The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_intr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/7.3/sys/kern/kern_intr.c 202763 2010-01-21 17:55:47Z jhb $");
   29 
   30 #include "opt_ddb.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/conf.h>
   35 #include <sys/cpuset.h>
   36 #include <sys/rtprio.h>
   37 #include <sys/systm.h>
   38 #include <sys/interrupt.h>
   39 #include <sys/kernel.h>
   40 #include <sys/kthread.h>
   41 #include <sys/ktr.h>
   42 #include <sys/limits.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mutex.h>
   46 #include <sys/proc.h>
   47 #include <sys/random.h>
   48 #include <sys/resourcevar.h>
   49 #include <sys/sched.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/unistd.h>
   53 #include <sys/vmmeter.h>
   54 #include <machine/atomic.h>
   55 #include <machine/cpu.h>
   56 #include <machine/md_var.h>
   57 #include <machine/stdarg.h>
   58 #ifdef DDB
   59 #include <ddb/ddb.h>
   60 #include <ddb/db_sym.h>
   61 #endif
   62 
   63 /*
   64  * Describe an interrupt thread.  There is one of these per interrupt event.
   65  */
   66 struct intr_thread {
   67         struct intr_event *it_event;
   68         struct thread *it_thread;       /* Kernel thread. */
   69         int     it_flags;               /* (j) IT_* flags. */
   70         int     it_need;                /* Needs service. */
   71 };
   72 
   73 /* Interrupt thread flags kept in it_flags */
   74 #define IT_DEAD         0x000001        /* Thread is waiting to exit. */
   75 
   76 struct  intr_entropy {
   77         struct  thread *td;
   78         uintptr_t event;
   79 };
   80 
   81 struct  intr_event *clk_intr_event;
   82 struct  intr_event *tty_intr_event;
   83 void    *softclock_ih;
   84 void    *vm_ih;
   85 
   86 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
   87 
   88 static int intr_storm_threshold = 1000;
   89 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
   90 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
   91     &intr_storm_threshold, 0,
   92     "Number of consecutive interrupts before storm protection is enabled");
   93 static TAILQ_HEAD(, intr_event) event_list =
   94     TAILQ_HEAD_INITIALIZER(event_list);
   95 static struct mtx event_lock;
   96 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
   97 
   98 static void     intr_event_update(struct intr_event *ie);
   99 #ifdef INTR_FILTER
  100 static int      intr_event_schedule_thread(struct intr_event *ie,
  101                     struct intr_thread *ithd);
  102 static int      intr_filter_loop(struct intr_event *ie,
  103                     struct trapframe *frame, struct intr_thread **ithd);
  104 static struct intr_thread *ithread_create(const char *name,
  105                               struct intr_handler *ih);
  106 #else
  107 static int      intr_event_schedule_thread(struct intr_event *ie);
  108 static struct intr_thread *ithread_create(const char *name);
  109 #endif
  110 static void     ithread_destroy(struct intr_thread *ithread);
  111 static void     ithread_execute_handlers(struct proc *p, 
  112                     struct intr_event *ie);
  113 #ifdef INTR_FILTER
  114 static void     priv_ithread_execute_handler(struct proc *p, 
  115                     struct intr_handler *ih);
  116 #endif
  117 static void     ithread_loop(void *);
  118 static void     ithread_update(struct intr_thread *ithd);
  119 static void     start_softintr(void *);
  120 
  121 /* Map an interrupt type to an ithread priority. */
  122 u_char
  123 intr_priority(enum intr_type flags)
  124 {
  125         u_char pri;
  126 
  127         flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
  128             INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
  129         switch (flags) {
  130         case INTR_TYPE_TTY:
  131                 pri = PI_TTYLOW;
  132                 break;
  133         case INTR_TYPE_BIO:
  134                 /*
  135                  * XXX We need to refine this.  BSD/OS distinguishes
  136                  * between tape and disk priorities.
  137                  */
  138                 pri = PI_DISK;
  139                 break;
  140         case INTR_TYPE_NET:
  141                 pri = PI_NET;
  142                 break;
  143         case INTR_TYPE_CAM:
  144                 pri = PI_DISK;          /* XXX or PI_CAM? */
  145                 break;
  146         case INTR_TYPE_AV:              /* Audio/video */
  147                 pri = PI_AV;
  148                 break;
  149         case INTR_TYPE_CLK:
  150                 pri = PI_REALTIME;
  151                 break;
  152         case INTR_TYPE_MISC:
  153                 pri = PI_DULL;          /* don't care */
  154                 break;
  155         default:
  156                 /* We didn't specify an interrupt level. */
  157                 panic("intr_priority: no interrupt type in flags");
  158         }
  159 
  160         return pri;
  161 }
  162 
  163 /*
  164  * Update an ithread based on the associated intr_event.
  165  */
  166 static void
  167 ithread_update(struct intr_thread *ithd)
  168 {
  169         struct intr_event *ie;
  170         struct thread *td;
  171         u_char pri;
  172 
  173         ie = ithd->it_event;
  174         td = ithd->it_thread;
  175 
  176         /* Determine the overall priority of this event. */
  177         if (TAILQ_EMPTY(&ie->ie_handlers))
  178                 pri = PRI_MAX_ITHD;
  179         else
  180                 pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
  181 
  182         /* Update name and priority. */
  183         strlcpy(td->td_proc->p_comm, ie->ie_fullname,
  184             sizeof(td->td_proc->p_comm));
  185         thread_lock(td);
  186         sched_prio(td, pri);
  187         thread_unlock(td);
  188 }
  189 
  190 /*
  191  * Regenerate the full name of an interrupt event and update its priority.
  192  */
  193 static void
  194 intr_event_update(struct intr_event *ie)
  195 {
  196         struct intr_handler *ih;
  197         char *last;
  198         int missed, space;
  199 
  200         /* Start off with no entropy and just the name of the event. */
  201         mtx_assert(&ie->ie_lock, MA_OWNED);
  202         strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
  203         ie->ie_flags &= ~IE_ENTROPY;
  204         missed = 0;
  205         space = 1;
  206 
  207         /* Run through all the handlers updating values. */
  208         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  209                 if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
  210                     sizeof(ie->ie_fullname)) {
  211                         strcat(ie->ie_fullname, " ");
  212                         strcat(ie->ie_fullname, ih->ih_name);
  213                         space = 0;
  214                 } else
  215                         missed++;
  216                 if (ih->ih_flags & IH_ENTROPY)
  217                         ie->ie_flags |= IE_ENTROPY;
  218         }
  219 
  220         /*
  221          * If the handler names were too long, add +'s to indicate missing
  222          * names. If we run out of room and still have +'s to add, change
  223          * the last character from a + to a *.
  224          */
  225         last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
  226         while (missed-- > 0) {
  227                 if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
  228                         if (*last == '+') {
  229                                 *last = '*';
  230                                 break;
  231                         } else
  232                                 *last = '+';
  233                 } else if (space) {
  234                         strcat(ie->ie_fullname, " +");
  235                         space = 0;
  236                 } else
  237                         strcat(ie->ie_fullname, "+");
  238         }
  239 
  240         /*
  241          * If this event has an ithread, update it's priority and
  242          * name.
  243          */
  244         if (ie->ie_thread != NULL)
  245                 ithread_update(ie->ie_thread);
  246         CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
  247 }
  248 
  249 int
  250 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
  251     void (*pre_ithread)(void *), void (*post_ithread)(void *),
  252     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
  253     const char *fmt, ...)
