The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_intr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_ddb.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/conf.h>
   35 #include <sys/cpuset.h>
   36 #include <sys/rtprio.h>
   37 #include <sys/systm.h>
   38 #include <sys/interrupt.h>
   39 #include <sys/kernel.h>
   40 #include <sys/kthread.h>
   41 #include <sys/ktr.h>
   42 #include <sys/limits.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mutex.h>
   46 #include <sys/priv.h>
   47 #include <sys/proc.h>
   48 #include <sys/random.h>
   49 #include <sys/resourcevar.h>
   50 #include <sys/sched.h>
   51 #include <sys/smp.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/syslog.h>
   54 #include <sys/unistd.h>
   55 #include <sys/vmmeter.h>
   56 #include <machine/atomic.h>
   57 #include <machine/cpu.h>
   58 #include <machine/md_var.h>
   59 #include <machine/stdarg.h>
   60 #ifdef DDB
   61 #include <ddb/ddb.h>
   62 #include <ddb/db_sym.h>
   63 #endif
   64 
   65 /*
   66  * Describe an interrupt thread.  There is one of these per interrupt event.
   67  */
   68 struct intr_thread {
   69         struct intr_event *it_event;
   70         struct thread *it_thread;       /* Kernel thread. */
   71         int     it_flags;               /* (j) IT_* flags. */
   72         int     it_need;                /* Needs service. */
   73 };
   74 
   75 /* Interrupt thread flags kept in it_flags */
   76 #define IT_DEAD         0x000001        /* Thread is waiting to exit. */
   77 
   78 struct  intr_entropy {
   79         struct  thread *td;
   80         uintptr_t event;
   81 };
   82 
   83 struct  intr_event *clk_intr_event;
   84 struct  intr_event *tty_intr_event;
   85 void    *vm_ih;
   86 struct proc *intrproc;
   87 
   88 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
   89 
   90 static int intr_storm_threshold = 1000;
   91 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
   92 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
   93     &intr_storm_threshold, 0,
   94     "Number of consecutive interrupts before storm protection is enabled");
   95 static TAILQ_HEAD(, intr_event) event_list =
   96     TAILQ_HEAD_INITIALIZER(event_list);
   97 static struct mtx event_lock;
   98 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
   99 
  100 static void     intr_event_update(struct intr_event *ie);
  101 #ifdef INTR_FILTER
  102 static int      intr_event_schedule_thread(struct intr_event *ie,
  103                     struct intr_thread *ithd);
  104 static int      intr_filter_loop(struct intr_event *ie,
  105                     struct trapframe *frame, struct intr_thread **ithd);
  106 static struct intr_thread *ithread_create(const char *name,
  107                               struct intr_handler *ih);
  108 #else
  109 static int      intr_event_schedule_thread(struct intr_event *ie);
  110 static struct intr_thread *ithread_create(const char *name);
  111 #endif
  112 static void     ithread_destroy(struct intr_thread *ithread);
  113 static void     ithread_execute_handlers(struct proc *p, 
  114                     struct intr_event *ie);
  115 #ifdef INTR_FILTER
  116 static void     priv_ithread_execute_handler(struct proc *p, 
  117                     struct intr_handler *ih);
  118 #endif
  119 static void     ithread_loop(void *);
  120 static void     ithread_update(struct intr_thread *ithd);
  121 static void     start_softintr(void *);
  122 
  123 /* Map an interrupt type to an ithread priority. */
  124 u_char
  125 intr_priority(enum intr_type flags)
  126 {
  127         u_char pri;
  128 
  129         flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
  130             INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
  131         switch (flags) {
  132         case INTR_TYPE_TTY:
  133                 pri = PI_TTY;
  134                 break;
  135         case INTR_TYPE_BIO:
  136                 pri = PI_DISK;
  137                 break;
  138         case INTR_TYPE_NET:
  139                 pri = PI_NET;
  140                 break;
  141         case INTR_TYPE_CAM:
  142                 pri = PI_DISK;
  143                 break;
  144         case INTR_TYPE_AV:
  145                 pri = PI_AV;
  146                 break;
  147         case INTR_TYPE_CLK:
  148                 pri = PI_REALTIME;
  149                 break;
  150         case INTR_TYPE_MISC:
  151                 pri = PI_DULL;          /* don't care */
  152                 break;
  153         default:
  154                 /* We didn't specify an interrupt level. */
  155                 panic("intr_priority: no interrupt type in flags");
  156         }
  157 
  158         return pri;
  159 }
  160 
  161 /*
  162  * Update an ithread based on the associated intr_event.
  163  */
  164 static void
  165 ithread_update(struct intr_thread *ithd)
  166 {
  167         struct intr_event *ie;
  168         struct thread *td;
  169         u_char pri;
  170 
  171         ie = ithd->it_event;
  172         td = ithd->it_thread;
  173 
  174         /* Determine the overall priority of this event. */
  175         if (TAILQ_EMPTY(&ie->ie_handlers))
  176                 pri = PRI_MAX_ITHD;
  177         else
  178                 pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
  179 
  180         /* Update name and priority. */
  181         strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
  182 #ifdef KTR
  183         sched_clear_tdname(td);
  184 #endif
  185         thread_lock(td);
  186         sched_prio(td, pri);
  187         thread_unlock(td);
  188 }
  189 
  190 /*
  191  * Regenerate the full name of an interrupt event and update its priority.
  192  */
  193 static void
  194 intr_event_update(struct intr_event *ie)
  195 {
  196         struct intr_handler *ih;
  197         char *last;
  198         int missed, space;
  199 
  200         /* Start off with no entropy and just the name of the event. */
  201         mtx_assert(&ie->ie_lock, MA_OWNED);
  202         strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
  203         ie->ie_flags &= ~IE_ENTROPY;
  204         missed = 0;
  205         space = 1;
  206 
  207         /* Run through all the handlers updating values. */
  208         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  209                 if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
  210                     sizeof(ie->ie_fullname)) {
  211                         strcat(ie->ie_fullname, " ");
  212                         strcat(ie->ie_fullname, ih->ih_name);
  213                         space = 0;
  214                 } else
  215                         missed++;
  216                 if (ih->ih_flags & IH_ENTROPY)
  217                         ie->ie_flags |= IE_ENTROPY;
  218         }
  219 
  220         /*
  221          * If the handler names were too long, add +'s to indicate missing
  222          * names. If we run out of room and still have +'s to add, change
  223          * the last character from a + to a *.
  224          */
  225         last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
  226         while (missed-- > 0) {
  227                 if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
  228                         if (*last == '+') {
  229                                 *last = '*';
  230                                 break;
  231                         } else
  232                                 *last = '+';
  233                 } else if (space) {
  234                         strcat(ie->ie_fullname, " +");
  235                         space = 0;
  236                 } else
  237                         strcat(ie->ie_fullname, "+");
  238         }
  239 
  240         /*
  241          * If this event has an ithread, update it's priority and
  242          * name.
  243          */
  244         if (ie->ie_thread != NULL)
  245                 ithread_update(ie->ie_thread);
  246         CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
  247 }
  248 
  249 int
  250 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
  251     void (*pre_ithread)(void *), void (*post_ithread)(void *),
  252     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
  253     const char *fmt, ...)
