The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_fork.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/8.3/sys/kern/kern_fork.c 224211 2011-07-19 10:41:26Z kib $");
   39 
   40 #include "opt_kdtrace.h"
   41 #include "opt_ktrace.h"
   42 #include "opt_kstack_pages.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/sysproto.h>
   47 #include <sys/eventhandler.h>
   48 #include <sys/filedesc.h>
   49 #include <sys/jail.h>
   50 #include <sys/kernel.h>
   51 #include <sys/kthread.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mutex.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/pioctl.h>
   59 #include <sys/resourcevar.h>
   60 #include <sys/sched.h>
   61 #include <sys/syscall.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 #include <sys/acct.h>
   65 #include <sys/ktr.h>
   66 #include <sys/ktrace.h>
   67 #include <sys/unistd.h> 
   68 #include <sys/sdt.h>
   69 #include <sys/sx.h>
   70 #include <sys/sysent.h>
   71 #include <sys/signalvar.h>
   72 
   73 #include <security/audit/audit.h>
   74 #include <security/mac/mac_framework.h>
   75 
   76 #include <vm/vm.h>
   77 #include <vm/pmap.h>
   78 #include <vm/vm_map.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/uma.h>
   81 
   82 #ifdef KDTRACE_HOOKS
   83 #include <sys/dtrace_bsd.h>
   84 dtrace_fork_func_t      dtrace_fasttrap_fork;
   85 #endif
   86 
   87 SDT_PROVIDER_DECLARE(proc);
   88 SDT_PROBE_DEFINE(proc, kernel, , create, create);
   89 SDT_PROBE_ARGTYPE(proc, kernel, , create, 0, "struct proc *");
   90 SDT_PROBE_ARGTYPE(proc, kernel, , create, 1, "struct proc *");
   91 SDT_PROBE_ARGTYPE(proc, kernel, , create, 2, "int");
   92 
   93 #ifndef _SYS_SYSPROTO_H_
   94 struct fork_args {
   95         int     dummy;
   96 };
   97 #endif
   98 
   99 /* ARGSUSED */
  100 int
  101 fork(td, uap)
  102         struct thread *td;
  103         struct fork_args *uap;
  104 {
  105         int error;
  106         struct proc *p2;
  107 
  108         error = fork1(td, RFFDG | RFPROC, 0, &p2);
  109         if (error == 0) {
  110                 td->td_retval[0] = p2->p_pid;
  111                 td->td_retval[1] = 0;
  112         }
  113         return (error);
  114 }
  115 
  116 /* ARGSUSED */
  117 int
  118 vfork(td, uap)
  119         struct thread *td;
  120         struct vfork_args *uap;
  121 {
  122         int error, flags;
  123         struct proc *p2;
  124 
  125 #ifdef XEN
  126         flags = RFFDG | RFPROC; /* validate that this is still an issue */
  127 #else
  128         flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
  129 #endif          
  130         error = fork1(td, flags, 0, &p2);
  131         if (error == 0) {
  132                 td->td_retval[0] = p2->p_pid;
  133                 td->td_retval[1] = 0;
  134         }
  135         return (error);
  136 }
  137 
  138 int
  139 rfork(td, uap)
  140         struct thread *td;
  141         struct rfork_args *uap;
  142 {
  143         struct proc *p2;
  144         int error;
  145 
  146         /* Don't allow kernel-only flags. */
  147         if ((uap->flags & RFKERNELONLY) != 0)
  148                 return (EINVAL);
  149 
  150         AUDIT_ARG_FFLAGS(uap->flags);
  151         error = fork1(td, uap->flags, 0, &p2);
  152         if (error == 0) {
  153                 td->td_retval[0] = p2 ? p2->p_pid : 0;
  154                 td->td_retval[1] = 0;
  155         }
  156         return (error);
  157 }
  158 
  159 int     nprocs = 1;             /* process 0 */
  160 int     lastpid = 0;
  161 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
  162     "Last used PID");
  163 
  164 /*
  165  * Random component to lastpid generation.  We mix in a random factor to make
  166  * it a little harder to predict.  We sanity check the modulus value to avoid
  167  * doing it in critical paths.  Don't let it be too small or we pointlessly
  168  * waste randomness entropy, and don't let it be impossibly large.  Using a
  169  * modulus that is too big causes a LOT more process table scans and slows
  170  * down fork processing as the pidchecked caching is defeated.