  254 {
  255         struct intr_event *ie;
  256         va_list ap;
  257 
  258         /* The only valid flag during creation is IE_SOFT. */
  259         if ((flags & ~IE_SOFT) != 0)
  260                 return (EINVAL);
  261         ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
  262         ie->ie_source = source;
  263         ie->ie_pre_ithread = pre_ithread;
  264         ie->ie_post_ithread = post_ithread;
  265         ie->ie_post_filter = post_filter;
  266         ie->ie_assign_cpu = assign_cpu;
  267         ie->ie_flags = flags;
  268         ie->ie_irq = irq;
  269         ie->ie_cpu = NOCPU;
  270         TAILQ_INIT(&ie->ie_handlers);
  271         mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
  272 
  273         va_start(ap, fmt);
  274         vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
  275         va_end(ap);
  276         strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
  277         mtx_lock(&event_lock);
  278         TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
  279         mtx_unlock(&event_lock);
  280         if (event != NULL)
  281                 *event = ie;
  282         CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
  283         return (0);
  284 }
  285 
  286 /*
  287  * Bind an interrupt event to the specified CPU.  Note that not all
  288  * platforms support binding an interrupt to a CPU.  For those
  289  * platforms this request will fail.  For supported platforms, any
  290  * associated ithreads as well as the primary interrupt context will
  291  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
  292  * the interrupt event.
  293  */
  294 int
  295 intr_event_bind(struct intr_event *ie, u_char cpu)
  296 {
  297         cpuset_t mask;
  298         lwpid_t id;
  299         int error;
  300 
  301         /* Need a CPU to bind to. */
  302         if (cpu != NOCPU && CPU_ABSENT(cpu))
  303                 return (EINVAL);
  304 
  305         if (ie->ie_assign_cpu == NULL)
  306                 return (EOPNOTSUPP);
  307         /*
  308          * If we have any ithreads try to set their mask first since this
  309          * can fail.
  310          */
  311         mtx_lock(&ie->ie_lock);
  312         if (ie->ie_thread != NULL) {
  313                 CPU_ZERO(&mask);
  314                 if (cpu == NOCPU)
  315                         CPU_COPY(cpuset_root, &mask);
  316                 else
  317                         CPU_SET(cpu, &mask);
  318                 id = ie->ie_thread->it_thread->td_tid;
  319                 mtx_unlock(&ie->ie_lock);
  320                 error = cpuset_setthread(id, &mask);
  321                 if (error)
  322                         return (error);
  323         } else
  324                 mtx_unlock(&ie->ie_lock);
  325         error = ie->ie_assign_cpu(ie->ie_source, cpu);
  326         if (error)
  327                 return (error);
  328         mtx_lock(&ie->ie_lock);
  329         ie->ie_cpu = cpu;
  330         mtx_unlock(&ie->ie_lock);
  331 
  332         return (error);
  333 }
  334 
  335 static struct intr_event *
  336 intr_lookup(int irq)
  337 {
  338         struct intr_event *ie;
  339 
  340         mtx_lock(&event_lock);
  341         TAILQ_FOREACH(ie, &event_list, ie_list)
  342                 if (ie->ie_irq == irq &&
  343                     (ie->ie_flags & IE_SOFT) == 0 &&
  344                     TAILQ_FIRST(&ie->ie_handlers) != NULL)
  345                         break;
  346         mtx_unlock(&event_lock);
  347         return (ie);
  348 }
  349 
  350 int
  351 intr_setaffinity(int irq, void *m)
  352 {
  353         struct intr_event *ie;
  354         cpuset_t *mask;
  355         u_char cpu;
  356         int n;
  357 
  358         mask = m;
  359         cpu = NOCPU;
  360         /*
  361          * If we're setting all cpus we can unbind.  Otherwise make sure
  362          * only one cpu is in the set.
  363          */
  364         if (CPU_CMP(cpuset_root, mask)) {
  365                 for (n = 0; n < CPU_SETSIZE; n++) {
  366                         if (!CPU_ISSET(n, mask))
  367                                 continue;
  368                         if (cpu != NOCPU)
  369                                 return (EINVAL);
  370                         cpu = (u_char)n;
  371                 }
  372         }
  373         ie = intr_lookup(irq);
  374         if (ie == NULL)
  375                 return (ESRCH);
  376         return (intr_event_bind(ie, cpu));
  377 }
  378 
  379 int
  380 intr_getaffinity(int irq, void *m)
  381 {
  382         struct intr_event *ie;
  383         cpuset_t *mask;
  384 
  385         mask = m;
  386         ie = intr_lookup(irq);
  387         if (ie == NULL)
  388                 return (ESRCH);
  389         CPU_ZERO(mask);
  390         mtx_lock(&ie->ie_lock);
  391         if (ie->ie_cpu == NOCPU)
  392                 CPU_COPY(cpuset_root, mask);
  393         else
  394                 CPU_SET(ie->ie_cpu, mask);
  395         mtx_unlock(&ie->ie_lock);
  396         return (0);
  397 }
  398 
  399 int
  400 intr_event_destroy(struct intr_event *ie)
  401 {
  402 
  403         mtx_lock(&event_lock);
  404         mtx_lock(&ie->ie_lock);
  405         if (!TAILQ_EMPTY(&ie->ie_handlers)) {
  406                 mtx_unlock(&ie->ie_lock);
  407                 mtx_unlock(&event_lock);
  408                 return (EBUSY);
  409         }
  410         TAILQ_REMOVE(&event_list, ie, ie_list);
  411 #ifndef notyet
  412         if (ie->ie_thread != NULL) {
  413                 ithread_destroy(ie->ie_thread);
  414                 ie->ie_thread = NULL;
  415         }
  416 #endif
  417         mtx_unlock(&ie->ie_lock);
  418         mtx_unlock(&event_lock);
  419         mtx_destroy(&ie->ie_lock);
  420         free(ie, M_ITHREAD);
  421         return (0);
  422 }
  423 
  424 #ifndef INTR_FILTER
  425 static struct intr_thread *
  426 ithread_create(const char *name)
  427 {
  428         struct intr_thread *ithd;
  429         struct thread *td;
  430         struct proc *p;
  431         int error;
  432 
  433         ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
  434 
  435         error = kthread_create(ithread_loop, ithd, &p, RFSTOPPED | RFHIGHPID,
  436             0, "%s", name);
  437         if (error)
  438                 panic("kthread_create() failed with %d", error);
  439         td = FIRST_THREAD_IN_PROC(p);   /* XXXKSE */
  440         thread_lock(td);
  441         sched_class(td, PRI_ITHD);
  442         TD_SET_IWAIT(td);
  443         thread_unlock(td);
  444         td->td_pflags |= TDP_ITHREAD;
  445         ithd->it_thread = td;
  446         CTR2(KTR_INTR, "%s: created %s", __func__, name);
  447         return (ithd);
  448 }
  449 #else
  450 static struct intr_thread *
  451 ithread_create(const char *name, struct intr_handler *ih)
  452 {
  453         struct intr_thread *ithd;
  454         struct thread *td;
  455         struct proc *p;
  456         int error;
  457 
  458         ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
  459 
  460         error = kthread_create(ithread_loop, ih, &p, RFSTOPPED | RFHIGHPID,
  461             0, "%s", name);
  462         if (error)
  463                 panic("kthread_create() failed with %d", error);
  464         td = FIRST_THREAD_IN_PROC(p);   /* XXXKSE */
  465         thread_lock(td);
  466         sched_class(td, PRI_ITHD);
  467         TD_SET_IWAIT(td);
  468         thread_unlock(td);
  469         td->td_pflags |= TDP_ITHREAD;
  470         ithd->it_thread = td;
  471         CTR2(KTR_INTR, "%s: created %s", __func__, name);
  472         return (ithd);
  473 }
  474 #endif
  475 
  476 static void
  477 ithread_destroy(struct intr_thread *ithread)
  478 {
  479         struct thread *td;
  480 
  481         CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
  482         td = ithread->it_thread;
  483         thread_lock(td);
  484         ithread->it_flags |= IT_DEAD;
  485         if (TD_AWAITING_INTR(td)) {
  486                 TD_CLR_IWAIT(td);
  487                 sched_add(td, SRQ_INTR);
