The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_intr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include "opt_ddb.h"
   33 #include "opt_hwpmc_hooks.h"
   34 #include "opt_kstack_usage_prof.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/bus.h>
   38 #include <sys/conf.h>
   39 #include <sys/cpuset.h>
   40 #include <sys/rtprio.h>
   41 #include <sys/systm.h>
   42 #include <sys/interrupt.h>
   43 #include <sys/kernel.h>
   44 #include <sys/kthread.h>
   45 #include <sys/ktr.h>
   46 #include <sys/limits.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mutex.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/epoch.h>
   53 #include <sys/random.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/syslog.h>
   59 #include <sys/unistd.h>
   60 #include <sys/vmmeter.h>
   61 #include <machine/atomic.h>
   62 #include <machine/cpu.h>
   63 #include <machine/md_var.h>
   64 #include <machine/smp.h>
   65 #include <machine/stdarg.h>
   66 #ifdef DDB
   67 #include <ddb/ddb.h>
   68 #include <ddb/db_sym.h>
   69 #endif
   70 
   71 /*
   72  * Describe an interrupt thread.  There is one of these per interrupt event.
   73  */
   74 struct intr_thread {
   75         struct intr_event *it_event;
   76         struct thread *it_thread;       /* Kernel thread. */
   77         int     it_flags;               /* (j) IT_* flags. */
   78         int     it_need;                /* Needs service. */
   79         int     it_waiting;             /* Waiting in the runq. */
   80 };
   81 
   82 /* Interrupt thread flags kept in it_flags */
   83 #define IT_DEAD         0x000001        /* Thread is waiting to exit. */
   84 #define IT_WAIT         0x000002        /* Thread is waiting for completion. */
   85 
   86 struct  intr_entropy {
   87         struct  thread *td;
   88         uintptr_t event;
   89 };
   90 
   91 struct  intr_event *clk_intr_event;
   92 struct proc *intrproc;
   93 
   94 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
   95 
   96 static int intr_storm_threshold = 0;
   97 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN,
   98     &intr_storm_threshold, 0,
   99     "Number of consecutive interrupts before storm protection is enabled");
  100 static int intr_epoch_batch = 1000;
  101 SYSCTL_INT(_hw, OID_AUTO, intr_epoch_batch, CTLFLAG_RWTUN, &intr_epoch_batch,
  102     0, "Maximum interrupt handler executions without re-entering epoch(9)");
  103 #ifdef HWPMC_HOOKS
  104 static int intr_hwpmc_waiting_report_threshold = 1;
  105 SYSCTL_INT(_hw, OID_AUTO, intr_hwpmc_waiting_report_threshold, CTLFLAG_RWTUN,
  106     &intr_hwpmc_waiting_report_threshold, 1,
  107     "Threshold for reporting number of events in a workq");
  108 #define PMC_HOOK_INSTALLED_ANY() __predict_false(pmc_hook != NULL)
  109 #endif
  110 static TAILQ_HEAD(, intr_event) event_list =
  111     TAILQ_HEAD_INITIALIZER(event_list);
  112 static struct mtx event_lock;
  113 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
  114 
  115 static void     intr_event_update(struct intr_event *ie);
  116 static int      intr_event_schedule_thread(struct intr_event *ie, struct trapframe *frame);
  117 static struct intr_thread *ithread_create(const char *name);
  118 static void     ithread_destroy(struct intr_thread *ithread);
  119 static void     ithread_execute_handlers(struct proc *p, 
  120                     struct intr_event *ie);
  121 static void     ithread_loop(void *);
  122 static void     ithread_update(struct intr_thread *ithd);
  123 static void     start_softintr(void *);
  124 
  125 #ifdef HWPMC_HOOKS
  126 #include <sys/pmckern.h>
  127 PMC_SOFT_DEFINE( , , intr, all);
  128 PMC_SOFT_DEFINE( , , intr, ithread);
  129 PMC_SOFT_DEFINE( , , intr, filter);
  130 PMC_SOFT_DEFINE( , , intr, stray);
  131 PMC_SOFT_DEFINE( , , intr, schedule);
  132 PMC_SOFT_DEFINE( , , intr, waiting);
  133 
  134 #define PMC_SOFT_CALL_INTR_HLPR(event, frame)                   \
  135 do {                                    \
  136         if (frame != NULL)                                      \
  137                 PMC_SOFT_CALL_TF( , , intr, event, frame);      \
  138         else                                                    \
  139                 PMC_SOFT_CALL( , , intr, event);                \
  140 } while (0)
  141 #endif
  142 
  143 /* Map an interrupt type to an ithread priority. */
  144 u_char
  145 intr_priority(enum intr_type flags)
  146 {
  147         u_char pri;
  148 
  149         flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
  150             INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
  151         switch (flags) {
  152         case INTR_TYPE_TTY:
  153                 pri = PI_TTY;
  154                 break;
  155         case INTR_TYPE_BIO:
  156                 pri = PI_DISK;
  157                 break;
  158         case INTR_TYPE_NET:
  159                 pri = PI_NET;
  160                 break;
  161         case INTR_TYPE_CAM:
  162                 pri = PI_DISK;
  163                 break;
  164         case INTR_TYPE_AV:
  165                 pri = PI_AV;
  166                 break;
  167         case INTR_TYPE_CLK:
  168                 pri = PI_REALTIME;
  169                 break;
  170         case INTR_TYPE_MISC:
  171                 pri = PI_DULL;          /* don't care */
  172                 break;
  173         default:
  174                 /* We didn't specify an interrupt level. */
  175                 panic("intr_priority: no interrupt type in flags");
  176         }
  177 
  178         return pri;
  179 }
  180 
  181 /*
  182  * Update an ithread based on the associated intr_event.
  183  */
  184 static void
  185 ithread_update(struct intr_thread *ithd)
  186 {
  187         struct intr_event *ie;
  188         struct thread *td;
  189         u_char pri;
  190 
  191         ie = ithd->it_event;
  192         td = ithd->it_thread;
  193         mtx_assert(&ie->ie_lock, MA_OWNED);
  194 
  195         /* Determine the overall priority of this event. */
  196         if (CK_SLIST_EMPTY(&ie->ie_handlers))
  197                 pri = PRI_MAX_ITHD;
  198         else
  199                 pri = CK_SLIST_FIRST(&ie->ie_handlers)->ih_pri;
  200 
  201         /* Update name and priority. */
  202         strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
  203 #ifdef KTR
  204         sched_clear_tdname(td);
  205 #endif
  206         thread_lock(td);
  207         sched_ithread_prio(td, pri);
  208         thread_unlock(td);
  209 }
  210 
  211 /*
  212  * Regenerate the full name of an interrupt event and update its priority.
  213  */
  214 static void
  215 intr_event_update(struct intr_event *ie)
  216 {
  217         struct intr_handler *ih;
  218         char *last;
  219         int missed, space, flags;
  220 
  221         /* Start off with no entropy and just the name of the event. */
  222         mtx_assert(&ie->ie_lock, MA_OWNED);
  223         strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
  224         flags = 0;
  225         missed = 0;
  226         space = 1;
  227 
  228         /* Run through all the handlers updating values. */
  229         CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
  230                 if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
  231                     sizeof(ie->ie_fullname)) {
  232                         strcat(ie->ie_fullname, " ");
  233                         strcat(ie->ie_fullname, ih->ih_name);
  234                         space = 0;
  235                 } else
  236                         missed++;
  237                 flags |= ih->ih_flags;
  238         }
  239         ie->ie_hflags = flags;
  240 
  241         /*
  242          * If there is only one handler and its name is too long, just copy in
  243          * as much of the end of the name (includes the unit number) as will
  244          * fit.  Otherwise, we have multiple handlers and not all of the names
  245          * will fit.  Add +'s to indicate missing names.  If we run out of room
  246          * and still have +'s to add, change the last character from a + to a *.
