The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ktrace.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_ktrace.c       8.2 (Berkeley) 9/23/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_ktrace.c 298310 2016-04-19 23:48:27Z pfg $");
   36 
   37 #include "opt_ktrace.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/capsicum.h>
   41 #include <sys/systm.h>
   42 #include <sys/fcntl.h>
   43 #include <sys/kernel.h>
   44 #include <sys/kthread.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mount.h>
   49 #include <sys/namei.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/unistd.h>
   53 #include <sys/vnode.h>
   54 #include <sys/socket.h>
   55 #include <sys/stat.h>
   56 #include <sys/ktrace.h>
   57 #include <sys/sx.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/sysent.h>
   60 #include <sys/syslog.h>
   61 #include <sys/sysproto.h>
   62 
   63 #include <security/mac/mac_framework.h>
   64 
   65 /*
   66  * The ktrace facility allows the tracing of certain key events in user space
   67  * processes, such as system calls, signal delivery, context switches, and
   68  * user generated events using utrace(2).  It works by streaming event
   69  * records and data to a vnode associated with the process using the
   70  * ktrace(2) system call.  In general, records can be written directly from
   71  * the context that generates the event.  One important exception to this is
   72  * during a context switch, where sleeping is not permitted.  To handle this
   73  * case, trace events are generated using in-kernel ktr_request records, and
   74  * then delivered to disk at a convenient moment -- either immediately, the
   75  * next traceable event, at system call return, or at process exit.
   76  *
   77  * When dealing with multiple threads or processes writing to the same event
   78  * log, ordering guarantees are weak: specifically, if an event has multiple
   79  * records (i.e., system call enter and return), they may be interlaced with
   80  * records from another event.  Process and thread ID information is provided
   81  * in the record, and user applications can de-interlace events if required.
   82  */
   83 
   84 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
   85 
   86 #ifdef KTRACE
   87 
   88 FEATURE(ktrace, "Kernel support for system-call tracing");
   89 
   90 #ifndef KTRACE_REQUEST_POOL
   91 #define KTRACE_REQUEST_POOL     100
   92 #endif
   93 
   94 struct ktr_request {
   95         struct  ktr_header ktr_header;
   96         void    *ktr_buffer;
   97         union {
   98                 struct  ktr_proc_ctor ktr_proc_ctor;
   99                 struct  ktr_cap_fail ktr_cap_fail;
  100                 struct  ktr_syscall ktr_syscall;
  101                 struct  ktr_sysret ktr_sysret;
  102                 struct  ktr_genio ktr_genio;
  103                 struct  ktr_psig ktr_psig;
  104                 struct  ktr_csw ktr_csw;
  105                 struct  ktr_fault ktr_fault;
  106                 struct  ktr_faultend ktr_faultend;
  107         } ktr_data;
  108         STAILQ_ENTRY(ktr_request) ktr_list;
  109 };
  110 
  111 static int data_lengths[] = {
  112         [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
  113         [KTR_SYSRET] = sizeof(struct ktr_sysret),
  114         [KTR_NAMEI] = 0,
  115         [KTR_GENIO] = sizeof(struct ktr_genio),
  116         [KTR_PSIG] = sizeof(struct ktr_psig),
  117         [KTR_CSW] = sizeof(struct ktr_csw),
  118         [KTR_USER] = 0,
  119         [KTR_STRUCT] = 0,
  120         [KTR_SYSCTL] = 0,
  121         [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
  122         [KTR_PROCDTOR] = 0,
  123         [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
  124         [KTR_FAULT] = sizeof(struct ktr_fault),
  125         [KTR_FAULTEND] = sizeof(struct ktr_faultend),
  126 };
  127 
  128 static STAILQ_HEAD(, ktr_request) ktr_free;
  129 
  130 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
  131 
  132 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
  133 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
  134 
  135 static u_int ktr_geniosize = PAGE_SIZE;
  136 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
  137     0, "Maximum size of genio event payload");
  138 
  139 static int print_message = 1;
  140 static struct mtx ktrace_mtx;
  141 static struct sx ktrace_sx;
  142 
  143 static void ktrace_init(void *dummy);
  144 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
  145 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
  146 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
  147 static struct ktr_request *ktr_getrequest(int type);
  148 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
  149 static void ktr_freeproc(struct proc *p, struct ucred **uc,
  150     struct vnode **vp);
  151 static void ktr_freerequest(struct ktr_request *req);
  152 static void ktr_freerequest_locked(struct ktr_request *req);
  153 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
  154 static int ktrcanset(struct thread *,struct proc *);
  155 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
  156 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
  157 static void ktrprocctor_entered(struct thread *, struct proc *);
  158 
  159 /*
  160  * ktrace itself generates events, such as context switches, which we do not
  161  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
  162  * whether or not it is in a region where tracing of events should be
  163  * suppressed.