  488         }
  489         thread_unlock(td);
  490 }
  491 
  492 #ifndef INTR_FILTER
  493 int
  494 intr_event_add_handler(struct intr_event *ie, const char *name,
  495     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
  496     enum intr_type flags, void **cookiep)
  497 {
  498         struct intr_handler *ih, *temp_ih;
  499         struct intr_thread *it;
  500 
  501         if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
  502                 return (EINVAL);
  503 
  504         /* Allocate and populate an interrupt handler structure. */
  505         ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
  506         ih->ih_filter = filter;
  507         ih->ih_handler = handler;
  508         ih->ih_argument = arg;
  509         strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
  510         ih->ih_event = ie;
  511         ih->ih_pri = pri;
  512         if (flags & INTR_EXCL)
  513                 ih->ih_flags = IH_EXCLUSIVE;
  514         if (flags & INTR_MPSAFE)
  515                 ih->ih_flags |= IH_MPSAFE;
  516         if (flags & INTR_ENTROPY)
  517                 ih->ih_flags |= IH_ENTROPY;
  518 
  519         /* We can only have one exclusive handler in a event. */
  520         mtx_lock(&ie->ie_lock);
  521         if (!TAILQ_EMPTY(&ie->ie_handlers)) {
  522                 if ((flags & INTR_EXCL) ||
  523                     (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
  524                         mtx_unlock(&ie->ie_lock);
  525                         free(ih, M_ITHREAD);
  526                         return (EINVAL);
  527                 }
  528         }
  529 
  530         /* Add the new handler to the event in priority order. */
  531         TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
  532                 if (temp_ih->ih_pri > ih->ih_pri)
  533                         break;
  534         }
  535         if (temp_ih == NULL)
  536                 TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
  537         else
  538                 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
  539         intr_event_update(ie);
  540 
  541         /* Create a thread if we need one. */
  542         while (ie->ie_thread == NULL && handler != NULL) {
  543                 if (ie->ie_flags & IE_ADDING_THREAD)
  544                         msleep(ie, &ie->ie_lock, 0, "ithread", 0);
  545                 else {
  546                         ie->ie_flags |= IE_ADDING_THREAD;
  547                         mtx_unlock(&ie->ie_lock);
  548                         it = ithread_create("intr: newborn");
  549                         mtx_lock(&ie->ie_lock);
  550                         ie->ie_flags &= ~IE_ADDING_THREAD;
  551                         ie->ie_thread = it;
  552                         it->it_event = ie;
  553                         ithread_update(it);
  554                         wakeup(ie);
  555                 }
  556         }
  557         CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
  558             ie->ie_name);
  559         mtx_unlock(&ie->ie_lock);
  560 
  561         if (cookiep != NULL)
  562                 *cookiep = ih;
  563         return (0);
  564 }
  565 #else
  566 int
  567 intr_event_add_handler(struct intr_event *ie, const char *name,
  568     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
  569     enum intr_type flags, void **cookiep)
  570 {
  571         struct intr_handler *ih, *temp_ih;
  572         struct intr_thread *it;
  573 
  574         if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
  575                 return (EINVAL);
  576 
  577         /* Allocate and populate an interrupt handler structure. */
  578         ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
  579         ih->ih_filter = filter;
  580         ih->ih_handler = handler;
  581         ih->ih_argument = arg;
  582         strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
  583         ih->ih_event = ie;
  584         ih->ih_pri = pri;
  585         if (flags & INTR_EXCL)
  586                 ih->ih_flags = IH_EXCLUSIVE;
  587         if (flags & INTR_MPSAFE)
  588                 ih->ih_flags |= IH_MPSAFE;
  589         if (flags & INTR_ENTROPY)
  590                 ih->ih_flags |= IH_ENTROPY;
  591 
  592         /* We can only have one exclusive handler in a event. */
  593         mtx_lock(&ie->ie_lock);
  594         if (!TAILQ_EMPTY(&ie->ie_handlers)) {
  595                 if ((flags & INTR_EXCL) ||
  596                     (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
  597                         mtx_unlock(&ie->ie_lock);
  598                         free(ih, M_ITHREAD);
  599                         return (EINVAL);
  600                 }
  601         }
  602 
  603         /* Add the new handler to the event in priority order. */
  604         TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
  605                 if (temp_ih->ih_pri > ih->ih_pri)
  606                         break;
  607         }
  608         if (temp_ih == NULL)
  609                 TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
  610         else
  611                 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
  612         intr_event_update(ie);
  613 
  614         /* For filtered handlers, create a private ithread to run on. */
  615         if (filter != NULL && handler != NULL) { 
  616                 mtx_unlock(&ie->ie_lock);
  617                 it = ithread_create("intr: newborn", ih);               
  618                 mtx_lock(&ie->ie_lock);
  619                 it->it_event = ie; 
  620                 ih->ih_thread = it;
  621                 ithread_update(it); // XXX - do we really need this?!?!?
  622         } else { /* Create the global per-event thread if we need one. */
  623                 while (ie->ie_thread == NULL && handler != NULL) {
  624                         if (ie->ie_flags & IE_ADDING_THREAD)
  625                                 msleep(ie, &ie->ie_lock, 0, "ithread", 0);
  626                         else {
  627                                 ie->ie_flags |= IE_ADDING_THREAD;
  628                                 mtx_unlock(&ie->ie_lock);
  629                                 it = ithread_create("intr: newborn", ih);
  630                                 mtx_lock(&ie->ie_lock);
  631                                 ie->ie_flags &= ~IE_ADDING_THREAD;
  632                                 ie->ie_thread = it;
  633                                 it->it_event = ie;
  634                                 ithread_update(it);
  635                                 wakeup(ie);
  636                         }
  637                 }
  638         }
  639         CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
  640             ie->ie_name);
  641         mtx_unlock(&ie->ie_lock);
  642 
  643         if (cookiep != NULL)
  644                 *cookiep = ih;
  645         return (0);
  646 }
  647 #endif
  648 
  649 /*
  650  * Append a description preceded by a ':' to the name of the specified
  651  * interrupt handler.
  652  */
  653 int
  654 intr_event_describe_handler(struct intr_event *ie, void *cookie,
  655     const char *descr)
  656 {
  657         struct intr_handler *ih;
  658         size_t space;
  659         char *start;
  660 
  661         mtx_lock(&ie->ie_lock);
  662 #ifdef INVARIANTS
  663         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  664                 if (ih == cookie)
  665                         break;
  666         }
  667         if (ih == NULL) {
  668                 mtx_unlock(&ie->ie_lock);
  669                 panic("handler %p not found in interrupt event %p", cookie, ie);
  670         }
  671 #endif
  672         ih = cookie;
  673 
  674         /*
  675          * Look for an existing description by checking for an
  676          * existing ":".  This assumes device names do not include
  677          * colons.  If one is found, prepare to insert the new
  678          * description at that point.  If one is not found, find the
  679          * end of the name to use as the insertion point.