  247          */
  248         if (missed == 1 && space == 1) {
  249                 ih = CK_SLIST_FIRST(&ie->ie_handlers);
  250                 missed = strlen(ie->ie_fullname) + strlen(ih->ih_name) + 2 -
  251                     sizeof(ie->ie_fullname);
  252                 strcat(ie->ie_fullname, (missed == 0) ? " " : "-");
  253                 strcat(ie->ie_fullname, &ih->ih_name[missed]);
  254                 missed = 0;
  255         }
  256         last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
  257         while (missed-- > 0) {
  258                 if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
  259                         if (*last == '+') {
  260                                 *last = '*';
  261                                 break;
  262                         } else
  263                                 *last = '+';
  264                 } else if (space) {
  265                         strcat(ie->ie_fullname, " +");
  266                         space = 0;
  267                 } else
  268                         strcat(ie->ie_fullname, "+");
  269         }
  270 
  271         /*
  272          * If this event has an ithread, update it's priority and
  273          * name.
  274          */
  275         if (ie->ie_thread != NULL)
  276                 ithread_update(ie->ie_thread);
  277         CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
  278 }
  279 
  280 int
  281 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
  282     void (*pre_ithread)(void *), void (*post_ithread)(void *),
  283     void (*post_filter)(void *), int (*assign_cpu)(void *, int),
  284     const char *fmt, ...)
  285 {
  286         struct intr_event *ie;
  287         va_list ap;
  288 
  289         /* The only valid flag during creation is IE_SOFT. */
  290         if ((flags & ~IE_SOFT) != 0)
  291                 return (EINVAL);
  292         ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
  293         ie->ie_source = source;
  294         ie->ie_pre_ithread = pre_ithread;
  295         ie->ie_post_ithread = post_ithread;
  296         ie->ie_post_filter = post_filter;
  297         ie->ie_assign_cpu = assign_cpu;
  298         ie->ie_flags = flags;
  299         ie->ie_irq = irq;
  300         ie->ie_cpu = NOCPU;
  301         CK_SLIST_INIT(&ie->ie_handlers);
  302         mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
  303 
  304         va_start(ap, fmt);
  305         vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
  306         va_end(ap);
  307         strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
  308         mtx_lock(&event_lock);
  309         TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
  310         mtx_unlock(&event_lock);
  311         if (event != NULL)
  312                 *event = ie;
  313         CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
  314         return (0);
  315 }
  316 
  317 /*
  318  * Bind an interrupt event to the specified CPU.  Note that not all
  319  * platforms support binding an interrupt to a CPU.  For those
  320  * platforms this request will fail.  Using a cpu id of NOCPU unbinds
  321  * the interrupt event.
  322  */
  323 static int
  324 _intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread)
  325 {
  326         lwpid_t id;
  327         int error;
  328 
  329         /* Need a CPU to bind to. */
  330         if (cpu != NOCPU && CPU_ABSENT(cpu))
  331                 return (EINVAL);
  332 
  333         if (ie->ie_assign_cpu == NULL)
  334                 return (EOPNOTSUPP);
  335 
  336         error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
  337         if (error)
  338                 return (error);
  339 
  340         /*
  341          * If we have any ithreads try to set their mask first to verify
  342          * permissions, etc.
  343          */
  344         if (bindithread) {
  345                 mtx_lock(&ie->ie_lock);
  346                 if (ie->ie_thread != NULL) {
  347                         id = ie->ie_thread->it_thread->td_tid;
  348                         mtx_unlock(&ie->ie_lock);
  349                         error = cpuset_setithread(id, cpu);
  350                         if (error)
  351                                 return (error);
  352                 } else
  353                         mtx_unlock(&ie->ie_lock);
  354         }
  355         if (bindirq)
  356                 error = ie->ie_assign_cpu(ie->ie_source, cpu);
  357         if (error) {
  358                 if (bindithread) {
  359                         mtx_lock(&ie->ie_lock);
  360                         if (ie->ie_thread != NULL) {
  361                                 cpu = ie->ie_cpu;
  362                                 id = ie->ie_thread->it_thread->td_tid;
  363                                 mtx_unlock(&ie->ie_lock);
  364                                 (void)cpuset_setithread(id, cpu);
  365                         } else
  366                                 mtx_unlock(&ie->ie_lock);
  367                 }
  368                 return (error);
  369         }
  370 
  371         if (bindirq) {
  372                 mtx_lock(&ie->ie_lock);
  373                 ie->ie_cpu = cpu;
  374                 mtx_unlock(&ie->ie_lock);
  375         }
  376 
  377         return (error);
  378 }
  379 
  380 /*
  381  * Bind an interrupt event to the specified CPU.  For supported platforms, any
  382  * associated ithreads as well as the primary interrupt context will be bound
  383  * to the specificed CPU.
  384  */
  385 int
  386 intr_event_bind(struct intr_event *ie, int cpu)
  387 {
  388 
  389         return (_intr_event_bind(ie, cpu, true, true));
  390 }
  391 
  392 /*
  393  * Bind an interrupt event to the specified CPU, but do not bind associated
  394  * ithreads.
  395  */
  396 int
  397 intr_event_bind_irqonly(struct intr_event *ie, int cpu)
  398 {
  399 
  400         return (_intr_event_bind(ie, cpu, true, false));
  401 }
  402 
  403 /*
  404  * Bind an interrupt event's ithread to the specified CPU.
  405  */
  406 int
  407 intr_event_bind_ithread(struct intr_event *ie, int cpu)
  408 {
  409 
  410         return (_intr_event_bind(ie, cpu, false, true));
  411 }
  412 
  413 /*
  414  * Bind an interrupt event's ithread to the specified cpuset.
  415  */
  416 int
  417 intr_event_bind_ithread_cpuset(struct intr_event *ie, cpuset_t *cs)
  418 {
  419         lwpid_t id;
  420 
  421         mtx_lock(&ie->ie_lock);
  422         if (ie->ie_thread != NULL) {
  423                 id = ie->ie_thread->it_thread->td_tid;
  424                 mtx_unlock(&ie->ie_lock);
  425                 return (cpuset_setthread(id, cs));
  426         } else {
  427                 mtx_unlock(&ie->ie_lock);
  428         }
  429         return (ENODEV);
  430 }
  431 
  432 static struct intr_event *
  433 intr_lookup(int irq)
  434 {
  435         struct intr_event *ie;
  436 
  437         mtx_lock(&event_lock);
  438         TAILQ_FOREACH(ie, &event_list, ie_list)
  439                 if (ie->ie_irq == irq &&
  440                     (ie->ie_flags & IE_SOFT) == 0 &&
  441                     CK_SLIST_FIRST(&ie->ie_handlers) != NULL)
  442                         break;
  443         mtx_unlock(&event_lock);
  444         return (ie);
  445 }
  446 
  447 int
  448 intr_setaffinity(int irq, int mode, void *m)
  449 {
  450         struct intr_event *ie;
  451         cpuset_t *mask;
  452         int cpu, n;
  453 
  454         mask = m;
  455         cpu = NOCPU;
  456         /*
  457          * If we're setting all cpus we can unbind.  Otherwise make sure
  458          * only one cpu is in the set.