  164  */
  165 static void
  166 ktrace_enter(struct thread *td)
  167 {
  168 
  169         KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
  170         td->td_pflags |= TDP_INKTRACE;
  171 }
  172 
  173 static void
  174 ktrace_exit(struct thread *td)
  175 {
  176 
  177         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
  178         td->td_pflags &= ~TDP_INKTRACE;
  179 }
  180 
  181 static void
  182 ktrace_assert(struct thread *td)
  183 {
  184 
  185         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
  186 }
  187 
  188 static void
  189 ktrace_init(void *dummy)
  190 {
  191         struct ktr_request *req;
  192         int i;
  193 
  194         mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
  195         sx_init(&ktrace_sx, "ktrace_sx");
  196         STAILQ_INIT(&ktr_free);
  197         for (i = 0; i < ktr_requestpool; i++) {
  198                 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
  199                 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  200         }
  201 }
  202 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
  203 
  204 static int
  205 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
  206 {
  207         struct thread *td;
  208         u_int newsize, oldsize, wantsize;
  209         int error;
  210 
  211         /* Handle easy read-only case first to avoid warnings from GCC. */
  212         if (!req->newptr) {
  213                 oldsize = ktr_requestpool;
  214                 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
  215         }
  216 
  217         error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
  218         if (error)
  219                 return (error);
  220         td = curthread;
  221         ktrace_enter(td);
  222         oldsize = ktr_requestpool;
  223         newsize = ktrace_resize_pool(oldsize, wantsize);
  224         ktrace_exit(td);
  225         error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
  226         if (error)
  227                 return (error);
  228         if (wantsize > oldsize && newsize < wantsize)
  229                 return (ENOSPC);
  230         return (0);
  231 }
  232 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
  233     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
  234     "Pool buffer size for ktrace(1)");
  235 
  236 static u_int
  237 ktrace_resize_pool(u_int oldsize, u_int newsize)
  238 {
  239         STAILQ_HEAD(, ktr_request) ktr_new;
  240         struct ktr_request *req;
  241         int bound;
  242 
  243         print_message = 1;
  244         bound = newsize - oldsize;
  245         if (bound == 0)
  246                 return (ktr_requestpool);
  247         if (bound < 0) {
  248                 mtx_lock(&ktrace_mtx);
  249                 /* Shrink pool down to newsize if possible. */
  250                 while (bound++ < 0) {
  251                         req = STAILQ_FIRST(&ktr_free);
  252                         if (req == NULL)
  253                                 break;
  254                         STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  255                         ktr_requestpool--;
  256                         free(req, M_KTRACE);
  257                 }
  258         } else {
  259                 /* Grow pool up to newsize. */
  260                 STAILQ_INIT(&ktr_new);
  261                 while (bound-- > 0) {
  262                         req = malloc(sizeof(struct ktr_request), M_KTRACE,
  263                             M_WAITOK);
  264                         STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
  265                 }
  266                 mtx_lock(&ktrace_mtx);
  267                 STAILQ_CONCAT(&ktr_free, &ktr_new);
  268                 ktr_requestpool += (newsize - oldsize);
  269         }
  270         mtx_unlock(&ktrace_mtx);
  271         return (ktr_requestpool);
  272 }
  273 
  274 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
  275 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
  276     (sizeof((struct thread *)NULL)->td_name));
  277 
  278 static struct ktr_request *
  279 ktr_getrequest_entered(struct thread *td, int type)
  280 {
  281         struct ktr_request *req;
  282         struct proc *p = td->td_proc;
  283         int pm;
  284 
  285         mtx_lock(&ktrace_mtx);
  286         if (!KTRCHECK(td, type)) {
  287                 mtx_unlock(&ktrace_mtx);
  288                 return (NULL);
  289         }
  290         req = STAILQ_FIRST(&ktr_free);
  291         if (req != NULL) {
  292                 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  293                 req->ktr_header.ktr_type = type;
  294                 if (p->p_traceflag & KTRFAC_DROP) {
  295                         req->ktr_header.ktr_type |= KTR_DROP;
  296                         p->p_traceflag &= ~KTRFAC_DROP;
  297                 }
  298                 mtx_unlock(&ktrace_mtx);
  299                 microtime(&req->ktr_header.ktr_time);
  300                 req->ktr_header.ktr_pid = p->p_pid;
  301                 req->ktr_header.ktr_tid = td->td_tid;
  302                 bcopy(td->td_name, req->ktr_header.ktr_comm,
  303                     sizeof(req->ktr_header.ktr_comm));
  304                 req->ktr_buffer = NULL;
  305                 req->ktr_header.ktr_len = 0;
  306         } else {
  307                 p->p_traceflag |= KTRFAC_DROP;
  308                 pm = print_message;
  309                 print_message = 0;
  310                 mtx_unlock(&ktrace_mtx);
  311                 if (pm)
  312                         printf("Out of ktrace request objects.\n");
  313         }
  314         return (req);
  315 }
  316 
  317 static struct ktr_request *
  318 ktr_getrequest(int type)
  319 {
  320         struct thread *td = curthread;
  321         struct ktr_request *req;
  322 
  323         ktrace_enter(td);
  324         req = ktr_getrequest_entered(td, type);
  325         if (req == NULL)
  326                 ktrace_exit(td);
  327 
  328         return (req);
  329 }
  330 
  331 /*
  332  * Some trace generation environments don't permit direct access to VFS,
  333  * such as during a context switch where sleeping is not allowed.  Under these
  334  * circumstances, queue a request to the thread to be written asynchronously
  335  * later.
  336  */
  337 static void
  338 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
  339 {
  340 
  341         mtx_lock(&ktrace_mtx);
  342         STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
  343         mtx_unlock(&ktrace_mtx);
  344 }
  345 
  346 /*
  347  * Drain any pending ktrace records from the per-thread queue to disk.  This
  348  * is used both internally before committing other records, and also on
  349  * system call return.  We drain all the ones we can find at the time when
  350  * drain is requested, but don't keep draining after that as those events
  351  * may be approximately "after" the current event.