  254 {
  255         struct intr_event *ie;
  256         va_list ap;
  257 
  258         /* The only valid flag during creation is IE_SOFT. */
  259         if ((flags & ~IE_SOFT) != 0)
  260                 return (EINVAL);
  261         ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
  262         ie->ie_source = source;
  263         ie->ie_pre_ithread = pre_ithread;
  264         ie->ie_post_ithread = post_ithread;
  265         ie->ie_post_filter = post_filter;
  266         ie->ie_assign_cpu = assign_cpu;
  267         ie->ie_flags = flags;
  268         ie->ie_irq = irq;
  269         ie->ie_cpu = NOCPU;
  270         TAILQ_INIT(&ie->ie_handlers);
  271         mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
  272 
  273         va_start(ap, fmt);
  274         vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
  275         va_end(ap);
  276         strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
  277         mtx_lock(&event_lock);
  278         TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
  279         mtx_unlock(&event_lock);
  280         if (event != NULL)
  281                 *event = ie;
  282         CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
  283         return (0);
  284 }
  285 
  286 /*
  287  * Bind an interrupt event to the specified CPU.  Note that not all
  288  * platforms support binding an interrupt to a CPU.  For those
  289  * platforms this request will fail.  For supported platforms, any
  290  * associated ithreads as well as the primary interrupt context will
  291  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
  292  * the interrupt event.
  293  */
  294 int
  295 intr_event_bind(struct intr_event *ie, u_char cpu)
  296 {
  297         cpuset_t mask;
  298         lwpid_t id;
  299         int error;
  300 
  301         /* Need a CPU to bind to. */
  302         if (cpu != NOCPU && CPU_ABSENT(cpu))
  303                 return (EINVAL);
  304 
  305         if (ie->ie_assign_cpu == NULL)
  306                 return (EOPNOTSUPP);
  307 
  308         error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
  309         if (error)
  310                 return (error);
  311 
  312         /*
  313          * If we have any ithreads try to set their mask first to verify
  314          * permissions, etc.
  315          */
  316         mtx_lock(&ie->ie_lock);
  317         if (ie->ie_thread != NULL) {
  318                 CPU_ZERO(&mask);
  319                 if (cpu == NOCPU)
  320                         CPU_COPY(cpuset_root, &mask);
  321                 else
  322                         CPU_SET(cpu, &mask);
  323                 id = ie->ie_thread->it_thread->td_tid;
  324                 mtx_unlock(&ie->ie_lock);
  325                 error = cpuset_setthread(id, &mask);
  326                 if (error)
  327                         return (error);
  328         } else
  329                 mtx_unlock(&ie->ie_lock);
  330         error = ie->ie_assign_cpu(ie->ie_source, cpu);
  331         if (error) {
  332                 mtx_lock(&ie->ie_lock);
  333                 if (ie->ie_thread != NULL) {
  334                         CPU_ZERO(&mask);
  335                         if (ie->ie_cpu == NOCPU)
  336                                 CPU_COPY(cpuset_root, &mask);
  337                         else
  338                                 CPU_SET(cpu, &mask);
  339                         id = ie->ie_thread->it_thread->td_tid;
  340                         mtx_unlock(&ie->ie_lock);
  341                         (void)cpuset_setthread(id, &mask);
  342                 } else
  343                         mtx_unlock(&ie->ie_lock);
  344                 return (error);
  345         }
  346 
  347         mtx_lock(&ie->ie_lock);
  348         ie->ie_cpu = cpu;
  349         mtx_unlock(&ie->ie_lock);
  350 
  351         return (error);
  352 }
  353 
  354 static struct intr_event *
  355 intr_lookup(int irq)
  356 {
  357         struct intr_event *ie;
  358 
  359         mtx_lock(&event_lock);
  360         TAILQ_FOREACH(ie, &event_list, ie_list)
  361                 if (ie->ie_irq == irq &&
  362                     (ie->ie_flags & IE_SOFT) == 0 &&
  363                     TAILQ_FIRST(&ie->ie_handlers) != NULL)
  364                         break;
  365         mtx_unlock(&event_lock);
  366         return (ie);
  367 }
  368 
  369 int
  370 intr_setaffinity(int irq, void *m)
  371 {
  372         struct intr_event *ie;
  373         cpuset_t *mask;
  374         u_char cpu;
  375         int n;
  376 
  377         mask = m;
  378         cpu = NOCPU;
  379         /*
  380          * If we're setting all cpus we can unbind.  Otherwise make sure
  381          * only one cpu is in the set.
  382          */
  383         if (CPU_CMP(cpuset_root, mask)) {
  384                 for (n = 0; n < CPU_SETSIZE; n++) {
  385                         if (!CPU_ISSET(n, mask))
  386                                 continue;
  387                         if (cpu != NOCPU)
  388                                 return (EINVAL);
  389                         cpu = (u_char)n;
  390                 }
  391         }
  392         ie = intr_lookup(irq);
  393         if (ie == NULL)
  394                 return (ESRCH);
  395         return (intr_event_bind(ie, cpu));
  396 }
  397 
  398 int
  399 intr_getaffinity(int irq, void *m)
  400 {
  401         struct intr_event *ie;
  402         cpuset_t *mask;
  403 
  404         mask = m;
  405         ie = intr_lookup(irq);
  406         if (ie == NULL)
  407                 return (ESRCH);
  408         CPU_ZERO(mask);
  409         mtx_lock(&ie->ie_lock);
  410         if (ie->ie_cpu == NOCPU)
  411                 CPU_COPY(cpuset_root, mask);
  412         else
  413                 CPU_SET(ie->ie_cpu, mask);
  414         mtx_unlock(&ie->ie_lock);
  415         return (0);
  416 }
  417 
  418 int
  419 intr_event_destroy(struct intr_event *ie)
  420 {
  421 
  422         mtx_lock(&event_lock);
  423         mtx_lock(&ie->ie_lock);
  424         if (!TAILQ_EMPTY(&ie->ie_handlers)) {
  425                 mtx_unlock(&ie->ie_lock);
  426                 mtx_unlock(&event_lock);
  427                 return (EBUSY);
  428         }
  429         TAILQ_REMOVE(&event_list, ie, ie_list);
  430 #ifndef notyet
  431         if (ie->ie_thread != NULL) {
  432                 ithread_destroy(ie->ie_thread);
  433                 ie->ie_thread = NULL;
  434         }
  435 #endif
  436         mtx_unlock(&ie->ie_lock);
  437         mtx_unlock(&event_lock);
  438         mtx_destroy(&ie->ie_lock);
  439         free(ie, M_ITHREAD);
  440         return (0);
  441 }
  442 
  443 #ifndef INTR_FILTER
  444 static struct intr_thread *
  445 ithread_create(const char *name)
  446 {
  447         struct intr_thread *ithd;
  448         struct thread *td;
  449         int error;
  450 
  451         ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
  452 
  453         error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
  454                     &td, RFSTOPPED | RFHIGHPID,
  455                     0, "intr", "%s", name);
  456         if (error)
  457                 panic("kproc_create() failed with %d", error);
  458         thread_lock(td);
  459         sched_class(td, PRI_ITHD);
  460         TD_SET_IWAIT(td);
  461         thread_unlock(td);
  462         td->td_pflags |= TDP_ITHREAD;
  463         ithd->it_thread = td;
  464         CTR2(KTR_INTR, "%s: created %s", __func__, name);
  465         return (ithd);
  466 }
  467 #else
  468 static struct intr_thread *
  469 ithread_create(const char *name, struct intr_handler *ih)
  470 {
  471         struct intr_thread *ithd;
  472         struct thread *td;
  473         int error;
  474 
  475         ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
  476 
  477         error = kproc_kthread_add(ithread_loop, ih, &intrproc,
  478                     &td, RFSTOPPED | RFHIGHPID,
  479                     0, "intr", "%s", name);
  480         if (error)
  481                 panic("kproc_create() failed with %d", error);
  482         thread_lock(td);
  483         sched_class(td, PRI_ITHD);
  484         TD_SET_IWAIT(td);
  485         thread_unlock(td);
  486         td->td_pflags |= TDP_ITHREAD;
  487         ithd->it_thread = td;
  488         CTR2(KTR_INTR, "%s: created %s", __func__, name);
  489         return (ithd);
  490 }
  491 #endif
  492 
  493 static void
  494 ithread_destroy(struct intr_thread *ithread)
