The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include "opt_ktrace.h"
   41 #include "opt_mac.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/filedesc.h>
   48 #include <sys/kernel.h>
   49 #include <sys/kthread.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/lock.h>
   52 #include <sys/malloc.h>
   53 #include <sys/mutex.h>
   54 #include <sys/priv.h>
   55 #include <sys/proc.h>
   56 #include <sys/pioctl.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sched.h>
   59 #include <sys/syscall.h>
   60 #include <sys/vmmeter.h>
   61 #include <sys/vnode.h>
   62 #include <sys/acct.h>
   63 #include <sys/ktr.h>
   64 #include <sys/ktrace.h>
   65 #include <sys/unistd.h> 
   66 #include <sys/sx.h>
   67 #include <sys/signalvar.h>
   68 
   69 #include <security/audit/audit.h>
   70 #include <security/mac/mac_framework.h>
   71 
   72 #include <vm/vm.h>
   73 #include <vm/pmap.h>
   74 #include <vm/vm_map.h>
   75 #include <vm/vm_extern.h>
   76 #include <vm/uma.h>
   77 
   78 
   79 #ifndef _SYS_SYSPROTO_H_
   80 struct fork_args {
   81         int     dummy;
   82 };
   83 #endif
   84 
   85 /* ARGSUSED */
   86 int
   87 fork(td, uap)
   88         struct thread *td;
   89         struct fork_args *uap;
   90 {
   91         int error;
   92         struct proc *p2;
   93 
   94         error = fork1(td, RFFDG | RFPROC, 0, &p2);
   95         if (error == 0) {
   96                 td->td_retval[0] = p2->p_pid;
   97                 td->td_retval[1] = 0;
   98         }
   99         return (error);
  100 }
  101 
  102 /* ARGSUSED */
  103 int
  104 vfork(td, uap)
  105         struct thread *td;
  106         struct vfork_args *uap;
  107 {
  108         int error;
  109         struct proc *p2;
  110 
  111         error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
  112         if (error == 0) {
  113                 td->td_retval[0] = p2->p_pid;
  114                 td->td_retval[1] = 0;
  115         }
  116         return (error);
  117 }
  118 
  119 int
  120 rfork(td, uap)
  121         struct thread *td;
  122         struct rfork_args *uap;
  123 {
  124         struct proc *p2;
  125         int error;
  126 
  127         /* Don't allow kernel-only flags. */
  128         if ((uap->flags & RFKERNELONLY) != 0)
  129                 return (EINVAL);
  130 
  131         AUDIT_ARG(fflags, uap->flags);
  132         error = fork1(td, uap->flags, 0, &p2);
  133         if (error == 0) {
  134                 td->td_retval[0] = p2 ? p2->p_pid : 0;
  135                 td->td_retval[1] = 0;
  136         }
  137         return (error);
  138 }
  139 
  140 int     nprocs = 1;             /* process 0 */
  141 int     lastpid = 0;
  142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  143     "Last used PID");
  144 
  145 /*
  146  * Random component to lastpid generation.  We mix in a random factor to make
  147  * it a little harder to predict.  We sanity check the modulus value to avoid
  148  * doing it in critical paths.  Don't let it be too small or we pointlessly
  149  * waste randomness entropy, and don't let it be impossibly large.  Using a
  150  * modulus that is too big causes a LOT more process table scans and slows
  151  * down fork processing as the pidchecked caching is defeated.
  152  */
  153 static int randompid = 0;
  154 
  155 static int
  156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  157 {
  158         int error, pid;
  159 
  160         error = sysctl_wire_old_buffer(req, sizeof(int));
  161         if (error != 0)
  162                 return(error);
  163         sx_xlock(&allproc_lock);
  164         pid = randompid;
  165         error = sysctl_handle_int(oidp, &pid, 0, req);
  166         if (error == 0 && req->newptr != NULL) {
  167                 if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
  168                         pid = PID_MAX - 100;
  169                 else if (pid < 2)                       /* NOP */
  170                         pid = 0;
  171                 else if (pid < 100)                     /* Make it reasonable */
  172                         pid = 100;
  173                 randompid = pid;
  174         }
  175         sx_xunlock(&allproc_lock);
  176         return (error);
  177 }
  178 
  179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  180     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  181 
  182 int
  183 fork1(td, flags, pages, procp)
  184         struct thread *td;
  185         int flags;
  186         int pages;
  187         struct proc **procp;
  188 {
  189         struct proc *p1, *p2, *pptr;
  190         struct proc *newproc;
  191         int ok, trypid;
  192         static int curfail, pidchecked = 0;
  193         static struct timeval lastfail;
  194         struct filedesc *fd;
  195         struct filedesc_to_leader *fdtol;
  196         struct thread *td2;
  197         struct sigacts *newsigacts;
  198         struct vmspace *vm2;
  199         int error;
  200 
  201         /* Can't copy and clear. */
  202         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  203                 return (EINVAL);
  204 
  205         p1 = td->td_proc;
  206 
  207         /*
  208          * Here we don't create a new process, but we divorce
  209          * certain parts of a process from itself.