  352  */
  353 static void
  354 ktr_drain(struct thread *td)
  355 {
  356         struct ktr_request *queued_req;
  357         STAILQ_HEAD(, ktr_request) local_queue;
  358 
  359         ktrace_assert(td);
  360         sx_assert(&ktrace_sx, SX_XLOCKED);
  361 
  362         STAILQ_INIT(&local_queue);
  363 
  364         if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
  365                 mtx_lock(&ktrace_mtx);
  366                 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
  367                 mtx_unlock(&ktrace_mtx);
  368 
  369                 while ((queued_req = STAILQ_FIRST(&local_queue))) {
  370                         STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
  371                         ktr_writerequest(td, queued_req);
  372                         ktr_freerequest(queued_req);
  373                 }
  374         }
  375 }
  376 
  377 /*
  378  * Submit a trace record for immediate commit to disk -- to be used only
  379  * where entering VFS is OK.  First drain any pending records that may have
  380  * been cached in the thread.
  381  */
  382 static void
  383 ktr_submitrequest(struct thread *td, struct ktr_request *req)
  384 {
  385 
  386         ktrace_assert(td);
  387 
  388         sx_xlock(&ktrace_sx);
  389         ktr_drain(td);
  390         ktr_writerequest(td, req);
  391         ktr_freerequest(req);
  392         sx_xunlock(&ktrace_sx);
  393         ktrace_exit(td);
  394 }
  395 
  396 static void
  397 ktr_freerequest(struct ktr_request *req)
  398 {
  399 
  400         mtx_lock(&ktrace_mtx);
  401         ktr_freerequest_locked(req);
  402         mtx_unlock(&ktrace_mtx);
  403 }
  404 
  405 static void
  406 ktr_freerequest_locked(struct ktr_request *req)
  407 {
  408 
  409         mtx_assert(&ktrace_mtx, MA_OWNED);
  410         if (req->ktr_buffer != NULL)
  411                 free(req->ktr_buffer, M_KTRACE);
  412         STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  413 }
  414 
  415 /*
  416  * Disable tracing for a process and release all associated resources.
  417  * The caller is responsible for releasing a reference on the returned
  418  * vnode and credentials.
  419  */
  420 static void
  421 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
  422 {
  423         struct ktr_request *req;
  424 
  425         PROC_LOCK_ASSERT(p, MA_OWNED);
  426         mtx_assert(&ktrace_mtx, MA_OWNED);
  427         *uc = p->p_tracecred;
  428         p->p_tracecred = NULL;
  429         if (vp != NULL)
  430                 *vp = p->p_tracevp;
  431         p->p_tracevp = NULL;
  432         p->p_traceflag = 0;
  433         while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
  434                 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
  435                 ktr_freerequest_locked(req);
  436         }
  437 }
  438 
  439 void
  440 ktrsyscall(code, narg, args)
  441         int code, narg;
  442         register_t args[];
  443 {
  444         struct ktr_request *req;
  445         struct ktr_syscall *ktp;
  446         size_t buflen;
  447         char *buf = NULL;
  448 
  449         buflen = sizeof(register_t) * narg;
  450         if (buflen > 0) {
  451                 buf = malloc(buflen, M_KTRACE, M_WAITOK);
  452                 bcopy(args, buf, buflen);
  453         }
  454         req = ktr_getrequest(KTR_SYSCALL);
  455         if (req == NULL) {
  456                 if (buf != NULL)
  457                         free(buf, M_KTRACE);
  458                 return;
  459         }
  460         ktp = &req->ktr_data.ktr_syscall;
  461         ktp->ktr_code = code;
  462         ktp->ktr_narg = narg;
  463         if (buflen > 0) {
  464                 req->ktr_header.ktr_len = buflen;
  465                 req->ktr_buffer = buf;
  466         }
  467         ktr_submitrequest(curthread, req);
  468 }
  469 
  470 void
  471 ktrsysret(code, error, retval)
  472         int code, error;
  473         register_t retval;
  474 {
  475         struct ktr_request *req;
  476         struct ktr_sysret *ktp;
  477 
  478         req = ktr_getrequest(KTR_SYSRET);
  479         if (req == NULL)
  480                 return;
  481         ktp = &req->ktr_data.ktr_sysret;
  482         ktp->ktr_code = code;
  483         ktp->ktr_error = error;
  484         ktp->ktr_retval = ((error == 0) ? retval: 0);           /* what about val2 ? */
  485         ktr_submitrequest(curthread, req);
  486 }
  487 
  488 /*
  489  * When a setuid process execs, disable tracing.
  490  *
  491  * XXX: We toss any pending asynchronous records.
  492  */
  493 void
  494 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
  495 {
  496 
  497         PROC_LOCK_ASSERT(p, MA_OWNED);
  498         mtx_lock(&ktrace_mtx);
  499         ktr_freeproc(p, uc, vp);
  500         mtx_unlock(&ktrace_mtx);
  501 }
  502 
  503 /*
  504  * When a process exits, drain per-process asynchronous trace records
  505  * and disable tracing.