  171  */
  172 static int randompid = 0;
  173 
  174 static int
  175 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
  176 {
  177         int error, pid;
  178 
  179         error = sysctl_wire_old_buffer(req, sizeof(int));
  180         if (error != 0)
  181                 return(error);
  182         sx_xlock(&allproc_lock);
  183         pid = randompid;
  184         error = sysctl_handle_int(oidp, &pid, 0, req);
  185         if (error == 0 && req->newptr != NULL) {
  186                 if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
  187                         pid = PID_MAX - 100;
  188                 else if (pid < 2)                       /* NOP */
  189                         pid = 0;
  190                 else if (pid < 100)                     /* Make it reasonable */
  191                         pid = 100;
  192                 randompid = pid;
  193         }
  194         sx_xunlock(&allproc_lock);
  195         return (error);
  196 }
  197 
  198 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
  199     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
  200 
  201 int
  202 fork1(td, flags, pages, procp)
  203         struct thread *td;
  204         int flags;
  205         int pages;
  206         struct proc **procp;
  207 {
  208         struct proc *p1, *p2, *pptr;
  209         struct proc *newproc;
  210         int ok, p2_held, trypid;
  211         static int curfail, pidchecked = 0;
  212         static struct timeval lastfail;
  213         struct filedesc *fd;
  214         struct filedesc_to_leader *fdtol;
  215         struct thread *td2;
  216         struct sigacts *newsigacts;
  217         struct vmspace *vm2;
  218         vm_ooffset_t mem_charged;
  219         int error;
  220 
  221         /* Check for the undefined or unimplemented flags. */
  222         if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
  223                 return (EINVAL);
  224 
  225         /* Signal value requires RFTSIGZMB. */
  226         if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
  227                 return (EINVAL);
  228 
  229         /* Can't copy and clear. */
  230         if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
  231                 return (EINVAL);
  232 
  233         /* Check the validity of the signal number. */
  234         if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
  235                 return (EINVAL);
  236 
  237         p2_held = 0;
  238         p1 = td->td_proc;
  239 
  240         /*
  241          * Here we don't create a new process, but we divorce
  242          * certain parts of a process from itself.
  243          */
  244         if ((flags & RFPROC) == 0) {
  245                 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  246                     (flags & (RFCFDG | RFFDG))) {
  247                         PROC_LOCK(p1);
  248                         if (thread_single(SINGLE_BOUNDARY)) {
  249                                 PROC_UNLOCK(p1);
  250                                 return (ERESTART);
  251                         }
  252                         PROC_UNLOCK(p1);
  253                 }
  254 
  255                 error = vm_forkproc(td, NULL, NULL, NULL, flags);
  256                 if (error)
  257                         goto norfproc_fail;
  258 
  259                 /*
  260                  * Close all file descriptors.
  261                  */
  262                 if (flags & RFCFDG) {
  263                         struct filedesc *fdtmp;
  264                         fdtmp = fdinit(td->td_proc->p_fd);
  265                         fdfree(td);
  266                         p1->p_fd = fdtmp;
  267                 }
  268 
  269                 /*
  270                  * Unshare file descriptors (from parent).