  210          */
  211         if ((flags & RFPROC) == 0) {
  212                 if ((p1->p_flag & P_HADTHREADS) &&
  213                     (flags & (RFCFDG | RFFDG))) {
  214                         PROC_LOCK(p1);
  215                         if (thread_single(SINGLE_BOUNDARY)) {
  216                                 PROC_UNLOCK(p1);
  217                                 return (ERESTART);
  218                         }
  219                         PROC_UNLOCK(p1);
  220                 }
  221 
  222                 error = vm_forkproc(td, NULL, NULL, NULL, flags);
  223                 if (error)
  224                         goto norfproc_fail;
  225 
  226                 /*
  227                  * Close all file descriptors.
  228                  */
  229                 if (flags & RFCFDG) {
  230                         struct filedesc *fdtmp;
  231                         fdtmp = fdinit(td->td_proc->p_fd);
  232                         fdfree(td);
  233                         p1->p_fd = fdtmp;
  234                 }
  235 
  236                 /*
  237                  * Unshare file descriptors (from parent).
  238                  */
  239                 if (flags & RFFDG) 
  240                         fdunshare(p1, td);
  241 
  242 norfproc_fail:
  243                 if ((p1->p_flag & P_HADTHREADS) &&
  244                     (flags & (RFCFDG | RFFDG))) {
  245                         PROC_LOCK(p1);
  246                         thread_single_end();
  247                         PROC_UNLOCK(p1);
  248                 }
  249                 *procp = NULL;
  250                 return (error);
  251         }
  252 
  253         /* Allocate new proc. */
  254         newproc = uma_zalloc(proc_zone, M_WAITOK);
  255         if (TAILQ_EMPTY(&newproc->p_threads)) {
  256                 td2 = thread_alloc();
  257                 if (td2 == NULL) {
  258                         error = ENOMEM;
  259                         goto fail1;
  260                 }
  261                 proc_linkup(newproc, td2);
  262                 sched_newproc(newproc, td2);
  263         } else
  264                 td2 = FIRST_THREAD_IN_PROC(newproc);
  265 
  266         /* Allocate and switch to an alternate kstack if specified. */
  267         if (pages != 0) {
  268                 if (!vm_thread_new_altkstack(td2, pages)) {
  269                         error = ENOMEM;
  270                         goto fail1;
  271                 }
  272         }
  273         if ((flags & RFMEM) == 0) {
  274                 vm2 = vmspace_fork(p1->p_vmspace);
  275                 if (vm2 == NULL) {
  276                         error = ENOMEM;
  277                         goto fail1;
  278                 }
  279         } else
  280                 vm2 = NULL;
  281 #ifdef MAC
  282         mac_init_proc(newproc);
  283 #endif
  284         knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
  285         STAILQ_INIT(&newproc->p_ktr);
  286 
  287         /* We have to lock the process tree while we look for a pid. */
  288         sx_slock(&proctree_lock);
  289 
  290         /*
  291          * Although process entries are dynamically created, we still keep
  292          * a global limit on the maximum number we will create.  Don't allow
  293          * a nonprivileged user to use the last ten processes; don't let root
  294          * exceed the limit. The variable nprocs is the current number of
  295          * processes, maxproc is the limit.
  296          */
  297         sx_xlock(&allproc_lock);
  298         if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
  299             PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
  300                 error = EAGAIN;
  301                 goto fail;
  302         }
  303 
  304         /*
  305          * Increment the count of procs running with this uid. Don't allow
  306          * a nonprivileged user to exceed their current limit.
  307          *
  308          * XXXRW: Can we avoid privilege here if it's not needed?