  506  */
  507 void
  508 ktrprocexit(struct thread *td)
  509 {
  510         struct ktr_request *req;
  511         struct proc *p;
  512         struct ucred *cred;
  513         struct vnode *vp;
  514 
  515         p = td->td_proc;
  516         if (p->p_traceflag == 0)
  517                 return;
  518 
  519         ktrace_enter(td);
  520         req = ktr_getrequest_entered(td, KTR_PROCDTOR);
  521         if (req != NULL)
  522                 ktr_enqueuerequest(td, req);
  523         sx_xlock(&ktrace_sx);
  524         ktr_drain(td);
  525         sx_xunlock(&ktrace_sx);
  526         PROC_LOCK(p);
  527         mtx_lock(&ktrace_mtx);
  528         ktr_freeproc(p, &cred, &vp);
  529         mtx_unlock(&ktrace_mtx);
  530         PROC_UNLOCK(p);
  531         if (vp != NULL)
  532                 vrele(vp);
  533         if (cred != NULL)
  534                 crfree(cred);
  535         ktrace_exit(td);
  536 }
  537 
  538 static void
  539 ktrprocctor_entered(struct thread *td, struct proc *p)
  540 {
  541         struct ktr_proc_ctor *ktp;
  542         struct ktr_request *req;
  543         struct thread *td2;
  544 
  545         ktrace_assert(td);
  546         td2 = FIRST_THREAD_IN_PROC(p);
  547         req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
  548         if (req == NULL)
  549                 return;
  550         ktp = &req->ktr_data.ktr_proc_ctor;
  551         ktp->sv_flags = p->p_sysent->sv_flags;
  552         ktr_enqueuerequest(td2, req);
  553 }
  554 
  555 void
  556 ktrprocctor(struct proc *p)
  557 {
  558         struct thread *td = curthread;
  559 
  560         if ((p->p_traceflag & KTRFAC_MASK) == 0)
  561                 return;
  562 
  563         ktrace_enter(td);
  564         ktrprocctor_entered(td, p);
  565         ktrace_exit(td);
  566 }
  567 
  568 /*
  569  * When a process forks, enable tracing in the new process if needed.
  570  */
  571 void
  572 ktrprocfork(struct proc *p1, struct proc *p2)
  573 {
  574 
  575         PROC_LOCK(p1);
  576         mtx_lock(&ktrace_mtx);
  577         KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
  578         if (p1->p_traceflag & KTRFAC_INHERIT) {
  579                 p2->p_traceflag = p1->p_traceflag;
  580                 if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
  581                         VREF(p2->p_tracevp);
  582                         KASSERT(p1->p_tracecred != NULL,
  583                             ("ktrace vnode with no cred"));
  584                         p2->p_tracecred = crhold(p1->p_tracecred);
  585                 }
  586         }
  587         mtx_unlock(&ktrace_mtx);
  588         PROC_UNLOCK(p1);
  589 
  590         ktrprocctor(p2);
  591 }
  592 
  593 /*
  594  * When a thread returns, drain any asynchronous records generated by the
  595  * system call.
  596  */
  597 void
  598 ktruserret(struct thread *td)
  599 {
  600 
  601         ktrace_enter(td);
  602         sx_xlock(&ktrace_sx);
  603         ktr_drain(td);
  604         sx_xunlock(&ktrace_sx);
  605         ktrace_exit(td);
  606 }
  607 
  608 void
  609 ktrnamei(path)
  610         char *path;
  611 {
  612         struct ktr_request *req;
  613         int namelen;
  614         char *buf = NULL;
  615 
  616         namelen = strlen(path);
  617         if (namelen > 0) {
  618                 buf = malloc(namelen, M_KTRACE, M_WAITOK);
  619                 bcopy(path, buf, namelen);
  620         }
  621         req = ktr_getrequest(KTR_NAMEI);
  622         if (req == NULL) {
  623                 if (buf != NULL)
  624                         free(buf, M_KTRACE);
  625                 return;
  626         }
  627         if (namelen > 0) {
  628                 req->ktr_header.ktr_len = namelen;
  629                 req->ktr_buffer = buf;
  630         }
  631         ktr_submitrequest(curthread, req);
  632 }
  633 
  634 void
  635 ktrsysctl(name, namelen)
  636         int *name;
  637         u_int namelen;
  638 {
  639         struct ktr_request *req;
  640         u_int mib[CTL_MAXNAME + 2];
  641         char *mibname;
  642         size_t mibnamelen;
  643         int error;
  644 
  645         /* Lookup name of mib. */    
  646         KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
  647         mib[0] = 0;
  648         mib[1] = 1;
  649         bcopy(name, mib + 2, namelen * sizeof(*name));
  650         mibnamelen = 128;
  651         mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
  652         error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
  653             NULL, 0, &mibnamelen, 0);
  654         if (error) {
  655                 free(mibname, M_KTRACE);
  656                 return;
  657         }
  658         req = ktr_getrequest(KTR_SYSCTL);
  659         if (req == NULL) {
  660                 free(mibname, M_KTRACE);
  661                 return;
  662         }
  663         req->ktr_header.ktr_len = mibnamelen;
  664         req->ktr_buffer = mibname;
  665         ktr_submitrequest(curthread, req);
  666 }
  667 
  668 void
  669 ktrgenio(fd, rw, uio, error)
  670         int fd;
  671         enum uio_rw rw;
  672         struct uio *uio;
  673         int error;
  674 {
  675         struct ktr_request *req;
  676         struct ktr_genio *ktg;
  677         int datalen;
  678         char *buf;
  679 
  680         if (error) {
  681                 free(uio, M_IOV);
  682                 return;
  683         }
  684         uio->uio_offset = 0;
  685         uio->uio_rw = UIO_WRITE;
  686         datalen = MIN(uio->uio_resid, ktr_geniosize);
  687         buf = malloc(datalen, M_KTRACE, M_WAITOK);