  271                  */
  272                 if (flags & RFFDG) 
  273                         fdunshare(p1, td);
  274 
  275 norfproc_fail:
  276                 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
  277                     (flags & (RFCFDG | RFFDG))) {
  278                         PROC_LOCK(p1);
  279                         thread_single_end();
  280                         PROC_UNLOCK(p1);
  281                 }
  282                 *procp = NULL;
  283                 return (error);
  284         }
  285 
  286         /*
  287          * XXX
  288          * We did have single-threading code here
  289          * however it proved un-needed and caused problems
  290          */
  291 
  292         mem_charged = 0;
  293         vm2 = NULL;
  294         if (pages == 0)
  295                 pages = KSTACK_PAGES;
  296         /* Allocate new proc. */
  297         newproc = uma_zalloc(proc_zone, M_WAITOK);
  298         td2 = FIRST_THREAD_IN_PROC(newproc);
  299         if (td2 == NULL) {
  300                 td2 = thread_alloc(pages);
  301                 if (td2 == NULL) {
  302                         error = ENOMEM;
  303                         goto fail1;
  304                 }
  305                 proc_linkup(newproc, td2);
  306         } else {
  307                 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
  308                         if (td2->td_kstack != 0)
  309                                 vm_thread_dispose(td2);
  310                         if (!thread_alloc_stack(td2, pages)) {
  311                                 error = ENOMEM;
  312                                 goto fail1;
  313                         }
  314                 }
  315         }
  316 
  317         if ((flags & RFMEM) == 0) {
  318                 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
  319                 if (vm2 == NULL) {
  320                         error = ENOMEM;
  321                         goto fail1;
  322                 }
  323                 if (!swap_reserve(mem_charged)) {
  324                         /*
  325                          * The swap reservation failed. The accounting
  326                          * from the entries of the copied vm2 will be
  327                          * substracted in vmspace_free(), so force the
  328                          * reservation there.
  329                          */
  330                         swap_reserve_force(mem_charged);
  331                         error = ENOMEM;
  332                         goto fail1;
  333                 }
  334         } else
  335                 vm2 = NULL;
  336 #ifdef MAC
  337         mac_proc_init(newproc);
  338 #endif
  339         knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
  340         STAILQ_INIT(&newproc->p_ktr);
  341 
  342         /* We have to lock the process tree while we look for a pid. */
  343         sx_slock(&proctree_lock);
  344 
  345         /*
  346          * Although process entries are dynamically created, we still keep
  347          * a global limit on the maximum number we will create.  Don't allow
  348          * a nonprivileged user to use the last ten processes; don't let root
  349          * exceed the limit. The variable nprocs is the current number of
  350          * processes, maxproc is the limit.
  351          */
  352         sx_xlock(&allproc_lock);
  353         if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
  354             PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
  355                 error = EAGAIN;
  356                 goto fail;
  357         }
  358 
  359         /*
  360          * Increment the count of procs running with this uid. Don't allow
  361          * a nonprivileged user to exceed their current limit.
  362          *
  363          * XXXRW: Can we avoid privilege here if it's not needed?
  364          */
  365         error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
  366         if (error == 0)
  367                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
  368         else {
  369                 PROC_LOCK(p1);
  370                 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
  371                     lim_cur(p1, RLIMIT_NPROC));
  372                 PROC_UNLOCK(p1);
  373         }
  374         if (!ok) {
  375                 error = EAGAIN;
  376                 goto fail;
  377         }
  378 
  379         /*
  380          * Increment the nprocs resource before blocking can occur.  There
  381          * are hard-limits as to the number of processes that can run.
  382          */
  383         nprocs++;
  384 
  385         /*
  386          * Find an unused process ID.  We remember a range of unused IDs
  387          * ready to use (from lastpid+1 through pidchecked-1).
  388          *
  389          * If RFHIGHPID is set (used during system boot), do not allocate
  390          * low-numbered pids.
  391          */
  392         trypid = lastpid + 1;
  393         if (flags & RFHIGHPID) {
  394                 if (trypid < 10)
  395                         trypid = 10;
  396         } else {
  397                 if (randompid)
  398                         trypid += arc4random() % randompid;
  399         }
  400 retry:
  401         /*
  402          * If the process ID prototype has wrapped around,
  403          * restart somewhat above 0, as the low-numbered procs
  404          * tend to include daemons that don't exit.