  680          */
  681         start = index(ih->ih_name, ':');
  682         if (start == NULL)
  683                 start = index(ih->ih_name, 0);
  684 
  685         /*
  686          * See if there is enough remaining room in the string for the
  687          * description + ":".  The "- 1" leaves room for the trailing
  688          * '\0'.  The "+ 1" accounts for the colon.
  689          */
  690         space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
  691         if (strlen(descr) + 1 > space) {
  692                 mtx_unlock(&ie->ie_lock);
  693                 return (ENOSPC);
  694         }
  695 
  696         /* Append a colon followed by the description. */
  697         *start = ':';
  698         strcpy(start + 1, descr);
  699         intr_event_update(ie);
  700         mtx_unlock(&ie->ie_lock);
  701         return (0);
  702 }
  703 
  704 /*
  705  * Return the ie_source field from the intr_event an intr_handler is
  706  * associated with.
  707  */
  708 void *
  709 intr_handler_source(void *cookie)
  710 {
  711         struct intr_handler *ih;
  712         struct intr_event *ie;
  713 
  714         ih = (struct intr_handler *)cookie;
  715         if (ih == NULL)
  716                 return (NULL);
  717         ie = ih->ih_event;
  718         KASSERT(ie != NULL,
  719             ("interrupt handler \"%s\" has a NULL interrupt event",
  720             ih->ih_name));
  721         return (ie->ie_source);
  722 }
  723 
  724 #ifndef INTR_FILTER
  725 int
  726 intr_event_remove_handler(void *cookie)
  727 {
  728         struct intr_handler *handler = (struct intr_handler *)cookie;
  729         struct intr_event *ie;
  730 #ifdef INVARIANTS
  731         struct intr_handler *ih;
  732 #endif
  733 #ifdef notyet
  734         int dead;
  735 #endif
  736 
  737         if (handler == NULL)
  738                 return (EINVAL);
  739         ie = handler->ih_event;
  740         KASSERT(ie != NULL,
  741             ("interrupt handler \"%s\" has a NULL interrupt event",
  742             handler->ih_name));
  743         mtx_lock(&ie->ie_lock);
  744         CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
  745             ie->ie_name);
  746 #ifdef INVARIANTS
  747         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
  748                 if (ih == handler)
  749                         goto ok;
  750         mtx_unlock(&ie->ie_lock);
  751         panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
  752             ih->ih_name, ie->ie_name);
  753 ok:
  754 #endif
  755         /*
  756          * If there is no ithread, then just remove the handler and return.
  757          * XXX: Note that an INTR_FAST handler might be running on another
  758          * CPU!
  759          */
  760         if (ie->ie_thread == NULL) {
  761                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  762                 mtx_unlock(&ie->ie_lock);
  763                 free(handler, M_ITHREAD);
  764                 return (0);
  765         }
  766 
  767         /*
  768          * If the interrupt thread is already running, then just mark this
  769          * handler as being dead and let the ithread do the actual removal.
  770          *
  771          * During a cold boot while cold is set, msleep() does not sleep,
  772          * so we have to remove the handler here rather than letting the
  773          * thread do it.
  774          */
  775         thread_lock(ie->ie_thread->it_thread);
  776         if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
  777                 handler->ih_flags |= IH_DEAD;
  778 
  779                 /*
  780                  * Ensure that the thread will process the handler list
  781                  * again and remove this handler if it has already passed
  782                  * it on the list.
  783                  */
  784                 ie->ie_thread->it_need = 1;
  785         } else
  786                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  787         thread_unlock(ie->ie_thread->it_thread);
  788         while (handler->ih_flags & IH_DEAD)
  789                 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
  790         intr_event_update(ie);
  791 #ifdef notyet
  792         /*
  793          * XXX: This could be bad in the case of ppbus(8).  Also, I think
  794          * this could lead to races of stale data when servicing an
  795          * interrupt.
  796          */
  797         dead = 1;
  798         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  799                 if (!(ih->ih_flags & IH_FAST)) {
  800                         dead = 0;
  801                         break;
  802                 }
  803         }
  804         if (dead) {
  805                 ithread_destroy(ie->ie_thread);
  806                 ie->ie_thread = NULL;
  807         }
  808 #endif
  809         mtx_unlock(&ie->ie_lock);
  810         free(handler, M_ITHREAD);
  811         return (0);
  812 }
  813 
  814 static int
  815 intr_event_schedule_thread(struct intr_event *ie)
  816 {
  817         struct intr_entropy entropy;
  818         struct intr_thread *it;
  819         struct thread *td;
  820         struct thread *ctd;
  821         struct proc *p;
  822 
  823         /*
  824          * If no ithread or no handlers, then we have a stray interrupt.
  825          */
  826         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
  827             ie->ie_thread == NULL)
  828                 return (EINVAL);
  829 
  830         ctd = curthread;
  831         it = ie->ie_thread;
  832         td = it->it_thread;
  833         p = td->td_proc;
  834 
  835         /*
  836          * If any of the handlers for this ithread claim to be good
  837          * sources of entropy, then gather some.
  838          */
  839         if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
  840                 CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
  841                     p->p_pid, p->p_comm);
  842                 entropy.event = (uintptr_t)ie;
  843                 entropy.td = ctd;
  844                 random_harvest(&entropy, sizeof(entropy), 2, 0,
  845                     RANDOM_INTERRUPT);
  846         }
  847 
  848         KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
  849 
  850         /*
  851          * Set it_need to tell the thread to keep running if it is already
  852          * running.  Then, lock the thread and see if we actually need to
  853          * put it on the runqueue.
  854          */
  855         it->it_need = 1;
  856         thread_lock(td);
  857         if (TD_AWAITING_INTR(td)) {
  858                 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
  859                     p->p_comm);
  860                 TD_CLR_IWAIT(td);
  861                 sched_add(td, SRQ_INTR);
  862         } else {
  863                 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
  864                     __func__, p->p_pid, p->p_comm, it->it_need, td->td_state);
  865         }
  866         thread_unlock(td);
  867 
  868         return (0);
  869 }
  870 #else
  871 int
  872 intr_event_remove_handler(void *cookie)
  873 {
  874         struct intr_handler *handler = (struct intr_handler *)cookie;
  875         struct intr_event *ie;
  876         struct intr_thread *it;
  877 #ifdef INVARIANTS
  878         struct intr_handler *ih;
  879 #endif
  880 #ifdef notyet
  881         int dead;
  882 #endif
  883 
  884         if (handler == NULL)
  885                 return (EINVAL);
  886         ie = handler->ih_event;
  887         KASSERT(ie != NULL,
  888             ("interrupt handler \"%s\" has a NULL interrupt event",
  889             handler->ih_name));
  890         mtx_lock(&ie->ie_lock);
  891         CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
  892             ie->ie_name);
  893 #ifdef INVARIANTS
  894         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
  895                 if (ih == handler)
  896                         goto ok;
  897         mtx_unlock(&ie->ie_lock);
  898         panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
  899             ih->ih_name, ie->ie_name);
  900 ok:
  901 #endif
  902         /*
  903          * If there are no ithreads (per event and per handler), then
  904          * just remove the handler and return.  
  905          * XXX: Note that an INTR_FAST handler might be running on another CPU!
  906          */
  907         if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
  908                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  909                 mtx_unlock(&ie->ie_lock);
  910                 free(handler, M_ITHREAD);
  911                 return (0);
  912         }
  913 
  914         /* Private or global ithread? */
  915         it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
  916         /*
  917          * If the interrupt thread is already running, then just mark this
  918          * handler as being dead and let the ithread do the actual removal.