  688         error = uiomove(buf, datalen, uio);
  689         free(uio, M_IOV);
  690         if (error) {
  691                 free(buf, M_KTRACE);
  692                 return;
  693         }
  694         req = ktr_getrequest(KTR_GENIO);
  695         if (req == NULL) {
  696                 free(buf, M_KTRACE);
  697                 return;
  698         }
  699         ktg = &req->ktr_data.ktr_genio;
  700         ktg->ktr_fd = fd;
  701         ktg->ktr_rw = rw;
  702         req->ktr_header.ktr_len = datalen;
  703         req->ktr_buffer = buf;
  704         ktr_submitrequest(curthread, req);
  705 }
  706 
  707 void
  708 ktrpsig(sig, action, mask, code)
  709         int sig;
  710         sig_t action;
  711         sigset_t *mask;
  712         int code;
  713 {
  714         struct thread *td = curthread;
  715         struct ktr_request *req;
  716         struct ktr_psig *kp;
  717 
  718         req = ktr_getrequest(KTR_PSIG);
  719         if (req == NULL)
  720                 return;
  721         kp = &req->ktr_data.ktr_psig;
  722         kp->signo = (char)sig;
  723         kp->action = action;
  724         kp->mask = *mask;
  725         kp->code = code;
  726         ktr_enqueuerequest(td, req);
  727         ktrace_exit(td);
  728 }
  729 
  730 void
  731 ktrcsw(out, user, wmesg)
  732         int out, user;
  733         const char *wmesg;
  734 {
  735         struct thread *td = curthread;
  736         struct ktr_request *req;
  737         struct ktr_csw *kc;
  738 
  739         req = ktr_getrequest(KTR_CSW);
  740         if (req == NULL)
  741                 return;
  742         kc = &req->ktr_data.ktr_csw;
  743         kc->out = out;
  744         kc->user = user;
  745         if (wmesg != NULL)
  746                 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
  747         else
  748                 bzero(kc->wmesg, sizeof(kc->wmesg));
  749         ktr_enqueuerequest(td, req);
  750         ktrace_exit(td);
  751 }
  752 
  753 void
  754 ktrstruct(name, data, datalen)
  755         const char *name;
  756         void *data;
  757         size_t datalen;
  758 {
  759         struct ktr_request *req;
  760         char *buf;
  761         size_t buflen, namelen;
  762 
  763         if (data == NULL)
  764                 datalen = 0;
  765         namelen = strlen(name) + 1;
  766         buflen = namelen + datalen;
  767         buf = malloc(buflen, M_KTRACE, M_WAITOK);
  768         strcpy(buf, name);
  769         bcopy(data, buf + namelen, datalen);
  770         if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
  771                 free(buf, M_KTRACE);
  772                 return;
  773         }
  774         req->ktr_buffer = buf;
  775         req->ktr_header.ktr_len = buflen;
  776         ktr_submitrequest(curthread, req);
  777 }
  778 
  779 void
  780 ktrcapfail(type, needed, held)
  781         enum ktr_cap_fail_type type;
  782         const cap_rights_t *needed;
  783         const cap_rights_t *held;
  784 {
  785         struct thread *td = curthread;
  786         struct ktr_request *req;
  787         struct ktr_cap_fail *kcf;
  788 
  789         req = ktr_getrequest(KTR_CAPFAIL);
  790         if (req == NULL)
  791                 return;
  792         kcf = &req->ktr_data.ktr_cap_fail;
  793         kcf->cap_type = type;
  794         if (needed != NULL)
  795                 kcf->cap_needed = *needed;
  796         else
  797                 cap_rights_init(&kcf->cap_needed);
  798         if (held != NULL)
  799                 kcf->cap_held = *held;
  800         else
  801                 cap_rights_init(&kcf->cap_held);
  802         ktr_enqueuerequest(td, req);
  803         ktrace_exit(td);
  804 }
  805 
  806 void
  807 ktrfault(vaddr, type)
  808         vm_offset_t vaddr;
  809         int type;
  810 {
  811         struct thread *td = curthread;
  812         struct ktr_request *req;
  813         struct ktr_fault *kf;
  814 
  815         req = ktr_getrequest(KTR_FAULT);
  816         if (req == NULL)
  817                 return;
  818         kf = &req->ktr_data.ktr_fault;
  819         kf->vaddr = vaddr;
  820         kf->type = type;
  821         ktr_enqueuerequest(td, req);
  822         ktrace_exit(td);
  823 }
  824 
  825 void
  826 ktrfaultend(result)
  827         int result;
  828 {
  829         struct thread *td = curthread;
  830         struct ktr_request *req;
  831         struct ktr_faultend *kf;
  832 
  833         req = ktr_getrequest(KTR_FAULTEND);
  834         if (req == NULL)
  835                 return;
  836         kf = &req->ktr_data.ktr_faultend;
  837         kf->result = result;
  838         ktr_enqueuerequest(td, req);
  839         ktrace_exit(td);
  840 }
  841 #endif /* KTRACE */
  842 
  843 /* Interface and common routines */
  844 
  845 #ifndef _SYS_SYSPROTO_H_
  846 struct ktrace_args {
  847         char    *fname;
  848         int     ops;
  849         int     facs;
  850         int     pid;
  851 };
  852 #endif
  853 /* ARGSUSED */
  854 int
  855 sys_ktrace(td, uap)
  856         struct thread *td;
  857         register struct ktrace_args *uap;
  858 {
  859 #ifdef KTRACE
  860         register struct vnode *vp = NULL;
  861         register struct proc *p;
  862         struct pgrp *pg;
  863         int facs = uap->facs & ~KTRFAC_ROOT;
  864         int ops = KTROP(uap->ops);
  865         int descend = uap->ops & KTRFLAG_DESCEND;
  866         int nfound, ret = 0;
  867         int flags, error = 0;
  868         struct nameidata nd;
  869         struct ucred *cred;
  870 
  871         /*
  872          * Need something to (un)trace.