  495 {
  496         struct thread *td;
  497 
  498         CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
  499         td = ithread->it_thread;
  500         thread_lock(td);
  501         ithread->it_flags |= IT_DEAD;
  502         if (TD_AWAITING_INTR(td)) {
  503                 TD_CLR_IWAIT(td);
  504                 sched_add(td, SRQ_INTR);
  505         }
  506         thread_unlock(td);
  507 }
  508 
  509 #ifndef INTR_FILTER
  510 int
  511 intr_event_add_handler(struct intr_event *ie, const char *name,
  512     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
  513     enum intr_type flags, void **cookiep)
  514 {
  515         struct intr_handler *ih, *temp_ih;
  516         struct intr_thread *it;
  517 
  518         if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
  519                 return (EINVAL);
  520 
  521         /* Allocate and populate an interrupt handler structure. */
  522         ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
  523         ih->ih_filter = filter;
  524         ih->ih_handler = handler;
  525         ih->ih_argument = arg;
  526         strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
  527         ih->ih_event = ie;
  528         ih->ih_pri = pri;
  529         if (flags & INTR_EXCL)
  530                 ih->ih_flags = IH_EXCLUSIVE;
  531         if (flags & INTR_MPSAFE)
  532                 ih->ih_flags |= IH_MPSAFE;
  533         if (flags & INTR_ENTROPY)
  534                 ih->ih_flags |= IH_ENTROPY;
  535 
  536         /* We can only have one exclusive handler in a event. */
  537         mtx_lock(&ie->ie_lock);
  538         if (!TAILQ_EMPTY(&ie->ie_handlers)) {
  539                 if ((flags & INTR_EXCL) ||
  540                     (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
  541                         mtx_unlock(&ie->ie_lock);
  542                         free(ih, M_ITHREAD);
  543                         return (EINVAL);
  544                 }
  545         }
  546 
  547         /* Add the new handler to the event in priority order. */
  548         TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
  549                 if (temp_ih->ih_pri > ih->ih_pri)
  550                         break;
  551         }
  552         if (temp_ih == NULL)
  553                 TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
  554         else
  555                 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
  556         intr_event_update(ie);
  557 
  558         /* Create a thread if we need one. */
  559         while (ie->ie_thread == NULL && handler != NULL) {
  560                 if (ie->ie_flags & IE_ADDING_THREAD)
  561                         msleep(ie, &ie->ie_lock, 0, "ithread", 0);
  562                 else {
  563                         ie->ie_flags |= IE_ADDING_THREAD;
  564                         mtx_unlock(&ie->ie_lock);
  565                         it = ithread_create("intr: newborn");
  566                         mtx_lock(&ie->ie_lock);
  567                         ie->ie_flags &= ~IE_ADDING_THREAD;
  568                         ie->ie_thread = it;
  569                         it->it_event = ie;
  570                         ithread_update(it);
  571                         wakeup(ie);
  572                 }
  573         }
  574         CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
  575             ie->ie_name);
  576         mtx_unlock(&ie->ie_lock);
  577 
  578         if (cookiep != NULL)
  579                 *cookiep = ih;
  580         return (0);
  581 }
  582 #else
  583 int
  584 intr_event_add_handler(struct intr_event *ie, const char *name,
  585     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
  586     enum intr_type flags, void **cookiep)
  587 {
  588         struct intr_handler *ih, *temp_ih;
  589         struct intr_thread *it;
  590 
  591         if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
  592                 return (EINVAL);
  593 
  594         /* Allocate and populate an interrupt handler structure. */
  595         ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
  596         ih->ih_filter = filter;
  597         ih->ih_handler = handler;
  598         ih->ih_argument = arg;
  599         strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
  600         ih->ih_event = ie;
  601         ih->ih_pri = pri;
  602         if (flags & INTR_EXCL)
  603                 ih->ih_flags = IH_EXCLUSIVE;
  604         if (flags & INTR_MPSAFE)
  605                 ih->ih_flags |= IH_MPSAFE;
  606         if (flags & INTR_ENTROPY)
  607                 ih->ih_flags |= IH_ENTROPY;
  608 
  609         /* We can only have one exclusive handler in a event. */
  610         mtx_lock(&ie->ie_lock);
  611         if (!TAILQ_EMPTY(&ie->ie_handlers)) {
  612                 if ((flags & INTR_EXCL) ||
  613                     (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
  614                         mtx_unlock(&ie->ie_lock);
  615                         free(ih, M_ITHREAD);
  616                         return (EINVAL);
  617                 }
  618         }
  619 
  620         /* Add the new handler to the event in priority order. */
  621         TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
  622                 if (temp_ih->ih_pri > ih->ih_pri)
  623                         break;
  624         }
  625         if (temp_ih == NULL)
  626                 TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
  627         else
  628                 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
  629         intr_event_update(ie);
  630 
  631         /* For filtered handlers, create a private ithread to run on. */
  632         if (filter != NULL && handler != NULL) { 
  633                 mtx_unlock(&ie->ie_lock);
  634                 it = ithread_create("intr: newborn", ih);               
  635                 mtx_lock(&ie->ie_lock);
  636                 it->it_event = ie; 
  637                 ih->ih_thread = it;
  638                 ithread_update(it); // XXX - do we really need this?!?!?
  639         } else { /* Create the global per-event thread if we need one. */
  640                 while (ie->ie_thread == NULL && handler != NULL) {
  641                         if (ie->ie_flags & IE_ADDING_THREAD)
  642                                 msleep(ie, &ie->ie_lock, 0, "ithread", 0);
  643                         else {
  644                                 ie->ie_flags |= IE_ADDING_THREAD;
  645                                 mtx_unlock(&ie->ie_lock);
  646                                 it = ithread_create("intr: newborn", ih);
  647                                 mtx_lock(&ie->ie_lock);
  648                                 ie->ie_flags &= ~IE_ADDING_THREAD;
  649                                 ie->ie_thread = it;
  650                                 it->it_event = ie;
  651                                 ithread_update(it);
  652                                 wakeup(ie);
  653                         }
  654                 }
  655         }
  656         CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
  657             ie->ie_name);
  658         mtx_unlock(&ie->ie_lock);
  659 
  660         if (cookiep != NULL)
  661                 *cookiep = ih;
  662         return (0);
  663 }
  664 #endif
  665 
  666 /*
  667  * Append a description preceded by a ':' to the name of the specified
  668  * interrupt handler.
  669  */
  670 int
  671 intr_event_describe_handler(struct intr_event *ie, void *cookie,
  672     const char *descr)
  673 {
  674         struct intr_handler *ih;
  675         size_t space;
  676         char *start;
  677 
  678         mtx_lock(&ie->ie_lock);
  679 #ifdef INVARIANTS
  680         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  681                 if (ih == cookie)
  682                         break;
  683         }
  684         if (ih == NULL) {
  685                 mtx_unlock(&ie->ie_lock);
  686                 panic("handler %p not found in interrupt event %p", cookie, ie);
  687         }
  688 #endif
  689         ih = cookie;
  690 
  691         /*
  692          * Look for an existing description by checking for an
  693          * existing ":".  This assumes device names do not include
  694          * colons.  If one is found, prepare to insert the new
  695          * description at that point.  If one is not found, find the
  696          * end of the name to use as the insertion point.