  405          */
  406         if (trypid >= PID_MAX) {
  407                 trypid = trypid % PID_MAX;
  408                 if (trypid < 100)
  409                         trypid += 100;
  410                 pidchecked = 0;
  411         }
  412         if (trypid >= pidchecked) {
  413                 int doingzomb = 0;
  414 
  415                 pidchecked = PID_MAX;
  416                 /*
  417                  * Scan the active and zombie procs to check whether this pid
  418                  * is in use.  Remember the lowest pid that's greater
  419                  * than trypid, so we can avoid checking for a while.
  420                  */
  421                 p2 = LIST_FIRST(&allproc);
  422 again:
  423                 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
  424                         while (p2->p_pid == trypid ||
  425                             (p2->p_pgrp != NULL &&
  426                             (p2->p_pgrp->pg_id == trypid ||
  427                             (p2->p_session != NULL &&
  428                             p2->p_session->s_sid == trypid)))) {
  429                                 trypid++;
  430                                 if (trypid >= pidchecked)
  431                                         goto retry;
  432                         }
  433                         if (p2->p_pid > trypid && pidchecked > p2->p_pid)
  434                                 pidchecked = p2->p_pid;
  435                         if (p2->p_pgrp != NULL) {
  436                                 if (p2->p_pgrp->pg_id > trypid &&
  437                                     pidchecked > p2->p_pgrp->pg_id)
  438                                         pidchecked = p2->p_pgrp->pg_id;
  439                                 if (p2->p_session != NULL &&
  440                                     p2->p_session->s_sid > trypid &&
  441                                     pidchecked > p2->p_session->s_sid)
  442                                         pidchecked = p2->p_session->s_sid;
  443                         }
  444                 }
  445                 if (!doingzomb) {
  446                         doingzomb = 1;
  447                         p2 = LIST_FIRST(&zombproc);
  448                         goto again;
  449                 }
  450         }
  451         sx_sunlock(&proctree_lock);
  452 
  453         /*
  454          * RFHIGHPID does not mess with the lastpid counter during boot.
  455          */
  456         if (flags & RFHIGHPID)
  457                 pidchecked = 0;
  458         else
  459                 lastpid = trypid;
  460 
  461         p2 = newproc;
  462         p2->p_state = PRS_NEW;          /* protect against others */
  463         p2->p_pid = trypid;
  464         AUDIT_ARG_PID(p2->p_pid);
  465         LIST_INSERT_HEAD(&allproc, p2, p_list);
  466         LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
  467 
  468         PROC_LOCK(p2);
  469         PROC_LOCK(p1);
  470 
  471         sx_xunlock(&allproc_lock);
  472 
  473         bcopy(&p1->p_startcopy, &p2->p_startcopy,
  474             __rangeof(struct proc, p_startcopy, p_endcopy));
  475         pargs_hold(p2->p_args);
  476         PROC_UNLOCK(p1);
  477 
  478         bzero(&p2->p_startzero,
  479             __rangeof(struct proc, p_startzero, p_endzero));
  480 
  481         p2->p_ucred = crhold(td->td_ucred);
  482 
  483         /* Tell the prison that we exist. */
  484         prison_proc_hold(p2->p_ucred->cr_prison);
  485 
  486         PROC_UNLOCK(p2);
  487 
  488         /*
  489          * Malloc things while we don't hold any locks.
  490          */
  491         if (flags & RFSIGSHARE)
  492                 newsigacts = NULL;
  493         else
  494                 newsigacts = sigacts_alloc();
  495 
  496         /*
  497          * Copy filedesc.
  498          */
  499         if (flags & RFCFDG) {
  500                 fd = fdinit(p1->p_fd);
  501                 fdtol = NULL;
  502         } else if (flags & RFFDG) {
  503                 fd = fdcopy(p1->p_fd);
  504                 fdtol = NULL;
  505         } else {
  506                 fd = fdshare(p1->p_fd);
  507                 if (p1->p_fdtol == NULL)
  508                         p1->p_fdtol =
  509                                 filedesc_to_leader_alloc(NULL,
  510                                                          NULL,
  511                                                          p1->p_leader);
  512                 if ((flags & RFTHREAD) != 0) {
  513                         /*
  514                          * Shared file descriptor table and
  515                          * shared process leaders.