  919          *
  920          * During a cold boot while cold is set, msleep() does not sleep,
  921          * so we have to remove the handler here rather than letting the
  922          * thread do it.
  923          */
  924         thread_lock(it->it_thread);
  925         if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
  926                 handler->ih_flags |= IH_DEAD;
  927 
  928                 /*
  929                  * Ensure that the thread will process the handler list
  930                  * again and remove this handler if it has already passed
  931                  * it on the list.
  932                  */
  933                 it->it_need = 1;
  934         } else
  935                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  936         thread_unlock(it->it_thread);
  937         while (handler->ih_flags & IH_DEAD)
  938                 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
  939         /* 
  940          * At this point, the handler has been disconnected from the event,
  941          * so we can kill the private ithread if any.
  942          */
  943         if (handler->ih_thread) {
  944                 ithread_destroy(handler->ih_thread);
  945                 handler->ih_thread = NULL;
  946         }
  947         intr_event_update(ie);
  948 #ifdef notyet
  949         /*
  950          * XXX: This could be bad in the case of ppbus(8).  Also, I think
  951          * this could lead to races of stale data when servicing an
  952          * interrupt.
  953          */
  954         dead = 1;
  955         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  956                 if (handler != NULL) {
  957                         dead = 0;
  958                         break;
  959                 }
  960         }
  961         if (dead) {
  962                 ithread_destroy(ie->ie_thread);
  963                 ie->ie_thread = NULL;
  964         }
  965 #endif
  966         mtx_unlock(&ie->ie_lock);
  967         free(handler, M_ITHREAD);
  968         return (0);
  969 }
  970 
  971 static int
  972 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
  973 {
  974         struct intr_entropy entropy;
  975         struct thread *td;
  976         struct thread *ctd;
  977         struct proc *p;
  978 
  979         /*
  980          * If no ithread or no handlers, then we have a stray interrupt.
  981          */
  982         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
  983                 return (EINVAL);
  984 
  985         ctd = curthread;
  986         td = it->it_thread;
  987         p = td->td_proc;
  988 
  989         /*
  990          * If any of the handlers for this ithread claim to be good
  991          * sources of entropy, then gather some.
  992          */
  993         if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
  994                 CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
  995                     p->p_pid, p->p_comm);
  996                 entropy.event = (uintptr_t)ie;
  997                 entropy.td = ctd;
  998                 random_harvest(&entropy, sizeof(entropy), 2, 0,
  999                     RANDOM_INTERRUPT);
 1000         }
 1001 
 1002         KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
 1003 
 1004         /*
 1005          * Set it_need to tell the thread to keep running if it is already
 1006          * running.  Then, lock the thread and see if we actually need to
 1007          * put it on the runqueue.
 1008          */
 1009         it->it_need = 1;
 1010         thread_lock(td);
 1011         if (TD_AWAITING_INTR(td)) {
 1012                 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
 1013                     p->p_comm);
 1014                 TD_CLR_IWAIT(td);
 1015                 sched_add(td, SRQ_INTR);
 1016         } else {
 1017                 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
 1018                     __func__, p->p_pid, p->p_comm, it->it_need, td->td_state);
 1019         }
 1020         thread_unlock(td);
 1021 
 1022         return (0);
 1023 }
 1024 #endif
 1025 
 1026 /*
 1027  * Add a software interrupt handler to a specified event.  If a given event
 1028  * is not specified, then a new event is created.
 1029  */
 1030 int
 1031 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
 1032             void *arg, int pri, enum intr_type flags, void **cookiep)
 1033 {
 1034         struct intr_event *ie;
 1035         int error;
 1036 
 1037         if (flags & INTR_ENTROPY)
 1038                 return (EINVAL);
 1039 
 1040         ie = (eventp != NULL) ? *eventp : NULL;
 1041 
 1042         if (ie != NULL) {
 1043                 if (!(ie->ie_flags & IE_SOFT))
 1044                         return (EINVAL);
 1045         } else {
 1046                 error = intr_event_create(&ie, NULL, IE_SOFT, 0,
 1047                     NULL, NULL, NULL, NULL, "swi%d:", pri);
 1048                 if (error)
 1049                         return (error);
 1050                 if (eventp != NULL)
 1051                         *eventp = ie;
 1052         }
 1053         return (intr_event_add_handler(ie, name, NULL, handler, arg,
 1054                     (pri * RQ_PPQ) + PI_SOFT, flags, cookiep));
 1055                     /* XXKSE.. think of a better way to get separate queues */
 1056 }
 1057 
 1058 /*
 1059  * Schedule a software interrupt thread.
 1060  */
 1061 void
 1062 swi_sched(void *cookie, int flags)
 1063 {
 1064         struct intr_handler *ih = (struct intr_handler *)cookie;
 1065         struct intr_event *ie = ih->ih_event;
 1066         int error;
 1067 
 1068         CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
 1069             ih->ih_need);
 1070 
 1071         /*
 1072          * Set ih_need for this handler so that if the ithread is already
 1073          * running it will execute this handler on the next pass.  Otherwise,
 1074          * it will execute it the next time it runs.
 1075          */
 1076         atomic_store_rel_int(&ih->ih_need, 1);
 1077 
 1078         if (!(flags & SWI_DELAY)) {
 1079                 PCPU_INC(cnt.v_soft);
 1080 #ifdef INTR_FILTER
 1081                 error = intr_event_schedule_thread(ie, ie->ie_thread);
 1082 #else
 1083                 error = intr_event_schedule_thread(ie);
 1084 #endif
 1085                 KASSERT(error == 0, ("stray software interrupt"));
 1086         }
 1087 }
 1088 
 1089 /*
 1090  * Remove a software interrupt handler.  Currently this code does not
 1091  * remove the associated interrupt event if it becomes empty.  Calling code
 1092  * may do so manually via intr_event_destroy(), but that's not really
 1093  * an optimal interface.
 1094  */
 1095 int
 1096 swi_remove(void *cookie)
 1097 {
 1098 
 1099         return (intr_event_remove_handler(cookie));
 1100 }
 1101 
 1102 #ifdef INTR_FILTER
 1103 static void
 1104 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
 1105 {
 1106         struct intr_event *ie;
 1107 
 1108         ie = ih->ih_event;
 1109         /*
 1110          * If this handler is marked for death, remove it from
 1111          * the list of handlers and wake up the sleeper.
 1112          */
 1113         if (ih->ih_flags & IH_DEAD) {
 1114                 mtx_lock(&ie->ie_lock);
 1115                 TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
 1116                 ih->ih_flags &= ~IH_DEAD;
 1117                 wakeup(ih);
 1118                 mtx_unlock(&ie->ie_lock);
 1119                 return;
 1120         }
 1121         
 1122         /* Execute this handler. */
 1123         CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
 1124              __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
 1125              ih->ih_name, ih->ih_flags);
 1126         
 1127         if (!(ih->ih_flags & IH_MPSAFE))
 1128                 mtx_lock(&Giant);
 1129         ih->ih_handler(ih->ih_argument);
 1130         if (!(ih->ih_flags & IH_MPSAFE))
 1131                 mtx_unlock(&Giant);
 1132 }
 1133 #endif
 1134 
 1135 static void
 1136 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
 1137 {
 1138         struct intr_handler *ih, *ihn;
 1139 
 1140         /* Interrupt handlers should not sleep. */
 1141         if (!(ie->ie_flags & IE_SOFT))
 1142                 THREAD_NO_SLEEPING();
 1143         TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
 1144 
 1145                 /*
 1146                  * If this handler is marked for death, remove it from
 1147                  * the list of handlers and wake up the sleeper.