  697          */
  698         start = index(ih->ih_name, ':');
  699         if (start == NULL)
  700                 start = index(ih->ih_name, 0);
  701 
  702         /*
  703          * See if there is enough remaining room in the string for the
  704          * description + ":".  The "- 1" leaves room for the trailing
  705          * '\0'.  The "+ 1" accounts for the colon.
  706          */
  707         space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
  708         if (strlen(descr) + 1 > space) {
  709                 mtx_unlock(&ie->ie_lock);
  710                 return (ENOSPC);
  711         }
  712 
  713         /* Append a colon followed by the description. */
  714         *start = ':';
  715         strcpy(start + 1, descr);
  716         intr_event_update(ie);
  717         mtx_unlock(&ie->ie_lock);
  718         return (0);
  719 }
  720 
  721 /*
  722  * Return the ie_source field from the intr_event an intr_handler is
  723  * associated with.
  724  */
  725 void *
  726 intr_handler_source(void *cookie)
  727 {
  728         struct intr_handler *ih;
  729         struct intr_event *ie;
  730 
  731         ih = (struct intr_handler *)cookie;
  732         if (ih == NULL)
  733                 return (NULL);
  734         ie = ih->ih_event;
  735         KASSERT(ie != NULL,
  736             ("interrupt handler \"%s\" has a NULL interrupt event",
  737             ih->ih_name));
  738         return (ie->ie_source);
  739 }
  740 
  741 #ifndef INTR_FILTER
  742 int
  743 intr_event_remove_handler(void *cookie)
  744 {
  745         struct intr_handler *handler = (struct intr_handler *)cookie;
  746         struct intr_event *ie;
  747 #ifdef INVARIANTS
  748         struct intr_handler *ih;
  749 #endif
  750 #ifdef notyet
  751         int dead;
  752 #endif
  753 
  754         if (handler == NULL)
  755                 return (EINVAL);
  756         ie = handler->ih_event;
  757         KASSERT(ie != NULL,
  758             ("interrupt handler \"%s\" has a NULL interrupt event",
  759             handler->ih_name));
  760         mtx_lock(&ie->ie_lock);
  761         CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
  762             ie->ie_name);
  763 #ifdef INVARIANTS
  764         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
  765                 if (ih == handler)
  766                         goto ok;
  767         mtx_unlock(&ie->ie_lock);
  768         panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
  769             ih->ih_name, ie->ie_name);
  770 ok:
  771 #endif
  772         /*
  773          * If there is no ithread, then just remove the handler and return.
  774          * XXX: Note that an INTR_FAST handler might be running on another
  775          * CPU!
  776          */
  777         if (ie->ie_thread == NULL) {
  778                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  779                 mtx_unlock(&ie->ie_lock);
  780                 free(handler, M_ITHREAD);
  781                 return (0);
  782         }
  783 
  784         /*
  785          * If the interrupt thread is already running, then just mark this
  786          * handler as being dead and let the ithread do the actual removal.
  787          *
  788          * During a cold boot while cold is set, msleep() does not sleep,
  789          * so we have to remove the handler here rather than letting the
  790          * thread do it.
  791          */
  792         thread_lock(ie->ie_thread->it_thread);
  793         if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
  794                 handler->ih_flags |= IH_DEAD;
  795 
  796                 /*
  797                  * Ensure that the thread will process the handler list
  798                  * again and remove this handler if it has already passed
  799                  * it on the list.
  800                  */
  801                 ie->ie_thread->it_need = 1;
  802         } else
  803                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  804         thread_unlock(ie->ie_thread->it_thread);
  805         while (handler->ih_flags & IH_DEAD)
  806                 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
  807         intr_event_update(ie);
  808 #ifdef notyet
  809         /*
  810          * XXX: This could be bad in the case of ppbus(8).  Also, I think
  811          * this could lead to races of stale data when servicing an
  812          * interrupt.
  813          */
  814         dead = 1;
  815         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  816                 if (!(ih->ih_flags & IH_FAST)) {
  817                         dead = 0;
  818                         break;
  819                 }
  820         }
  821         if (dead) {
  822                 ithread_destroy(ie->ie_thread);
  823                 ie->ie_thread = NULL;
  824         }
  825 #endif
  826         mtx_unlock(&ie->ie_lock);
  827         free(handler, M_ITHREAD);
  828         return (0);
  829 }
  830 
  831 static int
  832 intr_event_schedule_thread(struct intr_event *ie)
  833 {
  834         struct intr_entropy entropy;
  835         struct intr_thread *it;
  836         struct thread *td;
  837         struct thread *ctd;
  838         struct proc *p;
  839 
  840         /*
  841          * If no ithread or no handlers, then we have a stray interrupt.
  842          */
  843         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
  844             ie->ie_thread == NULL)
  845                 return (EINVAL);
  846 
  847         ctd = curthread;
  848         it = ie->ie_thread;
  849         td = it->it_thread;
  850         p = td->td_proc;
  851 
  852         /*
  853          * If any of the handlers for this ithread claim to be good
  854          * sources of entropy, then gather some.
  855          */
  856         if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
  857                 CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
  858                     p->p_pid, td->td_name);
  859                 entropy.event = (uintptr_t)ie;
  860                 entropy.td = ctd;
  861                 random_harvest(&entropy, sizeof(entropy), 2, 0,
  862                     RANDOM_INTERRUPT);
  863         }
  864 
  865         KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
  866 
  867         /*
  868          * Set it_need to tell the thread to keep running if it is already
  869          * running.  Then, lock the thread and see if we actually need to
  870          * put it on the runqueue.
  871          */
  872         it->it_need = 1;
  873         thread_lock(td);
  874         if (TD_AWAITING_INTR(td)) {
  875                 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
  876                     td->td_name);
  877                 TD_CLR_IWAIT(td);
  878                 sched_add(td, SRQ_INTR);
  879         } else {
  880                 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
  881                     __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
  882         }
  883         thread_unlock(td);
  884 
  885         return (0);
  886 }
  887 #else
  888 int
  889 intr_event_remove_handler(void *cookie)
  890 {
  891         struct intr_handler *handler = (struct intr_handler *)cookie;
  892         struct intr_event *ie;
  893         struct intr_thread *it;
  894 #ifdef INVARIANTS
  895         struct intr_handler *ih;
  896 #endif
  897 #ifdef notyet
  898         int dead;
  899 #endif
  900 
  901         if (handler == NULL)
  902                 return (EINVAL);
  903         ie = handler->ih_event;
  904         KASSERT(ie != NULL,
  905             ("interrupt handler \"%s\" has a NULL interrupt event",
  906             handler->ih_name));
  907         mtx_lock(&ie->ie_lock);
  908         CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
  909             ie->ie_name);
  910 #ifdef INVARIANTS
  911         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
  912                 if (ih == handler)
  913                         goto ok;
  914         mtx_unlock(&ie->ie_lock);
  915         panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
  916             ih->ih_name, ie->ie_name);
  917 ok:
  918 #endif
  919         /*
  920          * If there are no ithreads (per event and per handler), then
  921          * just remove the handler and return.  
  922          * XXX: Note that an INTR_FAST handler might be running on another CPU!
  923          */
  924         if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
  925                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  926                 mtx_unlock(&ie->ie_lock);
  927                 free(handler, M_ITHREAD);
  928                 return (0);
  929         }
  930 
  931         /* Private or global ithread? */
  932         it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
  933         /*
  934          * If the interrupt thread is already running, then just mark this
  935          * handler as being dead and let the ithread do the actual removal.
  936          *
  937          * During a cold boot while cold is set, msleep() does not sleep,
  938          * so we have to remove the handler here rather than letting the
  939          * thread do it.