  516                          */
  517                         fdtol = p1->p_fdtol;
  518                         FILEDESC_XLOCK(p1->p_fd);
  519                         fdtol->fdl_refcount++;
  520                         FILEDESC_XUNLOCK(p1->p_fd);
  521                 } else {
  522                         /* 
  523                          * Shared file descriptor table, and
  524                          * different process leaders 
  525                          */
  526                         fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
  527                                                          p1->p_fd,
  528                                                          p2);
  529                 }
  530         }
  531         /*
  532          * Make a proc table entry for the new process.
  533          * Start by zeroing the section of proc that is zero-initialized,
  534          * then copy the section that is copied directly from the parent.
  535          */
  536 
  537         PROC_LOCK(p2);
  538         PROC_LOCK(p1);
  539 
  540         bzero(&td2->td_startzero,
  541             __rangeof(struct thread, td_startzero, td_endzero));
  542         bzero(&td2->td_rux, sizeof(td2->td_rux));
  543         td2->td_map_def_user = NULL;
  544         td2->td_dbg_forked = 0;
  545 
  546         bcopy(&td->td_startcopy, &td2->td_startcopy,
  547             __rangeof(struct thread, td_startcopy, td_endcopy));
  548 
  549         bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
  550         td2->td_sigstk = td->td_sigstk;
  551         td2->td_sigmask = td->td_sigmask;
  552         td2->td_flags = TDF_INMEM;
  553 
  554 #ifdef VIMAGE
  555         td2->td_vnet = NULL;
  556         td2->td_vnet_lpush = NULL;
  557 #endif
  558 
  559         /*
  560          * Allow the scheduler to initialize the child.
  561          */
  562         thread_lock(td);
  563         sched_fork(td, td2);
  564         thread_unlock(td);
  565 
  566         /*
  567          * Duplicate sub-structures as needed.
  568          * Increase reference counts on shared objects.
  569          */
  570         p2->p_flag = P_INMEM;
  571         p2->p_swtick = ticks;
  572         if (p1->p_flag & P_PROFIL)
  573                 startprofclock(p2);
  574         td2->td_ucred = crhold(p2->p_ucred);
  575 
  576         if (flags & RFSIGSHARE) {
  577                 p2->p_sigacts = sigacts_hold(p1->p_sigacts);
  578         } else {
  579                 sigacts_copy(newsigacts, p1->p_sigacts);
  580                 p2->p_sigacts = newsigacts;
  581         }
  582 
  583         if (flags & RFTSIGZMB)
  584                 p2->p_sigparent = RFTSIGNUM(flags);
  585         else if (flags & RFLINUXTHPN)
  586                 p2->p_sigparent = SIGUSR1;
  587         else
  588                 p2->p_sigparent = SIGCHLD;
  589 
  590         p2->p_textvp = p1->p_textvp;
  591         p2->p_fd = fd;
  592         p2->p_fdtol = fdtol;
  593 
  594         /*
  595          * p_limit is copy-on-write.  Bump its refcount.
  596          */
  597         lim_fork(p1, p2);
  598 
  599         pstats_fork(p1->p_stats, p2->p_stats);
  600 
  601         PROC_UNLOCK(p1);
  602         PROC_UNLOCK(p2);
  603 
  604         /* Bump references to the text vnode (for procfs) */
  605         if (p2->p_textvp)
  606                 vref(p2->p_textvp);
  607 
  608         /*
  609          * Set up linkage for kernel based threading.