 1148                  */
 1149                 if (ih->ih_flags & IH_DEAD) {
 1150                         mtx_lock(&ie->ie_lock);
 1151                         TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
 1152                         ih->ih_flags &= ~IH_DEAD;
 1153                         wakeup(ih);
 1154                         mtx_unlock(&ie->ie_lock);
 1155                         continue;
 1156                 }
 1157 
 1158                 /* Skip filter only handlers */
 1159                 if (ih->ih_handler == NULL)
 1160                         continue;
 1161 
 1162                 /*
 1163                  * For software interrupt threads, we only execute
 1164                  * handlers that have their need flag set.  Hardware
 1165                  * interrupt threads always invoke all of their handlers.
 1166                  */
 1167                 if (ie->ie_flags & IE_SOFT) {
 1168                         if (!ih->ih_need)
 1169                                 continue;
 1170                         else
 1171                                 atomic_store_rel_int(&ih->ih_need, 0);
 1172                 }
 1173 
 1174                 /* Execute this handler. */
 1175                 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
 1176                     __func__, p->p_pid, (void *)ih->ih_handler, 
 1177                     ih->ih_argument, ih->ih_name, ih->ih_flags);
 1178 
 1179                 if (!(ih->ih_flags & IH_MPSAFE))
 1180                         mtx_lock(&Giant);
 1181                 ih->ih_handler(ih->ih_argument);
 1182                 if (!(ih->ih_flags & IH_MPSAFE))
 1183                         mtx_unlock(&Giant);
 1184         }
 1185         if (!(ie->ie_flags & IE_SOFT))
 1186                 THREAD_SLEEPING_OK();
 1187 
 1188         /*
 1189          * Interrupt storm handling:
 1190          *
 1191          * If this interrupt source is currently storming, then throttle
 1192          * it to only fire the handler once  per clock tick.
 1193          *
 1194          * If this interrupt source is not currently storming, but the
 1195          * number of back to back interrupts exceeds the storm threshold,
 1196          * then enter storming mode.
 1197          */
 1198         if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
 1199             !(ie->ie_flags & IE_SOFT)) {
 1200                 /* Report the message only once every second. */
 1201                 if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
 1202                         printf(
 1203         "interrupt storm detected on \"%s\"; throttling interrupt source\n",
 1204                             ie->ie_name);
 1205                 }
 1206                 pause("istorm", 1);
 1207         } else
 1208                 ie->ie_count++;
 1209 
 1210         /*
 1211          * Now that all the handlers have had a chance to run, reenable
 1212          * the interrupt source.
 1213          */
 1214         if (ie->ie_post_ithread != NULL)
 1215                 ie->ie_post_ithread(ie->ie_source);
 1216 }
 1217 
 1218 #ifndef INTR_FILTER
 1219 /*
 1220  * This is the main code for interrupt threads.
 1221  */
 1222 static void
 1223 ithread_loop(void *arg)
 1224 {
 1225         struct intr_thread *ithd;
 1226         struct intr_event *ie;
 1227         struct thread *td;
 1228         struct proc *p;
 1229 
 1230         td = curthread;
 1231         p = td->td_proc;
 1232         ithd = (struct intr_thread *)arg;
 1233         KASSERT(ithd->it_thread == td,
 1234             ("%s: ithread and proc linkage out of sync", __func__));
 1235         ie = ithd->it_event;
 1236         ie->ie_count = 0;
 1237 
 1238         /*
 1239          * As long as we have interrupts outstanding, go through the
 1240          * list of handlers, giving each one a go at it.
 1241          */
 1242         for (;;) {
 1243                 /*
 1244                  * If we are an orphaned thread, then just die.
 1245                  */
 1246                 if (ithd->it_flags & IT_DEAD) {
 1247                         CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
 1248                             p->p_pid, p->p_comm);
 1249                         free(ithd, M_ITHREAD);
 1250                         kthread_exit(0);
 1251                 }
 1252 
 1253                 /*
 1254                  * Service interrupts.  If another interrupt arrives while
 1255                  * we are running, it will set it_need to note that we
 1256                  * should make another pass.
 1257                  */
 1258                 while (ithd->it_need) {
 1259                         /*
 1260                          * This might need a full read and write barrier
 1261                          * to make sure that this write posts before any
 1262                          * of the memory or device accesses in the
 1263                          * handlers.
 1264                          */
 1265                         atomic_store_rel_int(&ithd->it_need, 0);
 1266                         ithread_execute_handlers(p, ie);
 1267                 }
 1268                 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
 1269                 mtx_assert(&Giant, MA_NOTOWNED);
 1270 
 1271                 /*
 1272                  * Processed all our interrupts.  Now get the sched
 1273                  * lock.  This may take a while and it_need may get
 1274                  * set again, so we have to check it again.
 1275                  */
 1276                 thread_lock(td);
 1277                 if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
 1278                         TD_SET_IWAIT(td);
 1279                         ie->ie_count = 0;
 1280                         mi_switch(SW_VOL, NULL);
 1281                 }
 1282                 thread_unlock(td);
 1283         }
 1284 }
 1285 
 1286 /*
 1287  * Main interrupt handling body.
 1288  *
 1289  * Input:
 1290  * o ie:                        the event connected to this interrupt.
 1291  * o frame:                     some archs (i.e. i386) pass a frame to some.
 1292  *                              handlers as their main argument.
 1293  * Return value:
 1294  * o 0:                         everything ok.
 1295  * o EINVAL:                    stray interrupt.
 1296  */
 1297 int
 1298 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
 1299 {
 1300         struct intr_handler *ih;
 1301         struct thread *td;
 1302         int error, ret, thread;
 1303 
 1304         td = curthread;
 1305 
 1306         /* An interrupt with no event or handlers is a stray interrupt. */
 1307         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
 1308                 return (EINVAL);
 1309 
 1310         /*
 1311          * Execute fast interrupt handlers directly.
 1312          * To support clock handlers, if a handler registers
 1313          * with a NULL argument, then we pass it a pointer to
 1314          * a trapframe as its argument.
 1315          */
 1316         td->td_intr_nesting_level++;
 1317         thread = 0;
 1318         ret = 0;
 1319         critical_enter();
 1320         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
 1321                 if (ih->ih_filter == NULL) {
 1322                         thread = 1;
 1323                         continue;
 1324                 }
 1325                 CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
 1326                     ih->ih_filter, ih->ih_argument == NULL ? frame :
 1327                     ih->ih_argument, ih->ih_name);
 1328                 if (ih->ih_argument == NULL)
 1329                         ret = ih->ih_filter(frame);
 1330                 else
 1331                         ret = ih->ih_filter(ih->ih_argument);
 1332                 /* 
 1333                  * Wrapper handler special handling:
 1334                  *
 1335                  * in some particular cases (like pccard and pccbb), 
 1336                  * the _real_ device handler is wrapped in a couple of
 1337                  * functions - a filter wrapper and an ithread wrapper.
 1338                  * In this case (and just in this case), the filter wrapper 
 1339                  * could ask the system to schedule the ithread and mask
 1340                  * the interrupt source if the wrapped handler is composed
 1341                  * of just an ithread handler.