  940          */
  941         thread_lock(it->it_thread);
  942         if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
  943                 handler->ih_flags |= IH_DEAD;
  944 
  945                 /*
  946                  * Ensure that the thread will process the handler list
  947                  * again and remove this handler if it has already passed
  948                  * it on the list.
  949                  */
  950                 it->it_need = 1;
  951         } else
  952                 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
  953         thread_unlock(it->it_thread);
  954         while (handler->ih_flags & IH_DEAD)
  955                 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
  956         /* 
  957          * At this point, the handler has been disconnected from the event,
  958          * so we can kill the private ithread if any.
  959          */
  960         if (handler->ih_thread) {
  961                 ithread_destroy(handler->ih_thread);
  962                 handler->ih_thread = NULL;
  963         }
  964         intr_event_update(ie);
  965 #ifdef notyet
  966         /*
  967          * XXX: This could be bad in the case of ppbus(8).  Also, I think
  968          * this could lead to races of stale data when servicing an
  969          * interrupt.
  970          */
  971         dead = 1;
  972         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
  973                 if (handler != NULL) {
  974                         dead = 0;
  975                         break;
  976                 }
  977         }
  978         if (dead) {
  979                 ithread_destroy(ie->ie_thread);
  980                 ie->ie_thread = NULL;
  981         }
  982 #endif
  983         mtx_unlock(&ie->ie_lock);
  984         free(handler, M_ITHREAD);
  985         return (0);
  986 }
  987 
  988 static int
  989 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
  990 {
  991         struct intr_entropy entropy;
  992         struct thread *td;
  993         struct thread *ctd;
  994         struct proc *p;
  995 
  996         /*
  997          * If no ithread or no handlers, then we have a stray interrupt.
  998          */
  999         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
 1000                 return (EINVAL);
 1001 
 1002         ctd = curthread;
 1003         td = it->it_thread;
 1004         p = td->td_proc;
 1005 
 1006         /*
 1007          * If any of the handlers for this ithread claim to be good
 1008          * sources of entropy, then gather some.
 1009          */
 1010         if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
 1011                 CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
 1012                     p->p_pid, td->td_name);
 1013                 entropy.event = (uintptr_t)ie;
 1014                 entropy.td = ctd;
 1015                 random_harvest(&entropy, sizeof(entropy), 2, 0,
 1016                     RANDOM_INTERRUPT);
 1017         }
 1018 
 1019         KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
 1020 
 1021         /*
 1022          * Set it_need to tell the thread to keep running if it is already
 1023          * running.  Then, lock the thread and see if we actually need to
 1024          * put it on the runqueue.
 1025          */
 1026         it->it_need = 1;
 1027         thread_lock(td);
 1028         if (TD_AWAITING_INTR(td)) {
 1029                 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
 1030                     td->td_name);
 1031                 TD_CLR_IWAIT(td);
 1032                 sched_add(td, SRQ_INTR);
 1033         } else {
 1034                 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
 1035                     __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
 1036         }
 1037         thread_unlock(td);
 1038 
 1039         return (0);
 1040 }
 1041 #endif
 1042 
 1043 /*
 1044  * Allow interrupt event binding for software interrupt handlers -- a no-op,
 1045  * since interrupts are generated in software rather than being directed by
 1046  * a PIC.
 1047  */
 1048 static int
 1049 swi_assign_cpu(void *arg, u_char cpu)
 1050 {
 1051 
 1052         return (0);
 1053 }
 1054 
 1055 /*
 1056  * Add a software interrupt handler to a specified event.  If a given event
 1057  * is not specified, then a new event is created.
 1058  */
 1059 int
 1060 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
 1061             void *arg, int pri, enum intr_type flags, void **cookiep)
 1062 {
 1063         struct thread *td;
 1064         struct intr_event *ie;
 1065         int error;
 1066 
 1067         if (flags & INTR_ENTROPY)
 1068                 return (EINVAL);
 1069 
 1070         ie = (eventp != NULL) ? *eventp : NULL;
 1071 
 1072         if (ie != NULL) {
 1073                 if (!(ie->ie_flags & IE_SOFT))
 1074                         return (EINVAL);
 1075         } else {
 1076                 error = intr_event_create(&ie, NULL, IE_SOFT, 0,
 1077                     NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
 1078                 if (error)
 1079                         return (error);
 1080                 if (eventp != NULL)
 1081                         *eventp = ie;
 1082         }
 1083         error = intr_event_add_handler(ie, name, NULL, handler, arg,
 1084             PI_SWI(pri), flags, cookiep);
 1085         if (error)
 1086                 return (error);
 1087         if (pri == SWI_CLOCK) {
 1088                 td = ie->ie_thread->it_thread;
 1089                 thread_lock(td);
 1090                 td->td_flags |= TDF_NOLOAD;
 1091                 thread_unlock(td);
 1092         }
 1093         return (0);
 1094 }
 1095 
 1096 /*
 1097  * Schedule a software interrupt thread.
 1098  */
 1099 void
 1100 swi_sched(void *cookie, int flags)
 1101 {
 1102         struct intr_handler *ih = (struct intr_handler *)cookie;
 1103         struct intr_event *ie = ih->ih_event;
 1104         int error;
 1105 
 1106         CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
 1107             ih->ih_need);
 1108 
 1109         /*
 1110          * Set ih_need for this handler so that if the ithread is already
 1111          * running it will execute this handler on the next pass.  Otherwise,
 1112          * it will execute it the next time it runs.
 1113          */
 1114         atomic_store_rel_int(&ih->ih_need, 1);
 1115 
 1116         if (!(flags & SWI_DELAY)) {
 1117                 PCPU_INC(cnt.v_soft);
 1118 #ifdef INTR_FILTER
 1119                 error = intr_event_schedule_thread(ie, ie->ie_thread);
 1120 #else
 1121                 error = intr_event_schedule_thread(ie);
 1122 #endif
 1123                 KASSERT(error == 0, ("stray software interrupt"));
 1124         }
 1125 }
 1126 
 1127 /*
 1128  * Remove a software interrupt handler.  Currently this code does not
 1129  * remove the associated interrupt event if it becomes empty.  Calling code
 1130  * may do so manually via intr_event_destroy(), but that's not really
 1131  * an optimal interface.
 1132  */
 1133 int
 1134 swi_remove(void *cookie)
 1135 {
 1136 
 1137         return (intr_event_remove_handler(cookie));
 1138 }
 1139 
 1140 #ifdef INTR_FILTER
 1141 static void
 1142 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
 1143 {
 1144         struct intr_event *ie;
 1145 
 1146         ie = ih->ih_event;
 1147         /*
 1148          * If this handler is marked for death, remove it from
 1149          * the list of handlers and wake up the sleeper.
 1150          */
 1151         if (ih->ih_flags & IH_DEAD) {
 1152                 mtx_lock(&ie->ie_lock);
 1153                 TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
 1154                 ih->ih_flags &= ~IH_DEAD;
 1155                 wakeup(ih);
 1156                 mtx_unlock(&ie->ie_lock);
 1157                 return;
 1158         }
 1159         
 1160         /* Execute this handler. */
 1161         CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
 1162              __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
 1163              ih->ih_name, ih->ih_flags);
 1164         
 1165         if (!(ih->ih_flags & IH_MPSAFE))
 1166                 mtx_lock(&Giant);
 1167         ih->ih_handler(ih->ih_argument);
 1168         if (!(ih->ih_flags & IH_MPSAFE))
 1169                 mtx_unlock(&Giant);
 1170 }
 1171 #endif
 1172 
 1173 /*
 1174  * This is a public function for use by drivers that mux interrupt
 1175  * handlers for child devices from their interrupt handler.