  459          */
  460         if (CPU_CMP(cpuset_root, mask)) {
  461                 for (n = 0; n < CPU_SETSIZE; n++) {
  462                         if (!CPU_ISSET(n, mask))
  463                                 continue;
  464                         if (cpu != NOCPU)
  465                                 return (EINVAL);
  466                         cpu = n;
  467                 }
  468         }
  469         ie = intr_lookup(irq);
  470         if (ie == NULL)
  471                 return (ESRCH);
  472         switch (mode) {
  473         case CPU_WHICH_IRQ:
  474                 return (intr_event_bind(ie, cpu));
  475         case CPU_WHICH_INTRHANDLER:
  476                 return (intr_event_bind_irqonly(ie, cpu));
  477         case CPU_WHICH_ITHREAD:
  478                 return (intr_event_bind_ithread(ie, cpu));
  479         default:
  480                 return (EINVAL);
  481         }
  482 }
  483 
  484 int
  485 intr_getaffinity(int irq, int mode, void *m)
  486 {
  487         struct intr_event *ie;
  488         struct thread *td;
  489         struct proc *p;
  490         cpuset_t *mask;
  491         lwpid_t id;
  492         int error;
  493 
  494         mask = m;
  495         ie = intr_lookup(irq);
  496         if (ie == NULL)
  497                 return (ESRCH);
  498 
  499         error = 0;
  500         CPU_ZERO(mask);
  501         switch (mode) {
  502         case CPU_WHICH_IRQ:
  503         case CPU_WHICH_INTRHANDLER:
  504                 mtx_lock(&ie->ie_lock);
  505                 if (ie->ie_cpu == NOCPU)
  506                         CPU_COPY(cpuset_root, mask);
  507                 else
  508                         CPU_SET(ie->ie_cpu, mask);
  509                 mtx_unlock(&ie->ie_lock);
  510                 break;
  511         case CPU_WHICH_ITHREAD:
  512                 mtx_lock(&ie->ie_lock);
  513                 if (ie->ie_thread == NULL) {
  514                         mtx_unlock(&ie->ie_lock);
  515                         CPU_COPY(cpuset_root, mask);
  516                 } else {
  517                         id = ie->ie_thread->it_thread->td_tid;
  518                         mtx_unlock(&ie->ie_lock);
  519                         error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL);
  520                         if (error != 0)
  521                                 return (error);
  522                         CPU_COPY(&td->td_cpuset->cs_mask, mask);
  523                         PROC_UNLOCK(p);
  524                 }
  525         default:
  526                 return (EINVAL);
  527         }
  528         return (0);
  529 }
  530 
  531 int
  532 intr_event_destroy(struct intr_event *ie)
  533 {
  534 
  535         if (ie == NULL)
  536                 return (EINVAL);
  537 
  538         mtx_lock(&event_lock);
  539         mtx_lock(&ie->ie_lock);
  540         if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
  541                 mtx_unlock(&ie->ie_lock);
  542                 mtx_unlock(&event_lock);
  543                 return (EBUSY);
  544         }
  545         TAILQ_REMOVE(&event_list, ie, ie_list);
  546 #ifndef notyet
  547         if (ie->ie_thread != NULL) {
  548                 ithread_destroy(ie->ie_thread);
  549                 ie->ie_thread = NULL;
  550         }
  551 #endif
  552         mtx_unlock(&ie->ie_lock);
  553         mtx_unlock(&event_lock);
  554         mtx_destroy(&ie->ie_lock);
  555         free(ie, M_ITHREAD);
  556         return (0);
  557 }
  558 
  559 static struct intr_thread *
  560 ithread_create(const char *name)
  561 {
  562         struct intr_thread *ithd;
  563         struct thread *td;
  564         int error;
  565 
  566         ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
  567 
  568         error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
  569                     &td, RFSTOPPED | RFHIGHPID,
  570                     0, "intr", "%s", name);
  571         if (error)
  572                 panic("kproc_create() failed with %d", error);
  573         thread_lock(td);
  574         sched_class(td, PRI_ITHD);
  575         TD_SET_IWAIT(td);
  576         thread_unlock(td);
  577         td->td_pflags |= TDP_ITHREAD;
  578         ithd->it_thread = td;
  579         CTR2(KTR_INTR, "%s: created %s", __func__, name);
  580         return (ithd);
  581 }
  582 
  583 static void
  584 ithread_destroy(struct intr_thread *ithread)
  585 {
  586         struct thread *td;
  587 
  588         CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
  589         td = ithread->it_thread;
  590         thread_lock(td);
  591         ithread->it_flags |= IT_DEAD;
  592         if (TD_AWAITING_INTR(td)) {
  593                 TD_CLR_IWAIT(td);
  594                 sched_wakeup(td, SRQ_INTR);
  595         } else
  596                 thread_unlock(td);
  597 }
  598 
  599 int
  600 intr_event_add_handler(struct intr_event *ie, const char *name,
  601     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
  602     enum intr_type flags, void **cookiep)
  603 {
  604         struct intr_handler *ih, *temp_ih;
  605         struct intr_handler **prevptr;
  606         struct intr_thread *it;
  607 
  608         if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
  609                 return (EINVAL);
  610 
  611         /* Allocate and populate an interrupt handler structure. */
  612         ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
  613         ih->ih_filter = filter;
  614         ih->ih_handler = handler;
  615         ih->ih_argument = arg;
  616         strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
  617         ih->ih_event = ie;
  618         ih->ih_pri = pri;
  619         if (flags & INTR_EXCL)
  620                 ih->ih_flags = IH_EXCLUSIVE;
  621         if (flags & INTR_MPSAFE)
  622                 ih->ih_flags |= IH_MPSAFE;
  623         if (flags & INTR_ENTROPY)
  624                 ih->ih_flags |= IH_ENTROPY;
  625         if (flags & INTR_TYPE_NET)
  626                 ih->ih_flags |= IH_NET;
  627 
  628         /* We can only have one exclusive handler in a event. */
  629         mtx_lock(&ie->ie_lock);
  630         if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
  631                 if ((flags & INTR_EXCL) ||
  632                     (CK_SLIST_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
  633                         mtx_unlock(&ie->ie_lock);
  634                         free(ih, M_ITHREAD);
  635                         return (EINVAL);
  636                 }
  637         }
  638 
  639         /* Create a thread if we need one. */
  640         while (ie->ie_thread == NULL && handler != NULL) {
  641                 if (ie->ie_flags & IE_ADDING_THREAD)
  642                         msleep(ie, &ie->ie_lock, 0, "ithread", 0);
  643                 else {
  644                         ie->ie_flags |= IE_ADDING_THREAD;
  645                         mtx_unlock(&ie->ie_lock);
  646                         it = ithread_create("intr: newborn");
  647                         mtx_lock(&ie->ie_lock);
  648                         ie->ie_flags &= ~IE_ADDING_THREAD;
  649                         ie->ie_thread = it;
  650                         it->it_event = ie;
  651                         ithread_update(it);
  652                         wakeup(ie);
  653                 }
  654         }
  655 
  656         /* Add the new handler to the event in priority order. */
  657         CK_SLIST_FOREACH_PREVPTR(temp_ih, prevptr, &ie->ie_handlers, ih_next) {
  658                 if (temp_ih->ih_pri > ih->ih_pri)
  659                         break;
  660         }
  661         CK_SLIST_INSERT_PREVPTR(prevptr, temp_ih, ih, ih_next);
  662 
  663         intr_event_update(ie);
  664 
  665         CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
  666             ie->ie_name);
  667         mtx_unlock(&ie->ie_lock);
  668 
  669         if (cookiep != NULL)
  670                 *cookiep = ih;
  671         return (0);
  672 }
  673 
  674 /*
  675  * Append a description preceded by a ':' to the name of the specified
  676  * interrupt handler.