  610          */
  611         if ((flags & RFTHREAD) != 0) {
  612                 mtx_lock(&ppeers_lock);
  613                 p2->p_peers = p1->p_peers;
  614                 p1->p_peers = p2;
  615                 p2->p_leader = p1->p_leader;
  616                 mtx_unlock(&ppeers_lock);
  617                 PROC_LOCK(p1->p_leader);
  618                 if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
  619                         PROC_UNLOCK(p1->p_leader);
  620                         /*
  621                          * The task leader is exiting, so process p1 is
  622                          * going to be killed shortly.  Since p1 obviously
  623                          * isn't dead yet, we know that the leader is either
  624                          * sending SIGKILL's to all the processes in this
  625                          * task or is sleeping waiting for all the peers to
  626                          * exit.  We let p1 complete the fork, but we need
  627                          * to go ahead and kill the new process p2 since
  628                          * the task leader may not get a chance to send
  629                          * SIGKILL to it.  We leave it on the list so that
  630                          * the task leader will wait for this new process
  631                          * to commit suicide.
  632                          */
  633                         PROC_LOCK(p2);
  634                         psignal(p2, SIGKILL);
  635                         PROC_UNLOCK(p2);
  636                 } else
  637                         PROC_UNLOCK(p1->p_leader);
  638         } else {
  639                 p2->p_peers = NULL;
  640                 p2->p_leader = p2;
  641         }
  642 
  643         sx_xlock(&proctree_lock);
  644         PGRP_LOCK(p1->p_pgrp);
  645         PROC_LOCK(p2);
  646         PROC_LOCK(p1);
  647 
  648         /*
  649          * Preserve some more flags in subprocess.  P_PROFIL has already
  650          * been preserved.
  651          */
  652         p2->p_flag |= p1->p_flag & P_SUGID;
  653         td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
  654         SESS_LOCK(p1->p_session);
  655         if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
  656                 p2->p_flag |= P_CONTROLT;
  657         SESS_UNLOCK(p1->p_session);
  658         if (flags & RFPPWAIT)
  659                 p2->p_flag |= P_PPWAIT;
  660 
  661         p2->p_pgrp = p1->p_pgrp;
  662         LIST_INSERT_AFTER(p1, p2, p_pglist);
  663         PGRP_UNLOCK(p1->p_pgrp);
  664         LIST_INIT(&p2->p_children);
  665 
  666         callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
  667 
  668         /*
  669          * If PF_FORK is set, the child process inherits the
  670          * procfs ioctl flags from its parent.
  671          */
  672         if (p1->p_pfsflags & PF_FORK) {
  673                 p2->p_stops = p1->p_stops;
  674                 p2->p_pfsflags = p1->p_pfsflags;
  675         }
  676 
  677         /*
  678          * This begins the section where we must prevent the parent
  679          * from being swapped.
  680          */
  681         _PHOLD(p1);
  682         PROC_UNLOCK(p1);
  683 
  684         /*
  685          * Attach the new process to its parent.
  686          *
  687          * If RFNOWAIT is set, the newly created process becomes a child
  688          * of init.  This effectively disassociates the child from the
  689          * parent.
  690          */
  691         if (flags & RFNOWAIT)
  692                 pptr = initproc;
  693         else
  694                 pptr = p1;
  695         p2->p_pptr = pptr;
  696         LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
  697         sx_xunlock(&proctree_lock);
  698 
  699         /* Inform accounting that we have forked. */
  700         p2->p_acflag = AFORK;
  701         PROC_UNLOCK(p2);
  702 
  703 #ifdef KTRACE
  704         ktrprocfork(p1, p2);
  705 #endif
  706 
  707         /*
  708          * Finish creating the child process.  It will return via a different
  709          * execution path later.  (ie: directly into user mode)
  710          */
  711         vm_forkproc(td, p2, td2, vm2, flags);
  712 
  713         if (flags == (RFFDG | RFPROC)) {
  714                 PCPU_INC(cnt.v_forks);
  715                 PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
  716                     p2->p_vmspace->vm_ssize);
  717         } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
  718                 PCPU_INC(cnt.v_vforks);
  719                 PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
  720                     p2->p_vmspace->vm_ssize);
  721         } else if (p1 == &proc0) {
  722                 PCPU_INC(cnt.v_kthreads);
  723                 PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
  724                     p2->p_vmspace->vm_ssize);
  725         } else {
  726                 PCPU_INC(cnt.v_rforks);
  727                 PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
  728                     p2->p_vmspace->vm_ssize);
  729         }
  730 
  731         /*
  732          * Both processes are set up, now check if any loadable modules want
  733          * to adjust anything.