  873          */
  874         if (ops != KTROP_CLEARFILE && facs == 0)
  875                 return (EINVAL);
  876 
  877         ktrace_enter(td);
  878         if (ops != KTROP_CLEAR) {
  879                 /*
  880                  * an operation which requires a file argument.
  881                  */
  882                 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
  883                 flags = FREAD | FWRITE | O_NOFOLLOW;
  884                 error = vn_open(&nd, &flags, 0, NULL);
  885                 if (error) {
  886                         ktrace_exit(td);
  887                         return (error);
  888                 }
  889                 NDFREE(&nd, NDF_ONLY_PNBUF);
  890                 vp = nd.ni_vp;
  891                 VOP_UNLOCK(vp, 0);
  892                 if (vp->v_type != VREG) {
  893                         (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
  894                         ktrace_exit(td);
  895                         return (EACCES);
  896                 }
  897         }
  898         /*
  899          * Clear all uses of the tracefile.
  900          */
  901         if (ops == KTROP_CLEARFILE) {
  902                 int vrele_count;
  903 
  904                 vrele_count = 0;
  905                 sx_slock(&allproc_lock);
  906                 FOREACH_PROC_IN_SYSTEM(p) {
  907                         PROC_LOCK(p);
  908                         if (p->p_tracevp == vp) {
  909                                 if (ktrcanset(td, p)) {
  910                                         mtx_lock(&ktrace_mtx);
  911                                         ktr_freeproc(p, &cred, NULL);
  912                                         mtx_unlock(&ktrace_mtx);
  913                                         vrele_count++;
  914                                         crfree(cred);
  915                                 } else
  916                                         error = EPERM;
  917                         }
  918                         PROC_UNLOCK(p);
  919                 }
  920                 sx_sunlock(&allproc_lock);
  921                 if (vrele_count > 0) {
  922                         while (vrele_count-- > 0)
  923                                 vrele(vp);
  924                 }
  925                 goto done;
  926         }
  927         /*
  928          * do it
  929          */
  930         sx_slock(&proctree_lock);
  931         if (uap->pid < 0) {
  932                 /*
  933                  * by process group
  934                  */
  935                 pg = pgfind(-uap->pid);
  936                 if (pg == NULL) {
  937                         sx_sunlock(&proctree_lock);
  938                         error = ESRCH;
  939                         goto done;
  940                 }
  941                 /*
  942                  * ktrops() may call vrele(). Lock pg_members
  943                  * by the proctree_lock rather than pg_mtx.
  944                  */
  945                 PGRP_UNLOCK(pg);
  946                 nfound = 0;
  947                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  948                         PROC_LOCK(p);
  949                         if (p->p_state == PRS_NEW ||
  950                             p_cansee(td, p) != 0) {
  951                                 PROC_UNLOCK(p); 
  952                                 continue;
  953                         }
  954                         nfound++;
  955                         if (descend)
  956                                 ret |= ktrsetchildren(td, p, ops, facs, vp);
  957                         else
  958                                 ret |= ktrops(td, p, ops, facs, vp);
  959                 }
  960                 if (nfound == 0) {
  961                         sx_sunlock(&proctree_lock);
  962                         error = ESRCH;
  963                         goto done;
  964                 }
  965         } else {
  966                 /*
  967                  * by pid
  968                  */
  969                 p = pfind(uap->pid);
  970                 if (p == NULL)
  971                         error = ESRCH;
  972                 else
  973                         error = p_cansee(td, p);
  974                 if (error) {
  975                         if (p != NULL)
  976                                 PROC_UNLOCK(p);
  977                         sx_sunlock(&proctree_lock);
  978                         goto done;
  979                 }
  980                 if (descend)
  981                         ret |= ktrsetchildren(td, p, ops, facs, vp);
  982                 else
  983                         ret |= ktrops(td, p, ops, facs, vp);
  984         }
  985         sx_sunlock(&proctree_lock);
  986         if (!ret)
  987                 error = EPERM;
  988 done:
  989         if (vp != NULL)
  990                 (void) vn_close(vp, FWRITE, td->td_ucred, td);
  991         ktrace_exit(td);
  992         return (error);
  993 #else /* !KTRACE */
  994         return (ENOSYS);
  995 #endif /* KTRACE */
  996 }
  997 
  998 /* ARGSUSED */
  999 int