 1342                  *
 1343                  * TODO: write a generic wrapper to avoid people rolling 
 1344                  * their own
 1345                  */
 1346                 if (!thread) {
 1347                         if (ret == FILTER_SCHEDULE_THREAD)
 1348                                 thread = 1;
 1349                 }
 1350         }
 1351 
 1352         if (thread) {
 1353                 if (ie->ie_pre_ithread != NULL)
 1354                         ie->ie_pre_ithread(ie->ie_source);
 1355         } else {
 1356                 if (ie->ie_post_filter != NULL)
 1357                         ie->ie_post_filter(ie->ie_source);
 1358         }
 1359         
 1360         /* Schedule the ithread if needed. */
 1361         if (thread) {
 1362                 error = intr_event_schedule_thread(ie);
 1363                 KASSERT(error == 0, ("bad stray interrupt"));
 1364         }
 1365         critical_exit();
 1366         td->td_intr_nesting_level--;
 1367         return (0);
 1368 }
 1369 #else
 1370 /*
 1371  * This is the main code for interrupt threads.
 1372  */
 1373 static void
 1374 ithread_loop(void *arg)
 1375 {
 1376         struct intr_thread *ithd;
 1377         struct intr_handler *ih;
 1378         struct intr_event *ie;
 1379         struct thread *td;
 1380         struct proc *p;
 1381         int priv;
 1382 
 1383         td = curthread;
 1384         p = td->td_proc;
 1385         ih = (struct intr_handler *)arg;
 1386         priv = (ih->ih_thread != NULL) ? 1 : 0;
 1387         ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
 1388         KASSERT(ithd->it_thread == td,
 1389             ("%s: ithread and proc linkage out of sync", __func__));
 1390         ie = ithd->it_event;
 1391         ie->ie_count = 0;
 1392 
 1393         /*
 1394          * As long as we have interrupts outstanding, go through the
 1395          * list of handlers, giving each one a go at it.
 1396          */
 1397         for (;;) {
 1398                 /*
 1399                  * If we are an orphaned thread, then just die.
 1400                  */
 1401                 if (ithd->it_flags & IT_DEAD) {
 1402                         CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
 1403                             p->p_pid, p->p_comm);
 1404                         free(ithd, M_ITHREAD);
 1405                         kthread_exit(0);
 1406                 }
 1407 
 1408                 /*
 1409                  * Service interrupts.  If another interrupt arrives while
 1410                  * we are running, it will set it_need to note that we
 1411                  * should make another pass.
 1412                  */
 1413                 while (ithd->it_need) {
 1414                         /*
 1415                          * This might need a full read and write barrier
 1416                          * to make sure that this write posts before any
 1417                          * of the memory or device accesses in the
 1418                          * handlers.
 1419                          */
 1420                         atomic_store_rel_int(&ithd->it_need, 0);
 1421                         if (priv)
 1422                                 priv_ithread_execute_handler(p, ih);
 1423                         else 
 1424                                 ithread_execute_handlers(p, ie);
 1425                 }
 1426                 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
 1427                 mtx_assert(&Giant, MA_NOTOWNED);
 1428 
 1429                 /*
 1430                  * Processed all our interrupts.  Now get the sched
 1431                  * lock.  This may take a while and it_need may get
 1432                  * set again, so we have to check it again.
 1433                  */
 1434                 thread_lock(td);
 1435                 if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
 1436                         TD_SET_IWAIT(td);
 1437                         ie->ie_count = 0;
 1438                         mi_switch(SW_VOL, NULL);
 1439                 }
 1440                 thread_unlock(td);
 1441         }
 1442 }
 1443 
 1444 /* 
 1445  * Main loop for interrupt filter.
 1446  *
 1447  * Some architectures (i386, amd64 and arm) require the optional frame 
 1448  * parameter, and use it as the main argument for fast handler execution
 1449  * when ih_argument == NULL.
 1450  *
 1451  * Return value:
 1452  * o FILTER_STRAY:              No filter recognized the event, and no
 1453  *                              filter-less handler is registered on this 
 1454  *                              line.
 1455  * o FILTER_HANDLED:            A filter claimed the event and served it.
 1456  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
 1457  *                              least one filter-less handler on this line.
 1458  * o FILTER_HANDLED | 
 1459  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
 1460  *                              scheduling the per-handler ithread.
 1461  *
 1462  * In case an ithread has to be scheduled, in *ithd there will be a 
 1463  * pointer to a struct intr_thread containing the thread to be
 1464  * scheduled.
 1465  */
 1466 
 1467 static int
 1468 intr_filter_loop(struct intr_event *ie, struct trapframe *frame, 
 1469                  struct intr_thread **ithd) 
 1470 {
 1471         struct intr_handler *ih;
 1472         void *arg;
 1473         int ret, thread_only;
 1474 
 1475         ret = 0;
 1476         thread_only = 0;
 1477         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
 1478                 /*
 1479                  * Execute fast interrupt handlers directly.
 1480                  * To support clock handlers, if a handler registers
 1481                  * with a NULL argument, then we pass it a pointer to
 1482                  * a trapframe as its argument.
 1483                  */
 1484                 arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
 1485                 
 1486                 CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
 1487                      ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
 1488 
 1489                 if (ih->ih_filter != NULL)
 1490                         ret = ih->ih_filter(arg);
 1491                 else {
 1492                         thread_only = 1;
 1493                         continue;
 1494                 }
 1495 
 1496                 if (ret & FILTER_STRAY)
 1497                         continue;
 1498                 else { 
 1499                         *ithd = ih->ih_thread;
 1500                         return (ret);
 1501                 }
 1502         }
 1503 
 1504         /*
 1505          * No filters handled the interrupt and we have at least
 1506          * one handler without a filter.  In this case, we schedule
 1507          * all of the filter-less handlers to run in the ithread.
 1508          */     
 1509         if (thread_only) {
 1510                 *ithd = ie->ie_thread;
 1511                 return (FILTER_SCHEDULE_THREAD);
 1512         }
 1513         return (FILTER_STRAY);
 1514 }
 1515 
 1516 /*
 1517  * Main interrupt handling body.
 1518  *
 1519  * Input:
 1520  * o ie:                        the event connected to this interrupt.
 1521  * o frame:                     some archs (i.e. i386) pass a frame to some.
 1522  *                              handlers as their main argument.
 1523  * Return value:
 1524  * o 0:                         everything ok.
 1525  * o EINVAL:                    stray interrupt.