  677  */
  678 int
  679 intr_event_describe_handler(struct intr_event *ie, void *cookie,
  680     const char *descr)
  681 {
  682         struct intr_handler *ih;
  683         size_t space;
  684         char *start;
  685 
  686         mtx_lock(&ie->ie_lock);
  687 #ifdef INVARIANTS
  688         CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
  689                 if (ih == cookie)
  690                         break;
  691         }
  692         if (ih == NULL) {
  693                 mtx_unlock(&ie->ie_lock);
  694                 panic("handler %p not found in interrupt event %p", cookie, ie);
  695         }
  696 #endif
  697         ih = cookie;
  698 
  699         /*
  700          * Look for an existing description by checking for an
  701          * existing ":".  This assumes device names do not include
  702          * colons.  If one is found, prepare to insert the new
  703          * description at that point.  If one is not found, find the
  704          * end of the name to use as the insertion point.
  705          */
  706         start = strchr(ih->ih_name, ':');
  707         if (start == NULL)
  708                 start = strchr(ih->ih_name, 0);
  709 
  710         /*
  711          * See if there is enough remaining room in the string for the
  712          * description + ":".  The "- 1" leaves room for the trailing
  713          * '\0'.  The "+ 1" accounts for the colon.
  714          */
  715         space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
  716         if (strlen(descr) + 1 > space) {
  717                 mtx_unlock(&ie->ie_lock);
  718                 return (ENOSPC);
  719         }
  720 
  721         /* Append a colon followed by the description. */
  722         *start = ':';
  723         strcpy(start + 1, descr);
  724         intr_event_update(ie);
  725         mtx_unlock(&ie->ie_lock);
  726         return (0);
  727 }
  728 
  729 /*
  730  * Return the ie_source field from the intr_event an intr_handler is
  731  * associated with.
  732  */
  733 void *
  734 intr_handler_source(void *cookie)
  735 {
  736         struct intr_handler *ih;
  737         struct intr_event *ie;
  738 
  739         ih = (struct intr_handler *)cookie;
  740         if (ih == NULL)
  741                 return (NULL);
  742         ie = ih->ih_event;
  743         KASSERT(ie != NULL,
  744             ("interrupt handler \"%s\" has a NULL interrupt event",
  745             ih->ih_name));
  746         return (ie->ie_source);
  747 }
  748 
  749 /*
  750  * If intr_event_handle() is running in the ISR context at the time of the call,
  751  * then wait for it to complete.
  752  */
  753 static void
  754 intr_event_barrier(struct intr_event *ie)
  755 {
  756         int phase;
  757 
  758         mtx_assert(&ie->ie_lock, MA_OWNED);
  759         phase = ie->ie_phase;
  760 
  761         /*
  762          * Switch phase to direct future interrupts to the other active counter.
  763          * Make sure that any preceding stores are visible before the switch.
  764          */
  765         KASSERT(ie->ie_active[!phase] == 0, ("idle phase has activity"));
  766         atomic_store_rel_int(&ie->ie_phase, !phase);
  767 
  768         /*
  769          * This code cooperates with wait-free iteration of ie_handlers
  770          * in intr_event_handle.
  771          * Make sure that the removal and the phase update are not reordered
  772          * with the active count check.
  773          * Note that no combination of acquire and release fences can provide
  774          * that guarantee as Store->Load sequences can always be reordered.
  775          */
  776         atomic_thread_fence_seq_cst();
  777 
  778         /*
  779          * Now wait on the inactive phase.
  780          * The acquire fence is needed so that all post-barrier accesses
  781          * are after the check.
  782          */
  783         while (ie->ie_active[phase] > 0)
  784                 cpu_spinwait();
  785         atomic_thread_fence_acq();
  786 }
  787 
  788 static void
  789 intr_handler_barrier(struct intr_handler *handler)
  790 {
  791         struct intr_event *ie;
  792 
  793         ie = handler->ih_event;
  794         mtx_assert(&ie->ie_lock, MA_OWNED);
  795         KASSERT((handler->ih_flags & IH_DEAD) == 0,
  796             ("update for a removed handler"));
  797 
  798         if (ie->ie_thread == NULL) {
  799                 intr_event_barrier(ie);
  800                 return;
  801         }
  802         if ((handler->ih_flags & IH_CHANGED) == 0) {
  803                 handler->ih_flags |= IH_CHANGED;
  804                 intr_event_schedule_thread(ie, NULL);
  805         }
  806         while ((handler->ih_flags & IH_CHANGED) != 0)
  807                 msleep(handler, &ie->ie_lock, 0, "ih_barr", 0);
  808 }
  809 
  810 /*
  811  * Sleep until an ithread finishes executing an interrupt handler.
  812  *
  813  * XXX Doesn't currently handle interrupt filters or fast interrupt
  814  * handlers. This is intended for LinuxKPI drivers only.
  815  * Do not use in BSD code.
  816  */
  817 void
  818 _intr_drain(int irq)
  819 {
  820         struct intr_event *ie;
  821         struct intr_thread *ithd;
  822         struct thread *td;
  823 
  824         ie = intr_lookup(irq);
  825         if (ie == NULL)
  826                 return;
  827         if (ie->ie_thread == NULL)
  828                 return;
  829         ithd = ie->ie_thread;
  830         td = ithd->it_thread;
  831         /*
  832          * We set the flag and wait for it to be cleared to avoid
  833          * long delays with potentially busy interrupt handlers
  834          * were we to only sample TD_AWAITING_INTR() every tick.
  835          */
  836         thread_lock(td);
  837         if (!TD_AWAITING_INTR(td)) {
  838                 ithd->it_flags |= IT_WAIT;
  839                 while (ithd->it_flags & IT_WAIT) {
  840                         thread_unlock(td);
  841                         pause("idrain", 1);
  842                         thread_lock(td);
  843                 }
  844         }
  845         thread_unlock(td);
  846         return;
  847 }
  848 
  849 int
  850 intr_event_remove_handler(void *cookie)
  851 {
  852         struct intr_handler *handler = (struct intr_handler *)cookie;
  853         struct intr_event *ie;
  854         struct intr_handler *ih;
  855         struct intr_handler **prevptr;
  856 #ifdef notyet
  857         int dead;
  858 #endif
  859 
  860         if (handler == NULL)
  861                 return (EINVAL);
  862         ie = handler->ih_event;
  863         KASSERT(ie != NULL,
  864             ("interrupt handler \"%s\" has a NULL interrupt event",
  865             handler->ih_name));
  866 
  867         mtx_lock(&ie->ie_lock);
  868         CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
  869             ie->ie_name);
  870         CK_SLIST_FOREACH_PREVPTR(ih, prevptr, &ie->ie_handlers, ih_next) {
  871                 if (ih == handler)
  872                         break;
  873         }
  874         if (ih == NULL) {
  875                 panic("interrupt handler \"%s\" not found in "
  876                     "interrupt event \"%s\"", handler->ih_name, ie->ie_name);
  877         }
  878 
  879         /*
  880          * If there is no ithread, then directly remove the handler.  Note that
  881          * intr_event_handle() iterates ie_handlers in a lock-less fashion, so
  882          * care needs to be taken to keep ie_handlers consistent and to free
  883          * the removed handler only when ie_handlers is quiescent.