 1000 sys_utrace(td, uap)
 1001         struct thread *td;
 1002         register struct utrace_args *uap;
 1003 {
 1004 
 1005 #ifdef KTRACE
 1006         struct ktr_request *req;
 1007         void *cp;
 1008         int error;
 1009 
 1010         if (!KTRPOINT(td, KTR_USER))
 1011                 return (0);
 1012         if (uap->len > KTR_USER_MAXLEN)
 1013                 return (EINVAL);
 1014         cp = malloc(uap->len, M_KTRACE, M_WAITOK);
 1015         error = copyin(uap->addr, cp, uap->len);
 1016         if (error) {
 1017                 free(cp, M_KTRACE);
 1018                 return (error);
 1019         }
 1020         req = ktr_getrequest(KTR_USER);
 1021         if (req == NULL) {
 1022                 free(cp, M_KTRACE);
 1023                 return (ENOMEM);
 1024         }
 1025         req->ktr_buffer = cp;
 1026         req->ktr_header.ktr_len = uap->len;
 1027         ktr_submitrequest(td, req);
 1028         return (0);
 1029 #else /* !KTRACE */
 1030         return (ENOSYS);
 1031 #endif /* KTRACE */
 1032 }
 1033 
 1034 #ifdef KTRACE
 1035 static int
 1036 ktrops(td, p, ops, facs, vp)
 1037         struct thread *td;
 1038         struct proc *p;
 1039         int ops, facs;
 1040         struct vnode *vp;
 1041 {
 1042         struct vnode *tracevp = NULL;
 1043         struct ucred *tracecred = NULL;
 1044 
 1045         PROC_LOCK_ASSERT(p, MA_OWNED);
 1046         if (!ktrcanset(td, p)) {
 1047                 PROC_UNLOCK(p);
 1048                 return (0);
 1049         }
 1050         if (p->p_flag & P_WEXIT) {
 1051                 /* If the process is exiting, just ignore it. */
 1052                 PROC_UNLOCK(p);
 1053                 return (1);
 1054         }
 1055         mtx_lock(&ktrace_mtx);
 1056         if (ops == KTROP_SET) {
 1057                 if (p->p_tracevp != vp) {
 1058                         /*
 1059                          * if trace file already in use, relinquish below
 1060                          */
 1061                         tracevp = p->p_tracevp;
 1062                         VREF(vp);
 1063                         p->p_tracevp = vp;
 1064                 }
 1065                 if (p->p_tracecred != td->td_ucred) {
 1066                         tracecred = p->p_tracecred;
 1067                         p->p_tracecred = crhold(td->td_ucred);
 1068                 }
 1069                 p->p_traceflag |= facs;
 1070                 if (priv_check(td, PRIV_KTRACE) == 0)
 1071                         p->p_traceflag |= KTRFAC_ROOT;
 1072         } else {
 1073                 /* KTROP_CLEAR */
 1074                 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
 1075                         /* no more tracing */
 1076                         ktr_freeproc(p, &tracecred, &tracevp);
 1077         }
 1078         mtx_unlock(&ktrace_mtx);
 1079         if ((p->p_traceflag & KTRFAC_MASK) != 0)
 1080                 ktrprocctor_entered(td, p);
 1081         PROC_UNLOCK(p);
 1082         if (tracevp != NULL)
 1083                 vrele(tracevp);
 1084         if (tracecred != NULL)
 1085                 crfree(tracecred);
 1086 
 1087         return (1);
 1088 }
 1089 
 1090 static int
 1091 ktrsetchildren(td, top, ops, facs, vp)
 1092         struct thread *td;
 1093         struct proc *top;
 1094         int ops, facs;
 1095         struct vnode *vp;
 1096 {
 1097         register struct proc *p;
 1098         register int ret = 0;
 1099 
 1100         p = top;
 1101         PROC_LOCK_ASSERT(p, MA_OWNED);
 1102         sx_assert(&proctree_lock, SX_LOCKED);
 1103         for (;;) {
 1104                 ret |= ktrops(td, p, ops, facs, vp);
 1105                 /*
 1106                  * If this process has children, descend to them next,
 1107                  * otherwise do any siblings, and if done with this level,
 1108                  * follow back up the tree (but not past top).
 1109                  */
 1110                 if (!LIST_EMPTY(&p->p_children))
 1111                         p = LIST_FIRST(&p->p_children);
 1112                 else for (;;) {
 1113                         if (p == top)
 1114                                 return (ret);
 1115                         if (LIST_NEXT(p, p_sibling)) {
 1116                                 p = LIST_NEXT(p, p_sibling);
 1117                                 break;
 1118                         }
 1119                         p = p->p_pptr;
 1120                 }
 1121                 PROC_LOCK(p);
 1122         }
 1123         /*NOTREACHED*/
 1124 }
 1125 
 1126 static void
 1127 ktr_writerequest(struct thread *td, struct ktr_request *req)
 1128 {
 1129         struct ktr_header *kth;
 1130         struct vnode *vp;
 1131         struct proc *p;
 1132         struct ucred *cred;
 1133         struct uio auio;
 1134         struct iovec aiov[3];
 1135         struct mount *mp;
 1136         int datalen, buflen, vrele_count;
 1137         int error;
 1138 
 1139         /*
 1140          * We hold the vnode and credential for use in I/O in case ktrace is
 1141          * disabled on the process as we write out the request.