  309          */
  310         error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
  311         if (error == 0)
  312                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
  313         else {
  314                 PROC_LOCK(p1);
  315                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  316                     lim_cur(p1, RLIMIT_NPROC));
  317                 PROC_UNLOCK(p1);
  318         }
  319         if (!ok) {
  320                 error = EAGAIN;
  321                 goto fail;
  322         }
  323 
  324         /*
  325          * Increment the nprocs resource before blocking can occur.  There
  326          * are hard-limits as to the number of processes that can run.
  327          */
  328         nprocs++;
  329 
  330         /*
  331          * Find an unused process ID.  We remember a range of unused IDs
  332          * ready to use (from lastpid+1 through pidchecked-1).
  333          *
  334          * If RFHIGHPID is set (used during system boot), do not allocate
  335          * low-numbered pids.
  336          */
  337         trypid = lastpid + 1;
  338         if (flags & RFHIGHPID) {
  339                 if (trypid < 10)
  340                         trypid = 10;
  341         } else {
  342                 if (randompid)
  343                         trypid += arc4random() % randompid;
  344         }
  345 retry:
  346         /*
  347          * If the process ID prototype has wrapped around,
  348          * restart somewhat above 0, as the low-numbered procs
  349          * tend to include daemons that don't exit.
  350          */
  351         if (trypid >= PID_MAX) {
  352                 trypid = trypid % PID_MAX;
  353                 if (trypid < 100)
  354                         trypid += 100;
  355                 pidchecked = 0;
  356         }
  357         if (trypid >= pidchecked) {
  358                 int doingzomb = 0;
  359 
  360                 pidchecked = PID_MAX;
  361                 /*
  362                  * Scan the active and zombie procs to check whether this pid
  363                  * is in use.  Remember the lowest pid that's greater
  364                  * than trypid, so we can avoid checking for a while.
  365                  */
  366                 p2 = LIST_FIRST(&allproc);
  367 again:
  368                 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
  369                         while (p2->p_pid == trypid ||
  370                             (p2->p_pgrp != NULL &&
  371                             (p2->p_pgrp->pg_id == trypid ||
  372                             (p2->p_session != NULL &&
  373                             p2->p_session->s_sid == trypid)))) {
  374                                 trypid++;
  375                                 if (trypid >= pidchecked)
  376                                         goto retry;
  377                         }
  378                         if (p2->p_pid > trypid && pidchecked > p2->p_pid)
  379                                 pidchecked = p2->p_pid;
  380                         if (p2->p_pgrp != NULL) {
  381                                 if (p2->p_pgrp->pg_id > trypid &&
  382                                     pidchecked > p2->p_pgrp->pg_id)
  383                                         pidchecked = p2->p_pgrp->pg_id;
  384                                 if (p2->p_session != NULL &&
  385                                     p2->p_session->s_sid > trypid &&
  386                                     pidchecked > p2->p_session->s_sid)
  387                                         pidchecked = p2->p_session->s_sid;
  388                         }
  389                 }
  390                 if (!doingzomb) {
  391                         doingzomb = 1;
  392                         p2 = LIST_FIRST(&zombproc);
  393                         goto again;
  394                 }
  395         }
  396         sx_sunlock(&proctree_lock);
  397 
  398         /*
  399          * RFHIGHPID does not mess with the lastpid counter during boot.
  400          */
  401         if (flags & RFHIGHPID)
  402                 pidchecked = 0;
  403         else
  404                 lastpid = trypid;
  405 
  406         p2 = newproc;
  407         p2->p_state = PRS_NEW;          /* protect against others */
  408         p2->p_pid = trypid;
  409         /*
  410          * Allow the scheduler to initialize the child.
  411          */
  412         thread_lock(td);
  413         sched_fork(td, td2);
  414         thread_unlock(td);
  415         AUDIT_ARG(pid, p2->p_pid);
  416         LIST_INSERT_HEAD(&allproc, p2, p_list);
  417         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  418 
  419         PROC_LOCK(p2);
  420         PROC_LOCK(p1);
  421 
  422         sx_xunlock(&allproc_lock);
  423 
  424         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  425             __rangeof(struct proc, p_startcopy, p_endcopy));
  426         PROC_UNLOCK(p1);
  427 
  428         bzero(&p2->p_startzero,
  429             __rangeof(struct proc, p_startzero, p_endzero));
  430 
  431         p2->p_ucred = crhold(td->td_ucred);
  432         PROC_UNLOCK(p2);
  433 
  434         /*
  435          * Malloc things while we don't hold any locks.
  436          */
  437         if (flags & RFSIGSHARE)
  438                 newsigacts = NULL;
  439         else
  440                 newsigacts = sigacts_alloc();
  441 
  442         /*
  443          * Copy filedesc.