  884          */
  885         if (ie->ie_thread == NULL) {
  886                 CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next);
  887                 intr_event_barrier(ie);
  888                 intr_event_update(ie);
  889                 mtx_unlock(&ie->ie_lock);
  890                 free(handler, M_ITHREAD);
  891                 return (0);
  892         }
  893 
  894         /*
  895          * Let the interrupt thread do the job.
  896          * The interrupt source is disabled when the interrupt thread is
  897          * running, so it does not have to worry about interaction with
  898          * intr_event_handle().
  899          */
  900         KASSERT((handler->ih_flags & IH_DEAD) == 0,
  901             ("duplicate handle remove"));
  902         handler->ih_flags |= IH_DEAD;
  903         intr_event_schedule_thread(ie, NULL);
  904         while (handler->ih_flags & IH_DEAD)
  905                 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
  906         intr_event_update(ie);
  907 
  908 #ifdef notyet
  909         /*
  910          * XXX: This could be bad in the case of ppbus(8).  Also, I think
  911          * this could lead to races of stale data when servicing an
  912          * interrupt.
  913          */
  914         dead = 1;
  915         CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
  916                 if (ih->ih_handler != NULL) {
  917                         dead = 0;
  918                         break;
  919                 }
  920         }
  921         if (dead) {
  922                 ithread_destroy(ie->ie_thread);
  923                 ie->ie_thread = NULL;
  924         }
  925 #endif
  926         mtx_unlock(&ie->ie_lock);
  927         free(handler, M_ITHREAD);
  928         return (0);
  929 }
  930 
  931 int
  932 intr_event_suspend_handler(void *cookie)
  933 {
  934         struct intr_handler *handler = (struct intr_handler *)cookie;
  935         struct intr_event *ie;
  936 
  937         if (handler == NULL)
  938                 return (EINVAL);
  939         ie = handler->ih_event;
  940         KASSERT(ie != NULL,
  941             ("interrupt handler \"%s\" has a NULL interrupt event",
  942             handler->ih_name));
  943         mtx_lock(&ie->ie_lock);
  944         handler->ih_flags |= IH_SUSP;
  945         intr_handler_barrier(handler);
  946         mtx_unlock(&ie->ie_lock);
  947         return (0);
  948 }
  949 
  950 int
  951 intr_event_resume_handler(void *cookie)
  952 {
  953         struct intr_handler *handler = (struct intr_handler *)cookie;
  954         struct intr_event *ie;
  955 
  956         if (handler == NULL)
  957                 return (EINVAL);
  958         ie = handler->ih_event;
  959         KASSERT(ie != NULL,
  960             ("interrupt handler \"%s\" has a NULL interrupt event",
  961             handler->ih_name));
  962 
  963         /*
  964          * intr_handler_barrier() acts not only as a barrier,
  965          * it also allows to check for any pending interrupts.
  966          */
  967         mtx_lock(&ie->ie_lock);
  968         handler->ih_flags &= ~IH_SUSP;
  969         intr_handler_barrier(handler);
  970         mtx_unlock(&ie->ie_lock);
  971         return (0);
  972 }
  973 
  974 static int
  975 intr_event_schedule_thread(struct intr_event *ie, struct trapframe *frame)
  976 {
  977         struct intr_entropy entropy;
  978         struct intr_thread *it;
  979         struct thread *td;
  980         struct thread *ctd;
  981 
  982         /*
  983          * If no ithread or no handlers, then we have a stray interrupt.
  984          */
  985         if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers) ||
  986             ie->ie_thread == NULL)
  987                 return (EINVAL);
  988 
  989         ctd = curthread;
  990         it = ie->ie_thread;
  991         td = it->it_thread;
  992 
  993         /*
  994          * If any of the handlers for this ithread claim to be good
  995          * sources of entropy, then gather some.
  996          */
  997         if (ie->ie_hflags & IH_ENTROPY) {
  998                 entropy.event = (uintptr_t)ie;
  999                 entropy.td = ctd;
 1000                 random_harvest_queue(&entropy, sizeof(entropy), RANDOM_INTERRUPT);
 1001         }
 1002 
 1003         KASSERT(td->td_proc != NULL, ("ithread %s has no process", ie->ie_name));
 1004 
 1005         /*
 1006          * Set it_need to tell the thread to keep running if it is already
 1007          * running.  Then, lock the thread and see if we actually need to
 1008          * put it on the runqueue.
 1009          *
 1010          * Use store_rel to arrange that the store to ih_need in
 1011          * swi_sched() is before the store to it_need and prepare for
 1012          * transfer of this order to loads in the ithread.
 1013          */
 1014         atomic_store_rel_int(&it->it_need, 1);
 1015         thread_lock(td);
 1016         if (TD_AWAITING_INTR(td)) {
 1017 #ifdef HWPMC_HOOKS
 1018                 it->it_waiting = 0;
 1019                 if (PMC_HOOK_INSTALLED_ANY())
 1020                         PMC_SOFT_CALL_INTR_HLPR(schedule, frame);
 1021 #endif
 1022                 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, td->td_proc->p_pid,
 1023                     td->td_name);
 1024                 TD_CLR_IWAIT(td);
 1025                 sched_wakeup(td, SRQ_INTR);
 1026         } else {
 1027 #ifdef HWPMC_HOOKS
 1028                 it->it_waiting++;
 1029                 if (PMC_HOOK_INSTALLED_ANY() &&
 1030                     (it->it_waiting >= intr_hwpmc_waiting_report_threshold))
 1031                         PMC_SOFT_CALL_INTR_HLPR(waiting, frame);
 1032 #endif
 1033                 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
 1034                     __func__, td->td_proc->p_pid, td->td_name, it->it_need, TD_GET_STATE(td));
 1035                 thread_unlock(td);
 1036         }
 1037 
 1038         return (0);
 1039 }
 1040 
 1041 /*
 1042  * Allow interrupt event binding for software interrupt handlers -- a no-op,
 1043  * since interrupts are generated in software rather than being directed by
 1044  * a PIC.
 1045  */
 1046 static int
 1047 swi_assign_cpu(void *arg, int cpu)
 1048 {
 1049 
 1050         return (0);
 1051 }
 1052 
 1053 /*
 1054  * Add a software interrupt handler to a specified event.  If a given event
 1055  * is not specified, then a new event is created.
 1056  */
 1057 int
 1058 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
 1059             void *arg, int pri, enum intr_type flags, void **cookiep)
 1060 {
 1061         struct intr_event *ie;
 1062         int error = 0;
 1063 
 1064         if (flags & INTR_ENTROPY)
 1065                 return (EINVAL);
 1066 
 1067         ie = (eventp != NULL) ? *eventp : NULL;
 1068 
 1069         if (ie != NULL) {
 1070                 if (!(ie->ie_flags & IE_SOFT))
 1071                         return (EINVAL);
 1072         } else {
 1073                 error = intr_event_create(&ie, NULL, IE_SOFT, 0,
 1074                     NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
 1075                 if (error)
 1076                         return (error);
 1077                 if (eventp != NULL)
 1078                         *eventp = ie;
 1079         }
 1080         if (handler != NULL) {
 1081                 error = intr_event_add_handler(ie, name, NULL, handler, arg,
 1082                     PI_SWI(pri), flags, cookiep);
 1083         }
 1084         return (error);
 1085 }
 1086 
 1087 /*
 1088  * Schedule a software interrupt thread.