 1526  */
 1527 int
 1528 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
 1529 {
 1530         struct intr_thread *ithd;
 1531         struct thread *td;
 1532         int thread;
 1533 
 1534         ithd = NULL;
 1535         td = curthread;
 1536 
 1537         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
 1538                 return (EINVAL);
 1539 
 1540         td->td_intr_nesting_level++;
 1541         thread = 0;
 1542         critical_enter();
 1543         thread = intr_filter_loop(ie, frame, &ithd);    
 1544         if (thread & FILTER_HANDLED) {
 1545                 if (ie->ie_post_filter != NULL)
 1546                         ie->ie_post_filter(ie->ie_source);
 1547         } else {
 1548                 if (ie->ie_pre_ithread != NULL)
 1549                         ie->ie_pre_ithread(ie->ie_source);
 1550         }
 1551         critical_exit();
 1552         
 1553         /* Interrupt storm logic */
 1554         if (thread & FILTER_STRAY) {
 1555                 ie->ie_count++;
 1556                 if (ie->ie_count < intr_storm_threshold)
 1557                         printf("Interrupt stray detection not present\n");
 1558         }
 1559 
 1560         /* Schedule an ithread if needed. */
 1561         if (thread & FILTER_SCHEDULE_THREAD) {
 1562                 if (intr_event_schedule_thread(ie, ithd) != 0)
 1563                         panic("%s: impossible stray interrupt", __func__);
 1564         }
 1565         td->td_intr_nesting_level--;
 1566         return (0);
 1567 }
 1568 #endif
 1569 
 1570 #ifdef DDB
 1571 /*
 1572  * Dump details about an interrupt handler
 1573  */
 1574 static void
 1575 db_dump_intrhand(struct intr_handler *ih)
 1576 {
 1577         int comma;
 1578 
 1579         db_printf("\t%-10s ", ih->ih_name);
 1580         switch (ih->ih_pri) {
 1581         case PI_REALTIME:
 1582                 db_printf("CLK ");
 1583                 break;
 1584         case PI_AV:
 1585                 db_printf("AV  ");
 1586                 break;
 1587         case PI_TTYHIGH:
 1588         case PI_TTYLOW:
 1589                 db_printf("TTY ");
 1590                 break;
 1591         case PI_TAPE:
 1592                 db_printf("TAPE");
 1593                 break;
 1594         case PI_NET:
 1595                 db_printf("NET ");
 1596                 break;
 1597         case PI_DISK:
 1598         case PI_DISKLOW:
 1599                 db_printf("DISK");
 1600                 break;
 1601         case PI_DULL:
 1602                 db_printf("DULL");
 1603                 break;
 1604         default:
 1605                 if (ih->ih_pri >= PI_SOFT)
 1606                         db_printf("SWI ");
 1607                 else
 1608                         db_printf("%4u", ih->ih_pri);
 1609                 break;
 1610         }
 1611         db_printf(" ");
 1612         db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
 1613         db_printf("(%p)", ih->ih_argument);
 1614         if (ih->ih_need ||
 1615             (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
 1616             IH_MPSAFE)) != 0) {
 1617                 db_printf(" {");
 1618                 comma = 0;
 1619                 if (ih->ih_flags & IH_EXCLUSIVE) {
 1620                         if (comma)
 1621                                 db_printf(", ");
 1622                         db_printf("EXCL");
 1623                         comma = 1;
 1624                 }
 1625                 if (ih->ih_flags & IH_ENTROPY) {
 1626                         if (comma)
 1627                                 db_printf(", ");
 1628                         db_printf("ENTROPY");
 1629                         comma = 1;
 1630                 }
 1631                 if (ih->ih_flags & IH_DEAD) {
 1632                         if (comma)
 1633                                 db_printf(", ");
 1634                         db_printf("DEAD");
 1635                         comma = 1;
 1636                 }
 1637                 if (ih->ih_flags & IH_MPSAFE) {
 1638                         if (comma)
 1639                                 db_printf(", ");
 1640                         db_printf("MPSAFE");
 1641                         comma = 1;
 1642                 }
 1643                 if (ih->ih_need) {
 1644                         if (comma)
 1645                                 db_printf(", ");
 1646                         db_printf("NEED");
 1647                 }
 1648                 db_printf("}");
 1649         }
 1650         db_printf("\n");
 1651 }
 1652 
 1653 /*
 1654  * Dump details about a event.
 1655  */
 1656 void
 1657 db_dump_intr_event(struct intr_event *ie, int handlers)
 1658 {
 1659         struct intr_handler *ih;
 1660         struct intr_thread *it;
 1661         int comma;
 1662 
 1663         db_printf("%s ", ie->ie_fullname);
 1664         it = ie->ie_thread;
 1665         if (it != NULL)
 1666                 db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
 1667         else
 1668                 db_printf("(no thread)");
 1669         if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
 1670             (it != NULL && it->it_need)) {
 1671                 db_printf(" {");
 1672                 comma = 0;
 1673                 if (ie->ie_flags & IE_SOFT) {
 1674                         db_printf("SOFT");
 1675                         comma = 1;
 1676                 }
 1677                 if (ie->ie_flags & IE_ENTROPY) {
 1678                         if (comma)
 1679                                 db_printf(", ");
 1680                         db_printf("ENTROPY");
 1681                         comma = 1;
 1682                 }
 1683                 if (ie->ie_flags & IE_ADDING_THREAD) {
 1684                         if (comma)
 1685                                 db_printf(", ");
 1686                         db_printf("ADDING_THREAD");
 1687                         comma = 1;
 1688                 }
 1689                 if (it != NULL && it->it_need) {
 1690                         if (comma)
 1691                                 db_printf(", ");
 1692                         db_printf("NEED");
 1693                 }
 1694                 db_printf("}");
 1695         }
 1696         db_printf("\n");
 1697 
 1698         if (handlers)
 1699                 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
 1700                     db_dump_intrhand(ih);
 1701 }
 1702 
 1703 /*
 1704  * Dump data about interrupt handlers
 1705  */
 1706 DB_SHOW_COMMAND(intr, db_show_intr)
 1707 {
 1708         struct intr_event *ie;
 1709         int all, verbose;
 1710 
 1711         verbose = index(modif, 'v') != NULL;
 1712         all = index(modif, 'a') != NULL;
 1713         TAILQ_FOREACH(ie, &event_list, ie_list) {
 1714                 if (!all && TAILQ_EMPTY(&ie->ie_handlers))
 1715                         continue;
 1716                 db_dump_intr_event(ie, verbose);
 1717                 if (db_pager_quit)
 1718                         break;
 1719         }
 1720 }
 1721 #endif /* DDB */
 1722 
 1723 /*
 1724  * Start standard software interrupt threads
 1725  */
 1726 static void
 1727 start_softintr(void *dummy)
 1728 {
 1729         struct proc *p;
 1730 
 1731         if (swi_add(&clk_intr_event, "clock", softclock, NULL, SWI_CLOCK,
 1732                 INTR_MPSAFE, &softclock_ih) ||
 1733             swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
 1734                 panic("died while creating standard software ithreads");
 1735 
 1736         p = clk_intr_event->ie_thread->it_thread->td_proc;
 1737         PROC_LOCK(p);
 1738         p->p_flag |= P_NOLOAD;
 1739         PROC_UNLOCK(p);
 1740 }
 1741 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
 1742     NULL);
 1743 
 1744 /*
 1745  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
 1746  * The data for this machine dependent, and the declarations are in machine
 1747  * dependent code.  The layout of intrnames and intrcnt however is machine
 1748  * independent.
 1749  *
 1750  * We do not know the length of intrcnt and intrnames at compile time, so
 1751  * calculate things at run time.
 1752  */
 1753 static int
 1754 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
 1755 {
 1756         return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames,
 1757            req));
 1758 }
 1759 
 1760 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1761     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
 1762 
 1763 static int
 1764 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
 1765 {
 1766         return (sysctl_handle_opaque(oidp, intrcnt,
 1767             (char *)eintrcnt - (char *)intrcnt, req));
 1768 }
 1769 
 1770 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1771     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
 1772 
 1773 #ifdef DDB
 1774 /*
 1775  * DDB command to dump the interrupt statistics.
 1776  */
 1777 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
 1778 {
 1779         u_long *i;
 1780         char *cp;
 1781 
 1782         cp = intrnames;
 1783         for (i = intrcnt; i != eintrcnt && !db_pager_quit; i++) {
 1784                 if (*cp == '\0')
 1785                         break;
 1786                 if (*i != 0)
 1787                         db_printf("%s\t%lu\n", cp, *i);
 1788                 cp += strlen(cp) + 1;
 1789         }
 1790 }
 1791 #endif

Cache object: eb93588aa911468d1844be4809fb9d6c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.