  734          *   What if they have an error? XXX
  735          */
  736         EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
  737 
  738         /*
  739          * Set the child start time and mark the process as being complete.
  740          */
  741         PROC_LOCK(p2);
  742         PROC_LOCK(p1);
  743         microuptime(&p2->p_stats->p_start);
  744         PROC_SLOCK(p2);
  745         p2->p_state = PRS_NORMAL;
  746         PROC_SUNLOCK(p2);
  747 
  748 #ifdef KDTRACE_HOOKS
  749         /*
  750          * Tell the DTrace fasttrap provider about the new process
  751          * if it has registered an interest. We have to do this only after
  752          * p_state is PRS_NORMAL since the fasttrap module will use pfind()
  753          * later on.
  754          */
  755         if (dtrace_fasttrap_fork)
  756                 dtrace_fasttrap_fork(p1, p2);
  757 #endif
  758         if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED |
  759             P_FOLLOWFORK)) {
  760                 /*
  761                  * Arrange for debugger to receive the fork event.
  762                  *
  763                  * We can report PL_FLAG_FORKED regardless of
  764                  * P_FOLLOWFORK settings, but it does not make a sense
  765                  * for runaway child.
  766                  */
  767                 td->td_dbgflags |= TDB_FORK;
  768                 td->td_dbg_forked = p2->p_pid;
  769                 td2->td_dbgflags |= TDB_STOPATFORK;
  770                 _PHOLD(p2);
  771                 p2_held = 1;
  772         }
  773         PROC_UNLOCK(p2);
  774         if ((flags & RFSTOPPED) == 0) {
  775                 /*
  776                  * If RFSTOPPED not requested, make child runnable and
  777                  * add to run queue.
  778                  */
  779                 thread_lock(td2);
  780                 TD_SET_CAN_RUN(td2);
  781                 sched_add(td2, SRQ_BORING);
  782                 thread_unlock(td2);
  783         }
  784 
  785         /*
  786          * Now can be swapped.
  787          */
  788         _PRELE(p1);
  789         PROC_UNLOCK(p1);
  790 
  791         /*
  792          * Tell any interested parties about the new process.
  793          */
  794         knote_fork(&p1->p_klist, p2->p_pid);
  795         SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
  796 
  797         /*
  798          * Wait until debugger is attached to child.
  799          */
  800         PROC_LOCK(p2);
  801         while ((td2->td_dbgflags & TDB_STOPATFORK) != 0)
  802                 cv_wait(&p2->p_dbgwait, &p2->p_mtx);
  803         if (p2_held)
  804                 _PRELE(p2);
  805 
  806         /*
  807          * Preserve synchronization semantics of vfork.  If waiting for
  808          * child to exec or exit, set P_PPWAIT on child, and sleep on our
  809          * proc (in case of exit).
  810          */
  811         while (p2->p_flag & P_PPWAIT)
  812                 cv_wait(&p2->p_pwait, &p2->p_mtx);
  813         PROC_UNLOCK(p2);
  814 
  815         /*
  816          * Return child proc pointer to parent.
  817          */
  818         *procp = p2;
  819         return (0);
  820 fail:
  821         sx_sunlock(&proctree_lock);
  822         if (ppsratecheck(&lastfail, &curfail, 1))
  823                 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
  824                     td->td_ucred->cr_ruid);
  825         sx_xunlock(&allproc_lock);
  826 #ifdef MAC
  827         mac_proc_destroy(newproc);
  828 #endif
  829 fail1:
  830         if (vm2 != NULL)
  831                 vmspace_free(vm2);
  832         uma_zfree(proc_zone, newproc);
  833         pause("fork", hz / 2);
  834         return (error);
  835 }
  836 
  837 /*
  838  * Handle the return of a child process from fork1().  This function
  839  * is called from the MD fork_trampoline() entry point.
