {
  683                 atomic_add_int(&cnt.v_kthreads, 1);
  684                 atomic_add_int(&cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
  685                     p2->p_vmspace->vm_ssize);
  686         } else {
  687                 atomic_add_int(&cnt.v_rforks, 1);
  688                 atomic_add_int(&cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
  689                     p2->p_vmspace->vm_ssize);
  690         }
  691 
  692         /*
  693          * Both processes are set up, now check if any loadable modules want
  694          * to adjust anything.
  695          *   What if they have an error? XXX
  696          */
  697         EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
  698 
  699         /*
  700          * Set the child start time and mark the process as being complete.
  701          */
  702         microuptime(&p2->p_stats->p_start);
  703         mtx_lock_spin(&sched_lock);
  704         p2->p_state = PRS_NORMAL;
  705 
  706         /*
  707          * If RFSTOPPED not requested, make child runnable and add to
  708          * run queue.
  709          */
  710         if ((flags & RFSTOPPED) == 0) {
  711                 TD_SET_CAN_RUN(td2);
  712                 setrunqueue(td2, SRQ_BORING);
  713         }
  714         mtx_unlock_spin(&sched_lock);
  715 
  716         /*
  717          * Now can be swapped.
  718          */
  719         PROC_LOCK(p1);
  720         _PRELE(p1);
  721 
  722         /*
  723          * Tell any interested parties about the new process.
  724          */
  725         KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
  726 
  727         PROC_UNLOCK(p1);
  728 
  729         /*
  730          * Preserve synchronization semantics of vfork.  If waiting for
  731          * child to exec or exit, set P_PPWAIT on child, and sleep on our
  732          * proc (in case of exit).
  733          */
  734         PROC_LOCK(p2);
  735         while (p2->p_flag & P_PPWAIT)
  736                 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
  737         PROC_UNLOCK(p2);
  738 
  739         /*
  740          * If other threads are waiting, let them continue now.
  741          */
  742         if (p1->p_flag & P_HADTHREADS) {
  743                 PROC_LOCK(p1);
  744                 thread_single_end();
  745                 PROC_UNLOCK(p1);
  746         }
  747 
  748         /*
  749          * Return child proc pointer to parent.
  750          */
  751         *procp = p2;
  752         return (0);
  753 fail:
  754         sx_sunlock(&proctree_lock);
  755         if (ppsratecheck(&lastfail, &curfail, 1))
  756                 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
  757                     td->td_ucred->cr_ruid);
  758         sx_xunlock(&allproc_lock);
  759 #ifdef MAC
  760         mac_destroy_proc(newproc);
  761 #endif
  762 #ifdef AUDIT
  763         audit_proc_free(newproc);
  764 #endif
  765         uma_zfree(proc_zone, newproc);
  766         if (p1->p_flag & P_HADTHREADS) {
  767                 PROC_LOCK(p1);
  768                 thread_single_end();
  769                 PROC_UNLOCK(p1);
  770         }
  771         tsleep(&forksleep, PUSER, "fork", hz / 2);
  772         return (error);
  773 }
  774 
  775 /*
  776  * Handle the return of a child process from fork1().  This function
  777  * is called from the MD fork_trampoline() entry point.
  778  */
  779 void
  780 fork_exit(callout, arg, frame)
  781         void (*callout)(void *, struct trapframe *);
  782         void *arg;
  783         struct trapframe *frame;
  784 {
  785         struct proc *p;
  786         struct thread *td;
  787 
  788         /*
  789          * Finish setting up thread glue so that it begins execution in a
  790          * non-nested critical section with sched_lock held but not recursed.
  791          */
  792         td = curthread;
  793         p = td->td_proc;
  794         td->td_oncpu = PCPU_GET(cpuid);
  795         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
  796 
  797         sched_lock.mtx_lock = (uintptr_t)td;
  798         mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
  799         CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
  800                 td, td->td_sched, p->p_pid, p->p_comm);
  801 
  802         /*
  803          * Processes normally resume in mi_switch() after being
  804          * cpu_switch()'ed to, but when children start up they arrive here
  805          * instead, so we must do much the same things as mi_switch() would.
  806          */
  807 
  808         if ((td = PCPU_GET(deadthread))) {
  809                 PCPU_SET(deadthread, NULL);
  810                 thread_stash(td);
  811         }
  812         td = curthread;
  813         mtx_unlock_spin(&sched_lock);
  814 
  815         /*
  816          * cpu_set_fork_handler intercepts this function call to
  817          * have this call a non-return function to stay in kernel mode.
  818          * initproc has its own fork handler, but it does return.
  819          */
  820         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
  821         callout(arg, frame);
  822 
  823         /*
  824          * Check if a kernel thread misbehaved and returned from its main
  825          * function.
  826          */
  827         PROC_LOCK(p);
  828         if (p->p_flag & P_KTHREAD) {
  829                 PROC_UNLOCK(p);
  830                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
  831                     p->p_comm, p->p_pid);
  832                 kthread_exit(0);
  833         }
  834         PROC_UNLOCK(p);
  835         mtx_assert(&Giant, MA_NOTOWNED);
  836 }
  837 
  838 /*
  839  * Simplified back end of syscall(), used when returning from fork()
  840  * directly into user mode.  Giant is not held on entry, and must not
  841  * be held on return.  This function is passed in to fork_exit() as the
  842  * first parameter and is called when returning to a new userland process.
  843  */
  844 void
  845 fork_return(td, frame)
  846         struct thread *td;
  847         struct trapframe *frame;
  848 {
  849 
  850         userret(td, frame, 0);
  851 #ifdef KTRACE
  852         if (KTRPOINT(td, KTR_SYSRET))
  853                 ktrsysret(SYS_fork, 0, 0);
  854 #endif
  855         mtx_assert(&Giant, MA_NOTOWNED);
  856 }

Cache object: 7ed1a5283fb2e20ca4bfa8d9c511a507


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.