  444          */
  445         if (flags & RFCFDG) {
  446                 fd = fdinit(p1->p_fd);
  447                 fdtol = NULL;
  448         } else if (flags & RFFDG) {
  449                 fd = fdcopy(p1->p_fd);
  450                 fdtol = NULL;
  451         } else {
  452                 fd = fdshare(p1->p_fd);
  453                 if (p1->p_fdtol == NULL)
  454                         p1->p_fdtol =
  455                                 filedesc_to_leader_alloc(NULL,
  456                                                          NULL,
  457                                                          p1->p_leader);
  458                 if ((flags & RFTHREAD) != 0) {
  459                         /*
  460                          * Shared file descriptor table and
  461                          * shared process leaders.
  462                          */
  463                         fdtol = p1->p_fdtol;
  464                         FILEDESC_XLOCK(p1->p_fd);
  465                         fdtol->fdl_refcount++;
  466                         FILEDESC_XUNLOCK(p1->p_fd);
  467                 } else {
  468                         /* 
  469                          * Shared file descriptor table, and
  470                          * different process leaders 
  471                          */
  472                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  473                                                          p1->p_fd,
  474                                                          p2);
  475                 }
  476         }
  477         /*
  478          * Make a proc table entry for the new process.
  479          * Start by zeroing the section of proc that is zero-initialized,
  480          * then copy the section that is copied directly from the parent.
  481          */
  482 
  483         PROC_LOCK(p2);
  484         PROC_LOCK(p1);
  485 
  486         bzero(&td2->td_startzero,
  487             __rangeof(struct thread, td_startzero, td_endzero));
  488 
  489         bcopy(&td->td_startcopy, &td2->td_startcopy,
  490             __rangeof(struct thread, td_startcopy, td_endcopy));
  491 
  492         td2->td_sigstk = td->td_sigstk;
  493         td2->td_sigmask = td->td_sigmask;
  494         td2->td_flags = TDF_INMEM;
  495 
  496         /*
  497          * Duplicate sub-structures as needed.
  498          * Increase reference counts on shared objects.
  499          */
  500         p2->p_flag = P_INMEM;
  501         p2->p_swtick = ticks;
  502         if (p1->p_flag & P_PROFIL)
  503                 startprofclock(p2);
  504         td2->td_ucred = crhold(p2->p_ucred);
  505         pargs_hold(p2->p_args);
  506 
  507         if (flags & RFSIGSHARE) {
  508                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  509         } else {
  510                 sigacts_copy(newsigacts, p1->p_sigacts);
  511                 p2->p_sigacts = newsigacts;
  512         }
  513         if (flags & RFLINUXTHPN) 
  514                 p2->p_sigparent = SIGUSR1;
  515         else
  516                 p2->p_sigparent = SIGCHLD;
  517 
  518         p2->p_textvp = p1->p_textvp;
  519         p2->p_fd = fd;
  520         p2->p_fdtol = fdtol;
  521 
  522         /*
  523          * p_limit is copy-on-write.  Bump its refcount.
  524          */
  525         lim_fork(p1, p2);
  526 
  527         pstats_fork(p1->p_stats, p2->p_stats);
  528 
  529         PROC_UNLOCK(p1);
  530         PROC_UNLOCK(p2);
  531 
  532         /* Bump references to the text vnode (for procfs) */
  533         if (p2->p_textvp)
  534                 vref(p2->p_textvp);
  535 
  536         /*
  537          * Set up linkage for kernel based threading.
  538          */
  539         if ((flags & RFTHREAD) != 0) {
  540                 mtx_lock(&ppeers_lock);
  541                 p2->p_peers = p1->p_peers;
  542                 p1->p_peers = p2;
  543                 p2->p_leader = p1->p_leader;
  544                 mtx_unlock(&ppeers_lock);
  545                 PROC_LOCK(p1->p_leader);
  546                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  547                         PROC_UNLOCK(p1->p_leader);
  548                         /*
  549                          * The task leader is exiting, so process p1 is
  550                          * going to be killed shortly.  Since p1 obviously
  551                          * isn't dead yet, we know that the leader is either
  552                          * sending SIGKILL's to all the processes in this
  553                          * task or is sleeping waiting for all the peers to
  554                          * exit.  We let p1 complete the fork, but we need
  555                          * to go ahead and kill the new process p2 since
  556                          * the task leader may not get a chance to send
  557                          * SIGKILL to it.  We leave it on the list so that
  558                          * the task leader will wait for this new process
  559                          * to commit suicide.