 1089  */
 1090 void
 1091 swi_sched(void *cookie, int flags)
 1092 {
 1093         struct intr_handler *ih = (struct intr_handler *)cookie;
 1094         struct intr_event *ie = ih->ih_event;
 1095         struct intr_entropy entropy;
 1096         int error __unused;
 1097 
 1098         CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
 1099             ih->ih_need);
 1100 
 1101         if ((flags & SWI_FROMNMI) == 0) {
 1102                 entropy.event = (uintptr_t)ih;
 1103                 entropy.td = curthread;
 1104                 random_harvest_queue(&entropy, sizeof(entropy), RANDOM_SWI);
 1105         }
 1106 
 1107         /*
 1108          * Set ih_need for this handler so that if the ithread is already
 1109          * running it will execute this handler on the next pass.  Otherwise,
 1110          * it will execute it the next time it runs.
 1111          */
 1112         ih->ih_need = 1;
 1113 
 1114         if (flags & SWI_DELAY)
 1115                 return;
 1116 
 1117         if (flags & SWI_FROMNMI) {
 1118 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
 1119                 KASSERT(ie == clk_intr_event,
 1120                     ("SWI_FROMNMI used not with clk_intr_event"));
 1121                 ipi_self_from_nmi(IPI_SWI);
 1122 #endif
 1123         } else {
 1124                 VM_CNT_INC(v_soft);
 1125                 error = intr_event_schedule_thread(ie, NULL);
 1126                 KASSERT(error == 0, ("stray software interrupt"));
 1127         }
 1128 }
 1129 
 1130 /*
 1131  * Remove a software interrupt handler.  Currently this code does not
 1132  * remove the associated interrupt event if it becomes empty.  Calling code
 1133  * may do so manually via intr_event_destroy(), but that's not really
 1134  * an optimal interface.
 1135  */
 1136 int
 1137 swi_remove(void *cookie)
 1138 {
 1139 
 1140         return (intr_event_remove_handler(cookie));
 1141 }
 1142 
 1143 static void
 1144 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
 1145 {
 1146         struct intr_handler *ih, *ihn, *ihp;
 1147 
 1148         ihp = NULL;
 1149         CK_SLIST_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
 1150                 /*
 1151                  * If this handler is marked for death, remove it from
 1152                  * the list of handlers and wake up the sleeper.
 1153                  */
 1154                 if (ih->ih_flags & IH_DEAD) {
 1155                         mtx_lock(&ie->ie_lock);
 1156                         if (ihp == NULL)
 1157                                 CK_SLIST_REMOVE_HEAD(&ie->ie_handlers, ih_next);
 1158                         else
 1159                                 CK_SLIST_REMOVE_AFTER(ihp, ih_next);
 1160                         ih->ih_flags &= ~IH_DEAD;
 1161                         wakeup(ih);
 1162                         mtx_unlock(&ie->ie_lock);
 1163                         continue;
 1164                 }
 1165 
 1166                 /*
 1167                  * Now that we know that the current element won't be removed
 1168                  * update the previous element.
 1169                  */
 1170                 ihp = ih;
 1171 
 1172                 if ((ih->ih_flags & IH_CHANGED) != 0) {
 1173                         mtx_lock(&ie->ie_lock);
 1174                         ih->ih_flags &= ~IH_CHANGED;
 1175                         wakeup(ih);
 1176                         mtx_unlock(&ie->ie_lock);
 1177                 }
 1178 
 1179                 /* Skip filter only handlers */
 1180                 if (ih->ih_handler == NULL)
 1181                         continue;
 1182 
 1183                 /* Skip suspended handlers */
 1184                 if ((ih->ih_flags & IH_SUSP) != 0)
 1185                         continue;
 1186 
 1187                 /*
 1188                  * For software interrupt threads, we only execute
 1189                  * handlers that have their need flag set.  Hardware
 1190                  * interrupt threads always invoke all of their handlers.
 1191                  *
 1192                  * ih_need can only be 0 or 1.  Failed cmpset below
 1193                  * means that there is no request to execute handlers,
 1194                  * so a retry of the cmpset is not needed.
 1195                  */
 1196                 if ((ie->ie_flags & IE_SOFT) != 0 &&
 1197                     atomic_cmpset_int(&ih->ih_need, 1, 0) == 0)
 1198                         continue;
 1199 
 1200                 /* Execute this handler. */
 1201                 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
 1202                     __func__, p->p_pid, (void *)ih->ih_handler, 
 1203                     ih->ih_argument, ih->ih_name, ih->ih_flags);
 1204 
 1205                 if (!(ih->ih_flags & IH_MPSAFE))
 1206                         mtx_lock(&Giant);
 1207                 ih->ih_handler(ih->ih_argument);
 1208                 if (!(ih->ih_flags & IH_MPSAFE))
 1209                         mtx_unlock(&Giant);
 1210         }
 1211 }
 1212 
 1213 static void
 1214 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
 1215 {
 1216 
 1217         /* Interrupt handlers should not sleep. */
 1218         if (!(ie->ie_flags & IE_SOFT))
 1219                 THREAD_NO_SLEEPING();
 1220         intr_event_execute_handlers(p, ie);
 1221         if (!(ie->ie_flags & IE_SOFT))
 1222                 THREAD_SLEEPING_OK();
 1223 
 1224         /*
 1225          * Interrupt storm handling:
 1226          *
 1227          * If this interrupt source is currently storming, then throttle
 1228          * it to only fire the handler once  per clock tick.
 1229          *
 1230          * If this interrupt source is not currently storming, but the
 1231          * number of back to back interrupts exceeds the storm threshold,
 1232          * then enter storming mode.
 1233          */
 1234         if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
 1235             !(ie->ie_flags & IE_SOFT)) {
 1236                 /* Report the message only once every second. */
 1237                 if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
 1238                         printf(
 1239         "interrupt storm detected on \"%s\"; throttling interrupt source\n",
 1240                             ie->ie_name);
 1241                 }
 1242                 pause("istorm", 1);
 1243         } else
 1244                 ie->ie_count++;
 1245 
 1246         /*
 1247          * Now that all the handlers have had a chance to run, reenable
 1248          * the interrupt source.
 1249          */
 1250         if (ie->ie_post_ithread != NULL)
 1251                 ie->ie_post_ithread(ie->ie_source);
 1252 }
 1253 
 1254 /*
 1255  * This is the main code for interrupt threads.
 1256  */
 1257 static void
 1258 ithread_loop(void *arg)
 1259 {
 1260         struct epoch_tracker et;
 1261         struct intr_thread *ithd;
 1262         struct intr_event *ie;
 1263         struct thread *td;
 1264         struct proc *p;
 1265         int wake, epoch_count;
 1266         bool needs_epoch;
 1267 
 1268         td = curthread;
 1269         p = td->td_proc;
 1270         ithd = (struct intr_thread *)arg;
 1271         KASSERT(ithd->it_thread == td,
 1272             ("%s: ithread and proc linkage out of sync", __func__));
 1273         ie = ithd->it_event;
 1274         ie->ie_count = 0;
 1275         wake = 0;
 1276 
 1277         /*
 1278          * As long as we have interrupts outstanding, go through the
 1279          * list of handlers, giving each one a go at it.
 1280          */
 1281         for (;;) {
 1282                 /*
 1283                  * If we are an orphaned thread, then just die.
 1284                  */
 1285                 if (ithd->it_flags & IT_DEAD) {
 1286                         CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
 1287                             p->p_pid, td->td_name);
 1288                         free(ithd, M_ITHREAD);
 1289                         kthread_exit();
 1290                 }
 1291 
 1292                 /*
 1293                  * Service interrupts.  If another interrupt arrives while
 1294                  * we are running, it will set it_need to note that we
 1295                  * should make another pass.