 1142          *
 1143          * XXXRW: This is not ideal: we could end up performing a write after
 1144          * the vnode has been closed.
 1145          */
 1146         mtx_lock(&ktrace_mtx);
 1147         vp = td->td_proc->p_tracevp;
 1148         cred = td->td_proc->p_tracecred;
 1149 
 1150         /*
 1151          * If vp is NULL, the vp has been cleared out from under this
 1152          * request, so just drop it.  Make sure the credential and vnode are
 1153          * in sync: we should have both or neither.
 1154          */
 1155         if (vp == NULL) {
 1156                 KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
 1157                 mtx_unlock(&ktrace_mtx);
 1158                 return;
 1159         }
 1160         VREF(vp);
 1161         KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
 1162         crhold(cred);
 1163         mtx_unlock(&ktrace_mtx);
 1164 
 1165         kth = &req->ktr_header;
 1166         KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
 1167             ("data_lengths array overflow"));
 1168         datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
 1169         buflen = kth->ktr_len;
 1170         auio.uio_iov = &aiov[0];
 1171         auio.uio_offset = 0;
 1172         auio.uio_segflg = UIO_SYSSPACE;
 1173         auio.uio_rw = UIO_WRITE;
 1174         aiov[0].iov_base = (caddr_t)kth;
 1175         aiov[0].iov_len = sizeof(struct ktr_header);
 1176         auio.uio_resid = sizeof(struct ktr_header);
 1177         auio.uio_iovcnt = 1;
 1178         auio.uio_td = td;
 1179         if (datalen != 0) {
 1180                 aiov[1].iov_base = (caddr_t)&req->ktr_data;
 1181                 aiov[1].iov_len = datalen;
 1182                 auio.uio_resid += datalen;
 1183                 auio.uio_iovcnt++;
 1184                 kth->ktr_len += datalen;
 1185         }
 1186         if (buflen != 0) {
 1187                 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
 1188                 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
 1189                 aiov[auio.uio_iovcnt].iov_len = buflen;
 1190                 auio.uio_resid += buflen;
 1191                 auio.uio_iovcnt++;
 1192         }
 1193 
 1194         vn_start_write(vp, &mp, V_WAIT);
 1195         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1196 #ifdef MAC
 1197         error = mac_vnode_check_write(cred, NOCRED, vp);
 1198         if (error == 0)
 1199 #endif
 1200                 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
 1201         VOP_UNLOCK(vp, 0);
 1202         vn_finished_write(mp);
 1203         crfree(cred);
 1204         if (!error) {
 1205                 vrele(vp);
 1206                 return;
 1207         }
 1208 
 1209         /*
 1210          * If error encountered, give up tracing on this vnode.  We defer
 1211          * all the vrele()'s on the vnode until after we are finished walking
 1212          * the various lists to avoid needlessly holding locks.
 1213          * NB: at this point we still hold the vnode reference that must
 1214          * not go away as we need the valid vnode to compare with. Thus let
 1215          * vrele_count start at 1 and the reference will be freed
 1216          * by the loop at the end after our last use of vp.
 1217          */
 1218         log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
 1219             error);
 1220         vrele_count = 1;
 1221         /*
 1222          * First, clear this vnode from being used by any processes in the
 1223          * system.
 1224          * XXX - If one process gets an EPERM writing to the vnode, should
 1225          * we really do this?  Other processes might have suitable
 1226          * credentials for the operation.
 1227          */
 1228         cred = NULL;
 1229         sx_slock(&allproc_lock);
 1230         FOREACH_PROC_IN_SYSTEM(p) {
 1231                 PROC_LOCK(p);
 1232                 if (p->p_tracevp == vp) {
 1233                         mtx_lock(&ktrace_mtx);
 1234                         ktr_freeproc(p, &cred, NULL);
 1235                         mtx_unlock(&ktrace_mtx);
 1236                         vrele_count++;
 1237                 }
 1238                 PROC_UNLOCK(p);
 1239                 if (cred != NULL) {
 1240                         crfree(cred);
 1241                         cred = NULL;
 1242                 }
 1243         }
 1244         sx_sunlock(&allproc_lock);
 1245 
 1246         while (vrele_count-- > 0)
 1247                 vrele(vp);
 1248 }
 1249 
 1250 /*
 1251  * Return true if caller has permission to set the ktracing state
 1252  * of target.  Essentially, the target can't possess any
 1253  * more permissions than the caller.  KTRFAC_ROOT signifies that
 1254  * root previously set the tracing status on the target process, and
 1255  * so, only root may further change it.
 1256  */
 1257 static int
 1258 ktrcanset(td, targetp)
 1259         struct thread *td;
 1260         struct proc *targetp;
 1261 {
 1262 
 1263         PROC_LOCK_ASSERT(targetp, MA_OWNED);
 1264         if (targetp->p_traceflag & KTRFAC_ROOT &&
 1265             priv_check(td, PRIV_KTRACE))
 1266                 return (0);
 1267 
 1268         if (p_candebug(td, targetp) != 0)
 1269                 return (0);
 1270 
 1271         return (1);
 1272 }
 1273 
 1274 #endif /* KTRACE */

Cache object: 2a190318e63b58ddf6f8e2e91470b18f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.