  560                          */
  561                         PROC_LOCK(p2);
  562                         psignal(p2, SIGKILL);
  563                         PROC_UNLOCK(p2);
  564                 } else
  565                         PROC_UNLOCK(p1->p_leader);
  566         } else {
  567                 p2->p_peers = NULL;
  568                 p2->p_leader = p2;
  569         }
  570 
  571         sx_xlock(&proctree_lock);
  572         PGRP_LOCK(p1->p_pgrp);
  573         PROC_LOCK(p2);
  574         PROC_LOCK(p1);
  575 
  576         /*
  577          * Preserve some more flags in subprocess.  P_PROFIL has already
  578          * been preserved.
  579          */
  580         p2->p_flag |= p1->p_flag & P_SUGID;
  581         td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
  582         SESS_LOCK(p1->p_session);
  583         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  584                 p2->p_flag |= P_CONTROLT;
  585         SESS_UNLOCK(p1->p_session);
  586         if (flags & RFPPWAIT)
  587                 p2->p_flag |= P_PPWAIT;
  588 
  589         p2->p_pgrp = p1->p_pgrp;
  590         LIST_INSERT_AFTER(p1, p2, p_pglist);
  591         PGRP_UNLOCK(p1->p_pgrp);
  592         LIST_INIT(&p2->p_children);
  593 
  594         callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
  595 
  596 #ifdef KTRACE
  597         /*
  598          * Copy traceflag and tracefile if enabled.
  599          */
  600         mtx_lock(&ktrace_mtx);
  601         KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
  602         if (p1->p_traceflag & KTRFAC_INHERIT) {
  603                 p2->p_traceflag = p1->p_traceflag;
  604                 if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
  605                         VREF(p2->p_tracevp);
  606                         KASSERT(p1->p_tracecred != NULL,
  607                             ("ktrace vnode with no cred"));
  608                         p2->p_tracecred = crhold(p1->p_tracecred);
  609                 }
  610         }
  611         mtx_unlock(&ktrace_mtx);
  612 #endif
  613 
  614         /*
  615          * If PF_FORK is set, the child process inherits the
  616          * procfs ioctl flags from its parent.
  617          */
  618         if (p1->p_pfsflags & PF_FORK) {
  619                 p2->p_stops = p1->p_stops;
  620                 p2->p_pfsflags = p1->p_pfsflags;
  621         }
  622 
  623         /*
  624          * This begins the section where we must prevent the parent
  625          * from being swapped.
  626          */
  627         _PHOLD(p1);
  628         PROC_UNLOCK(p1);
  629 
  630         /*
  631          * Attach the new process to its parent.
  632          *
  633          * If RFNOWAIT is set, the newly created process becomes a child
  634          * of init.  This effectively disassociates the child from the
  635          * parent.
  636          */
  637         if (flags & RFNOWAIT)
  638                 pptr = initproc;
  639         else
  640                 pptr = p1;
  641         p2->p_pptr = pptr;
  642         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  643         sx_xunlock(&proctree_lock);
  644 
  645         /* Inform accounting that we have forked. */
  646         p2->p_acflag = AFORK;
  647         PROC_UNLOCK(p2);
  648 
  649         /*
  650          * Finish creating the child process.  It will return via a different
  651          * execution path later.  (ie: directly into user mode)
  652          */
  653         vm_forkproc(td, p2, td2, vm2, flags);
  654 
  655         if (flags == (RFFDG | RFPROC)) {
  656                 PCPU_INC(cnt.v_forks);
  657                 PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
  658                     p2->p_vmspace->vm_ssize);
  659         } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  660                 PCPU_INC(cnt.v_vforks);
  661                 PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
  662                     p2->p_vmspace->vm_ssize);
  663         } else if (p1 == &proc0) {
  664                 PCPU_INC(cnt.v_kthreads);
  665                 PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
  666                     p2->p_vmspace->vm_ssize);
  667         } else {
  668                 PCPU_INC(cnt.v_rforks);
  669                 PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
  670                     p2->p_vmspace->vm_ssize);
  671         }
  672 
  673         /*
  674          * Both processes are set up, now check if any loadable modules want
  675          * to adjust anything.
  676          *   What if they have an error? XXX
  677          */
  678         EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
  679 
  680         /*
  681          * Set the child start time and mark the process as being complete.