 1176  */
 1177 void
 1178 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
 1179 {
 1180         struct intr_handler *ih, *ihn;
 1181 
 1182         TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
 1183                 /*
 1184                  * If this handler is marked for death, remove it from
 1185                  * the list of handlers and wake up the sleeper.
 1186                  */
 1187                 if (ih->ih_flags & IH_DEAD) {
 1188                         mtx_lock(&ie->ie_lock);
 1189                         TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
 1190                         ih->ih_flags &= ~IH_DEAD;
 1191                         wakeup(ih);
 1192                         mtx_unlock(&ie->ie_lock);
 1193                         continue;
 1194                 }
 1195 
 1196                 /* Skip filter only handlers */
 1197                 if (ih->ih_handler == NULL)
 1198                         continue;
 1199 
 1200                 /*
 1201                  * For software interrupt threads, we only execute
 1202                  * handlers that have their need flag set.  Hardware
 1203                  * interrupt threads always invoke all of their handlers.
 1204                  */
 1205                 if (ie->ie_flags & IE_SOFT) {
 1206                         if (!ih->ih_need)
 1207                                 continue;
 1208                         else
 1209                                 atomic_store_rel_int(&ih->ih_need, 0);
 1210                 }
 1211 
 1212                 /* Execute this handler. */
 1213                 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
 1214                     __func__, p->p_pid, (void *)ih->ih_handler, 
 1215                     ih->ih_argument, ih->ih_name, ih->ih_flags);
 1216 
 1217                 if (!(ih->ih_flags & IH_MPSAFE))
 1218                         mtx_lock(&Giant);
 1219                 ih->ih_handler(ih->ih_argument);
 1220                 if (!(ih->ih_flags & IH_MPSAFE))
 1221                         mtx_unlock(&Giant);
 1222         }
 1223 }
 1224 
 1225 static void
 1226 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
 1227 {
 1228 
 1229         /* Interrupt handlers should not sleep. */
 1230         if (!(ie->ie_flags & IE_SOFT))
 1231                 THREAD_NO_SLEEPING();
 1232         intr_event_execute_handlers(p, ie);
 1233         if (!(ie->ie_flags & IE_SOFT))
 1234                 THREAD_SLEEPING_OK();
 1235 
 1236         /*
 1237          * Interrupt storm handling:
 1238          *
 1239          * If this interrupt source is currently storming, then throttle
 1240          * it to only fire the handler once  per clock tick.
 1241          *
 1242          * If this interrupt source is not currently storming, but the
 1243          * number of back to back interrupts exceeds the storm threshold,
 1244          * then enter storming mode.
 1245          */
 1246         if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
 1247             !(ie->ie_flags & IE_SOFT)) {
 1248                 /* Report the message only once every second. */
 1249                 if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
 1250                         printf(
 1251         "interrupt storm detected on \"%s\"; throttling interrupt source\n",
 1252                             ie->ie_name);
 1253                 }
 1254                 pause("istorm", 1);
 1255         } else
 1256                 ie->ie_count++;
 1257 
 1258         /*
 1259          * Now that all the handlers have had a chance to run, reenable
 1260          * the interrupt source.
 1261          */
 1262         if (ie->ie_post_ithread != NULL)
 1263                 ie->ie_post_ithread(ie->ie_source);
 1264 }
 1265 
 1266 #ifndef INTR_FILTER
 1267 /*
 1268  * This is the main code for interrupt threads.
 1269  */
 1270 static void
 1271 ithread_loop(void *arg)
 1272 {
 1273         struct intr_thread *ithd;
 1274         struct intr_event *ie;
 1275         struct thread *td;
 1276         struct proc *p;
 1277 
 1278         td = curthread;
 1279         p = td->td_proc;
 1280         ithd = (struct intr_thread *)arg;
 1281         KASSERT(ithd->it_thread == td,
 1282             ("%s: ithread and proc linkage out of sync", __func__));
 1283         ie = ithd->it_event;
 1284         ie->ie_count = 0;
 1285 
 1286         /*
 1287          * As long as we have interrupts outstanding, go through the
 1288          * list of handlers, giving each one a go at it.
 1289          */
 1290         for (;;) {
 1291                 /*
 1292                  * If we are an orphaned thread, then just die.
 1293                  */
 1294                 if (ithd->it_flags & IT_DEAD) {
 1295                         CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
 1296                             p->p_pid, td->td_name);
 1297                         free(ithd, M_ITHREAD);
 1298                         kthread_exit();
 1299                 }
 1300 
 1301                 /*
 1302                  * Service interrupts.  If another interrupt arrives while
 1303                  * we are running, it will set it_need to note that we
 1304                  * should make another pass.
 1305                  */
 1306                 while (ithd->it_need) {
 1307                         /*
 1308                          * This might need a full read and write barrier
 1309                          * to make sure that this write posts before any
 1310                          * of the memory or device accesses in the
 1311                          * handlers.
 1312                          */
 1313                         atomic_store_rel_int(&ithd->it_need, 0);
 1314                         ithread_execute_handlers(p, ie);
 1315                 }
 1316                 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
 1317                 mtx_assert(&Giant, MA_NOTOWNED);
 1318 
 1319                 /*
 1320                  * Processed all our interrupts.  Now get the sched
 1321                  * lock.  This may take a while and it_need may get
 1322                  * set again, so we have to check it again.
 1323                  */
 1324                 thread_lock(td);
 1325                 if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
 1326                         TD_SET_IWAIT(td);
 1327                         ie->ie_count = 0;
 1328                         mi_switch(SW_VOL | SWT_IWAIT, NULL);
 1329                 }
 1330                 thread_unlock(td);
 1331         }
 1332 }
 1333 
 1334 /*
 1335  * Main interrupt handling body.
 1336  *
 1337  * Input:
 1338  * o ie:                        the event connected to this interrupt.
 1339  * o frame:                     some archs (i.e. i386) pass a frame to some.
 1340  *                              handlers as their main argument.
 1341  * Return value:
 1342  * o 0:                         everything ok.
 1343  * o EINVAL:                    stray interrupt.
 1344  */
 1345 int
 1346 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
 1347 {
 1348         struct intr_handler *ih;
 1349         struct thread *td;
 1350         int error, ret, thread;
 1351 
 1352         td = curthread;
 1353 
 1354         /* An interrupt with no event or handlers is a stray interrupt. */
 1355         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
 1356                 return (EINVAL);
 1357 
 1358         /*
 1359          * Execute fast interrupt handlers directly.
 1360          * To support clock handlers, if a handler registers
 1361          * with a NULL argument, then we pass it a pointer to
 1362          * a trapframe as its argument.
 1363          */
 1364         td->td_intr_nesting_level++;
 1365         thread = 0;
 1366         ret = 0;
 1367         critical_enter();
 1368         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
 1369                 if (ih->ih_filter == NULL) {
 1370                         thread = 1;
 1371                         continue;
 1372                 }
 1373                 CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
 1374                     ih->ih_filter, ih->ih_argument == NULL ? frame :
 1375                     ih->ih_argument, ih->ih_name);
 1376                 if (ih->ih_argument == NULL)
 1377                         ret = ih->ih_filter(frame);
 1378                 else
 1379                         ret = ih->ih_filter(ih->ih_argument);
 1380                 KASSERT(ret == FILTER_STRAY ||
 1381                     ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
 1382                     (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
 1383                     ("%s: incorrect return value %#x from %s", __func__, ret,
 1384                     ih->ih_name));
 1385 
 1386                 /* 
 1387                  * Wrapper handler special handling:
 1388                  *
 1389                  * in some particular cases (like pccard and pccbb), 
 1390                  * the _real_ device handler is wrapped in a couple of
 1391                  * functions - a filter wrapper and an ithread wrapper.