  840  */
  841 void
  842 fork_exit(callout, arg, frame)
  843         void (*callout)(void *, struct trapframe *);
  844         void *arg;
  845         struct trapframe *frame;
  846 {
  847         struct proc *p;
  848         struct thread *td;
  849         struct thread *dtd;
  850 
  851         td = curthread;
  852         p = td->td_proc;
  853         KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
  854 
  855         CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
  856                 td, td->td_sched, p->p_pid, td->td_name);
  857 
  858         sched_fork_exit(td);
  859         /*
  860         * Processes normally resume in mi_switch() after being
  861         * cpu_switch()'ed to, but when children start up they arrive here
  862         * instead, so we must do much the same things as mi_switch() would.
  863         */
  864         if ((dtd = PCPU_GET(deadthread))) {
  865                 PCPU_SET(deadthread, NULL);
  866                 thread_stash(dtd);
  867         }
  868         thread_unlock(td);
  869 
  870         /*
  871          * cpu_set_fork_handler intercepts this function call to
  872          * have this call a non-return function to stay in kernel mode.
  873          * initproc has its own fork handler, but it does return.
  874          */
  875         KASSERT(callout != NULL, ("NULL callout in fork_exit"));
  876         callout(arg, frame);
  877 
  878         /*
  879          * Check if a kernel thread misbehaved and returned from its main
  880          * function.
  881          */
  882         if (p->p_flag & P_KTHREAD) {
  883                 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
  884                     td->td_name, p->p_pid);
  885                 kproc_exit(0);
  886         }
  887         mtx_assert(&Giant, MA_NOTOWNED);
  888 
  889         if (p->p_sysent->sv_schedtail != NULL)
  890                 (p->p_sysent->sv_schedtail)(td);
  891 }
  892 
  893 /*
  894  * Simplified back end of syscall(), used when returning from fork()
  895  * directly into user mode.  Giant is not held on entry, and must not
  896  * be held on return.  This function is passed in to fork_exit() as the
  897  * first parameter and is called when returning to a new userland process.
  898  */
  899 void
  900 fork_return(td, frame)
  901         struct thread *td;
  902         struct trapframe *frame;
  903 {
  904         struct proc *p, *dbg;
  905 
  906         if (td->td_dbgflags & TDB_STOPATFORK) {
  907                 p = td->td_proc;
  908                 sx_xlock(&proctree_lock);
  909                 PROC_LOCK(p);
  910                 if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) ==
  911                     (P_TRACED | P_FOLLOWFORK)) {
  912                         /*
  913                          * If debugger still wants auto-attach for the
  914                          * parent's children, do it now.
  915                          */
  916                         dbg = p->p_pptr->p_pptr;
  917                         p->p_flag |= P_TRACED;
  918                         p->p_oppid = p->p_pptr->p_pid;
  919                         proc_reparent(p, dbg);
  920                         sx_xunlock(&proctree_lock);
  921                         ptracestop(td, SIGSTOP);
  922                 } else {
  923                         /*
  924                          * ... otherwise clear the request.
  925                          */
  926                         sx_xunlock(&proctree_lock);
  927                         td->td_dbgflags &= ~TDB_STOPATFORK;
  928                         cv_broadcast(&p->p_dbgwait);
  929                 }
  930                 PROC_UNLOCK(p);
  931         }
  932 
  933         userret(td, frame);
  934 
  935 #ifdef KTRACE
  936         if (KTRPOINT(td, KTR_SYSRET))
  937                 ktrsysret(SYS_fork, 0, 0);
  938 #endif
  939         mtx_assert(&Giant, MA_NOTOWNED);
  940 }

Cache object: b8f1c8e96bc6d9ea2b0d6bba4e6bc2fa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.