 1296                  *
 1297                  * The load_acq part of the following cmpset ensures
 1298                  * that the load of ih_need in ithread_execute_handlers()
 1299                  * is ordered after the load of it_need here.
 1300                  */
 1301                 needs_epoch =
 1302                     (atomic_load_int(&ie->ie_hflags) & IH_NET) != 0;
 1303                 if (needs_epoch) {
 1304                         epoch_count = 0;
 1305                         NET_EPOCH_ENTER(et);
 1306                 }
 1307                 while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) {
 1308                         ithread_execute_handlers(p, ie);
 1309                         if (needs_epoch &&
 1310                             ++epoch_count >= intr_epoch_batch) {
 1311                                 NET_EPOCH_EXIT(et);
 1312                                 epoch_count = 0;
 1313                                 NET_EPOCH_ENTER(et);
 1314                         }
 1315                 }
 1316                 if (needs_epoch)
 1317                         NET_EPOCH_EXIT(et);
 1318                 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
 1319                 mtx_assert(&Giant, MA_NOTOWNED);
 1320 
 1321                 /*
 1322                  * Processed all our interrupts.  Now get the sched
 1323                  * lock.  This may take a while and it_need may get
 1324                  * set again, so we have to check it again.
 1325                  */
 1326                 thread_lock(td);
 1327                 if (atomic_load_acq_int(&ithd->it_need) == 0 &&
 1328                     (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
 1329                         TD_SET_IWAIT(td);
 1330                         ie->ie_count = 0;
 1331                         mi_switch(SW_VOL | SWT_IWAIT);
 1332                 } else {
 1333                         if (ithd->it_flags & IT_WAIT) {
 1334                                 wake = 1;
 1335                                 ithd->it_flags &= ~IT_WAIT;
 1336                         }
 1337                         thread_unlock(td);
 1338                 }
 1339                 if (wake) {
 1340                         wakeup(ithd);
 1341                         wake = 0;
 1342                 }
 1343         }
 1344 }
 1345 
 1346 /*
 1347  * Main interrupt handling body.
 1348  *
 1349  * Input:
 1350  * o ie:                        the event connected to this interrupt.
 1351  * o frame:                     some archs (i.e. i386) pass a frame to some.
 1352  *                              handlers as their main argument.
 1353  * Return value:
 1354  * o 0:                         everything ok.
 1355  * o EINVAL:                    stray interrupt.
 1356  */
 1357 int
 1358 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
 1359 {
 1360         struct intr_handler *ih;
 1361         struct trapframe *oldframe;
 1362         struct thread *td;
 1363         int phase;
 1364         int ret;
 1365         bool filter, thread;
 1366 
 1367         td = curthread;
 1368 
 1369 #ifdef KSTACK_USAGE_PROF
 1370         intr_prof_stack_use(td, frame);
 1371 #endif
 1372 
 1373         /* An interrupt with no event or handlers is a stray interrupt. */
 1374         if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers))
 1375                 return (EINVAL);
 1376 
 1377         /*
 1378          * Execute fast interrupt handlers directly.
 1379          * To support clock handlers, if a handler registers
 1380          * with a NULL argument, then we pass it a pointer to
 1381          * a trapframe as its argument.
 1382          */
 1383         td->td_intr_nesting_level++;
 1384         filter = false;
 1385         thread = false;
 1386         ret = 0;
 1387         critical_enter();
 1388         oldframe = td->td_intr_frame;
 1389         td->td_intr_frame = frame;
 1390 
 1391         phase = ie->ie_phase;
 1392         atomic_add_int(&ie->ie_active[phase], 1);
 1393 
 1394         /*
 1395          * This fence is required to ensure that no later loads are
 1396          * re-ordered before the ie_active store.
 1397          */
 1398         atomic_thread_fence_seq_cst();
 1399 
 1400         CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
 1401                 if ((ih->ih_flags & IH_SUSP) != 0)
 1402                         continue;
 1403                 if ((ie->ie_flags & IE_SOFT) != 0 && ih->ih_need == 0)
 1404                         continue;
 1405                 if (ih->ih_filter == NULL) {
 1406                         thread = true;
 1407                         continue;
 1408                 }
 1409                 CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
 1410                     ih->ih_filter, ih->ih_argument == NULL ? frame :
 1411                     ih->ih_argument, ih->ih_name);
 1412                 if (ih->ih_argument == NULL)
 1413                         ret = ih->ih_filter(frame);
 1414                 else
 1415                         ret = ih->ih_filter(ih->ih_argument);
 1416 #ifdef HWPMC_HOOKS
 1417                 PMC_SOFT_CALL_TF( , , intr, all, frame);
 1418 #endif
 1419                 KASSERT(ret == FILTER_STRAY ||
 1420                     ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
 1421                     (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
 1422                     ("%s: incorrect return value %#x from %s", __func__, ret,
 1423                     ih->ih_name));
 1424                 filter = filter || ret == FILTER_HANDLED;
 1425 #ifdef HWPMC_HOOKS
 1426                 if (ret & FILTER_SCHEDULE_THREAD)
 1427                         PMC_SOFT_CALL_TF( , , intr, ithread, frame);
 1428                 else if (ret & FILTER_HANDLED)
 1429                         PMC_SOFT_CALL_TF( , , intr, filter, frame);
 1430                 else if (ret == FILTER_STRAY)
 1431                         PMC_SOFT_CALL_TF( , , intr, stray, frame);
 1432 #endif
 1433 
 1434                 /*
 1435                  * Wrapper handler special handling:
 1436                  *
 1437                  * in some particular cases (like pccard and pccbb),
 1438                  * the _real_ device handler is wrapped in a couple of
 1439                  * functions - a filter wrapper and an ithread wrapper.
 1440                  * In this case (and just in this case), the filter wrapper
 1441                  * could ask the system to schedule the ithread and mask
 1442                  * the interrupt source if the wrapped handler is composed
 1443                  * of just an ithread handler.
 1444                  *
 1445                  * TODO: write a generic wrapper to avoid people rolling
 1446                  * their own.