 1392                  * In this case (and just in this case), the filter wrapper 
 1393                  * could ask the system to schedule the ithread and mask
 1394                  * the interrupt source if the wrapped handler is composed
 1395                  * of just an ithread handler.
 1396                  *
 1397                  * TODO: write a generic wrapper to avoid people rolling 
 1398                  * their own
 1399                  */
 1400                 if (!thread) {
 1401                         if (ret == FILTER_SCHEDULE_THREAD)
 1402                                 thread = 1;
 1403                 }
 1404         }
 1405 
 1406         if (thread) {
 1407                 if (ie->ie_pre_ithread != NULL)
 1408                         ie->ie_pre_ithread(ie->ie_source);
 1409         } else {
 1410                 if (ie->ie_post_filter != NULL)
 1411                         ie->ie_post_filter(ie->ie_source);
 1412         }
 1413         
 1414         /* Schedule the ithread if needed. */
 1415         if (thread) {
 1416                 error = intr_event_schedule_thread(ie);
 1417 #ifndef XEN             
 1418                 KASSERT(error == 0, ("bad stray interrupt"));
 1419 #else
 1420                 if (error != 0)
 1421                         log(LOG_WARNING, "bad stray interrupt");
 1422 #endif          
 1423         }
 1424         critical_exit();
 1425         td->td_intr_nesting_level--;
 1426         return (0);
 1427 }
 1428 #else
 1429 /*
 1430  * This is the main code for interrupt threads.
 1431  */
 1432 static void
 1433 ithread_loop(void *arg)
 1434 {
 1435         struct intr_thread *ithd;
 1436         struct intr_handler *ih;
 1437         struct intr_event *ie;
 1438         struct thread *td;
 1439         struct proc *p;
 1440         int priv;
 1441 
 1442         td = curthread;
 1443         p = td->td_proc;
 1444         ih = (struct intr_handler *)arg;
 1445         priv = (ih->ih_thread != NULL) ? 1 : 0;
 1446         ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
 1447         KASSERT(ithd->it_thread == td,
 1448             ("%s: ithread and proc linkage out of sync", __func__));
 1449         ie = ithd->it_event;
 1450         ie->ie_count = 0;
 1451 
 1452         /*
 1453          * As long as we have interrupts outstanding, go through the
 1454          * list of handlers, giving each one a go at it.
 1455          */
 1456         for (;;) {
 1457                 /*
 1458                  * If we are an orphaned thread, then just die.
 1459                  */
 1460                 if (ithd->it_flags & IT_DEAD) {
 1461                         CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
 1462                             p->p_pid, td->td_name);
 1463                         free(ithd, M_ITHREAD);
 1464                         kthread_exit();
 1465                 }
 1466 
 1467                 /*
 1468                  * Service interrupts.  If another interrupt arrives while
 1469                  * we are running, it will set it_need to note that we
 1470                  * should make another pass.
 1471                  */
 1472                 while (ithd->it_need) {
 1473                         /*
 1474                          * This might need a full read and write barrier
 1475                          * to make sure that this write posts before any
 1476                          * of the memory or device accesses in the
 1477                          * handlers.
 1478                          */
 1479                         atomic_store_rel_int(&ithd->it_need, 0);
 1480                         if (priv)
 1481                                 priv_ithread_execute_handler(p, ih);
 1482                         else 
 1483                                 ithread_execute_handlers(p, ie);
 1484                 }
 1485                 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
 1486                 mtx_assert(&Giant, MA_NOTOWNED);
 1487 
 1488                 /*
 1489                  * Processed all our interrupts.  Now get the sched
 1490                  * lock.  This may take a while and it_need may get
 1491                  * set again, so we have to check it again.
 1492                  */
 1493                 thread_lock(td);
 1494                 if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
 1495                         TD_SET_IWAIT(td);
 1496                         ie->ie_count = 0;
 1497                         mi_switch(SW_VOL | SWT_IWAIT, NULL);
 1498                 }
 1499                 thread_unlock(td);
 1500         }
 1501 }
 1502 
 1503 /* 
 1504  * Main loop for interrupt filter.
 1505  *
 1506  * Some architectures (i386, amd64 and arm) require the optional frame 
 1507  * parameter, and use it as the main argument for fast handler execution
 1508  * when ih_argument == NULL.
 1509  *
 1510  * Return value:
 1511  * o FILTER_STRAY:              No filter recognized the event, and no
 1512  *                              filter-less handler is registered on this 
 1513  *                              line.
 1514  * o FILTER_HANDLED:            A filter claimed the event and served it.
 1515  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
 1516  *                              least one filter-less handler on this line.
 1517  * o FILTER_HANDLED | 
 1518  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
 1519  *                              scheduling the per-handler ithread.
 1520  *
 1521  * In case an ithread has to be scheduled, in *ithd there will be a 
 1522  * pointer to a struct intr_thread containing the thread to be
 1523  * scheduled.
 1524  */
 1525 
 1526 static int
 1527 intr_filter_loop(struct intr_event *ie, struct trapframe *frame, 
 1528                  struct intr_thread **ithd) 
 1529 {
 1530         struct intr_handler *ih;
 1531         void *arg;
 1532         int ret, thread_only;
 1533 
 1534         ret = 0;
 1535         thread_only = 0;
 1536         TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
 1537                 /*
 1538                  * Execute fast interrupt handlers directly.
 1539                  * To support clock handlers, if a handler registers
 1540                  * with a NULL argument, then we pass it a pointer to
 1541                  * a trapframe as its argument.
 1542                  */
 1543                 arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
 1544                 
 1545                 CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
 1546                      ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
 1547 
 1548                 if (ih->ih_filter != NULL)
 1549                         ret = ih->ih_filter(arg);
 1550                 else {
 1551                         thread_only = 1;
 1552                         continue;
 1553                 }
 1554                 KASSERT(ret == FILTER_STRAY ||
 1555                     ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
 1556                     (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
 1557                     ("%s: incorrect return value %#x from %s", __func__, ret,
 1558                     ih->ih_name));
 1559                 if (ret & FILTER_STRAY)
 1560                         continue;
 1561                 else { 
 1562                         *ithd = ih->ih_thread;
 1563                         return (ret);
 1564                 }
 1565         }
 1566 
 1567         /*
 1568          * No filters handled the interrupt and we have at least
 1569          * one handler without a filter.  In this case, we schedule
 1570          * all of the filter-less handlers to run in the ithread.
 1571          */     
 1572         if (thread_only) {
 1573                 *ithd = ie->ie_thread;
 1574                 return (FILTER_SCHEDULE_THREAD);
 1575         }
 1576         return (FILTER_STRAY);
 1577 }
 1578 
 1579 /*
 1580  * Main interrupt handling body.
 1581  *
 1582  * Input:
 1583  * o ie:                        the event connected to this interrupt.
 1584  * o frame:                     some archs (i.e. i386) pass a frame to some.
 1585  *                              handlers as their main argument.
 1586  * Return value:
 1587  * o 0:                         everything ok.
 1588  * o EINVAL:                    stray interrupt.