  682          */
  683         microuptime(&p2->p_stats->p_start);
  684         PROC_SLOCK(p2);
  685         p2->p_state = PRS_NORMAL;
  686         PROC_SUNLOCK(p2);
  687 
  688         /*
  689          * If RFSTOPPED not requested, make child runnable and add to
  690          * run queue.
  691          */
  692         if ((flags & RFSTOPPED) == 0) {
  693                 thread_lock(td2);
  694                 TD_SET_CAN_RUN(td2);
  695                 sched_add(td2, SRQ_BORING);
  696                 thread_unlock(td2);
  697         }
  698 
  699         /*
  700          * Now can be swapped.
  701          */
  702         PROC_LOCK(p1);
  703         _PRELE(p1);
  704 
  705         /*
  706          * Tell any interested parties about the new process.
  707          */
  708         KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
  709 
  710         PROC_UNLOCK(p1);
  711 
  712         /*
  713          * Preserve synchronization semantics of vfork.  If waiting for
  714          * child to exec or exit, set P_PPWAIT on child, and sleep on our
  715          * proc (in case of exit).
  716          */
  717         PROC_LOCK(p2);
  718         while (p2->p_flag & P_PPWAIT)
  719                 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
  720         PROC_UNLOCK(p2);
  721 
  722         /*
  723          * Return child proc pointer to parent.
  724          */
  725         *procp = p2;
  726         return (0);
  727 fail:
  728         sx_sunlock(&proctree_lock);
  729         if (ppsratecheck(&lastfail, &curfail, 1))
  730                 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
  731                     td->td_ucred->cr_ruid);
  732         sx_xunlock(&allproc_lock);
  733 #ifdef MAC
  734         mac_destroy_proc(newproc);
  735 #endif
  736 fail1:
  737         uma_zfree(proc_zone, newproc);
  738         pause("fork", hz / 2);
  739         return (error);
  740 }
  741 
  742 /*
  743  * Handle the return of a child process from fork1().  This function
  744  * is called from the MD fork_trampoline() entry point.
  745  */
  746 void
  747 fork_exit(callout, arg, frame)
  748         void (*callout)(void *, struct trapframe *);
  749         void *arg;
  750         struct trapframe *frame;
  751 {
  752         struct proc *p;
  753         struct thread *td;
  754         struct thread *dtd;
  755 
  756         td = curthread;
  757         p = td->td_proc;
  758         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
  759 
  760         CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
  761                 td, td->td_sched, p->p_pid, p->p_comm);
  762 
  763         sched_fork_exit(td);
  764         /*
  765         * Processes normally resume in mi_switch() after being
  766         * cpu_switch()'ed to, but when children start up they arrive here
  767         * instead, so we must do much the same things as mi_switch() would.
  768         */
  769         if ((dtd = PCPU_GET(deadthread))) {
  770                 PCPU_SET(deadthread, NULL);
  771                 thread_stash(dtd);
  772         }
  773         thread_unlock(td);
  774 
  775         /*
  776          * cpu_set_fork_handler intercepts this function call to
  777          * have this call a non-return function to stay in kernel mode.
  778          * initproc has its own fork handler, but it does return.
  779          */
  780         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
  781         callout(arg, frame);
  782 
  783         /*
  784          * Check if a kernel thread misbehaved and returned from its main
  785          * function.
  786          */
  787         if (p->p_flag & P_KTHREAD) {
  788                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
  789                     p->p_comm, p->p_pid);
  790                 kthread_exit(0);
  791         }
  792         mtx_assert(&Giant, MA_NOTOWNED);
  793 
  794         EVENTHANDLER_INVOKE(schedtail, p);
  795 }
  796 
  797 /*
  798  * Simplified back end of syscall(), used when returning from fork()
  799  * directly into user mode.  Giant is not held on entry, and must not
  800  * be held on return.  This function is passed in to fork_exit() as the
  801  * first parameter and is called when returning to a new userland process.
  802  */
  803 void
  804 fork_return(td, frame)
  805         struct thread *td;
  806         struct trapframe *frame;
  807 {
  808 
  809         userret(td, frame);
  810 #ifdef KTRACE
  811         if (KTRPOINT(td, KTR_SYSRET))
  812                 ktrsysret(SYS_fork, 0, 0);
  813 #endif
  814         mtx_assert(&Giant, MA_NOTOWNED);
  815 }

Cache object: 2ef8844e8580fb1773537e74a6def1a6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.