 1447                  */
 1448                 if (!thread) {
 1449                         if (ret == FILTER_SCHEDULE_THREAD)
 1450                                 thread = true;
 1451                 }
 1452         }
 1453         atomic_add_rel_int(&ie->ie_active[phase], -1);
 1454 
 1455         td->td_intr_frame = oldframe;
 1456 
 1457         if (thread) {
 1458                 if (ie->ie_pre_ithread != NULL)
 1459                         ie->ie_pre_ithread(ie->ie_source);
 1460         } else {
 1461                 if (ie->ie_post_filter != NULL)
 1462                         ie->ie_post_filter(ie->ie_source);
 1463         }
 1464 
 1465         /* Schedule the ithread if needed. */
 1466         if (thread) {
 1467                 int error __unused;
 1468 
 1469                 error =  intr_event_schedule_thread(ie, frame);
 1470                 KASSERT(error == 0, ("bad stray interrupt"));
 1471         }
 1472         critical_exit();
 1473         td->td_intr_nesting_level--;
 1474 #ifdef notyet
 1475         /* The interrupt is not aknowledged by any filter and has no ithread. */
 1476         if (!thread && !filter)
 1477                 return (EINVAL);
 1478 #endif
 1479         return (0);
 1480 }
 1481 
 1482 #ifdef DDB
 1483 /*
 1484  * Dump details about an interrupt handler
 1485  */
 1486 static void
 1487 db_dump_intrhand(struct intr_handler *ih)
 1488 {
 1489         int comma;
 1490 
 1491         db_printf("\t%-10s ", ih->ih_name);
 1492         switch (ih->ih_pri) {
 1493         case PI_REALTIME:
 1494                 db_printf("CLK ");
 1495                 break;
 1496         case PI_INTR:
 1497                 db_printf("INTR");
 1498                 break;
 1499         default:
 1500                 if (ih->ih_pri >= PI_SOFT)
 1501                         db_printf("SWI ");
 1502                 else
 1503                         db_printf("%4u", ih->ih_pri);
 1504                 break;
 1505         }
 1506         db_printf(" ");
 1507         if (ih->ih_filter != NULL) {
 1508                 db_printf("[F]");
 1509                 db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
 1510         }
 1511         if (ih->ih_handler != NULL) {
 1512                 if (ih->ih_filter != NULL)
 1513                         db_printf(",");
 1514                 db_printf("[H]");
 1515                 db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
 1516         }
 1517         db_printf("(%p)", ih->ih_argument);
 1518         if (ih->ih_need ||
 1519             (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
 1520             IH_MPSAFE)) != 0) {
 1521                 db_printf(" {");
 1522                 comma = 0;
 1523                 if (ih->ih_flags & IH_EXCLUSIVE) {
 1524                         if (comma)
 1525                                 db_printf(", ");
 1526                         db_printf("EXCL");
 1527                         comma = 1;
 1528                 }
 1529                 if (ih->ih_flags & IH_ENTROPY) {
 1530                         if (comma)
 1531                                 db_printf(", ");
 1532                         db_printf("ENTROPY");
 1533                         comma = 1;
 1534                 }
 1535                 if (ih->ih_flags & IH_DEAD) {
 1536                         if (comma)
 1537                                 db_printf(", ");
 1538                         db_printf("DEAD");
 1539                         comma = 1;
 1540                 }
 1541                 if (ih->ih_flags & IH_MPSAFE) {
 1542                         if (comma)
 1543                                 db_printf(", ");
 1544                         db_printf("MPSAFE");
 1545                         comma = 1;
 1546                 }
 1547                 if (ih->ih_need) {
 1548                         if (comma)
 1549                                 db_printf(", ");
 1550                         db_printf("NEED");
 1551                 }
 1552                 db_printf("}");
 1553         }
 1554         db_printf("\n");
 1555 }
 1556 
 1557 /*
 1558  * Dump details about a event.
 1559  */
 1560 void
 1561 db_dump_intr_event(struct intr_event *ie, int handlers)
 1562 {
 1563         struct intr_handler *ih;
 1564         struct intr_thread *it;
 1565         int comma;
 1566 
 1567         db_printf("%s ", ie->ie_fullname);
 1568         it = ie->ie_thread;
 1569         if (it != NULL)
 1570                 db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
 1571         else
 1572                 db_printf("(no thread)");
 1573         if ((ie->ie_flags & (IE_SOFT | IE_ADDING_THREAD)) != 0 ||
 1574             (it != NULL && it->it_need)) {
 1575                 db_printf(" {");
 1576                 comma = 0;
 1577                 if (ie->ie_flags & IE_SOFT) {
 1578                         db_printf("SOFT");
 1579                         comma = 1;
 1580                 }
 1581                 if (ie->ie_flags & IE_ADDING_THREAD) {
 1582                         if (comma)
 1583                                 db_printf(", ");
 1584                         db_printf("ADDING_THREAD");
 1585                         comma = 1;
 1586                 }
 1587                 if (it != NULL && it->it_need) {
 1588                         if (comma)
 1589                                 db_printf(", ");
 1590                         db_printf("NEED");
 1591                 }
 1592                 db_printf("}");
 1593         }
 1594         db_printf("\n");
 1595 
 1596         if (handlers)
 1597                 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next)
 1598                     db_dump_intrhand(ih);
 1599 }
 1600 
 1601 /*
 1602  * Dump data about interrupt handlers
 1603  */
 1604 DB_SHOW_COMMAND_FLAGS(intr, db_show_intr, DB_CMD_MEMSAFE)
 1605 {
 1606         struct intr_event *ie;
 1607         int all, verbose;
 1608 
 1609         verbose = strchr(modif, 'v') != NULL;
 1610         all = strchr(modif, 'a') != NULL;
 1611         TAILQ_FOREACH(ie, &event_list, ie_list) {
 1612                 if (!all && CK_SLIST_EMPTY(&ie->ie_handlers))
 1613                         continue;
 1614                 db_dump_intr_event(ie, verbose);
 1615                 if (db_pager_quit)
 1616                         break;
 1617         }
 1618 }
 1619 #endif /* DDB */
 1620 
 1621 /*
 1622  * Start standard software interrupt threads
 1623  */
 1624 static void
 1625 start_softintr(void *dummy)
 1626 {
 1627 
 1628         if (swi_add(&clk_intr_event, "clk", NULL, NULL, SWI_CLOCK,
 1629             INTR_MPSAFE, NULL))
 1630                 panic("died while creating clk swi ithread");
 1631 }
 1632 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
 1633     NULL);
 1634 
 1635 /*
 1636  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
 1637  * The data for this machine dependent, and the declarations are in machine
 1638  * dependent code.  The layout of intrnames and intrcnt however is machine
 1639  * independent.
 1640  *
 1641  * We do not know the length of intrcnt and intrnames at compile time, so
 1642  * calculate things at run time.
 1643  */
 1644 static int
 1645 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
 1646 {
 1647         return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
 1648 }
 1649 
 1650 SYSCTL_PROC(_hw, OID_AUTO, intrnames,
 1651     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
 1652     sysctl_intrnames, "",
 1653     "Interrupt Names");
 1654 
 1655 static int
 1656 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
 1657 {
 1658 #ifdef SCTL_MASK32
 1659         uint32_t *intrcnt32;
 1660         unsigned i;
 1661         int error;
 1662 
 1663         if (req->flags & SCTL_MASK32) {
 1664                 if (!req->oldptr)
 1665                         return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
 1666                 intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
 1667                 if (intrcnt32 == NULL)
 1668                         return (ENOMEM);
 1669                 for (i = 0; i < sintrcnt / sizeof (u_long); i++)
 1670                         intrcnt32[i] = intrcnt[i];
 1671                 error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
 1672                 free(intrcnt32, M_TEMP);
 1673                 return (error);
 1674         }
 1675 #endif
 1676         return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
 1677 }
 1678 
 1679 SYSCTL_PROC(_hw, OID_AUTO, intrcnt,
 1680     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
 1681     sysctl_intrcnt, "",
 1682     "Interrupt Counts");
 1683 
 1684 #ifdef DDB
 1685 /*
 1686  * DDB command to dump the interrupt statistics.
 1687  */
 1688 DB_SHOW_COMMAND_FLAGS(intrcnt, db_show_intrcnt, DB_CMD_MEMSAFE)
 1689 {
 1690         u_long *i;
 1691         char *cp;
 1692         u_int j;
 1693 
 1694         cp = intrnames;
 1695         j = 0;
 1696         for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
 1697             i++, j++) {
 1698                 if (*cp == '\0')
 1699                         break;
 1700                 if (*i != 0)
 1701                         db_printf("%s\t%lu\n", cp, *i);
 1702                 cp += strlen(cp) + 1;
 1703         }
 1704 }
 1705 #endif

Cache object: 585e585177fb6bcd1f844b9749a1fba8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.