 1589  */
 1590 int
 1591 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
 1592 {
 1593         struct intr_thread *ithd;
 1594         struct thread *td;
 1595         int thread;
 1596 
 1597         ithd = NULL;
 1598         td = curthread;
 1599 
 1600         if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
 1601                 return (EINVAL);
 1602 
 1603         td->td_intr_nesting_level++;
 1604         thread = 0;
 1605         critical_enter();
 1606         thread = intr_filter_loop(ie, frame, &ithd);    
 1607         if (thread & FILTER_HANDLED) {
 1608                 if (ie->ie_post_filter != NULL)
 1609                         ie->ie_post_filter(ie->ie_source);
 1610         } else {
 1611                 if (ie->ie_pre_ithread != NULL)
 1612                         ie->ie_pre_ithread(ie->ie_source);
 1613         }
 1614         critical_exit();
 1615         
 1616         /* Interrupt storm logic */
 1617         if (thread & FILTER_STRAY) {
 1618                 ie->ie_count++;
 1619                 if (ie->ie_count < intr_storm_threshold)
 1620                         printf("Interrupt stray detection not present\n");
 1621         }
 1622 
 1623         /* Schedule an ithread if needed. */
 1624         if (thread & FILTER_SCHEDULE_THREAD) {
 1625                 if (intr_event_schedule_thread(ie, ithd) != 0)
 1626                         panic("%s: impossible stray interrupt", __func__);
 1627         }
 1628         td->td_intr_nesting_level--;
 1629         return (0);
 1630 }
 1631 #endif
 1632 
 1633 #ifdef DDB
 1634 /*
 1635  * Dump details about an interrupt handler
 1636  */
 1637 static void
 1638 db_dump_intrhand(struct intr_handler *ih)
 1639 {
 1640         int comma;
 1641 
 1642         db_printf("\t%-10s ", ih->ih_name);
 1643         switch (ih->ih_pri) {
 1644         case PI_REALTIME:
 1645                 db_printf("CLK ");
 1646                 break;
 1647         case PI_AV:
 1648                 db_printf("AV  ");
 1649                 break;
 1650         case PI_TTY:
 1651                 db_printf("TTY ");
 1652                 break;
 1653         case PI_NET:
 1654                 db_printf("NET ");
 1655                 break;
 1656         case PI_DISK:
 1657                 db_printf("DISK");
 1658                 break;
 1659         case PI_DULL:
 1660                 db_printf("DULL");
 1661                 break;
 1662         default:
 1663                 if (ih->ih_pri >= PI_SOFT)
 1664                         db_printf("SWI ");
 1665                 else
 1666                         db_printf("%4u", ih->ih_pri);
 1667                 break;
 1668         }
 1669         db_printf(" ");
 1670         db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
 1671         db_printf("(%p)", ih->ih_argument);
 1672         if (ih->ih_need ||
 1673             (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
 1674             IH_MPSAFE)) != 0) {
 1675                 db_printf(" {");
 1676                 comma = 0;
 1677                 if (ih->ih_flags & IH_EXCLUSIVE) {
 1678                         if (comma)
 1679                                 db_printf(", ");
 1680                         db_printf("EXCL");
 1681                         comma = 1;
 1682                 }
 1683                 if (ih->ih_flags & IH_ENTROPY) {
 1684                         if (comma)
 1685                                 db_printf(", ");
 1686                         db_printf("ENTROPY");
 1687                         comma = 1;
 1688                 }
 1689                 if (ih->ih_flags & IH_DEAD) {
 1690                         if (comma)
 1691                                 db_printf(", ");
 1692                         db_printf("DEAD");
 1693                         comma = 1;
 1694                 }
 1695                 if (ih->ih_flags & IH_MPSAFE) {
 1696                         if (comma)
 1697                                 db_printf(", ");
 1698                         db_printf("MPSAFE");
 1699                         comma = 1;
 1700                 }
 1701                 if (ih->ih_need) {
 1702                         if (comma)
 1703                                 db_printf(", ");
 1704                         db_printf("NEED");
 1705                 }
 1706                 db_printf("}");
 1707         }
 1708         db_printf("\n");
 1709 }
 1710 
 1711 /*
 1712  * Dump details about a event.
 1713  */
 1714 void
 1715 db_dump_intr_event(struct intr_event *ie, int handlers)
 1716 {
 1717         struct intr_handler *ih;
 1718         struct intr_thread *it;
 1719         int comma;
 1720 
 1721         db_printf("%s ", ie->ie_fullname);
 1722         it = ie->ie_thread;
 1723         if (it != NULL)
 1724                 db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
 1725         else
 1726                 db_printf("(no thread)");
 1727         if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
 1728             (it != NULL && it->it_need)) {
 1729                 db_printf(" {");
 1730                 comma = 0;
 1731                 if (ie->ie_flags & IE_SOFT) {
 1732                         db_printf("SOFT");
 1733                         comma = 1;
 1734                 }
 1735                 if (ie->ie_flags & IE_ENTROPY) {
 1736                         if (comma)
 1737                                 db_printf(", ");
 1738                         db_printf("ENTROPY");
 1739                         comma = 1;
 1740                 }
 1741                 if (ie->ie_flags & IE_ADDING_THREAD) {
 1742                         if (comma)
 1743                                 db_printf(", ");
 1744                         db_printf("ADDING_THREAD");
 1745                         comma = 1;
 1746                 }
 1747                 if (it != NULL && it->it_need) {
 1748                         if (comma)
 1749                                 db_printf(", ");
 1750                         db_printf("NEED");
 1751                 }
 1752                 db_printf("}");
 1753         }
 1754         db_printf("\n");
 1755 
 1756         if (handlers)
 1757                 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
 1758                     db_dump_intrhand(ih);
 1759 }
 1760 
 1761 /*
 1762  * Dump data about interrupt handlers
 1763  */
 1764 DB_SHOW_COMMAND(intr, db_show_intr)
 1765 {
 1766         struct intr_event *ie;
 1767         int all, verbose;
 1768 
 1769         verbose = index(modif, 'v') != NULL;
 1770         all = index(modif, 'a') != NULL;
 1771         TAILQ_FOREACH(ie, &event_list, ie_list) {
 1772                 if (!all && TAILQ_EMPTY(&ie->ie_handlers))
 1773                         continue;
 1774                 db_dump_intr_event(ie, verbose);
 1775                 if (db_pager_quit)
 1776                         break;
 1777         }
 1778 }
 1779 #endif /* DDB */
 1780 
 1781 /*
 1782  * Start standard software interrupt threads
 1783  */
 1784 static void
 1785 start_softintr(void *dummy)
 1786 {
 1787 
 1788         if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
 1789                 panic("died while creating vm swi ithread");
 1790 }
 1791 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
 1792     NULL);
 1793 
 1794 /*
 1795  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
 1796  * The data for this machine dependent, and the declarations are in machine
 1797  * dependent code.  The layout of intrnames and intrcnt however is machine
 1798  * independent.
 1799  *
 1800  * We do not know the length of intrcnt and intrnames at compile time, so
 1801  * calculate things at run time.
 1802  */
 1803 static int
 1804 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
 1805 {
 1806         return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames,
 1807            req));
 1808 }
 1809 
 1810 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1811     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
 1812 
 1813 static int
 1814 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
 1815 {
 1816         return (sysctl_handle_opaque(oidp, intrcnt,
 1817             (char *)eintrcnt - (char *)intrcnt, req));
 1818 }
 1819 
 1820 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1821     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
 1822 
 1823 #ifdef DDB
 1824 /*
 1825  * DDB command to dump the interrupt statistics.
 1826  */
 1827 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
 1828 {
 1829         u_long *i;
 1830         char *cp;
 1831 
 1832         cp = intrnames;
 1833         for (i = intrcnt; i != eintrcnt && !db_pager_quit; i++) {
 1834                 if (*cp == '\0')
 1835                         break;
 1836                 if (*i != 0)
 1837                         db_printf("%s\t%lu\n", cp, *i);
 1838                 cp += strlen(cp) + 1;
 1839         }
 1840 }
 1841 #endif

Cache object: dd927404c69dbe0ce7b306176c420960


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.